Line Arrangements and Duality

Point-Line Duality

\[P = (x, y) \quad \iff \quad P^* = y = m \cdot x - b \]
\[l = (m, b) \quad \iff \quad l^* = y = m \cdot x + b \] (non-vertical)

For \(p \) in plane and nonvertical line \(l \) in plane, duality transform \(* \) is

1. incidence preserving: \(p \in l \iff l^* \in p^* \)
2. order preserving: \(p \) above \(l \iff l^* \) above \(p^* \)

For point \(p \) on parabola \(y = \frac{x^2}{2} \)
\(p^* \) is tangent at \(p \).

For point \(q \) not on parabola
- every point with \(x \)-coord = \(q \)
- has same slope as \(q \)

What is dual of a line segment?
A simple arrangement of n lines has

- $(\binom{n}{2})$ vertices
- $(\binom{n}{2}) + n + 1$ faces
- n^2 edges

Proof

- Every pair of lines intersects in a distinct point $\Rightarrow (\binom{n}{2})$ vertices

- If we add a line L to an arrangement of $n-1$ lines
 - we split $n-1$ edges into two $+ (n-1)$
 - we introduce n new edges along $L + \binom{n}{2} + 2n-1$

\[
\frac{(n-1)^2 + 2n-1}{\text{Ind. hyp. for } n-1} = \frac{n^2}{n^2}
\]

- Use Euler's formula for faces
 \[
f = 2 + e - v = 2 + n^2 - \binom{n}{2} + 1
 = \binom{n}{2} + n + 1
\]
Construct a line arrangement in \(O(n^2) \) time.

What does this mean?

Incremental method

Given a \((i-1)\)-line arrangement, add a new line, \(l_i \)

1. Find leftmost face that contains \(l_i \) [takes \(O(i) \) time.]

2. Walk boundary of this face until reach \(l_i \)'s exit

3. Total length of all boundaries walked is certainly \(O(i^2) \)

Zone Theorem: The total number of edges in all faces whose closures intersect \(l \) in an arrangement of \(n \) lines is \(\ll 10n \)

Proof: Rotate the plane so that \(l \) is horizontal.

Each edge in \(A(l) \) bounds two faces

- one to its left and one to its right
- [for horizontal edges, the face above is to its left]

So each face \(F \) has left bounding edges (those with \(F \) to right) and right bounding edges.