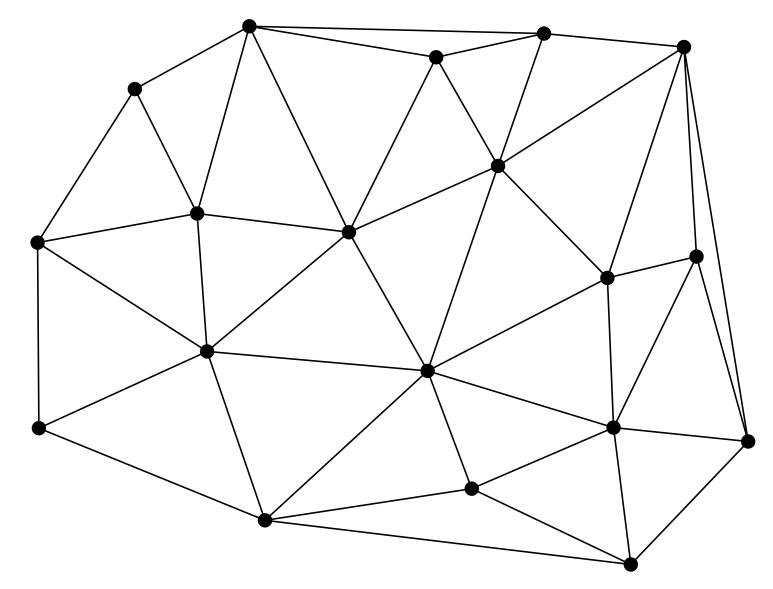
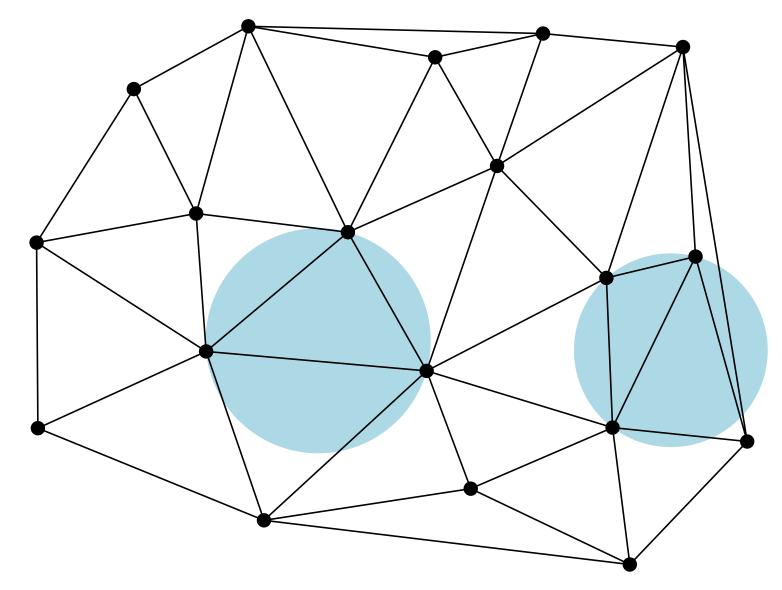
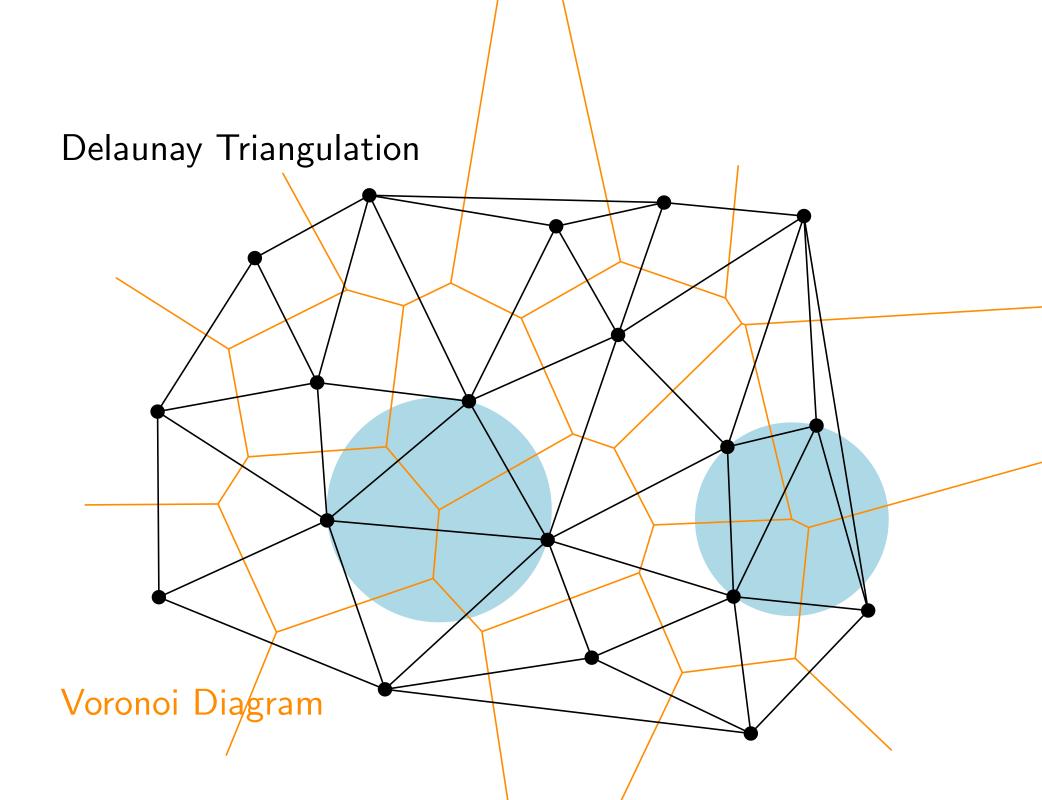
• • ullet• •

Delaunay Triangulation

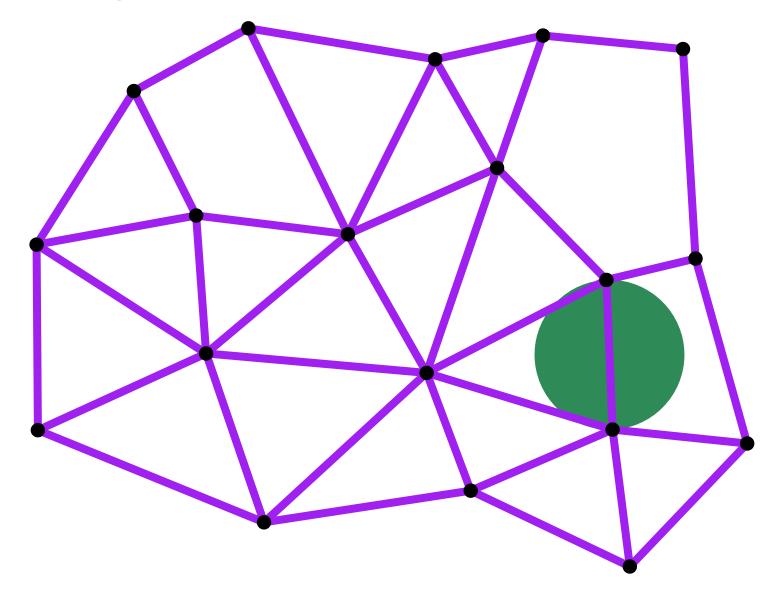


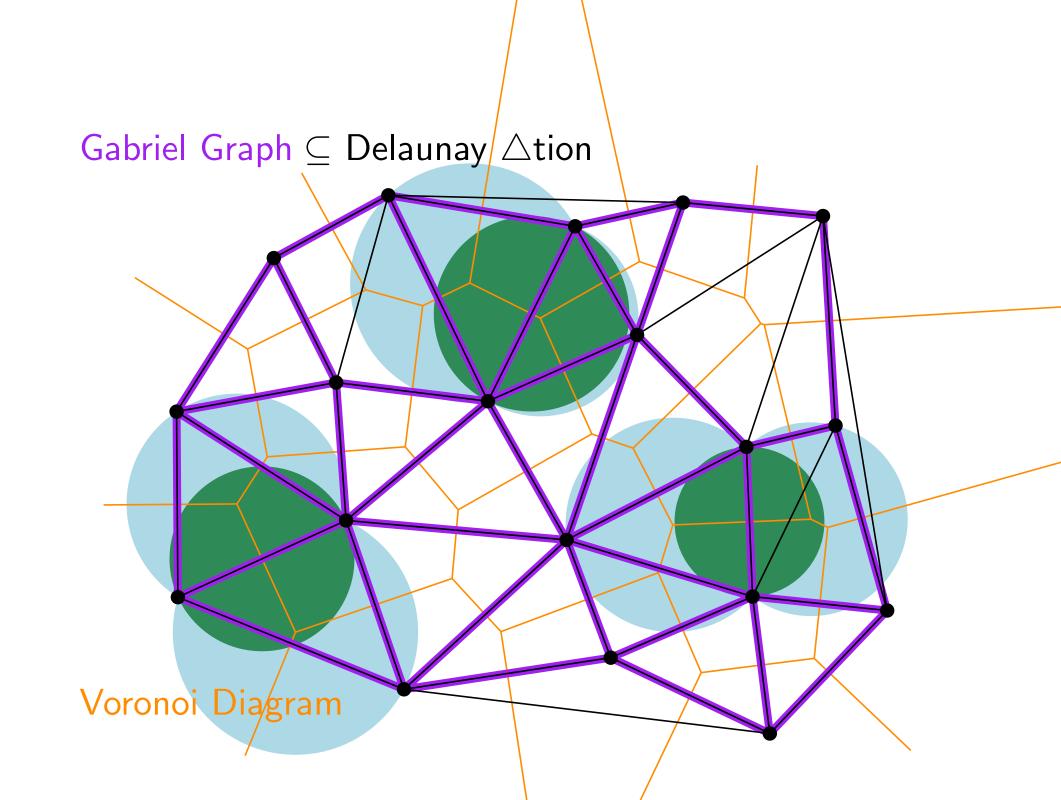
Delaunay Triangulation



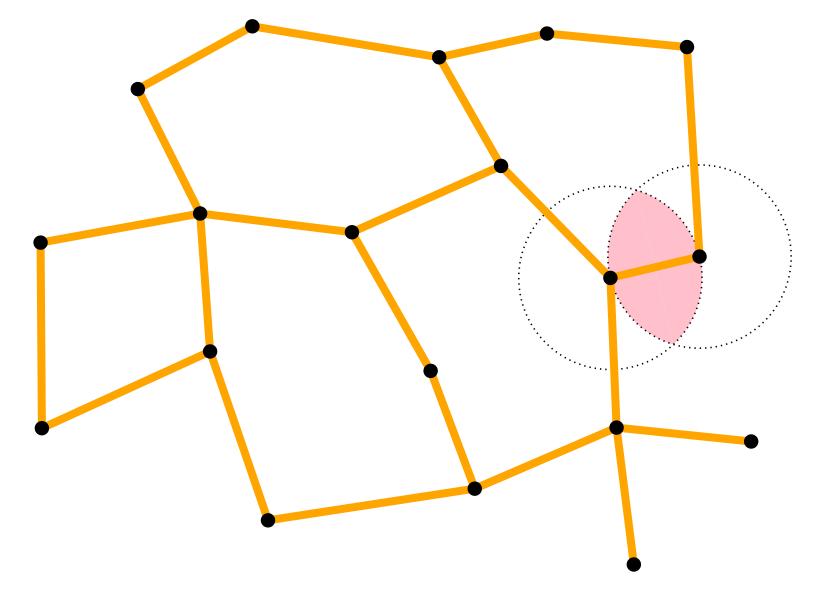


Gabriel Graph

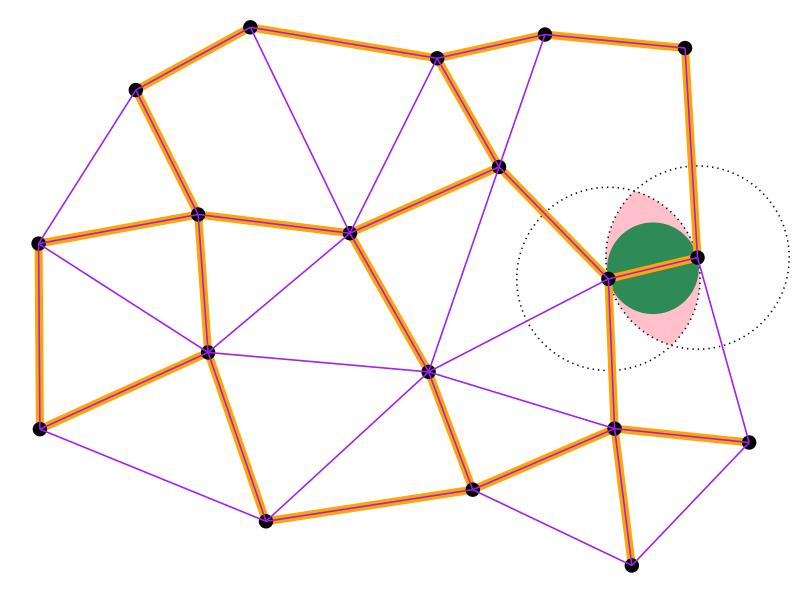




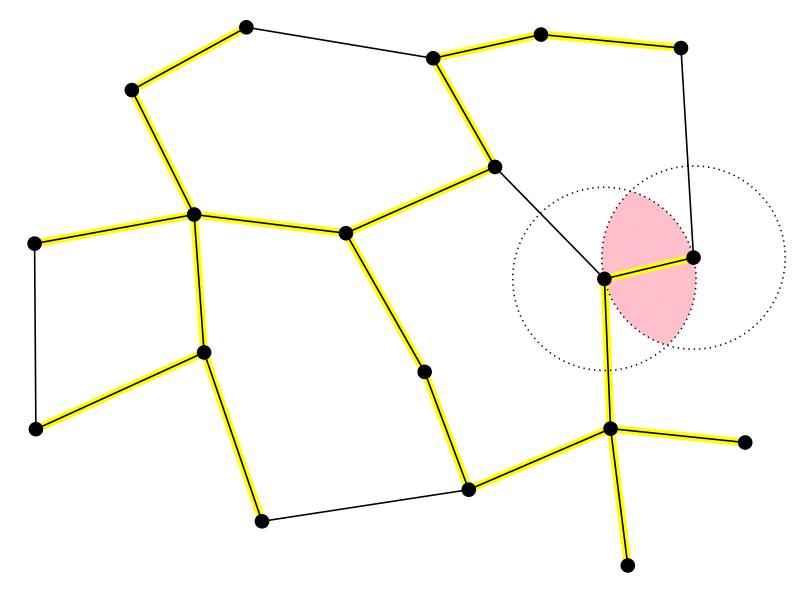
Relative neighborhood graph



Relative neighborhood graph \subseteq Gabriel Graph

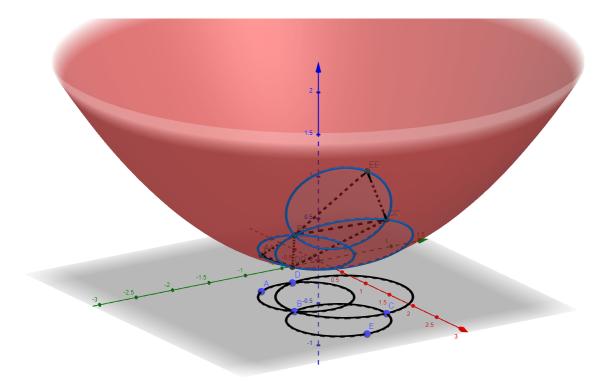


Min Spanning Tree \subseteq Relative neighborhood graph

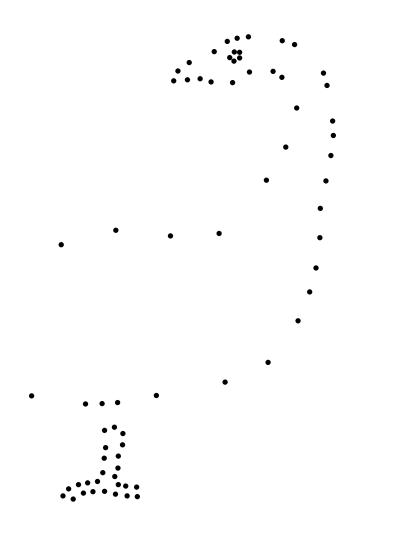


$\mathsf{MST}(\mathsf{P})\subseteq\mathsf{RNG}(\mathsf{P})\subseteq\mathsf{GG}(\mathsf{P})\subseteq\mathsf{DT}(\mathsf{P})$

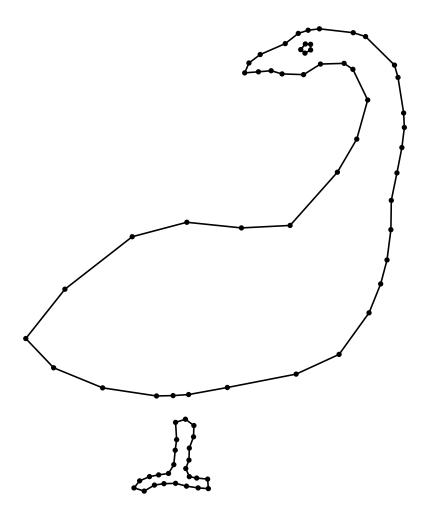
Delaunay Triangulation from 3D Convex hull



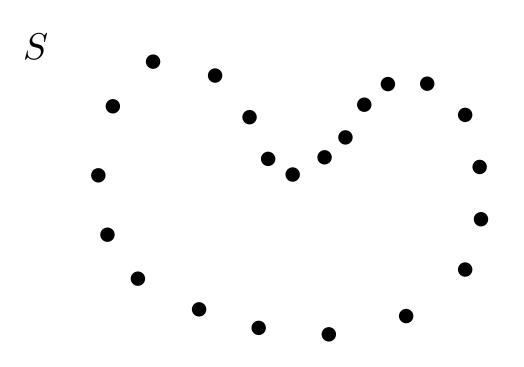
The Crust and the β -skeleton [Amenta, Bern & Eppstein 98]



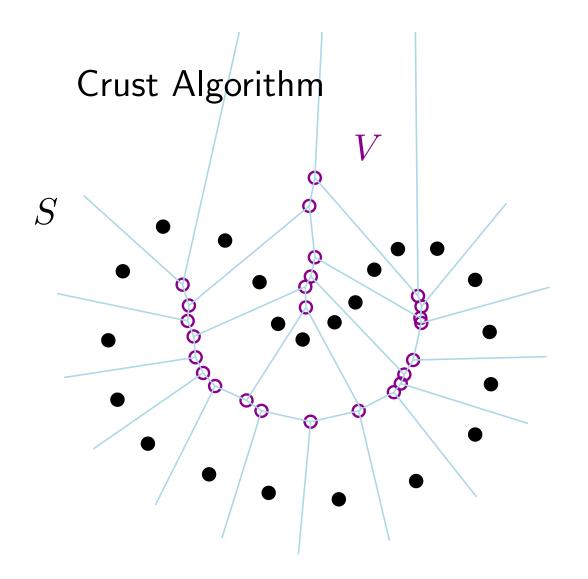
The Crust and the β -skeleton [Amenta, Bern & Eppstein 98]



Crust Algorithm

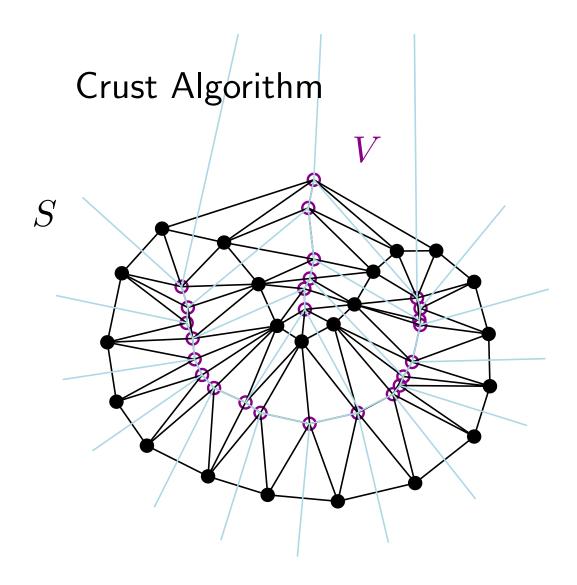


Let ${\cal S}$ be sample points.



Let S be sample points.

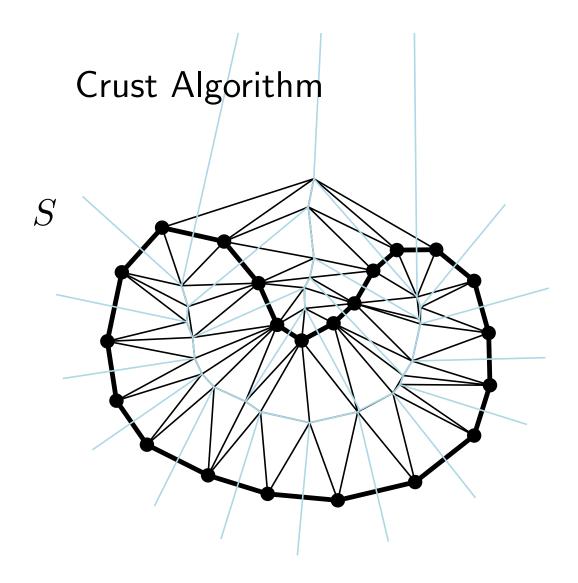
Let V be Voronoi vertices in $\mathrm{VD}(S)$



Let S be sample points.

Let V be Voronoi vertices in $\mathrm{VD}(S)$

Connect $p, q \in S$ if \overline{pq} is an edge of $DT(S \cup V)$

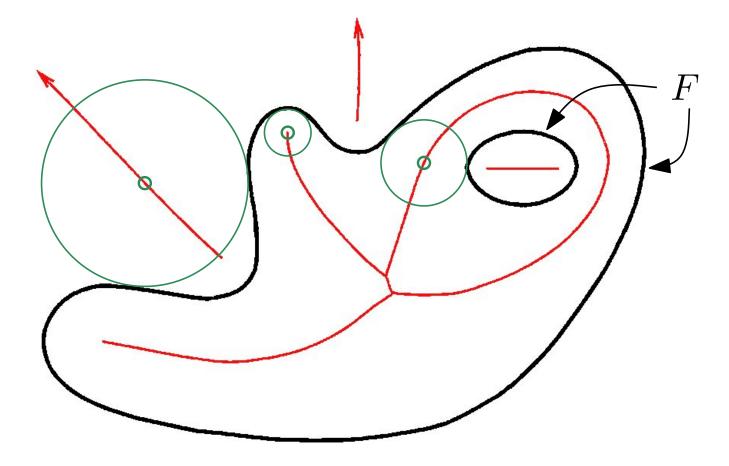


Let S be sample points.

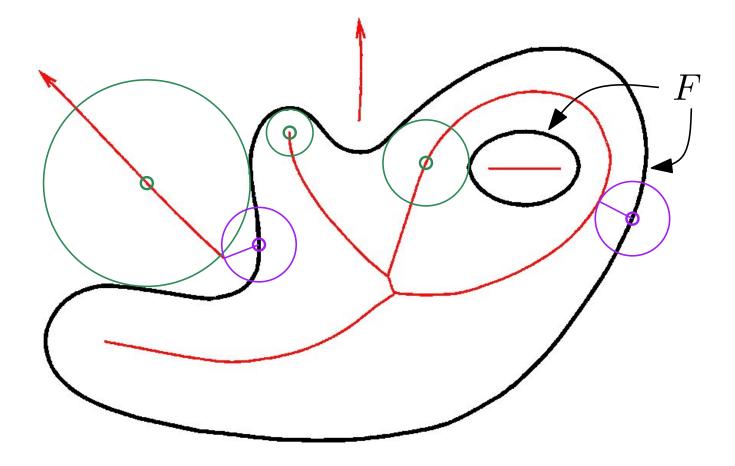
Let V be Voronoi vertices in $\mathrm{VD}(S)$

Connect $p, q \in S$ if \overline{pq} is an edge of $DT(S \cup V)$

The **medial axis** of F is the set of points in \mathbb{R}^2 with two or more closest points in F.



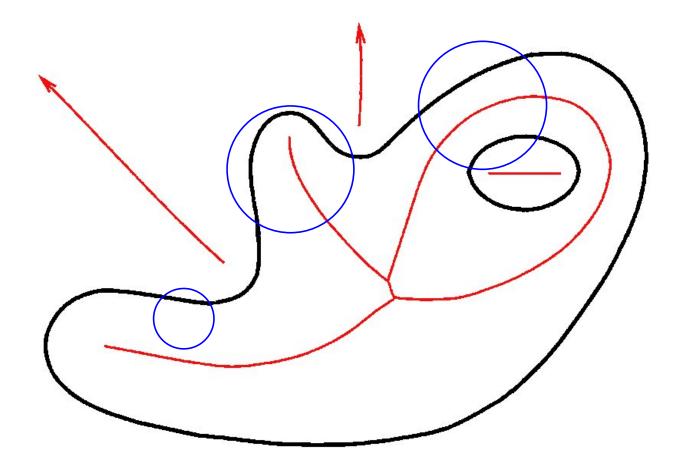
The **feature size at** $p \in F$ is the distance from p to the medial axis of F.



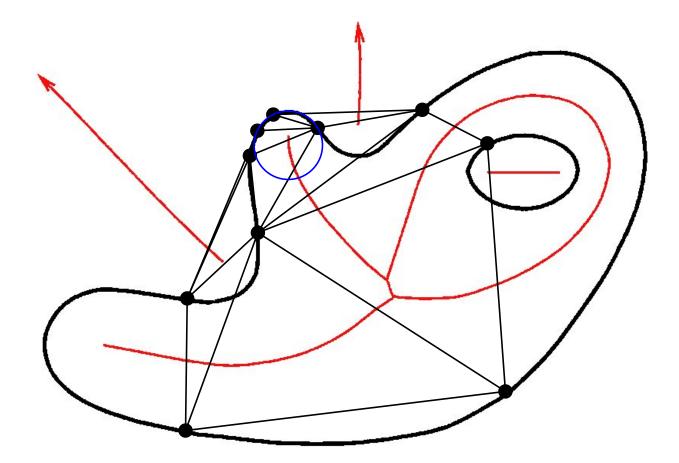
r-sampling condition: The distance from $p \in F$ to the nearest sample $s \in S$ is at most a constant r times the feature size at p.

Theorem The crust of an r-sampled smooth curve contains an edge between every pair of adjacent samples for r < 0.4.

Lemma 1. Any (Euclidean) disk B containing at least two points of a smooth curve F in the plane either intersects the curve in a single curve segment or contains a point of the medial axis (or both).

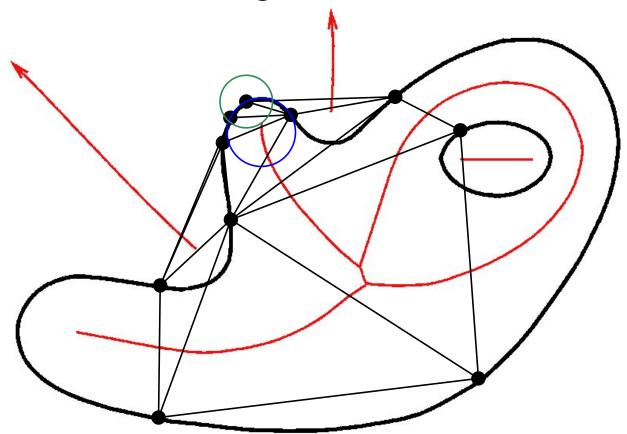


Lemma 2. In the plane, any Voronoi disk B of a finite set $S \subseteq F$, where F is a smooth curve, contains a point of the medial axis of F.

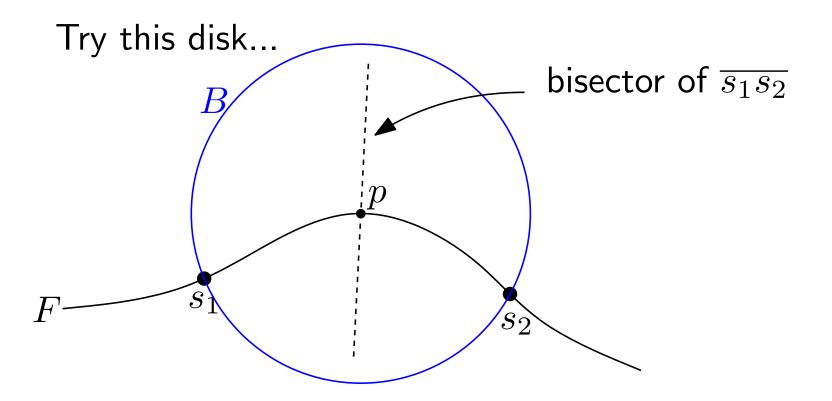


Lemma 2. In the plane, any Voronoi disk B of a finite set $S \subseteq F$, where F is a smooth curve, contains a point of the medial axis of F.

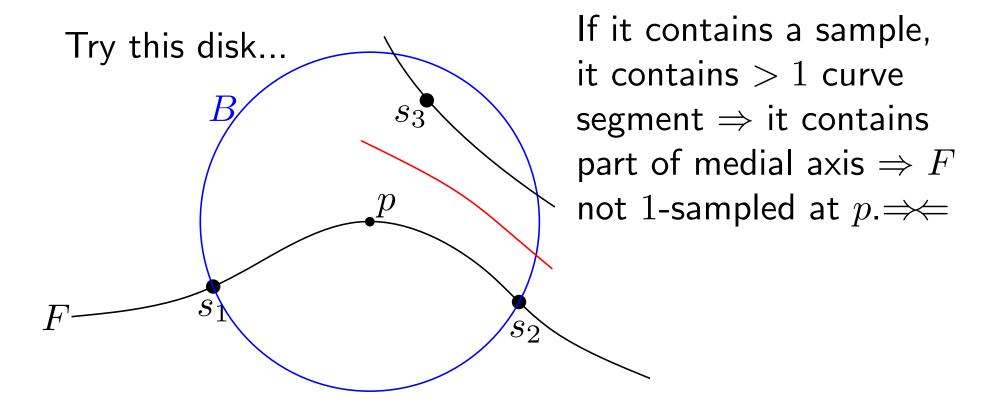
Cor. A disk centred at $p \in F$ with radius $\leq LFS(p)$ contains one curve segment.



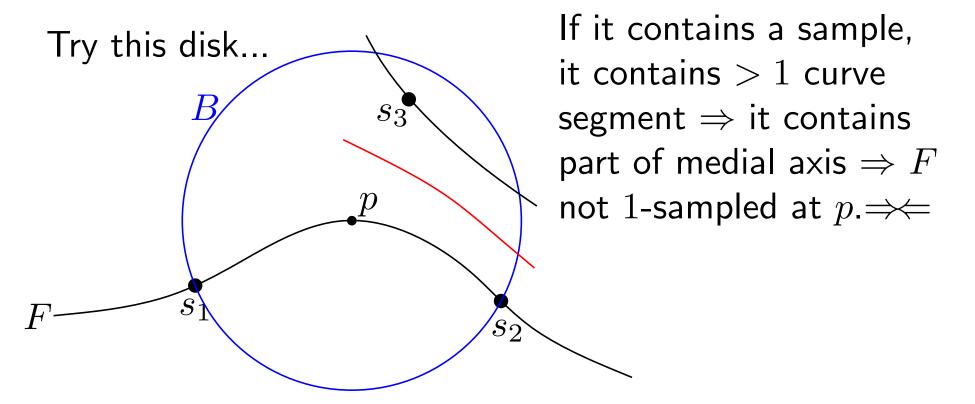
Lemma 3. Let F be an r-sampled smooth curve in the plane, $r \leq 1$. There is a disk touching each pair of adjacent samples that is empty of samples.



Lemma 3. Let F be an r-sampled smooth curve in the plane, $r \leq 1$. There is a disk touching each pair of adjacent samples that is empty of samples.



Lemma 3. Let F be an r-sampled smooth curve in the plane, $r \leq 1$. There is a disk touching each pair of adjacent samples that is empty of samples.



Cor. Every pair of adjacent samples is connected by a Delaunay edge in DT(S).

Theorem The crust of an r-sampled smooth curve, r < 0.40, contains an edge between every pair of adjacent samples.

Suppose B contains Voronoi vertex v. with Voronoi disk CC contains part of medial axis B'B' centred at p with radius $\mathsf{LFS}(p) \models 1$ cannot. \boldsymbol{S} F s_2 dea: Make $r + R \leq 1$ so C is inside B'Curve is pretty flat at p, so $\psi \leq (\pi \not + 2 \arcsin(r/2))/2$ and $R \leq 2r\sin(\psi/2)$.

Theorem The crust of an r-sampled smooth curve does not contain any edge between non-adjacent samples for r < 0.252.

