DeLaunay Triangulation

- of convex polygon [Chew 1986]

Let $S = \text{ccw list of } n \text{ vertices of convex poly } P$

$DT(S)$

If $|S| = 3$ then return Δ with vertices S

Pick q at random from S (let p and r be its neighbors)

$T = DT(S \setminus \{q\}) + \Delta pqr$

return $\text{Flip}(T, q, rp)$

$\text{Flip}(T, q, rp)$

if \bar{rp} is bad

remove \bar{rp} from T, add $\bar{q}r$ to T

$\text{Flip}(T, q, rx)$

$\text{Flip}(T, q, xp)$

What is number of bad Δ's in T?

- Proportional to the degree of q in $DT(S)$.

So expected runtime for Flip is $O(\text{average degree of vertex})$

$= \sum_{q \in DT(S)} \text{deg}(q) = 2 \left(\frac{\# \text{edges in } DT(S)}{n} \right)$

$= 2 \left(\frac{2n-3}{n} \right) = 4 - \frac{6}{n}$

Thus expected runtime is $O(n)$.
Incremental Delaunay Addition (of arbitrary 2D point set)

Same idea but...

Adding \(q \) to \(DT(S \setminus \{q\}) \) requires
Finding \(\Delta \) in \(DT(S \setminus \{q\}) \) that contains \(q \)

Option 1: Maintain a search structure for \(DT(S \setminus \{q\}) \)

Option 2: Rebucket remaining points to be added into
newly created \(\Delta \)s

Both add expected \(O(\log n) \) time to the cost to
add \(q \).

What is probability that a point \(\kappa \) is rebucketed
when \(|S| = i \)?

\[
\text{prob. } \Delta \text{ containing } \kappa \text{ in } DT(S) \text{ is created by adding } q = \frac{3}{n}
\]

\[
E[\# \text{ rebuckets for } \kappa] \leq \sum_{i=1}^{n} \frac{3}{i} = O(\log n)
\]
Relatives of Delaunay Triangulations.

1. Nearest Neighbor graph $NN(S)$ of S
 - Draw edge $x \rightarrow y$ if y is closest to x, $x, y \in S$

 \[
 \text{Claim } NN(S) \subseteq DT(S) \\
 xy \in NN(S) \Rightarrow xy \in DT(S)
 \]

2. Minimum Spanning tree $MST(S)$ of S

 \[
 \text{Claim } MST(S) \subseteq DT(S)
 \]

3. Relative Neighborhood Graphs $RNG(S)$
 - Add xy if lens is empty

4. Gabriel Graph $GG(S)$

NN(S) \subseteq MST(S) \subseteq RNG(S) \subseteq GG(S) \subseteq DT(S)