Chan's Algorithm 1996

Let \(m = \frac{n}{h^2} \)

1. Partition points into \(\left\lceil \frac{n}{m} \right\rceil \) subsets of \(\leq m \) points
2. Use Graham Scan to find \(\text{CH} \) of each subset

 \[
 \text{runtime} = \frac{n}{m} \cdot m \log m = O(n \log m)
 \]
3. Use Jarvis March to find \(\text{CH} \) of \(\text{CH}'s \) of subsets.

\(\text{P}_c \) = last point known to be on \(\text{CH}(P) \)

3.1 Use binary search on each subset \(\text{CH} \) to find
 “minimum” (i.e. clockwise-most w.r.t. \(\text{P}_i \)) in each
 subset in time \(O(\log m) \)

Find all minima in \(O(\frac{n}{m} \log m) \) time
[and take the smallest]

How many times do we need to perform such a wrap step?

After \(h \) wrap steps we get the convex hull

Jarvis March time = \(O(h \frac{n}{m} \log m) \)
Total time \(O(n \log m) + O(\frac{h}{m} \log m) = O(n \log m) \) if \(m = h \)

But we don't know \(h \) so we'll guess different values for \(m \).

Try small values of \(m \), first.

If after \(m \) wrap steps we do not find CH

then STOP [which takes \(O(n \log m) + O(\frac{m}{m} \log m) = O(n \log m) \) time]

and increase \(m \).

Repeat

Double \(m \)

\(m = 2, 4, 8, 16, \ldots \)

\(\log h \)

\(2^i \approx h \Rightarrow i \geq \log h \)

Total time

\[\sum_{i=1}^{\log h} n \log 2^i = n \sum_{i=1}^{\log h} i = n (\log h)^2 \]

Too Big

Square \(m \)

\(m = 2, 4, 16, 256, \ldots \)

\(\log \log h \)

\(\frac{\log \log h}{\log h} \)

Total time

\[\sum_{i=0}^{\log \log h} n \log (2^i) = n \sum_{i=0}^{\log \log h} 2^i = n 2^{\log \log h} \]

\(2^i \approx h \Rightarrow i \geq \log h \)

Just Right
Algebraic decision tree Lower Bound for CH

Decision Tree is a model of computation that focuses on decision points in an algorithm.

Every path is a possible execution trace of an algorithm on some input of size \(n \).

Leaves are output.

Algebraic decision trees permit \(a, b, c \), to be algebraic expressions of degree \(d \) (for fixed \(d \)).

- The variables in the expressions are real numbers (like the coordinates of input points for CH).
- The set of inputs that lead to a leaf is a set of vectors (in \(\mathbb{R}^{2n} \) for CH of \(n \) points in 2D).

Theorem [Ben-Or] Let \(W \subset \mathbb{R}^n \) be any set and let \(T \) be any \(d \)th order algebraic decision tree that decides membership in \(W. \) If \(W \) has \(m \) disjoint connected components then \(T \) has height \(\Omega(\log m - n) \).

Problem Multiset Size Verification: Given multiset \(Z = \{z_1, z_2, \ldots, z_n\} \), where \(z_i \in \mathbb{R} \) and integer \(k \), does \(Z \) have exactly \(k \) distinct elements?

\[M_k = \{ (z_1, \ldots, z_n) \in \mathbb{R}^n \mid \sum_{i=1}^{n} z_i = k \} \] has \(\geq k! \) \(k \)-\text{disjoint components}.

Thus \(\text{MSV} \) requires \(d \)th order alg. decision tree height

\[\Omega(\log(k! k^{n-k})) = \Omega(n \log k) \]
Thm: CH size verification requires $\Omega (n \log n)$ steps in the worst case using any d^{th} order decision tree alg.

Proof: Construct points from instance $Z = \{ z_1, z_2, \ldots, z_n \}$ of MSV problem.

$P_i = (z_i, \overline{z_i})$

Then $\overline{P_1, P_2, \ldots, P_n}$ has k hull points iff Z has k distinct elements.

Kirkpatrick & Seidel

Go on to show that even if we assume that all points are distinct, CH size verification still requires $\Omega (n \log n)$ steps.