Course: [webpage] and overview

Scribing: No scribe today but sign up for some day: on the sheet. (Maybe 2 days.)

Guarding an Art Gallery

Represent floor plan as a Simple Polygon

A region of the plane that is bounded by a simple closed curve made up of n (a finite number) line segments.

Polygons with $n=3$

Find a set T of triangles such that

1. $\bigcup T = P$
2. $\bigcup V(T) = V(P)$
3. $T_1 \cap T_2$ is a vertex, edge, or empty for $T_1 \neq T_2$ in \mathcal{C}

Curve is a continuous map $\gamma: [0,1] \to \mathbb{R}^2$

Closed $\gamma(0) = \gamma(1)$

Simple $\gamma(x) \neq \gamma(y)$ for any unless $x,y \in \{0,1\}$
Theorem: Every simple polygon has a triangulation.

Proof (by induction on # vertices): If \(n = 3 \), done (base case).
If \(n > 3 \), pick the leftmost vertex \(V \) of \(P \) (if ties, does closest to \(V \) work?).

- If \(uw \not\subset P \) then create \(\Delta uvw \) and add it to triangulation of \(P - V \) (which exists by induction).

- If \(uw \subset P \) then split \(P \) by adding segment \(\overline{vx} \), where \(x \) is the vertex of \(P \) in interior of \(\Delta uvw \) farthest from \(uw \) (does closest to \(V \) work?).

Split \(P \) into two smaller polygons \(P_1 \) and \(P_2 \) by adding \(\overline{vx} \), which both have triangulations \(\Gamma_1 \) and \(\Gamma_2 \) (by induction).

Then \(\Gamma_1 \cup \Gamma_2 \) is a triangulation of \(P \).

How many triangles in triangulation of \(n \)-vertex polygon?

- \(n - 2 \) triangles
- \(2n - 3 \) edges

Does every polyhedron (3D polygon) have a tetrahedralization?

No

Schoenhardt polyhedron 1928
Art Gallery Problem

Victor Klee How many guards are necessary and sufficient to guard the walls of an art gallery with n walls?

Chvatal \[\lfloor \frac{n}{3} \rfloor \]

Fisk's proof "from the book"

(A) Every triangulation of a simple polygon is 3-colorable

Use induction. \(N=3 \) done
\(n>3 \) Split polygon using one of the \(2n-3-n \) interior edges. \(uv \) 3-color both pieces.

\[n = n-3 \]

Assume \(u \) is red and \(v \) is blue in \(P_1 \) coloring.
Call whatever color is used in \(P_2 \) for \(u \) red and for \(v \) blue.

(B) Some color appears at most \(\lfloor \frac{n}{3} \rfloor \) times. Why?

(C) Put a guard at all vertices with this color.