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1.

CPSC 516 Homework 3 Solutions

Given n — 1 real numbers, #; < 3 < ... < 2,1, describe a linear time algorithm to test if
these numbers could be the z-coordinates of the boundaries between the Voronoi regions of
some set of n sites on the r-axis.

Note that there must be one vertex between each pair of midpoints, and one on each end,
and that the vertex's position is only constrained by the vertices on either side of it. This
allows us to perform a single sweep to determine if the constraints are met.

Algorithm. We will use a;,b; to represent the endpoints of the possible interval for vertex i
to sit in whilst still satisfying all constraints of smaller i. Initialize a; = —00,b; = 71 becaunse
that’s the only constraint on v; when you only consider that vertex and the first midpoint.
As a result, vy is only constrained to the range (x1,x2), s0 set g =z, by = 2.

Now for each i € [3,n] set a; = @1 + |%i—1 — bi—1|, and b; = min(z;, z;—1 + |2i—1 — @i—1]).
Essentially this mirrors the previous interval {a;_y,b; ) across the point z;_,, except it cuts
off any end of the interval which goes past the next midpoint x;. This is because the position
of v; must be the same distance to z;_| as v;_;. If we have a; > b; or a; = x; or b; = z;_,,
then we can immediately return false, as there is no good position for v;.

If we get to the end without failing out, we clearly can return true. Simply picking v, = @

and then cascading the spacings back through will generate a valid solution, because any point
in cach (a, b) interval does not break the constraints of any previous variable.

Question 2
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{a) First assume P € S has a non-empty furthest point Voronoi diagram. This means that there
is a point O which OQ < OP(¥Q € §). Thus the circle centered at O and passing through P
(named C') has all points of § within itself. Now define the line ! as the tangent line to C at P.
Clearly [ is passing through P and has all other points within €' (and as a result all point of §)
on one side of it. Thus P is on the convex hull of S.

For the other direction assume P € 5 is on the convex hull of §. Therefore there is a line passing
through P that has all other points of S on one side of it. Assume [’ is the ray perpendicular to
I and passing through P and is on the side of I where all other point of S are. Assume QeS
has distance xg from | and y from I'. Also assume P’ is a point on " where PP’ = r,. Then
PO’ = (#1 —20)® + 3 = 2% — 20120+ 22 + y2. As 20, y; are independent of choice of P’ as P’
i petting further (z; is increased). at come point 2r, 2y would get bigger than 15 + yl?]' thus P/
will get smaller than PP at some point and after that. As there are finite points for x; large
enough P’ will be closer to any point other than P. ie. will be in the furthest point Voronoi
region of P.



(b) Statement: For any farthest point Delaunay triangle with vertices Apgr, the circle Opgr is a

enclosing circle of S.

proof: A farthest point Delaunay edge connects p. ¢ only if 3z, d(x, p) = d(x, ¢) > d(x, s).Ys €

S. Thus for a farthest Delaunay triangle Apgr, the circle Opgr, centring at = has: d(z,p)

d(z,q) = d(z,r) > d(x,s),¥s € S. Therefore, Opgr is a enclosing circle of S.

Statement: The triangulation of the upper convex hull of the 3D parabolic projection of S,

projecting back to 2D forms a farthest point Delaunay triangulation.

\ proof: We prove by showing that any triangle Ap'q’r’ on the triangulation of the upper convex

hull projected back to 2D Apgr forms a circle Opgr that encloses S. For all sites in S. project
sites to parabolic z = #* 4 3, after projection s’ = (s,, s,, 5> + s2).
Consider points p',¢’,7’ on a triangle of the triangulation of the upper convex hull of the
projection. We prove that for any other point x in S, lies inside of Opgr. Since Ap'¢'r’ is a
triangle on the upper convex hull, then for plane h passing through p'¢’r’, 2’ is on the lower
side of h. Similar to proving the Delaunay triangulation using parabolic lifting: compute the
plane equation of h and the center, radius of Opgr, we prove that o always lies inside of Opgr.
In addition, the upper convex hull does not include any points that are on the convex hull of
S because such points are always lower than vertices on the convex hull on the parabolic.
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Pseudo-code:
Parabolic lift S onto 3D O(n)
Compute 3D convex hull of the 3D polyhedron. O(nlogn)
Return upper hull triangulation.




Exercise 3.

(1) The figure below shows a Voronoi diagram of sites py, pa, p3. p4 and the corresponding
Delaunay triangulation. The triangle T' = (p1, p2, p3) intersects the interior of V(py),
so there is a point in 7' that has p; and none of py,ps,ps as its nearest neighbour
among sites. Hence. it is not a Pitteway triangulation.
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(2) For a given Delaunay triangulation, for a Delaunay edge ab let mg, be the midpoint
of ab and let Cyy, be the circle that has ab as a diameter chord (that is, its centre is
Map and its radius is r = dia, b)/2 = d(mp, a) = d(mq, b)).

Proposition 1. A Delaunay triongulation is ¢ Pitteway triangulation if and only of
the following property holds, which we call the good-midpoint property: for any interior
Delaunay edge ab, the circle C,y, contains no sites in its interior.

Proof. { = ). Suppose the Delaunay triangulation is a Pitteway triangulation. We
show the good-midpoint property holds. Consider an interior Delaunay edge ab, with
incident triangles Ty = (a.b,c) and Ts = (a,b, z). We show C,; contains no sites in
its interior. Suppose it does, for the sake of contradiction. Then there is a closer site
t0 7y, than either a or b. Since the triangulation is a Pitteway triangulation, ¢ and
z must be closest sites to mgy. Let r = d(my,a} = d(map, b) and ' = d(mgs, c) =
d(Mmap, 2) < r. Then e,z lie on the r’-radius circle €' centred at m,,. This cirele is
split into two semi-circles by ab, and ¢ and z lie in opposite semi-circles.



We claim that ab cannot be a Delaunay edge. Why? Any ecircle with ab as a chord
must contain one of the two semi-circles completely inside it, which means ¢ or z must
be inside the circle. Hence, ab cannot be a Delaunay edge. which is a contradiction.

{ &= ). By the contrapositive. Suppose the Delaunay triangulation is not a Pitteway
triangulation. We show the good-midpoint property fails. Some triangle 7' = (a, b, ¢)
has a “bad” point »r where r is in the interior of a Voronoi region V(p) where p ¢
{a.b,¢}. Note that p is not in T (since it is a face), so p is outside 7.

First, we claim there is a boundary point of T' in the interior of V(p). If + is on the
boundary we are done. If not then r is in the interior of T. Since p is outside of T
but r € V(p), this Voronoi region (by convexity) crosses the boundary of T. Hence, T
contains a boundary point y that is in the interior of V(p). Without loss of generality,
say y is on the Delaunay edge ab.

First, observe that ab is an interior Delaunay edge, since it is inside the convex hull
of a,c.b.p and so0 is in the interior of the convex hull of sites. We claim that i, is
strictly closer to p than @ or b, failing the good-midpoint property. Recall, that y is
strictly closer to p than a. and also d(m.y) + d(y,a) = d(my;, a) since y is on ab.
By the triangle inequality. .

d(Map, p) < d(may. y) + d(y, p) < dimap, y) + dy, a) = d{mgy, a) = d(mg. b).

Hence, my, is strictly closer to p than a or b.
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4: Bounding rectangle

(CGAA Exercise 8.4) Let L be a set of n lines in the plane. Give an O(nlog n) time algorithm
to compute an axis-parallel rectangle that contains all the vertices of the arrangement of L
i1 its interior.

Given 2 lines ar + b, cx + d with a < ¢ as r tends to infinity, then eventually cx + d > ax + b for
all large enough x.

More generally for a set of lines, for large enough . the line with largest slope will upper bound
all other lines, followed by the line with second largest slope and so on...

Thus we can assign an order to the points based on the slope, similar to what was done in class
on Novl.

The rightmost intersection between two lines must oceur between 2 consecntive lines in this
ordering. In other words the rightmost intersection oceurs between some [; and ;1| where they

are the i and (i + 1) steepest lines in the set.

Proof: :

i . | |.?l‘-'|- J_: i . s
Up to a translation, the rightmost peint is at = = 0 and thus the equations of the 2 lines
intersecting at that point are ar.br for some a < b € R. Assnme there is some a., 3 such that

axr + A is a line in L with a < o« < b. The intersection ar = ax + 3 oceurs at & = —n‘—ia, the
denominator is positive, so 3 has to be positive, otherwise it would be to the right of the
rightmost point. The intersection bx = az + 8 occwrs at & = — =2, The denominator is negative

s0 (0 has to be negative, otherwise the intersection oceurs to the right of the rightmost point. So
the only possible choice for 3 is (1. So we get that either ax = ax or axr = bx. So clearly there
cannot be any lines with slopes between a, b.

Thus grab all lines an sort them by slope O(nlogn). Compute the pair wise intersections of all
consecutive lines O(n). Find the point with largest x. A vertical line passing through this point
is, by construction to the right of all points in the arrangement.

Rotate the line set by 90 degrees O(n) repeat the above O(nlogn). We have found a line such
that all points in the current arrangement are to the left of this line, which is equivalent to saying
all points are below the line in the original arrangement.

Do so two more times O(nlogn). We have found 4 lines that bound the set. Compute their
intersection (1) and rotate the 4 resulting intersection points by 90 degrees again. The rectangle

defined by the 4 resulting points is, by construction, the axis aligned bounding rectangle of the
vertices in the arrangement.

The algorithm is dominated by the 4 sorts of the lines, so it's O(nlogn).



