## Solutions Homework 2 CPSC 5162022


2. Statement 1

The sum of all points of $P$ to an arbitrary $L$ that has all points of $P$ on one side is equal to the
centroid of all points to $L$ multiplied by $n$
proof:
Denote an arbitrary point $p_{i}: p_{i}=\left(x_{i}, y_{i}\right)$, centroid of all points of $P$ is:c $=\left(\frac{\sum x_{i}}{n}, \frac{\sum y_{i}}{n}\right)$ With the fact that all points on the same side of $L$, the distance from $c$ to $L: a x+b y+c=0$ :

$$
\frac{\left|\frac{a \sum x_{i}}{n}+\frac{b \sum y_{i}}{n}+c\right|}{\sqrt{a^{2}+b^{2}}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left|a x_{i}+b y_{i}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

which is the sum of distances of all points of $P$ to $L$. QED.

## Statement 2

Such $L$ must not intersect with interior $\operatorname{Hull}(P)$, and must pass through at least one vertex of $\operatorname{Hull}(P)$
proof:
Firstly, if $L$ intersects with interior of $\operatorname{Hull}(P)$, then there must at least two points that are on different sides of $L$, proved intuitively. Secondly, if $L$ does not intersects with interior of $\operatorname{Hull}(P)$ and does not pass through any vertex of $\operatorname{Hull}(P)$, the sum of distances is not minimized. Translating $L$ in parallel until $L$ intersects at least 1 vertex decreases the sum of distances. Denote the initial sum of distances as $d$, and translation distance as $t$, the decreased distance is $d-n t$


## Statement 3

Such $L$ must intersects with at least 2 vertices of $\operatorname{Hull}(P)$, i.e., $L$ contains at least one edge of $\operatorname{Hull}(P)$.
proof:
We prove that any $L$ that intersect only 1 vertex $a$, has larger sum of distances than at least one of the lines that passes $a$ and another adjacent point (b) on the hull.


The centroid $c$ lies inside $H u l l(P)$ because convex hulls of points contains all possible linear combination of all points, $c$ is one of the linear combination of points of $P$. Since $\operatorname{Hull}(P)$ is convex, denote the two adjacent vertices of $a$ as $b, c, \angle b a c<180^{\circ}$, therefore, the distance from $c$ to $L^{\prime}$ is smaller than to $L$ because $L^{\prime}$ passes through $a$, and $L^{\prime}$ is not a tangent line of the circle centered at $c$ passes $a$. QED.
By Statement $1,2,3$, such $L$ must not intersects any interior of $\operatorname{Hull}(P)$ and passes at least 2 vertices of $\operatorname{Hull}(P)$, therefore, the minimum supporting line contains one of the edge of $\operatorname{Hull}(P)$.

## Pseudo-code:

$c \leftarrow$ centroid of all points in $P$
$H \leftarrow$ convex hull of $P$
for each edge $h$ in $H$ do
$d \leftarrow \operatorname{dist}(c, h)$
if $d<$ output then
output $\leftarrow d$
end if
end for
return output
3. (from Zurich Exercise 4.31) Consider $k$ convex polygons $P_{1}, \ldots, P_{k}$, for some constant $k \in \mathbb{N}$, where each polygon is given as a list of its vertices in counterclockwise orientation. Show how to construct the convex hull of $P_{1} \cup \ldots \cup P_{k}$ in $O(n)$ time, where $n$ is the sum of the number of vertices in $P_{i}$ over all $1 \leq i \leq k$.

Note that the following algorithm is more or less Graham's Scan, but we can cleverly avoid sorting the points.
Algorithm. We will use a modified Graham's Scan to connect the points. Normally Graham's Scan takes $O(n \log n)$ time to sort the points, then $O(n)$ time to scan through the sorted points. I will show that I can return the next point to scan in $O(1)$ time without sorting the array, so all we need is the $O(n)$ scan time and our algorithm is $O(n)$. At the first step, we still find the minimum point across all polygons $p_{1}$ in $O(n)$ time. Next, we will use binary search to find the most clockwise point of each polygon $P_{i}$. This requires $O(\log n)$ work across $k$ polygons, for a total setup time of $O(\log n)$.
Now, at each stage, the next vertex to visit with be the most clockwise of these $k$ points (assume the point comes from $P_{i}$ ), which we can workout in $O(k)=O(1)$ time. Now we need only workout what the new most clockwise unvisited point is for $P_{i}$, and we'll be ready for the next step.
Since $P_{i}$ is convex, the vertices which we've already visited / have angle less than some particular angle will be consecutive. Therefore, so long as we track which one's we've already visited, there are at most 2 possible candidates for the new most clockwise unvisited point: the two vertices on either end of this consecutive sequence of visited vertices. We can workout which one it is in $O(1)$ time, which is what we needed.
So to recap: At each stage, we track the most clockwise unvisited point for each polygon, we grab the most clockwise unvisited point across all polygons, then we find a new unvisited point for the polygon we grabbed from, all in $O(1)$ time. This means that we can simply run the $O(n)$ Graham Scan without pre-sorting by replacing accessing our sorted array with this procedure, and so we have an $O(n)$ algorithm for the convex hull of $k$ convex polygons.

## Question 4

The problem of deciding evenly spaced arrays has two variants:
(a) Returns YES if and only if the array is evenly-spaced even if $x_{1}=x_{2}=\cdots=x_{n}$.
(b) Returns YES if the array is evenly-spaced but returns NO in the case that $x_{1}=x_{2}=\cdots=x_{n}$.

Notice that the only difference between the output of these two variants is in one case $\left(x_{1}=x_{2}=\right.$ $\cdots=x_{n}$ ) which can be checked in $\mathcal{O}(n)$. Hence, these two variants can be reduced two each other in $\mathcal{O}(n)$. So it only suffices to prove the problem for variant (b).

Claim 4.1. Assume $\pi_{n} \subset \mathbb{R}^{n}$ is the set of all permutations of $1,2, \ldots, n$. Also assume $W$ is the set of all points in $\mathbb{R}^{n}$ the the variant (b) returns YES for them. Then points in $\pi_{n}$ are pairwise disconnected within $W$.

Proof. Assume $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in \pi_{n}$ are connected within $W$. It means there exist a continuous function $f:[0,1] \rightarrow W$ where $f(0)=a, f(1)=b$. As $a \neq b$ the exist an inversion between them i.e. $\exists 1 \leq i \neq j \leq n$ where $a_{i}<a_{j}, b_{i}>b_{j}$. Now define a new continuous function $g: W \rightarrow \mathbb{R}$ by $g\left(x_{1}, \ldots, x_{n}\right)=x_{i}-x_{j}$. As $f, g$ are both continuous so is $g \circ f$ and we have

$$
\begin{aligned}
& g \circ f(0)=g(f(0))=g(a)=a_{i}-a_{j}<0 \\
& g \circ f(1)=g(f(1))=g(b)=b_{i}-b_{j}>0
\end{aligned}
$$

By the Intermediate value theorem we conclude that there is some $0<c<1$ such that $g \circ f(c)=0$, i.e. $f(c)_{i}=f(c)_{j}$. Now, as $f(c)$ is evenly-spaced (it should be a path in $W$ ) we should have $f(c)_{1}=f(c)_{2}=\cdots=f(c)_{n}$. Thus, $f(c) \notin W$ by definition. Hence our claim is proved by contradiction.

Now using Ben-Or Theorem we conclude that any algebraic decision tree that decides $W$ (or solves the variant (b) ) should have $\Omega\left(\log \left(\left|\pi_{n}\right|\right)-n\right)=\Omega(\log (n!)-n)=\Omega(n \log n)$ depth.
5. Given n real numbers $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ and a real number $g$, we would like to determine if the maximum space between these numbers is $g$, that is, the maximum difference between the $i$ th and $(i+1)$ st smallest in $S$ over all $1 \leq i \leq n-1$ is $g$. Show that any algorithm in the algebraic decision tree model requires $\Omega(n \log n)$ time to solve this problem. [Hint: Use a reduction.]

Proof. We will show this by reducing from the evenly-spaced problem given in (4). Let $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be $n$ real numbers, then we want to determine if they are evenly spaced. In $\Theta(n)$ time we can find the minimum element $x^{\prime}$ and the maximum element $x^{*}$. If $S$ is indeed the permutation of an arithmetic series, then we must have that for some $d>0, x^{*}=$ $x^{\prime}+(n-1) d$, so define $d=\left(x^{*}-x^{\prime}\right) /(n-1)$, and determine if the maximum spacing of $S$ is $d$.
If it is, then since we have that $x^{*}=x^{\prime}+(n-1) d$, and there are only $n$ elements, it must be that each of the difference constraints is tight; that is that it must be that each consecutive element is exactly $d$ greater than the previous, otherwise the largest element could not be $(n-1) d$ greater than the smallest. This then means that our set $S$ is evenly spaced, and we can return true.
It cannot be that the maximum spacing is less than $d$, because we have that $x^{*}=x^{\prime}+(n-1) d$, so for some of the $n-1$ differences to be less than $d$ some of the others must be greater.
If the maximum spacing is greater than $d$, then similarly because $x^{*}=x^{\prime}+(n-1) d$ it must be that there is some spacing which is smaller than $d$, so the spacings are not all the same, our set is not evenly spaced, and we can return false.

We have given a reduction from evenly-spaced to maximum spacing with $\Theta(n)$ overhead, so since evenly-spaced is $\Omega(n \log n)$ under the algebraic decision tree model, maximum spacing is also $\Omega(n \log n)$ under the algebraic decision tree model, and we are done.

