
•① a) •
•

1. •

2.
•

•

•
•

DB

DB

•

•

•
•

•
3. • 4

.

⑨
••

•

DB

DB

•
•

• •

5. • 6, •

•
•⑧

•

•

DB

• •

Y
ib

o
Ji

a o
K

as
si

an
 K

öc
k

Solutions Homework 2 CPSC 516 2022

CPSC 516 Assignment1 Yibo Jiao

Statement 3
Such L must intersects with at least 2 vertices of Hull(P), i.e., L contains at least one edge of
Hull(P).
proof:
We prove that any L that intersect only 1 vertex a, has larger sum of distances than at least one
of the lines that passes a and another adjacent point (b) on the hull.

The centroid c lies inside Hull(P) because convex hulls of points contains all possible linear
combination of all points, c is one of the linear combination of points of P . Since Hull(P) is
convex, denote the two adjacent vertices of a as b, c, ∠bac < 180◦, therefore, the distance from c
to L′ is smaller than to L because L′ passes through a, and L′ is not a tangent line of the circle
centered at c passes a. QED.
By Statement 1,2,3, such L must not intersects any interior of Hull(P) and passes at least 2
vertices of Hull(P), therefore, the minimum supporting line contains one of the edge of Hull(P).
Pseudo-code:

c ← centroid of all points in P
H ← convex hull of P
for each edge h in H do

d ← dist(c, h)
if d < output then

output ← d
end if

end for
return output

Page 2

For any arbitrary point h on the hull of H, we get by the supporting hyperplane theorem
that there is a line L that runs through this point and has all of H on one side (obviously we
can’t pick a line that runs through H, because it would violate property (a), so a supporting
hyperplane is as good as we can do). In particular, since the hull has at most n points, we
can define it’s n edges, and you’ll be able to run a supporting hyperplane through one of
these edges. Clearly one of these lines must be optimal, because the point which is closest to
pavg must definitely be on the boundary of H, and these lines cover the entire perimeter of H.

We have now shown that the optimal line L∗ runs through one of the edges of H, so in
checking them all we will find the optimal line.

3. (from Zurich Exercise 4.31) Consider k convex polygons P1, . . . , Pk, for some constant k ∈ N,
where each polygon is given as a list of its vertices in counterclockwise orientation. Show how
to construct the convex hull of P1 ∪ . . .∪ Pk in O(n) time, where n is the sum of the number
of vertices in Pi over all 1 ≤ i ≤ k.

Note that the following algorithm is more or less Graham’s Scan, but we can cleverly avoid
sorting the points.

Algorithm. We will use a modified Graham’s Scan to connect the points. Normally Graham’s
Scan takes O(n log n) time to sort the points, then O(n) time to scan through the sorted
points. I will show that I can return the next point to scan in O(1) time without sorting the
array, so all we need is the O(n) scan time and our algorithm is O(n). At the first step, we
still find the minimum point across all polygons p1 in O(n) time. Next, we will use binary
search to find the most clockwise point of each polygon Pi. This requires O(log n) work across
k polygons, for a total setup time of O(log n).

Now, at each stage, the next vertex to visit with be the most clockwise of these k points
(assume the point comes from Pi), which we can workout in O(k) = O(1) time. Now we need
only workout what the new most clockwise unvisited point is for Pi, and we’ll be ready for
the next step.

Since Pi is convex, the vertices which we’ve already visited / have angle less than some
particular angle will be consecutive. Therefore, so long as we track which one’s we’ve already
visited, there are at most 2 possible candidates for the new most clockwise unvisited point:
the two vertices on either end of this consecutive sequence of visited vertices. We can workout
which one it is in O(1) time, which is what we needed.

So to recap: At each stage, we track the most clockwise unvisited point for each polygon,
we grab the most clockwise unvisited point across all polygons, then we find a new unvisited
point for the polygon we grabbed from, all in O(1) time. This means that we can simply run
the O(n) Graham Scan without pre-sorting by replacing accessing our sorted array with this
procedure, and so we have an O(n) algorithm for the convex hull of k convex polygons.

4. Given n real numbers S = ⟨x1, x2, . . . , xn⟩, we would like to determine if these numbers are
evenly-spaced, that is, the difference between the ith and i + 1st smallest in S is the same
for all 1 ≤ i ≤ n− 1. Show that any algorithm in the algebraic decision tree model requires
Ω(n log n) time to solve this problem.

3

D
yl

a n
 B

ro
w

n

Algorithm 1 Merge two convex polygons

Input two convex polygons P,Q

1: Let p1 be the lowest point among all pints (we assumed it is in P)
2: Let p∗ = p1.next
3: Let q∗ be the minimum point in Q with left turn check around p1
4: Let H be the convex hull vertices we found which now has only p1
5: while p1 is not reached do
6: Let h be the latest convex hull vertex
7: Check p∗ and q∗ to see which one is minimum regarding left turn check around h
8: //For simplicity assume it’s p∗, it is the same if it was q∗

9: Add p∗ to H
10: old = q∗

11: while q∗.next is lower than q∗ regarding the left turn check around p∗ do
12: if q∗ ̸= old then
13: Completely delete q∗

14: end if
15: q∗ = q∗.next
16: end while
17: Let p∗ = p∗.next
18: end while

the left turn check around p (q3 is lower than q2 which is lower than q1). Then as Q is convex q2 is
in the triangle formed by q1, q3, p so it can’t be on the convex hull. That’s why in traversing Q in the
inner loop we deleted all vertices with this property. An illustration of this situation is provided in
Figure 2.

Figure 2: Illustration of the delete situation in our algorithm.

Question 4

The problem of deciding evenly spaced arrays has two variants:

3

(a) Returns YES if and only if the array is evenly-spaced even if x1 = x2 = · · · = xn.

(b) Returns YES if the array is evenly-spaced but returns NO in the case that x1 = x2 = · · · = xn.

Notice that the only difference between the output of these two variants is in one case (x1 = x2 =
· · · = xn) which can be checked in O(n). Hence, these two variants can be reduced two each other in
O(n). So it only suffices to prove the problem for variant (b).

Claim 4.1. Assume πn ⊂ Rn is the set of all permutations of 1, 2, . . . , n. Also assume W is
the set of all points in Rn the the variant (b) returns YES for them. Then points in πn are pairwise
disconnected within W .

Proof. Assume a = (a1, . . . , an), b = (b1, . . . , bn) ∈ πn are connected within W . It means there
exist a continuous function f : [0, 1] → W where f(0) = a, f(1) = b. As a ̸= b the exist an inversion
between them i.e. ∃1 ≤ i ̸= j ≤ n where ai < aj , bi > bj . Now define a new continuous function
g : W → R by g(x1, . . . , xn) = xi − xj . As f, g are both continuous so is g ◦ f and we have

g ◦ f(0) = g(f(0)) = g(a) = ai − aj < 0,

g ◦ f(1) = g(f(1)) = g(b) = bi − bj > 0.

By the Intermediate value theorem we conclude that there is some 0 < c < 1 such that g ◦ f(c) = 0,
i.e. f(c)i = f(c)j . Now, as f(c) is evenly-spaced (it should be a path in W) we should have
f(c)1 = f(c)2 = · · · = f(c)n. Thus, f(c) /∈ W by definition. Hence our claim is proved by con-
tradiction.

Now using Ben-Or Theorem we conclude that any algebraic decision tree that decides W (or solves
the variant (b)) should have Ω(log(|πn|)− n) = Ω(log(n!)− n) = Ω(n log n) depth.

Question 5

We use a reduction from the previous (4) problem to solve this problem. Assume there is algorithm that
determines if g is the maximum space (called ANS), we claim that the following algorithm (algorithm
2) solves problem (4).

Algorithm 2 Specify if an array is evenly-spaced

Input an array x = (x1, x2, . . . xn) with xi ∈ R
1: Let r1, r2 = minimum and second minimum (element with rank 1, 2) of x
2: if not ANS(r2 − r1) then return NO

3: else
4: for xi in x do
5: if xi == (n− 1)× (r2 − r1) + r1 then return YES

6: end if
7: end for
8: return NO

9: end if

We will show that this algorithm returns YES if and only if x is evenly-spaced.

• Assume x is evenly-spaced. Obviously r2 − r1 is the maximum space as all the spaces are equal.
Also because it is evenly spaced we can see the the condition in the for loop holds for the
maximum element. Hence the algorithm return YES.

• Assume the algorithm returns YES for a specific input x. Notice that because of the first if
condition r2 − r1 is the maximum gap so we have

ri+1 − ri ≤ r2 − r1

...

4

A
ry

an
 T

aj
m

ir
R

ia
hi

D
yl

an
 B

ro
w

n

	Page 1
	Page 2
	Page 3

