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First intuition
Literature!

• Frigyes Karinthy, in his 1929 short story 
“Láncszemek” (“Chains'”) suggested that any two 
persons are distanced by at most six friendship 
links

• Just an (optimistic) positivistic statement about 
combinatorial explosion

• Used by John Guare's in his 1990 eponymous play 
(and movie by Fred Shepisi)
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• M. Kochen, I. de Sola Pool: Contacts and influences. 
(Manuscript, early 50s)

• A. Rapoport, W.J. Horvath: A study of a large 
sociogram. (Behav.Sci. 1961)

• S. Milgram, An experimental study of the sma# world 
problem. (Sociometry, 1969)
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Milgram’s question

• What is the distance distribution of the 
acquaintance graph?

• That is, how many pairs of people are friends, how 
many are not friends but have a friend in 
common, etc

• Note: sociologists measure the degrees of separation 
(i.e., the number of intermediaries); computer 
scientists measure the graph-theoretic distance 
(just add one)
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Milgram’s experiment

• ∼300 people (starting population) are asked to 
dispatch a parcel to a single individual (target)

• The target was a Boston stockbroker

• The starting population is selected as follows:

• ∼100 were random Boston inhabitants (group A)

• ∼100 were random Nebraska stockbrokers (group B)

• ∼100 were random Nebraska inhabitants (group C)
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Milgram’s experiment 

• Rules of the game:

• parcels could be directly sent only to someone 
the sender knows personally (“first-name 
acquaintance”)

• 453 intermediaries happened to be involved in 
the experiments (besides the starting 
population and the target)
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Milgram’s experiment

• Actually completed: 22%

• Average distance of the completed chains in the range 
5.4 to 6.7 (depending on the group)

• 6.7 (i.e., 5.7 degrees of separation) was the average 
distance of the random group
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How difficult is it...

• ...to reproduce (at least the easy part of) Milgram’s 
experiment on a large scale?

• i.e.: how can one compute or approximate the 
distance distribution of a given huge graph?

• (given, of course, that one has a huge friendship 
graph...)



Graph distances and 
distribution



Graph distances and 
distribution

• Given a graph, d(x,y) is the length of the shortest 
path from x to y (∞ if one cannot go from x to y)



Graph distances and 
distribution

• Given a graph, d(x,y) is the length of the shortest 
path from x to y (∞ if one cannot go from x to y)

• For undirected graphs, d(x,y)=d(y,x)



Graph distances and 
distribution

• Given a graph, d(x,y) is the length of the shortest 
path from x to y (∞ if one cannot go from x to y)

• For undirected graphs, d(x,y)=d(y,x)

• For every t, count the number of pairs (x,y) such 
that d(x,y)=t



Graph distances and 
distribution

• Given a graph, d(x,y) is the length of the shortest 
path from x to y (∞ if one cannot go from x to y)

• For undirected graphs, d(x,y)=d(y,x)

• For every t, count the number of pairs (x,y) such 
that d(x,y)=t

• The fraction of pairs at distance t is (the density 
function of) a distribution
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Previous experiments:
Online Social Networks

• Leskovec and Horvitz (2008) find 6.6 degrees of 
separation on a one-month MSN Messenger 
communication graph with 180 M nodes and 1.3 G 
edges

• Degrees of separation in Twitter in 2010 were 3.67 on 
5 G follows (but the figure is quite meaningless when 
links are created without permission at both ends)

• Our largest dataset: 712 M people, 69 G friendship 
links
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HyperANF

• A diffusion-based approximated algorithm that 
computes the distance distribution (2011)

• Following ANF [Palmer et al., 2002]

• It uses HyperLogLog counters [Flajolet et al., 
2007] and broadword programming for low-level 
parallelization
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Intermediate step
✦ The neighbourhood function: for each t, the 

number  of pairs at distance at most t

✦ Easy to derive the cumulative distribution 
function of distances (just divide by the last 
value)

✦ Easy to derive the number of reachable pairs 
and probability mass function (but relative 
error becomes absolute error!)
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How do you compute it?
✦ Many many breadth-first visits: O(mn), needs 

direct access

✦ Sampling: a fraction of breadth-first visits, very 
unreliable results on graphs that are not 
strongly connected, needs direct access

✦ Edith Cohen’s [JCSS 1997] size estimation 
framework: very powerful but does not scale or 
parallelize really well, needs direct access
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Alternative: Diffusion
✦ Basic idea: Palmer et. al, KDD ’02

✦ Let Bt(x) be the ball of radius t around x (nodes 
at distance at most t from x)

✦ Clearly B0(x)={x}

✦ But also Bt+1(x)=∪x→yBt(y)∪{x}

✦ So we can compute balls by enumerating the 
arcs x→y and performing set unions

✦ The neighbourhood function at t is given by the 
sum of the sizes of the balls of radius t!
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Easy but expensive

✦ Each set uses linear space; overall quadratic

✦ Impossible!

✦ But what if we use approximate sets?

✦ Idea: use probabilistic counters, which represent 
sets but answer just to “size?” questions

✦ Very small!
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Main trick
✦ Choose an approximate set such that unions can 

be computed quickly

✦ ANF [Palmer et al., KDD ’02] uses Martin–
Flajolet (MF) counters (log n+c space)

✦ We use HyperLogLog counters [Flajolet et al.,
2007] (loglog n space)

✦ MF counters can be combined with an OR

✦ We use broadword programming to combine 
HyperLogLog counters quickly!
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HyperLogLog counters
✦ Instead of actually counting, we observe a statistical 

feature of a set (think stream) of elements

✦ The feature: the number of trailing zeroes of the 
value of a very good hash function

✦ We keep track of the maximum m (log log n bits!)

✦ The number of distinct elements ∝ 2m 

✦ Important: the counter of stream AB is simply the 
maximum of the counters of A and B!
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Many, many counters...
✦ To increase confidence, we need several counters 

(usually 2b, b≥4) and take their harmonic mean

✦ Thus each set is represented by a list of small 
(typically 5-bit) counters (unlikely >7 bits!)

✦ To compute the union of two sets these must be 
maximized one-by-one

✦ Extracting by shifts, maximizing and putting back 
by shifts is unbearably slow

✦ In the Martin–Flajolet case just OR the features! 
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Real speed?

• Large size: HADI [Kang et al., 2010] is a Hadoop-
conscious implementation of ANF. Takes 30 minutes 
on a 200K-node graph (on one of the 50 world 
largest supercomputers). HyperANF does the same 
in 2.25min on our workstation (15 min on this 
laptop).
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On Facebook?
• When I presented HyperANF at WWW 2011, I 

suggested it would have been nice to run it on 
Facebook

• Lars Backstrom was there and said “why not”?

• We started interacting few months after

• No data moving: Java jars were sent from the 
LAW and run at facebook

• Quite crazy software management setup, believe 
me...



Experiments (time)

• We ran our experiments on snapshots of facebook 

• Jan 1, 2007 

• Jan 1, 2008 ... 

• Jan 1, 2011

• [current] May, 2011 



Experiments (dataset)

• We considered:

• *: the whole facebook graph 

• it / se: only Italian / Swedish users

• it+se: only Italian & Swedish users

• us: only US users

• Based on users’ current geo-IP location
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* (current): 99.9% nodes 
in the giant component!
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Average degree vs. density (*)

Avg. degree Density

2009

2010

2011

curr

88.7 6.4 * 10-7

113.0 3.4 * 10-7

169.0 3.0 * 10-7

190.4 2.6 * 10-7
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Diameter (max distance)

2008 curr
it
se

it+se
us
(

≥28 =25
≥17 =23
≥24 =27
≥17 =30
≥16  =41

Used the double-sweep lower bound/
iterative fringe upper bound technique 
(Crescenzi, Grossi, Habib, Lanzi & 

Marino, 2011)
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Another application: Spid

• We proposed to use the spid (shortest-paths index of 
dispersion), that is, the ratio between variance and 
mean of the distance distribution, as a network 
feature

• When the dispersion index is <1, the distribution is 
underdispersed; >1, is overdispersed

• Web graphs and social networks are different under 
this viewpoint!
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Spid conjecture

• We conjectured that spid is able to tell social 
networks from web graphs

• Average distance alone would not suffice: it is very 
changeable and depends on the scale

• Spid, instead, seems to have a clear cutpoint at 1

• What is Facebook spid? [Answer: 0.09]
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Do it yourself!

• HyperANF is available within the WebGraph 
framework

• Download it from http://webgraph.di.unimi.it/

• Or google for “web graph”

• Lots of social networks ready to download at 
http://law.di.unimi.it/

• Distributions analysed in this paper available, too

http://webgraph.law.dsi.unimi.it
http://webgraph.law.dsi.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it


Questions



Not all pairs are connected: how 
can the average distance be

even finite?



Interesting question



Interesting question

• Here by average distance we mean average over a# 
reachable pairs



Interesting question

• Here by average distance we mean average over a# 
reachable pairs

• The number of reachable pairs is a sort of 
confidence: in our case, it is 99.9%



Interesting question

• Here by average distance we mean average over a# 
reachable pairs

• The number of reachable pairs is a sort of 
confidence: in our case, it is 99.9%

• The latter is an important datum



Interesting question

• Here by average distance we mean average over a# 
reachable pairs

• The number of reachable pairs is a sort of 
confidence: in our case, it is 99.9%

• The latter is an important datum

• after all, a disconnected graph of 1 million 
nodes has average distance 0, but with 
0.00001% confidence
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What about Milgram?

• Very difficult even to state this in Milgram’s 
setting

• If we assume that all uncompleted chains 
correspond to unreachable pairs, the 
confidence of his measure was 22% (or 29%, if 
we consider only chains that at least started)
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An alternative, anybody?

• Alternatively, one can consider the harmonic 
diameter (the harmonic mean of a# distances):

• where the summation is extended to all pairs of 
distinct nodes, and the reciprocal of infinity is 
assumed to be 0 (Marchiori & Latora, 2000)

• Milgrams’s harmonic diameter for the random 
sample is 26.68!

n(n− 1)�
x �=y

1
d(x,y)
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Harmonic diameter

2008 curr

it 23.7 3.68
se 4.37 3.69

it+se 6.4 3.90
us 4.61 4.45
* 5.74 4.59

2008 curr

it 6.58 3.90
se 4.33 3.89

it+se 4.9 4.16
us 4.74 4.32
* 5.28 4.74

Compare
with

average
distance

An alternative: use median 

(similar outcomes)



The sample is biased, and 
anyway it just represents 10% of

humanity!



Uniform?
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because of digital divide)



Uniform?

• Facebook is not a uniform sample (if anything, 
because of digital divide)

• But 96 people from Nebraska are not a random 
sample of humanity, either
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Friendship?

• Is the notion of friendship in Facebook an 
approximation of the notion of friendship in 
real life?

• The notion of friendship used by Milgram (first-
name acquaintance) may be even weaker!



You measured the average 
distance, but degrees of

separation are algorithmic
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Or, is it?  
• The point is the distinction between routing (a.k.a. functional 

degree of separation) and distance

• The interest in efficient routing lies more in the eye of the 
beholder (e.g., the computer scientist) than in Milgram's

• Reading carefully Travers and Milgram's papers, it is clear that 
they had distance and not routing in mind:

given two individuals selected randomly 
from the population, what is the 

probability that the minimum number of 
intermediaries required to 

link them is 0, 1, 2, ...



Just add a few links here and 
there and we'll all be at one 

degree of separation
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How true is this statement?

• Suppose that we consider any network with the 
same number of edges m, the same maximum 
degree D and the same number of reachable pairs 
of nodes r

• How small can the average distance be?

• Exactly m  pairs at distance 1, at most mD pairs at 
distance 2, and all other pairs at distance 3 or 
greater...



So...
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• With the Facebook data (m=69E9, r=5E17, 
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• With the Facebook data (m=69E9, r=5E17, 
D=5000, n=721E6) we obtain that the average 
distance cannot be smaller than 2.999

• In other words, only increasing the degree and/or 
increasing the density we could go below 3...

• Our measured value (4.74) is not so far from this 
lower bound
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Moreover...

• We can refine this analysis to a bound depending 
on the degree sequence (Boldi & Vigna, 2012)

• Plugging in the Facebook degree sequence we 
obtain a lower bound of 3.6

• This means that no graph with the same degree 
distribution can go below this lower bound

• Again, notice the small gap with 4.74...



More questions?


