Querying Term Associations and their Temporal Evolution in Social Data

Vassilis Plachouras Yannis Stavrakas

IMIS / "ATHENA" R.C. Greece

August 31, 2012

Motivation

- Many applications use data from OSNs or microblogging • services
 - Data collected by searching for terms related to the application domain
- Selection of terms can have significant impact on results
- Important to be able to explore the context and associations • of terms

Objective

- Aim to develop a platform that enables definition of data analysis campaigns from OSNs
- Example: a journalist explores Twitter data can issue the following query concerning the financial crisis:

For the period during which there is a strong association between hashtags *#crisis* and *#protest*, which other hashtags are associated to both #crisis and #protest? Which are the relevant tweets?

Preliminaries

- Model applies to any temporally evolving collection of documents
 - We focus on tweets
- Downloaded tweets are processed at regular time instances $t = 1, 2, \dots, i$
- At time instance t = i, we process tweets downloaded between i 1 and i
 - load tweets in relation $\mathcal{T}\mathcal{T}$ with attributes tweet id, publication time and term
 - build model for tweets published between i-1 and i

e Conclu

Model definition

Model \mathcal{M} is a set of quintuples

$$\mathcal{M} = \{ \langle n, c, w, T, g \rangle \}$$

where

- *n* and *c* are *target* and *context* nodes, respectively, corresponding to terms
- T is the set of time instances for which the tuple is valid
- g is the time granularity

•
$$w = P_T(n \to c) = \frac{\sum_{n,c} \frac{1}{|tw|-1}}{\sum_{n \in tw} 1}$$
 or
 $w = P_T(n \to n) = \frac{\sum_{n \in tw, |tw|=1} 1}{\sum_{n \in tw} 1}$

Example of Model

Build model \mathcal{M} for the tweets tw_i in two time instances

$$t = 1 : tw_1 = \{a\}, tw_2 = \{a\}, tw_3 = \{a, b\}, tw_4 = \{c\}, tw_5 = \{a, c\}$$

$$t = 2 : tw_6 = \{a\}, tw_7 = \{a, c\}$$

Example of Model

Build model \mathcal{M} for the tweets tw_i in two time instances

$$t = 1 : tw_1 = \{a\}, tw_2 = \{a\}, tw_3 = \{a, b\}, tw_4 = \{c\}, tw_5 = \{a, c\}$$

$$t = 2 : tw_6 = \{a\}, tw_7 = \{a, c\}$$

• For tuple $\langle a, b, w, \{1\}, 1
angle \in \mathcal{M}$, w = 1/4 = 0.25

Example of Model

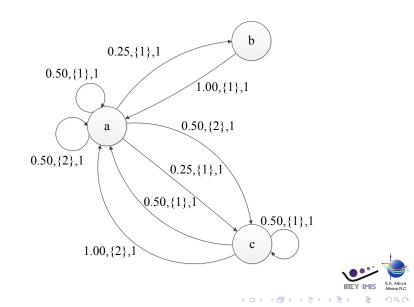
Build model \mathcal{M} for the tweets tw_i in two time instances

$$t = 1 : tw_1 = \{a\}, tw_2 = \{a\}, tw_3 = \{a, b\}, tw_4 = \{c\}, tw_5 = \{a, c\}$$

$$t = 2 : tw_6 = \{a\}, tw_7 = \{a, c\}$$

• For tuple $\langle a,b,w,\{1\},1\rangle\in\mathcal{M},\,w=1/4=0.25$ The model $\mathcal M$ is

$$\mathcal{M} = \{ \langle a, b, 0.25, \{1\}, 1 \rangle, \langle a, c, 0.25, \{1\}, 1 \rangle, \langle b, a, 1.00, \{1\}, 1 \rangle, \\ \langle c, a, 0.50, \{1\}, 1 \rangle, \langle a, a, 0.50, \{1\}, 1 \rangle, \langle c, c, 0.50, \{1\}, 1 \rangle, \\ \langle a, c, 0.50, \{2\}, 1 \rangle, \langle c, a, 1.00, \{2\}, 1 \rangle, \langle a, a, 0.50, \{2\}, 1 \rangle \}$$


э

(日) (同) (日) (日)

g example

Conclusions

Model as a graph

Query operators

Manipulating the quintuples of models with operators

- filter
- fold
- jump
- merge
- join

Filter operator

Notation filter(\mathcal{M} , cond)

Input

- $\bullet \ \mathsf{Model} \ \mathcal{M}$
- Condition cond

Returns Set of quintuples in \mathcal{M} that satisfy *cond*

Example

 $\mathcal{M}_2 = filter(\mathcal{M}_1, T \text{ inside } \{5 \dots 12\} \land w \in top(10))$

Fold operator

Notation fold (\mathcal{M}, g)

Input

- $\bullet \ \mathsf{Model} \ \mathcal{M}$
- integer $g = g_o/g_i$ where g_o and g_i are the time granularities of the output and input models respectively

Returns

Set of folded quintuples with time granularity $g \times g_i$

xample C

Conclusions

Fold operator

Example

For the input model \mathcal{M}_1

$$\mathcal{M}_{1} = \{ \langle n_{1}, c_{1}, w_{1}, \{1\}, 1 \rangle, \langle n_{1}, c_{1}, w_{2}, \{2\}, 1 \rangle, \\ \langle n_{1}, c_{1}, w_{3}, \{3\}, 1 \rangle, \langle n_{2}, c_{1}, w_{4}, \{1\}, 1 \rangle, \\ \langle n_{2}, c_{1}, w_{5}, \{4\}, 1 \rangle \}$$

the operation $\mathcal{M}_2 = \textit{fold}(\mathcal{M}_1, 3)$ returns

$$\mathcal{M}_2 = \{ \langle n_1, c_1, w_6, \{1, 2, 3\}, 3 \rangle, \langle n_2, c_1, w_4, \{1, 2, 3\}, 3 \rangle, \\ \langle n_2, c_1, w_5, \{4, 5, 6\}, 3 \rangle \}$$

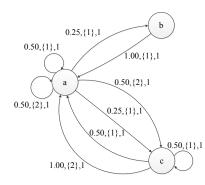
where $w_6 = P_{\{1,2,3\}}(n_1 \to c_1)$

Jump operator

Notation $jump(\mathcal{M}, k)$

Input

- $\bullet \ \mathsf{Model} \ \mathcal{M}$
- integer k


Output

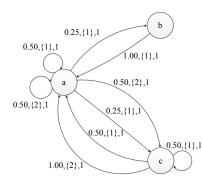
A model with expanded contexts and weights equal to the probability of a path of length k between two nodes

Jump operator

Example

For t = 1 the transition matrix

$$P_{\{1\}} = \begin{pmatrix} 0.50 & 0.25 & 0.25 \\ 1.00 & 0.00 & 0.00 \\ 0.50 & 0.00 & 0.50 \end{pmatrix}$$


・ロト ・ 日 ・ ・ 日 ・ ・ 日

e Conc

Jump operator

Example

For t = 1 the transition matrix

$$P_{\{1\}} = \begin{pmatrix} 0.50 & 0.25 & 0.25 \\ 1.00 & 0.00 & 0.00 \\ 0.50 & 0.00 & 0.50 \end{pmatrix}$$

For $\mathcal{M}' = jump(\mathcal{M}, 2)$ the weight w of tuple $\langle a, a, w, \{1\}, 1 \rangle \in \mathcal{M}'$ is $w = p_{\{1\}}^2(1, 1)$

Notation merge(\mathcal{M})

Input

 $\bullet \ \mathsf{Model} \ \mathcal{M}$

Output

A model where all tuples with the same n and c are aggregated

ors Runn

example

Conclusions

Merge operator

Example

If the input model is

$$\mathcal{M}_{1} = \{ \langle n_{1}, c_{1}, w_{1}, T_{1}, g \rangle, \langle n_{2}, c_{1}, w_{2}, T_{1}, g \rangle, \langle n_{1}, c_{1}, w_{3}, T_{2}, g \rangle \}$$

then the output model $\mathcal{M}_2 = merge(\mathcal{M}_1)$ is

$$\mathcal{M}_{2} = \{ \langle n_{1}, c_{1}, w_{4}, T_{1} \cup T_{2}, g \rangle, \langle n_{2}, c_{1}, w_{2}, T_{1}, g \rangle \}$$

example

Conclusions

Join operator

```
Notation join(\mathcal{M}_1, \mathcal{M}_2, cond)
```

Input

- Models \mathcal{M}_1 and \mathcal{M}_2
- Condition cond

Output

A subset of \mathcal{M}_1 which satisfies condition cond on variables of \mathcal{M}_1 and \mathcal{M}_2

ng example

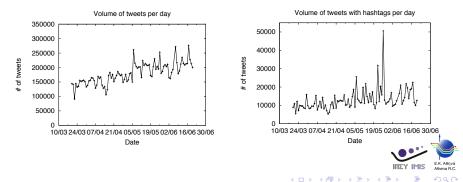
Conclusions

Join operator

$\begin{array}{l} \mathsf{Example} \\ \mathsf{Given} \ \mathcal{M}_1 \end{array}$

$$\mathcal{M}_1 = \{ \langle n_1, c_1, 0.5, \{1, 2\}, 1 \rangle, \langle n_1, c_2, 0.5, \{1, 2\}, 1 \rangle, \\ \langle n_1, c_1, 0.7, \{3, 4\}, 1 \rangle, \langle n_1, c_2, 0.3, \{3, 4\}, 1 \rangle \}$$

a query, which asks for the tuples with increasing weight over time


$$join(\mathcal{M}_1 \text{ as } m, \mathcal{M}_1 \text{ as } m', m.n = m'.n \land m.c = m'.c \land min(m.T) > max(m'.T) \land m.w > m'.w)$$

returns $\mathcal{M}_2 = \{\langle \textit{n}_1, \textit{c}_1, 0.7, \{3,4\}, 1 \rangle\}$

Dataset

- Set of 16.5 million tweets
 - tracking a set of 74 Greek stop-words
 - collected between March 20 and June 20, 2012
 - processed every 4 hours
- Two most frequent hashtags are #ff and #elections12

Running example

Conclusions

Query

Find the hashtags that are associated with #ekloges12 and for which the association weight increases for two consecutive weeks.

Running example

Conclusions

Example query

Query expressed with operators

$$\begin{aligned} \mathcal{M}_2 = & \textit{filter}(\mathcal{M}_1, n = \# \text{ekloges12}) \\ \mathcal{M}_3 = & \textit{fold}(\mathcal{M}_2, 42) \\ \mathcal{M}_4 = & \textit{join}(\mathcal{M}_3 \text{ as } m, \mathcal{M}_3 \text{ as } m', \textit{cond}) \\ \mathcal{M}_5 = & \textit{join}(\mathcal{M}_4 \text{ as } m, \mathcal{M}_4 \text{ as } m', \textit{cond}) \end{aligned}$$

where

$$cond = m.n <> m.c \land m.n = m'.n \land m.c = m'.c$$

 $\land m.w > m'.w \land min(m.T) = max(m'.T) + 1$

<ロト <回ト < 注ト < 注ト

Query processing and intermediate results

Intermediate results for *n*=#ekloges12 and *c*=#eklogesgr

Quintuple	Models
$\langle \text{#ekloges12}, \text{#eklogesgr}, 0.0048, \{169210\}, 42 \rangle$	\mathcal{M}_3
$\langle \text{#ekloges12}, \text{#eklogesgr}, 0.0015, \{211 \dots 252\}, 42 \rangle$	\mathcal{M}_3
$\langle \text{#ekloges12}, \text{#eklogesgr}, 0.0031, \{253294\}, 42 \rangle$	$\mathcal{M}_3, \mathcal{M}_4$
$\langle \text{#ekloges12}, \text{#eklogesgr}, 0.0004, \{295 \dots 336\}, 42 \rangle$	\mathcal{M}_3
$\langle \text{#ekloges12}, \text{#eklogesgr}, 0.0036, \{337 \dots 378\}, 42 \rangle$	$\mathcal{M}_3, \mathcal{M}_4$
$\langle \text{#ekloges12}, \text{#eklogesgr}, 0.0136, \{379 \dots 420\}, 42 \rangle$	$\mathcal{M}_3, \mathcal{M}_4, \mathcal{M}_5$
$\langle \text{#ekloges12}, \text{#eklogesgr}, 0.0011, \{421 \dots 462\}, 42 \rangle$	\mathcal{M}_3
$\langle \text{#ekloges12}, \text{#eklogesgr}, 0.0032, \{463504\}, 42 \rangle$	$\mathcal{M}_3, \mathcal{M}_4$
$\langle \text{#ekloges12}, \text{#eklogesgr}, 0.0030, \{505546\}, 42 \rangle$	\mathcal{M}_3
$\langle \# \mathrm{ekloges12}, \# \mathrm{eklogesgr}, 0.0010, \{ 547 \dots 588 \}, 42 \rangle$	\mathcal{M}_3

Tuples with highest weight for example query

$\langle \# ekloges 12, \# pasok, \rangle$	$0.08794, \{421\dots 462\}, 42\rangle$
$\langle \# ekloges 12, \# samaras,$	$0.06469, \{505 \dots 546\}, 42\rangle$
$\langle \# ekloges 12, \# syriza,$	$0.04663, \{463 \dots 504\}, 42\rangle$
$\langle \# ekloges 12, \# ekloges 2012, \rangle$	$0.04537, \{253294\}, 42\rangle$
$\langle \# ekloges 12, \# 2012 ek, \rangle$	$0.02956, \{463504\}, 42\rangle$
$\langle \# ekloges 12, \# cpel 2012,$	$0.02859, \{379 \dots 420\}, 42\rangle$
$\langle \# ekloges 12, \# ekloges 2012,$	$0.02780, \{421 \dots 462\}, 42\rangle$
$\langle \# ekloges 12, \# cpel 2012,$	$0.02140, \{337 \dots 378\}, 42\rangle$
$\langle \# ekloges 12, \# mega, \rangle$	$0.01724, \{463504\}, 42\rangle$
$\langle \#$ ekloges12, $\#$ eklogesgr,	$0.01361, \{379 \dots 420\}, 42\rangle$

Concluding remarks

Introduced model and query operators for exploring term associations in social data

• with varying time granularities, forming complex queries Next steps include

- Handling temporal properties of nodes
- Experimenting with alternative definitions of associations
- Providing user-defined weighting functions
- Experimenting with larger datasets

Motivation & Objective

emporal term association mode

Query operators

Running example

Conclusions

Thank you!

