
Querying Term Associations and their Temporal Evolution
in Social Data∗

Vassilis Plachouras
IMIS / RC "ATHENA"

Artemidos 6
Athens 15125, Greece

vplachouras@imis.athena-innovation.gr

Yannis Stavrakas
IMIS / RC "ATHENA"

Artemidos 6
Athens 15125, Greece

yannis@imis.athena-innovation.gr

ABSTRACT
There is a growing number of applications that rely on data
collected from online social networks. These applications
typically issue search requests for keywords and process the
data returned by online social networks through APIs. The
selection of keywords can have an important impact on the
quality of the results and the appropriateness of the col-
lected data for further analysis. Indeed, adding or removing
keywords in the search requests may change the characteris-
tics of the sampled data. Hence, it is important for users to
have the ability to explore data and to express complex re-
quests in order to discover the context of collected data. In
this work, we propose a model and a number of query oper-
ators that allow users to select data and explore its context
by means of querying for associations between keywords or
entities as well as their evolution over time. The model
supports different time granularities and the calculation of
term association weights based on the context of terms. We
demonstrate the use of the model and the query operators
with a running example based on data we have collected
from the microblogging service Twitter, and a first imple-
mentation running on top of a relational database.

Categories and Subject Descriptors
H.2.8 [Database Applications]

General Terms
Experimentation, Design

Keywords
Social networks, term associations, temporal evolution, query
operators

∗This work is partly funded by the European Commission
under ARCOMEM (ICT 270239).

1. INTRODUCTION
With the growth of online social networks and microblog-

ging sites, such as Facebook1 or Twitter2, and the availabil-
ity of their data through APIs, there is a increasing number
of applications that consume social network activity data.
For example, Asur and Huberman [1] correlate the volume
of chatter in Twitter about movies with their box office rev-
enues. They collect data by searching for terms present
in the movie titles. Jansen et al. [6] examine how Twitter
users express their opinions about brands. For each exam-
ined brand, they query a service, which analyzes attitudes
expressed in tweets. Sakaki et al. [12] search for tweets con-
taining words such as earthquake and shaking to track earth-
quakes.

All the applications mentioned above issue search queries
to the API of Twitter for specific terms that relate to the
application domain. The selection of terms, however, can
have an important impact on the quality of the results.
O’Connor et al. [11] observe such an impact when they
use variations of words to correlate a sentiment score from
tweets with an index of consumer confidence. The same is-
sue is also mentioned in the context of sentiment analysis
by Jiang et al., who suggest that classifying the sentiment
expressed about a target keyword may be enhanced by also
classifying the sentiment expressed for other related key-
words [7]. Consequently, we argue that it is important to be
able to explore the context of terms, to create datasets and
to perform complex analysis tasks based on term associa-
tions. Currently, there is a gap between this need and the
functionality that online social network APIs offer.

In this work, we introduce a model and a number of query
operators that enable users to explore the context of key-
words in data obtained from online social networks and mi-
croblogging services. The query operators allow users to
discover the relationships between keywords (as they are
implied by their occurrence in tweets) and their evolution
in time. They also allow to express complex conditions on
the associations of terms that take temporal aspects into ac-
count and to retrieve the subset of tweets that satisfy these
conditions. For example, a journalist, who is exploring Twit-
ter data consisting of timestamped hashtags, can issue the
following query concerning the financial crisis:

For the period during which there is a strong as-
sociation between hashtags #crisis and #protest,

1http://www.facebook.com/
2http://www.twitter.com/

which other hashtags are associated to both #cri-
sis and #protest? Which are the relevant tweets?

The above example query will first identify the timespan
during which there is a strong association between the hash-
tags #crisis and #protest. Next, other hashtags which are
strongly related to both #crisis and #protest will be iden-
tified. Finally, the relevant tweets that contain any of the
identified hashtags in the corresponding timespan will be
returned.

We assume that two terms are associated when they co-
occur in the same tweet. However, the association between
terms is not only indicated by their co-occurrence. If term
n is associated to term c and c is associated also to term d,
then we can assume that n is to some extent associated to d
as well. Thus, we define the model and the query operators
so as to allow for the inference of new associations between
terms that do not co-occur in tweets.

The remainder of this work is organized as follows. Sec-
tion 2 describes the introduced model. Section 3 presents
the query operators and gives an illustrative example for
each one. We present a running example on data we have
collected from Twitter in Section 4. Finally, we close with
a review of related work in Section 5 and some concluding
remarks in Section 6.

2. TEMPORAL TERM ASSOCIATION MODEL
In this section, we provide a formal definition of the model.

We first model the temporal associations between terms as
a set of quintuples. We also show that the set of quintuples
can be viewed as a labeled multidigraph. Next, we define
how associations between terms are calculated.

The model can be applied to any temporally evolving col-
lection of documents. In the context of this work, we assume
that documents are tweets, which are downloaded at regular
intervals. The downloaded tweets are processed at regular
time instances t = 1, 2, . . . , i. At the i-th time instance,
we populate with the tweets downloaded between instances
i− 1 and i the relation TT (which stands for timestamped
terms), with attributes id, pt and term. The attribute id
is a unique identifier for each tweet. The attribute pt de-
notes the publication time of the tweet. The attribute term
is any word or short phrase of interest that occurs in the
corresponding tweet, including hashtags or the output of
processes such us entity recognition. The relation TT may
actually contain more attributes than the basic three men-
tioned here. We also store the actual content and metadata
of tweets, in the form received from the Twitter API, and
indexed by the unique identifier id.

Once we collect, process tweets and update the relation
TT for a time instance t, we add a new snapshot of the model
for t. The model comprises all successive snapshots. Note
that the publication times of tweets are distinct from the
time instances, which are represented as successive integers.

2.1 Model definition
We define the model M as a set of quintuples:

M = {〈n, c, w, T, g〉|n, c ∈ V,w ∈ [0, 1], T ∈ 2Z+, g ∈ Z+}

where n is a target node and c is a context node. Both n and
c correspond to terms existing in the relation TT with pub-
lication times matching time instances in T . V denotes the

set of distinct terms existing in relation TT. w is a real num-
ber, which quantifies the strength of association from n to c.
T is a set of integers. A shorthand is used for expressing sets
of consecutive time instances; for example {1 . . . 3, 9 . . . 12}
is equivalent to the expanded notation {1, 2, 3, 9, 10, 11, 12}.
The time granularity g dictates how to aggregate and in-
terpret the elementary timespans as days, weeks, etc. For
example, if the elementary time instance in T corresponds
to 4 hours and g=6, then the time granularity is 24 hours
(one day).

The intuition behind the model is that n is associated to c
with weight w for the set of time instances in T interpreted
according to the time granularity g.

Hereafter, we define the association weight as the prob-
ability to observe c given that we have observed n in the
tweets published in the time instances t ∈ T :

w = PT (n→ c) =

∑
n,c∈tw

1
|tw|−1∑

n∈tw 1
(1)

The sum in the nominator is computed for all tweets in
timespan T where n and c co-occur. The sum in the de-
nominator is computed over all tweets in timespan T that
contain n. We denote by |tw| the number of terms in a
tweet. The intuition of Equation 1 is that the importance
of the co-occurrence between terms is equally split among
all co-occurring terms. Moreover, Equation 1 captures the
case where a term may be frequent, but most of the times
occurs without any other terms. In this case, the denomi-
nator

∑
n∈tw 1 will be higher and consequently the weight

w = PT (n → c) will be lower. When a term occurs on its
own for some tweets in T , then we add a quintuple where
n = c with w equal to the number of times that the n ap-
pears on its own over the total frequency of n in timespan T .
We note that the definition for the weight w is only one of
the possible approaches we could employ. Other definitions
may include the log-likelihood ratio [5], or the correlation
between the frequency time series of term occurrences. The
definition we have used in this work is appropriate for our
setting because it captures the probability to observe c given
that we have observed n, and corresponds to the transition
probabilities of a first-order Markov Chain.

As mentioned earlier in this section, the model we have
defined as a set of quintuples can also be viewed as a labeled
multidigraph, where the set of vertexes corresponds to the
set of terms V existing in relation TT and the set of directed
edges correspond to the ordered pairs (n, c) of target and
context nodes from the quintuples of the model. Each edge
is labeled with the weight w, the timespan T and the time
granularity g. As an example, consider for time instance
t = 1 the tweets tw1 = {a}, tw2 = {a}, tw3 = {a, b},
tw4 = {a, c}, tw5 = {c} and for time instance t = 2 the
tweets tw6 = {a, c} and tw7 = {a}, where sets contain the
tweet terms. Then, the corresponding model M is:

M = {〈a, b, 0.25, {1}, 1〉, 〈a, c, 0.25, {1}, 1〉,
〈b, a, 1.00, {1}, 1〉, 〈c, a, 0.50, {1}, 1〉,
〈a, a, 0.50, {1}, 1〉, 〈c, c, 0.50, {1}, 1〉,
〈a, c, 0.50, {2}, 1〉, 〈c, a, 1.00, {2}, 1〉,
〈a, a, 0.50, {2}, 1〉}

Figure 1 shows the graph representation of modelM. There
are nine edges. For each edge, the label corresponds to
the weight, the set of time instances for which the edge is

valid and the granularity of the corresponding set of time in-
stances. Moreover, the graph has edges with the same source
and destination nodes, denoting that a term occurred on its
own in a tweet.

a

b

c1.00,{2},1

0.25,{1},1

0.50,{1},1

0.50,{2},1

0.25,{1},1

1.00,{1},1

0.50,{1},1

0.50,{1},1

0.50,{2},1

Figure 1: Representation of the model M as a la-
beled multidigraph.

3. QUERY OPERATORS
In order to be able to query the temporal term association

model defined in the previous section, we introduce a set of
operators and provide illustrative examples.

3.1 Filter operator
The filter operator receives a model M and a condition

cond and it returns the set of quintuples of M that satisfy
the given condition. The condition is specified with respect
to any of the elements of the quintuple. The filter operator
is written M = filter(M, cond).

An example using the filter operator is the query M2 =
filter(M1, T inside {5 . . . 12} ∧ w ∈ top(10)) which returns
a model M2 comprising the quintuples of M1 for which
the timespan is contained in timespan {5 . . . 12} and their
weight is in the set of the 10 highest weights.

3.2 Fold operator
The fold operator receives as input a model M and a

positive integer g, and it is written M = fold(M, g). If gi
and go correspond to the granularity of the input and the
output models, respectively, then g = go/gi.

Next, we give an example of the fold operator. We assume
that the input model is the following:

M1 = {〈n1, c1, w1, {1}, 1〉,
〈n1, c1, w2, {2}, 1〉,
〈n1, c1, w3, {3}, 1〉,
〈n2, c1, w4, {1}, 1〉,
〈n2, c1, w5, {4}, 1〉}

The operation M2 = fold(M1, 3) returns the model M2:

M2 = {〈n1, c1, w6, {1, 2, 3}, 3〉,
〈n2, c1, w4, {1, 2, 3}, 3〉,
〈n2, c1, w5, {4, 5, 6}, 3〉}

Assuming that weights are computed as defined in Equa-
tion 1, the weight w6 is computed as follows:

w6 = P{1,2,3}(n1 → c1)

The weights for the quintuples where n = n2 do not change,
because there is no change in the number of tweets in which
n = n2 and c = c1 for timespans {1, 2, 3} and {4, 5, 6}.

3.3 Jump operator
The jump operator performs a self join and derives new

associations between nodes. The jump operator receives a
model as input and returns a model with expanded con-
texts and updated association weights. For each timespan
in the input model, we compute the updated weights by
creating a first-order Markov chain from the corresponding
directed graph. The probability of following a path of length
k between any two nodes in the Markov chain corresponds
to the updated association weights between the two nodes.
We assume that k > 1, because if k = 1 then the transition
probabilities are equal to the association weights stored in
the quintuples. The jump operator does not alter the set
of time instances T or the granularity g of the model. The
jump operator is written as jump(M, k).

Next, we give an example of the jump operator. We as-
sume that M is the model corresponding to the directed
multigraph in Figure 1. The query M′ = jump(M, 2) re-
turns M′ where the association weights are computed as
follows. For each of the two time instances inM, we create
a Markov Chain. For time instance t = 1, the transition
matrix is the following:

P{1} =

0.50 0.25 0.25
1.00 0.00 0.00
0.50 0.00 0.50

where p{1}(1, 2) corresponds to the weight P{1}(a→ b) and
p{1}(1, 3) corresponds to the weight P{1}(a → c). We note
that p{1}(1, 1) corresponds to the probability that a does not
co-occur with other terms and it is interpreted as remain-
ing in the same state. To compute the updated association
weights for k = 2, we compute P 2

{1}. Then, the associa-
tion weight from term a to term b at time instance t = 1 is
equal to p{1}(1, 2) = 0.125. After computing the association
weights for time instance t = 2 in a similar way, the output
model M′ is the following:

M′ = {〈a, a, 0.625, {1}, 1〉, 〈a, b, 0.125, {1}, 1〉,
〈a, c, 0.250, {1}, 1〉, 〈b, b, 0.250, {1}, 1〉,
〈b, a, 0.500, {1}, 1〉, 〈b, c, 0.250, {1}, 1〉,
〈c, a, 0.500, {1}, 1〉, 〈c, b, 0.125, {1}, 1〉,
〈c, c, 0.375, {1}, 1〉, 〈a, a, 0.750, {2}, 1〉,
〈a, c, 0.250, {2}, 1〉, 〈c, a, 0.500, {2}, 1〉,
〈c, c, 0.500, {2}, 1〉}

It is also possible to compute the transition probabilities
without specifying a maximum number of transitions. In
order to guarantee the convergence of the computation, we
can employ a damping factor, similar to the PageRank al-
gorithm [3].

3.4 Merge operator
The merge operator is similar to the fold operator in that

it aggregates quintuples according to the context and target
nodes, but without changing the time granularity g. The
merge operator receives an input model and returns a model

with the merged quintuples. If the input model M1 is the
following:

M1 = {〈n1, c1, w1, T1, g〉, 〈n2, c1, w2, T1, g〉,
〈n1, c1, w3, T2, g〉, 〈n2, c1, w4, T2, g〉,
〈n3, c1, w5, T2, g〉, 〈n1, c1, w6, T3, g〉,
〈n4, c1, w7, T3, g〉}

then the output model M2 = merge(M1) is the following:

M2 = {〈n1, c1, w8, T1 ∪ T2 ∪ T3, g〉,
〈n2, c1, w9, T1 ∪ T2, g〉,
〈n3, c1, w10, T2, g〉,
〈n4, c1, w11, T3, g〉}

The weights w8, w9, w10, w11 in the quintuples of the out-
put model M2 are calculated in the same way as described
in Section 3.2 for the fold operator.

3.5 Join operator
The join operator performs a self-join on the input model

in order to select only a part of the model that satisfies a
condition matching another part of the model. Similarly to
the semi-join of relational algebra, the join operator receives
two models, M1 and M2 as input and a condition cond on
variables of the two input models, and it returns a model
M3 which is a subset of M1. The join operator is written
as M3 = join(M1,M2, cond).

Next, we give one example of applying the join operator.
Given the model M1:

M1 = {〈n1, c1, 0.5, {1, 2}, 1〉, 〈n1, c2, 0.5, {1, 2}, 1〉,
〈n1, c1, 0.7, {3, 4}, 1〉, 〈n1, c2, 0.3, {3, 4}, 1〉}

the query, which asks for the quintuples where their weight
has increased compared to the past:

join(M1 as m,M1 as m′,

m.n = m′.n ∧m.c = m′.c

∧min(m.T) > max(m′.T)

∧m.w > m′.w)

returns the model M2 = {〈n1, c1, 0.7, {3, 4}, 1〉}.

4. RUNNING EXAMPLE
In this section, we describe an extended running example

of using the model and query operators we have defined in
Sections 2 and 3, respectively, on a large sample of data we
have collected from Twitter. The objective of the example
is to identify the hashtags for which the strength of associa-
tion with a given hashtag is increasing over time. Section 4.1
describes the dataset we have collected and Section 4.2 pro-
vides a description of the steps performed to answer the
example’s query using a relational database.

4.1 Dataset
Using the Streaming API of Twitter, and since we were

interested only in Greek tweets, we collected a data set of
tweets by tracking a set of 74 Greek stop-words. We collect
tweets over a period of three months, starting from March
20, 2012 until June 20, 2012. In total, we have collected
16.5 million tweets, from which 1.2 million tweets contain

at least one hashtag. Figures 2 and 3 show the daily vol-
ume of tweets and tweets containing at least one hashtag,
respectively, collected over the period of three months.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

10/03 24/03 07/04 21/04 05/05 19/05 02/06 16/06 30/06

of

 tw
ee

ts

Date

Volume of tweets per day

Figure 2: Daily volume of tweets.

 0

 10000

 20000

 30000

 40000

 50000

10/03 24/03 07/04 21/04 05/05 19/05 02/06 16/06 30/06

of

 tw
ee

ts

Date

Volume of tweets with hashtags per day

Figure 3: Daily volume of tweets with at least one
hashtag.

For the time period during which we performed the data
collection, two general elections took place in Greece (on
May 6 and June 17) and politics-related discussions are
prominent in the dataset we have collected. Indeed, the
second most frequent hashtag is #ekloges12 (which stands
for elections 2012) with frequency 46552. The most frequent
hashtag is #ff with frequency 59892 and the number of dis-
tinct hashtags is 163347.

The collected dataset is loaded in a relational database
as follows. First, we populate the relation TT with tu-
ples for each hashtag found in the collected tweets and the
corresponding four-hour time period during which it oc-
curred. Next, for each timespan of four hours, we generate
the model’s quintuples and store them in a relation called
M. The attributes of relation M correspond to the elements
of quintuples and the counts required to compute the asso-
ciation weight, as defined in Equation 1. The inclusion of
extra information in the relation M facilitates the efficient
computation of association weights without having to pro-
cess again information from the relation TT. This feature is

important in the case of the fold and merge operators, as
we will see in Section 4.2.

In our setting, the time instance t = 1 corresponds to
March 20, 2012 04:00 GMT. The number of tuples in rela-
tions TT and M is 1568673 and 733677, respectively.

4.2 Query processing description
In this section we describe the steps of computing the

result for the following request:

Find the hashtags that are associated with #ek-
loges12 and for which the association weight in-
creases for two consecutive weeks.

In other words, the above request asks for hashtags which
co-occur with hashtag #ekloges12 with increasing probabil-
ity for a period of two weeks. If we denote the input model as
M1, then we can express the above request as the sequence
of operators below:

M2 =filter(M1, n = #ekloges12)

M3 =fold(M2, 42)

M4 =join(M3 as m,M3 as m′, cond)

M5 =join(M4 as m,M4 as m′, cond)

where the condition cond corresponds to:

m.n <> m.c ∧m.n = m′.n ∧m.c = m′.c∧
m.w > m′.w ∧min(m.T) = max(m′.T) + 1

The condition cond is satisfied by quintuples m and m′

which have the same n and c nodes, respectively, m has
a higher weight than m′, the timespan of m immediately
follows that of m′ and the target and context nodes of m
are different.

The first operator filter selects from the input modelM1

the quintuples for which the target node is the given hash-
tag #ekloges12. From the 733677 quintuples in M1, the
filter operator results in M2 with 8074 quintuples. We im-
plement the filter operator using an SQL select query. The
operator fold creates new quintuples with granularity equal
to one week (42 consecutive timespans of four hours). The
modelM3 contains 2830 quintuples. The fold operator first
reads the output of the filter operator and merges quintu-
ples which fall in the same timespan of 42 consecutive time
instances. For example, all the quintuples for a given pair
of n and c and t ∈ T where 1 ≤ t ≤ 42 are merged into one
quintuple with T = {1 . . . 42} and granularity g = 42. The
updated weights are computed from the counts stored along
with each quintuple in the relation M .

The first join operator results in the model M4 which
contains quintuples for which the association weight from
n = #ekloges12 to c increases from one week to the next
one. Similarly, M5, which is the model obtained from the
application of the second join operator, contains the quintu-
ples for which the association weight from n = #ekloges12
to c increases for two consecutive weeks. The join opera-
tors are implemented using an SQL semi-join with further
processing in order to check that the timespans of selected
quintuples satisfy the condition cond, because the relational
database does not support comparisons of sets of integers.
Model M5 has a total of 85 quintuples.

Table 1: The quintuples for which n = #ekloges12
and c = #eklogesgr and the intermediate models
which contain them.

Quintuple Models

〈#ekloges12,#eklogesgr, 0.0048, {169 . . . 210}, 42〉 M3

〈#ekloges12,#eklogesgr, 0.0015, {211 . . . 252}, 42〉 M3

〈#ekloges12,#eklogesgr, 0.0031, {253 . . . 294}, 42〉 M3,M4

〈#ekloges12,#eklogesgr, 0.0004, {295 . . . 336}, 42〉 M3

〈#ekloges12,#eklogesgr, 0.0036, {337 . . . 378}, 42〉 M3,M4

〈#ekloges12,#eklogesgr, 0.0136, {379 . . . 420}, 42〉 M3,M4,M5

〈#ekloges12,#eklogesgr, 0.0011, {421 . . . 462}, 42〉 M3

〈#ekloges12,#eklogesgr, 0.0032, {463 . . . 504}, 42〉 M3,M4

〈#ekloges12,#eklogesgr, 0.0030, {505 . . . 546}, 42〉 M3

〈#ekloges12,#eklogesgr, 0.0010, {547 . . . 588}, 42〉 M3

Table 2: The 10 quintuples from modelM5 with the
highest weight.

〈#ekloges12,#pasok, 0.08794, {421 . . . 462}, 42〉
〈#ekloges12,#samaras, 0.06469, {505 . . . 546}, 42〉
〈#ekloges12,#syriza, 0.04663, {463 . . . 504}, 42〉
〈#ekloges12,#ekloges2012, 0.04537, {253 . . . 294}, 42〉
〈#ekloges12,#2012ek, 0.02956, {463 . . . 504}, 42〉
〈#ekloges12,#cpel2012, 0.02859, {379 . . . 420}, 42〉
〈#ekloges12,#ekloges2012, 0.02780, {421 . . . 462}, 42〉
〈#ekloges12,#cpel2012, 0.02140, {337 . . . 378}, 42〉
〈#ekloges12,#mega, 0.01724, {463 . . . 504}, 42〉
〈#ekloges12,#eklogesgr, 0.01361, {379 . . . 420}, 42〉

In Table 1 we show an example of quintuples with n =
#ekloges12 and c = #eklogesgr from the models gener-
ated by the fold and join operators during the processing
of the example request. The first column shows the quintu-
ple and the second column shows the models which contain
the quintuple. The 110 quintuples for n = #ekloges12 and
c = #eklogesgr in M2 are folded to 10 quintuples in M3,
as shown in Table 1. The output of the second join returns
one quintuple for T = {379 . . . 420} with granularity g = 42
for n = #ekloges12 and c = #eklogesgr.

Table 2 shows the 10 quintuples fromM5 with the highest
weight. In the top three quintuples, #ekloges12 is associated
with the names of two political parties and the name of one
political party leader. In the remaining seven quintuples,
#ekloges12 is associated with other hashtags which are used
to denote the topic of general elections in 2012, as well as
the hashtag #mega, which is the name of a greek television
channel.

5. RELATED WORK
The introduced temporal term association model and the

related query language constitute a step towards a frame-
work that supports the large-scale and declarative explo-
ration of data obtained from social networks. Smith and
Barash [14] have surveyed visualization tools for social net-
work data and stress the need for a language similar to SQL
but adapted to social networks. San Mart́ın and Gutier-
rez [13] describe a data model and query language for social
networks based on RDF and SPARQL. However, they do not
directly support different granularities of time. Mustafa et
al. [10] use Datalog to model social networks and to apply
data cleaning and extraction techniques using a declarative
language.

The most related work to ours is [4] by Doytsher et al.,
who connect the social network of users with a spatial net-

work to identify places visited frequently by users. The
model and query language in [4] allow to query with differ-
ent granularities for frequency, time and locations. However,
they do not consider any text artifacts generated by users
(e.g. comments posted on blogs, reviews, tweets, etc.).

The support for a fold operator relates to temporal databa-
ses and in particular query languages that enable switch-
ing between equivalent representations that utilize intervals
and points for time stamping; Bohlen et al. [2] provide an
overview of temporal aggregation concepts.

Finally, the calculation of association weights defined in
Equation 1 relies on the probability of term co-occurrence
in order to estimate the strength of association between two
terms. This approach is only one of the possible ones we can
apply to estimate the association between terms. For exam-
ple, Dunning [5] proposed the use of the log-likelihood ratio
as a more robust estimate of the association between terms.
The definition of the jump operator relates to the TextRank
algorithm [9], which has been used to extract keywords from
texts by applying a PageRank-like algorithm to a graph of
terms created from a document. Liu et al. [8] have proposed
to rank tags from Flickr photos by applying PageRank to
the similarity graph of tags.

6. CONCLUSIONS
In this work, we have introduced a model and a set of

query operators for exploring the associations between terms
from texts and social network data, as well as their tempo-
ral evolution. The model captures the associations of vary-
ing degrees between terms for different granularities of time.
The operators allow to manipulate and enrich the data by
changing the granularity of time, selecting subsets of terms,
adding new term associations or merging existing ones. Fur-
thermore, they can be combined to form complex queries.
We have shown a running example for one query and data
collected from Twitter, where the model was built from the
hashtags found in tweets.

As far as limitations of the introduced model and opera-
tions are concerned, they do not support temporal properties
for nodes, for example it is currently not possible to select a
node according to the volume of its occurrences at a specific
timespan. Moreover, the operators do not directly support
the use of user-defined functions for computing the associa-
tion weights. One example of such a user-defined function
is the correlation between the frequency time series of two
terms, which do not necessarily co-occur in the same tweets.
In order to introduce user-defined functions for computing
the association weights, we first need to further investigate
what additional data is required for the efficient computa-
tion of a range of possible functions.

For future works, we plan to address the limitations dis-
cussed above and to provide a full implementation of the
model and the operators which can run over a relational
database. We also plan to experiment with alternative def-
initions of term associations, beyond co-occurrence, as well
as to test the framework with larger datasets comprising
both hashtags as well as plain terms.

7. REFERENCES
[1] S. Asur and B. A. Huberman. Predicting the future

with social media. In Proceedings of the 2010

IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology - Volume
01, WI-IAT ’10, pages 492–499, 2010.

[2] M. H. Bohlen, J. Gamper, and C. S. Jensen. How
would you like to aggregate your temporal data? In
Proceedings of the Thirteenth International
Symposium on Temporal Representation and
Reasoning, TIME ’06, pages 121–136, 2006.

[3] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Comput. Netw. ISDN
Syst., 30(1-7):107–117, Apr. 1998.

[4] Y. Doytsher, B. Galon, and Y. Kanza. Querying
geo-social data by bridging spatial networks and social
networks. In Proceedings of the 2nd ACM
SIGSPATIAL International Workshop on Location
Based Social Networks, LBSN ’10, pages 39–46, 2010.

[5] T. Dunning. Accurate methods for the statistics of
surprise and coincidence. Comput. Linguist.,
19(1):61–74, Mar. 1993.

[6] B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury.
Micro-blogging as online word of mouth branding. In
Proceedings of the 27th international conference
extended abstracts on Human factors in computing
systems, CHI EA ’09, pages 3859–3864, 2009.

[7] L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao.
Target-dependent twitter sentiment classification. In
Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies - Volume 1, HLT ’11, pages
151–160, 2011.

[8] D. Liu, X.-S. Hua, L. Yang, M. Wang, and H.-J.
Zhang. Tag ranking. In Proceedings of the 18th
international conference on World wide web, WWW
’09, pages 351–360, 2009.

[9] R. Mihalcea and P. Tarau. TextRank: Bringing order
into texts. In Proceedings of EMNLP-04and the 2004
Conference on Empirical Methods in Natural
Language Processing, July 2004.

[10] W. E. Moustafa, G. Namata, A. Deshpande, and
L. Getoor. Declarative analysis of noisy information
networks. In Proceedings of the 2011 IEEE 27th
International Conference on Data Engineering
Workshops, ICDEW ’11, pages 106–111, 2011.

[11] B. O’Connor, R. Balasubramanyan, B. R. Routledge,
and N. A. Smith. From tweets to polls: Linking text
sentiment to public opinion time series. In W. W.
Cohen and S. Gosling, editors, ICWSM, 2010.

[12] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake
shakes twitter users: real-time event detection by
social sensors. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages
851–860, 2010.

[13] M. San Mart́ın and C. Gutierrez. Representing,
querying and transforming social networks with
rdf/sparql. In Proceedings of the 6th European
Semantic Web Conference on The Semantic Web:
Research and Applications, ESWC 2009 Heraklion,
pages 293–307, 2009.

[14] M. A. Smith and V. Barash. Social sql: Tools for
exploring social databases. IEEE Data Eng. Bull.,
31(2):50–57, 2008.

