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Abstract—MPI implementations typically equate an MPI pro-
cess with an OS-process, resulting in a coarse-grain programming
model where MPI processes are bound to the physical cores. Fine-
Grain (FG-MPI) extends the MPICH2 implementation of MPI
and implements an integrated runtime system to allow multiple
MPI processes to execute concurrently inside an OS-process.

FG-MPI’s integrated approach makes it possible to add
more concurrency than available parallelism, while minimizing
the overheads related to context switches, scheduling and syn-
chronization. In this paper we evaluate the benefits of added
concurrency for cache awareness and message size and show
that performance gains are possible by using FG-MPI to adjust
the grain-size of a program to better fit the cache and potential
advantages in passing smaller versus larger messages.

We evaluate the use of FG-MPI on the complete set of the
NAS parallel benchmarks over large problem sizes, where we
show significant performance improvement (20%-30%) for three
of the eight benchmarks. We discuss the characteristics of the
benchmarks with regards to trade-offs between the added costs
and benefits.

Keywords- Fine-Grain MPI, Message Passing, MPICH2, Mul-
ticore, Performance, Concurrency, Over-decomposition.

I. INTRODUCTION

MPI has been very successful in High Performance Comput-

ing for implementing message-passing programs on compute

clusters.There are many applications and a variety of libraries

that have been written using MPI. Many of these programs

are written as SPMD programs where the program is pa-

rameterized by “N” the number of MPI processes. Parameter

N determines the granularity of the program and gives the

amount of available concurrency. In executing MPI programs,

one typically matches the number of MPI processes to the

number of cores, the amount of available parallelism.

Matching the concurrency to the available parallelism fixes

the granularity of the program to make it as coarse-grain as

possible. However, maximizing the granularity is not always

optimal because of the effect it has on the cache behavior and

the number and sizes of the messages sent and received. There

are also MPI programs where N is partly determined by the

problem size and may not exactly match parallelism available

in the machine. For these reasons it should be possible to be

able to adjust the granularity independently from the amount

of parallelism and be able to expose more concurrency than

can be executed in parallel.

Introducing added concurrency by over-decomposing the

problem is a well-known performance optimization technique

for SPMD scientific computing programs. Since data de-

composition is typically hard-coded and difficult to change,

over-decomposition for MPI programs depends on its runtime

environment. One simple technique that is commonly used

is to oversubscribe the number of cores by starting more

MPI processes and thereby more OS-processes. A recent

paper [1] studied the use of oversubscription on multicore

machines and report a 10% performance degradation for the

NAS benchmarks with MPI. There are also systems like

Adaptive MPI (AMPI) [2] that support added concurrency

by implementing MPI on top of Charm++, an object-based

runtime system. The performance advantages of AMPI has

been reported on a subset of the NAS benchmarks of size

A and B [3], but not on a wider range and bigger sizes of

the benchmarks and they do not discuss issues pertaining to

multicore. In this paper we describe and evaluate FG-MPI,

an extension to the MPICH2 middleware, that allows us to

adjust granularity at runtime independently from the available

parallelism. We evaluate FG-MPI by reporting results for the

NAS benchmarks on a cluster of multicore machines.

The key issue in a system that adds more concurrency

than available parallelism is to minimize the overheads in

order to maximize the benefits and make it effective over

a wider range. FG-MPI does this by making it possible to

have multiple MPI processes executing concurrently inside an

OS-process. FG-MPI uses coroutines to create a small kernel

running inside each OS-process that is tightly integrated into

the MPI middleware. Coroutines were used to implement light-

weight processes that were non-preemptively scheduled by our

kernel. This allowed for fast context switches and also made

it possible to introduce a user-level scheduler that worked

in concert with the MPI middleware. The tight integration

is a key difference between FG-MPI and other systems (see

Section V) and made it possible to address overhead issues

related to context switches, MPI-aware scheduling, as well as

added synchronization costs, which was also highlighted as a

problem in [1]. It also gives us control over the mapping and

scheduling of computation to cores and machines and scales

up, if necessary, to expose massive amounts of concurrency

(millions of MPI processes).
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Fig. 1. FG-MPI Architecture. Shading shows the layers of MPICH2 that
FG-MPI is integrated into. Figure adapted from [4].

This paper makes the following contributions:

• It introduces an alternative non-layered approach for

adding concurrency to MPI programs by making it possi-

ble to have multiple MPI processes inside an OS-process.

• We describe the key difference, the tight integration of

FG-MPI into the MPICH2 middleware, and measure the

overheads and benefits on multicore processors.

• We evaluate the benefits of added concurrency for cache

awareness and message size and show that performance

gains are possible by using FG-MPI to adjust the grain-

size of a program to better fit the cache and potential

advantages in passing smaller versus larger messages.

• We evaluate over-decomposition using FG-MPI on the

complete set of NAS benchmarks over large problems

sizes where we show significant performance improve-

ment (20%-30%) for three of the eight benchmarks. We

discuss the characteristics of the benchmarks with regards

to trade-offs between the added costs versus benefits.

In Section II we give an overview of the system and changes

made to MPICH2 to support FG-MPI. In Section III we

describe and measure the overheads and potential benefits

to adding concurrency to MPI programs using FG-MPI. The

performance results for adding concurrency to the NAS bench-

marks programs for problem sizes B, C and D are presented

in Section IV. In Section V we compare FG-MPI to related

work and present the conclusions in Section VI.

II. FG-MPI OVERVIEW

FG-MPI implements a user-level runtime integrated into

MPICH2 to allow for multiple MPI processes within one OS-

process. In order to avoid any ambiguity we will use the term

“OS-process” when referring to operating systems processes

and at all other places the terms process, fine-grain process

and MPI process will be used interchangeably. MPI processes

sharing the same address space are referred to as collocated

processes.

Figure 2 shows the integration of FG-MPI in the layered

modular architecture of MPICH2. The MPICH2 ADI3 layer

represents the data structures and functions that are provided

by an implementation. Representation in this layer is in terms

of MPI requests/messages and the functions for manipulating

those requests. One of first considerations in integrating FG-

MPI in MPICH2 was to support large amounts of concurrency

through scalable sharing of MPI structures among the corou-

tines. To this end, a large number of MPI storage structures

such as posted receive queues, unexpected messages queues,

communicator and request pools are shared by the coroutines.

Devices in MPICH2 are communication mechanisms, which

are paired with channels that represent specific modes of

communication. In FG-MPI, we leverage the Nemesis CH3

channel since it is designed for scalability and is a highly

optimized, communication subsystem that provides multi-

network support. It provides low latency, lock-free shared

memory queues and high performance communication for both

intra-node and inter-node communication [5]. Other structures

which are an integral part of MPI are communicators and

groups and their scalability and sharing is essential to FG-

MPI. In past work [6] we discuss in detail how we share

these structures and scale to hundreds and thousands of MPI

processes.

The MPICH2 implementation couples the naming of an

MPI process with an OS-process which, in turn, is tied to

its communication endpoint. In FG-MPI, we decouple MPI

process from its points of attachment to allow multiple MPI

processes to share the same address space. This required

creating a 2-level namespace, where the OS-processes are

named separately from the MPI processes. As well, extending

the MPI message matching to represent the new hierarchy and

multiplexing and de-multiplexing of messages.

The MPI progress engine is responsible for message pro-

gression and in our case, the coroutines can cooperatively

progress messages for other collocated coroutines. It also

enables us to implement optimized communication among

collocated processes. As shown in Sections III-B and III-C,

it is important to take advantage of the single shared address

space for communication involving collocated processes and

not rely solely on MPI’s point to point communication. Due

to the direct integration in MPICH2, our runtime scheduler is

aware of the MPI events, such as arrival of messages, occurring

inside the progress engine and can block or unblock collocated

MPI processes when any pending requests can be progressed.

The tight integration enables us to achieve the performance

benefits that would not have been possible by layering light-

weight threads or a runtime on top of the MPI middleware.

The Process Manager Interface (PMI) is extended to support

an nfg (number of fine-grain) flag to mpiexec. Using -nfg

the user can choose how many MPI processes to run per

OS-process in combination with the -n flag specifying the

number of OS-processes. We introduce the following notation

to describe the mapping of processes in FG-MPI. We specify

the hierarchical structure of an MPI execution in terms of

P, the number of MPI processes per OS-process as given

by -nfg, O, the number of OS-processes per machine, and

M, the number of machines. N = P×O×M is the number

of MPI processes in a [P;O;M] execution. The standard one

MPI process per OS-process model corresponds to a [1;O;M]

execution. In general, the number of fine-grain processes (P)
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Fig. 2. Hierarchical view of FG-MPI runtime environment with N = P×O×M
MPI processes.

inside an OS-process can vary, but in the remainder we will

assume the SPMD model with the same P for every O. Given

this notation, concurrency can be added by over-subscription

(increasing O to be larger than the number of cores per

machine) and/or increasing P.

When P > 1 a FG-MPI kernel, with a scheduler, is

started inside the OS-process. The scheduler is non-preemptive

where, as is the case in MPI, a process runs until it makes

an MPI call. In addition to scheduling, the runtime accesses

the middleware to progress messages for all other collocated

processes. Because the runtime is non-preemptive, accesses

to the middleware are guaranteed to be atomic, avoiding the

overhead of locking, and we only need to ensure that at every

scheduling point the middleware is left in a consistent state.

One effect of non-preemptive scheduling is that a process that

is busy computing blocks the progress of all other collocated

processes. One assumes that as long as the process is busy it

is making progress, however, we did add MPIX_Yield() to

handle cases when a fairer scheduling is needed.

This approach may require some changes to the source code.

The user needs to be aware that any global variables become

shared variables and these variables should be localized. There

are a variety of tools available to help removing globals. In

the case of NAS benchmarks, which are written in Fortran,

we used Photran [3], a tool developed by the AMPI group

for privatizing variables. The advantages and disadvantages of

user-level threads are well-known and solutions like scheduler

activations [7] exist. Scheduler activations are not supported

in Linux, however, it would be interesting to use FlexSC [8],

a Linux kernel extension, to schedule and batch system calls

to the kernel making it possible for the user-level scheduler to

coordinate with the OS scheduler.

In conclusion, FG-MPI runtime with a scheduler, sharing of

the middleware, and optimized communication for collocated

processes benefits from the tight integration to MPICH2. These

benefits cannot easily be obtained by layering a system on top

of MPI with no visibility into the state of the middleware.

FG-MPI runs on commodity operating systems and does not

require any special support.

III. FG-MPI RUNTIME

There are advantages and disadvantages to introducing more

concurrency. There are additional costs for context switching,

scheduling as well as additional messaging. In terms of bene-

fits there is better cache behavior and potential advantages in

passing smaller versus larger messages. Adding concurrency

is only useful when the benefits out-weigh the overhead

that results from the over-decomposition. In this section we

describe the FG-MPI runtime and measure the overheads

associated with context switching and messaging. For block-

structured algorithms we measure the potential gain that can

be achieved by better cache behavior.

In Section III-A, we describe the scheduling of processes

inside the OS-process and its interaction with the MPI middle-

ware. We show that FG-MPI is an order of magnitude faster

than OS-level context switch. In Section III-B we measure the

overheads of the extra message passing that can occur to show

that it is similar to that of a memory copy. Adding concurrency

also affects the communication time for collectives since now

these collectives are over a larger collection. In Section III-C

we describe the use of location-aware implementation of

collectives that takes advantage of the single address space

to speed up the collectives for collocated processes. We

measure this added overhead for the MPI_Barrier() call.

Finally in Section III-D we look at the potential performance

improvements for better cache behavior.

For the experiments the test setup consisted of a cluster

with 16 nodes connected by a 10GigE Ethernet interconnection

network. Each of the nodes in the cluster is a quad-core, dual

socket (8 cores per node) Intel Xeon R© X5550, 64-bit machine,

running at 2.67 GHz. All machines have 12 GB of memory

and run Linux kernel 2.6.18-194.8.1.el5.

A. FG-MPI Context Switch

One important cost that is a consequence of adding con-

currency is the time taken to switch between processes. FG-

MPI’s non-preemptive runtime is build on top of coroutines,

each with it own stack. The runtime is partially derived from

Capriccio [9], a scalable thread library for high-concurrency

servers. We use Toernig’s coroutine (coro) library [10], which

provides highly efficient yield for switching context between

coroutines. We did extend the system to be able use any similar

type of coroutine package and now provide the option for using

PCL (Portable Coroutine Library) [11].

In FG-MPI every MPI call is a potential de-scheduling point

where, depending on the call and the state of the middleware,

the scheduler chooses the next process to run. MPI communi-

cation calls provide a natural yield point for switching between

coroutines where one process when it enters the middleware

can progress messages for all of the collocated processes.

A “progress engine” coroutine that remains on the runnable

queue whenever there is a receive that could be matched by a

message from a remote process ensures that, when necessary,

we poll the external link for more data.



Switching between processes involves switching to the

runtime scheduler, selection of next runnable MPI process by

the scheduler and switching to the new process. We measured

this switching time for both of the coroutine packages that FG-

MPI can use. The coro library provides the fastest switching

time (0.13µs) while the PCL library switching time is 0.81µs.

This time is an order of magnitude faster than OS-level

context switch which takes 6.85µs. Our results are similar to

the numbers reported for threading benchmarks in Capriccio.

In a comprehensive study, they demonstrated that coroutines

outperform NPTL (Native Posix Thread Library) and Linux-

Threads (Linux kernel threads) for both raw performance and

scalability [9].

In conclusion, coroutines provide very efficient context

switch time in comparison to other types of threads and

this makes it easier to scale to support massive amount

of concurrency. We have tested FG-MPI with thousands of

collocated processes and, when not constrained by memory,

have used it for debugging with gdb to run an entire MPI ap-

plication in a single OS-process. The non-preemptive runtime

model is a natural match for message passing systems as the

communication routines provide the natural yield points in a

cooperative threading environment.

B. Messaging Costs

In FG-MPI one of the effects of adding more concurrency

is that we send more smaller sized messages. In the case

of communication between collated processes it is possible

to use the single address space to optimize point-to-point

by simply doing a memcpy. Our objective was to achieve

low messaging overhead through synchronous communication

between collocated processes and avoid intermediate system

copies.

For collocated processes, there are two cases to consider

depending on whether the sender or the receiver executes

first. The two cases are symmetric, therefore, we describe in

detail the one where a receiver process executes a receive call

before it can be completed; i.e., the sender process has not yet

executed a matching send call.

In this case, the receiver process first determines that

the sender has not yet executed a send call by looking

in the unexpected-message-queue and queues its request in

the posted-receive-queue. It then blocks waiting for the data

arrival. When the sender process executes the send call, it

first checks in the posted-receive-queue and finds the matching

receive. The sender then copies the data directly into the

receiver’s buffer and unblocks it. Note that there is only

one memory copy in this operation and no intermediate

system copies are made. The additional overheads over a

simple memcpy in this case are the context switch costs,

looking in the unexpected-message-queue and queueing the

receive request in the posted-receive-queue by the receiver and

finding the matching request in the posted-receive-queue by

the sender.

For non-collocated processes, MPICH2 treats messages of

64 KBytes or above as long messages that require a rendezvous

protocol for communication. For collocated communication

we avoid the extra cost of rendezvous and the communication

between two collocated processes is the same as described

above, irrespective of the size of the message.

In order to measure the cost of message communication

within collocated MPI processes, we designed a benchmark

that compares sending MPI messages, picked randomly from

a memory location, between two collocated processes with the

cost of doing a memory copy inside one process. We measured

the overhead (difference between a message send/receive and

a memcpy) for different messages sizes. The reason for

randomly picking from a memory location was to isolate the

effect of messaging only (i.e. without any cache effects). We

also ran a test where the same message is being sent and

the overhead of messaging over memcpy compared to the

random selection case was less, but we report the numbers

for the random selection as it is closer to what we would

expect in an application. Our results showed that the average

overhead of collocated messaging in comparison to a memcpy

operation was 0.43µs with a standard deviation of 0.065µs

for messages ranging in size from 2 bytes to 128 Kbytes.

For messages in the range 256 Kbytes to 1 Mbytes, the

message overhead increased from 1µs to 2.3µs. Note these

measurements include the context switching and scheduling

time to complete the operation.

Using the same program, we measured the collocated mes-

saging cost for AMPI. For message sizes in the range 2

bytes to 256 bytes, the difference between messaging times

for FG-MPI and AMPI was in the range 0.12µs to 0.15µs,

with AMPI slightly faster. For messages 512 bytes and above

the difference increased sharply with FG-MPI outperforming

AMPI by a large margin as shown in Table I.

Message size FG-MPI time AMPI time

1 Kbytes 0.6µs 0.8µs

8 Kbytes 1.4µs 3.6µs

32 Kbytes 4.23µs 15.1µs

64 Kbytes 7.9µs fails

TABLE I
COMPARISON OF FG-MPI AND AMPI COLLOCATED MESSAGING TIMES.

Interestingly, AMPI failed to execute for message sizes 64

Kbytes and higher, saying that it cannot allocate memory. With

FG-MPI we successfully tested up to 8 Mbytes on the same

machine without any problems.

One potential benefit to adding concurrency for commu-

nication between remote processes is that by sending more

smaller messages, rather than one large one, we can avoid the

long-message protocol that requires a rendezvous between the

processes. In effect, the added concurrency acts like packeti-

zation where the packets (smaller messages) can be pipelined

between the two OS-processes. Messages can be split up into

smaller pieces and the MPI processes at the receiver can begin

working on the smaller pieces without having to wait for

the entire message to arrive. In order to study this effect,

we designed a benchmark where processes alternate between

computation and communication for a number of iterations.

In the coarse-grain MPI case we have two processes doing a
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Fig. 3. Long Messages in MPI versus Short messages in FG-MPI

fixed amount of computation (Cp) and communication (Cm)

per iteration. In the finer-grain case, Cp and Cm per OS-

process is divided among the number of processes defined by

the nfg flag while keeping the total volume of computation

and computation the same in both cases. In coarse-grain MPI

fewer number of large messages are communicated whereas in

FG-MPI the size of messages is smaller (divided by P=nfg),

but the total number of messages communicated is multiplied

by the nfg parameter.

Figure 3(a) shows the effect of sending fewer long messages

versus several short messages1. The advantages of avoiding

the rendezvous protocol are clear in this figure. We also

see that the overhead of additional messaging in FG-MPI is

small (even for substantially large values of nfg) and clearly

offset by the advantage of avoiding the rendezvous protocol.

Figure 3(b) shows the best times achieved in FG-MPI for

different communication volumes with MPI.

Further optimization is possible with collocated processes

in a single address space by using copyless message passing

where processes pass a reference to the data. Systems like

Singularity OS [12] have explored the use of contracts to

guarantee safe passing of references.

In conclusion, FG-MPI makes it possible to adjust the

message size independently from the size of the machine and

the added concurrency results in a more fluid communication

with more messages flowing potentially requiring less syn-

chronization with more overlap between communication and

computation. We expect this benefit to become more evident

on programs computing on larger datasets.

C. Collective Communication

Concurrency adds overhead to the collectives since it results

in more MPI processes and hence more messages and more

context switches. The cost of synchronization has a significant

impact on MPI programs that use collectives and may offset

any of the potential advantages of added concurrency. We

reduce the synchronization overhead by taking advantage

of the single address space and optimizing the collective

1MPICH2 treats messages of 64 KBytes or above as long messages that
require a rendezvous protocol for communication. For the fine-grain results,
The nfg parameter is chosen to divide the message size so that it is less than
64 KBytes

communication for those processes that are collocated. We

demonstrate this approach for the MPI Barrier operation.

For MPI Barrier, one leader per OS-process is selected from

the collocated MPI processes and one leader is selected for all

of the OS-processes on the machine. Inside the OS-process, a

shared variable is used to count the collocated processes that

enter the barrier. Processes inside the OS-process increment

the counter and block waiting for the collocated leader to clear

the barrier and re-schedule them. Similarly, the OS process

leaders uses MPICH2 Nemesis’s shared memory to coordinate

with the leader of all the OS-processes on the machine. Once

processes on each multicore node have synchronized then all

those leaders communicate after which the leader of the OS-

processes signals that they can leave the barrier which in

turn allows the collocated processes to leave the barrier. This

type of location-aware implementation of the MPI Barrier is

optimized for each level of the communication hierarchy and

is supported by the scheduler to minimize its interactions with

the middleware. The naive approach of simply relying on the

MPI’s point-to-point can take advantage of memcpy for the

communication among collocated processes but it results in

more interactions than necessary with the middleware and

progress engine.

P [P;1;1] [P;8;1] [P;8;16]

(nfg) time (µs) N time (µs) N time (µs) N

1 - 1 1 8 122 128

2 1 2 1 16 126 256

4 1 4 2 32 129 512

8 1 8 3 64 129 1024

16 3 16 4 128 137 2048

32 5 32 10 256 149 4096

64 10 64 20 512 183 8192

128 22 128 41 1024 259 16384

256 45 256 84 2048 438 32768

TABLE II
BARRIER LATENCY TIME (µS) WITH VARYING CONCURRENCY (P) FOR

THREE [P;O;M] EXECUTIONS, WHERE P IS THE NUMBER OF MPI
PROCESSES PER OS-PROCESS, O IS THE NUMBER OF OS-PROCESSES PER

NODE AND M IS THE NUMBER OF NODES. N=P×O×M IS THE TOTAL

NUMBER OF MPI PROCESSES.

Table II presents the barrier latency as concurrency (P) per

OS-process in a [P;O;M] system is increased from 1 to 256



for [P;1;1], [P;8;1] and [P;8;16] executions2. The increase in

barrier latency with concurrency is sublinear, e.g., on a single

multicore node ([P;8;1]), the latency increases from 1µs to

84µs as concurrency increases from 1 to 256.

These results were obtained by iteratively calling the barrier

operation several thousand times and averaging the result.

As such, they are a lower bound estimate on the cost of

barrier communication. Although an OS-process will continue

to make progress as long as there is an MPI process to execute,

due to OS-scheduling one process could end up idling waiting

for other local or remote processes. By not over-subscribing

the cores we reduce the influence of the OS-scheduler. In [1]

over-subscription was found to have a major effect on the

performance of MPI programs containing collectives.

It is also interesting to compare this approach to AMPI. In

AMPI we have MPI on top of the Charm++ runtime which in

turn uses MPI as a communication layer. Its implementation

of MPI can still take advantage of the single address space, but

the Charm++ scheduler and lower level MPI progress engine

operate independently with the potential for the same types

of delays that occur between the progress engine and the OS

scheduler. Using the same program, we measured the cost of

MPI Barrier for AMPI on [P;8;1]. For P=1 the time was 18µs,

versus 1µs for FG-MPI, and for P=256 was 662µs versus

84µs for FG-MPI. On multicore, this shows the advantage

of reducing the layers by supporting concurrency inside the

communication middleware.

D. Cache Behavior

In order to demonstrate the potential benefits of using

added concurrency to improve the cache behavior, we designed

several experiments to measure the cache effects. We focus

on block structured algorithms as they would provide the

best case for measuring the extent to which we can improve

performance.

Block structured algorithms in MPI are commonly used for

parallel scientific computations. The blocks generally represent

the working set size of a task and blocking is used to exploit

both temporal and spatial locality for efficient execution.

Today’s systems of multiple cores on a single chip have a

multi-level hierarchical memory model with smaller caches per

core [13]. Applications need to be able to express fine-grain

parallelism with smaller working set sizes to fit in caches. FG-

MPI provides the ability to achieve better memory locality and

cache hit ratios simply through the use of the nfg parameter

on the command line.

The tests are run on a single multicore machine with the

specification described in Section III. Each multicore machine

has 8 cores with three-level cache; L1(data/instr) is 32K/32K,

L2 cache is 256K/core and L3 cache is 8M /socket. Memory

per core is 1.5G/core.

1) Experiment A: This benchmark algorithm takes two

square matrices as input and partitions them into square blocks

2O (the number of OS-processes) is kept equal to the number of physical
cores per machine.

of size determined by the total number of MPI processes.

It then assigns each pair of sub-matrices to the MPI pro-

cesses. Each process computes on these sub-matrices and then

exchanges its sub-matrices with its neighbours3. After the

exchange, each process computes with new values in its sub-

matrices and this process repeats for a number of iterations.

This benchmark requires the total number of MPI processes

to be a square because the sub-matrices are evenly distributed

among them.

Figure 4 shows the effect of added concurrency on execution

times compared with MPI on input matrices of size 4096. The

P=nfg parameter on the bottom axis is the concurrency for

different [P;O;1] executions for a total number of P×O MPI

processes. The hashed bars correspond to the traditional MPI

[1;O;1] executions, while added concurrency is represented by

solid bars. Notice that the hashed bars for MPI are not present

for [1;2;1] and [1;8;1] because they are not equal to a square

number of processes. FG-MPI, however, can use all the cores

by appropriately setting P=nfg so that the product of P and

O is a square.

As the total number of the MPI processes (P×O) increases,

the block sizes that each of them operate on decreases.

Figure 4 shows substantial performance improvements by ad-

justing the block size through added concurrency, without any

serial cache blocking optimizations. The best time obtained

with FG-MPI is 12.55 seconds with a [512;8;1] execution.

Note that our node has 8 physical cores and the FG-MPI best

results correspond to the case where the amount of parallelism

equals the number of cores (i.e. without over-subscription) and

the effects of OS-scheduler are removed. For interest, Figure 4

also shows the effects of over-subscription for this example

using [P;16;1] (two OS-processes per core). The time achieved

with MPI is 70.49 seconds with [1;16;1] execution, which is

more than 5 times slower than the best time of 12.55 seconds

achieved with FG-MPI mentioned above. Note that serial

blocking techniques can be used to improve cache hit ratios

but such techniques require modifications to the algorithms

and are tuned for particular architectures and are not portable.

In order to quantify the effect of cache on our

results, we collected memory access data using

Intel’s R© VTuneTMAmplifier XE [14] advanced hardware

analysis for the Nehalem R© micro-architecture. This analyzer

has low overhead and uses event-based sampling for data

collection.

Time (sec) LL Cache misses
MPI [1;16;1] 70.49 396,000,000

FG-MPI [512;8;1] 12.55 75,000,000

TABLE III
LL CACHE MISSES FOR THE BEST TIMES ACHIEVED WITH MPI AND

FG-MPI BEST TIMES IN EXPERIMENT A.

Table III shows there is a significant difference in the LL cache

misses4 for the best times in Figure 4 with added concurrency,

3The computation is matrix multiplication in our benchmark.
4The last-level (LL) cache misses influence the runtime the most because

it masks accesses to the main memory [15].
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Fig. 4. Execution times (sec) with different values of concurrency (nfg) for Experiment A on one multicore node

which shows that the performance benefits are the result of

better cache locality.

Matrix size FG-MPI [P;O;1] MPI [1;16;1]
S P=nfg O Time (sec) Time (sec)

2048 128 8 1.47 3.7

4096 512 8 12.55 70.49

8192 2048 8 134.5 944.58

TABLE IV
BEST EXECUTION TIMES FOR MPI AND FG-MPI ON DIFFERENT MATRIX

SIZES FOR EXPERIMENT A.

The effect of added concurrency was repeated in matrices

of other sizes, as shown in Table IV, with the performance

improvement over MPI increasing with larger matrix sizes.

This is expected as in the MPI case, the block granularity is

fixed to the amount of parallelism and with larger matrices

the mismatch with the cache size increases. It is interesting to

note from Table IV, that the ( S2

P×O
) ratio is the same for the

best times achieved for different matrix sizes. This indicates

that it may be possible to analytically determine the value of

P.

2) Experiment B: In general block structured algorithms,

especially matrix multiplication, use libraries like the BLAS

for matrix operations. Although the previous experiment may

be indicative of more general algorithms, there is the question

of whether the use of these libraries may eliminate the need

to add concurrency for block-structured matrix operations.

We implemented a version of the Cannon’s Matrix Multi-

plication algorithm, where FG-MPI is used to decompose the

input square matrices into blocks and each of the blocks are

multiplied through the ATLAS (Automatically Tuned Linear

Algebra Software) BLAS GEMM [16] serial routine. We set

O to 8 to take advantage of all the cores on the multicore

machine and increased the concurrency (nfg) from 2 to 128.

Because the number of processes needs to be a square nfg=2

is the closest to executing it with just MPICH2 5.
For the smaller matrix sizes using the minimum amount of

concurrency is best, however, for larger matrix sizes Table V

5The maximum square matrix size tested was 16K due to the amount of
memory available on our node.

Matrix size FG-MPI Intel MKL
P=nfg O Time (sec) Time (sec)

2 8 0.31
2048 8 8 0.31 0.25

32 8 0.44
128 8 0.73

2 8 1.78
4096 8 8 1.81 1.27

32 8 1.88
128 8 3.20

2 8 12.70
8192 8 8 11.95 8.14

32 8 11.43
128 8 13.15

2 8 107.33
16384 8 8 86.02 58.04

32 8 80.03
128 8 81.39

TABLE V
EFFECT OF ADDED CONCURRENCY WHILE USING BLAS GEMM

ROUTINES ON A SINGLE MULTICORE MACHINE

begins to show an improvement centered around P = 32.
Even with the use of the BLAS, for larger matrices, we obtain

a performance improvement over the minimum concurrency

execution.

It is also interesting to compare this to other techniques such

as the Intel’s MKL library that is specific to Intel architectures

with a completely different runtime. The MKL library is

optimized for the architecture on our Intel Xeon R© system.

The MKL library was compiled with optimizations enabled.

In Table V, we report the results with Intel MKL’s GEMM

threaded parallel routine6. Although slower, the performance

is within 70% of the Intel’s optimized runtime. The Intel MKL

library is based on OpenMP and runs on one machine whereas

for FG-MPI there is the ability distribute computation across

multiple nodes for matrix sizes greater than 16K, that may not

fit on a single node.

6Threading in Intel MKL is based on OpenMP specification and the GEMM
routines used all 8 cores on the node.



IV. NAS BENCHMARKS

The NAS Parallel Benchmarks (NPB2.4) [17] are a set

of eight standard benchmarks that are used to evaluate the

performance of parallel systems. Each of the eight benchmarks

can be compiled for different problem classes (CLASS) and

the number of MPI processes (NPROCS). The problem classes

range from A (smallest) to D (largest). Class D was intro-

duced to provide more challenging benchmark sizes for high-

performance computer systems that have grown significantly

in size and capacity in the last decade. Class D benchmark

involves about 20 times as much work, and a data set that is

approximately 16 times larger than the Class C benchmark.

The NAS benchmarks do not contain an implementation for

IS class D, and SP and BT run on a square number of MPI

processes. In this section we evaluate the effects of added

concurrency on the performance of the NAS benchmarks. For

the experiments, we use the cluster described in Section III.

A. Performance of the NAS Benchmarks

We ran an extensive set of experiments for each of the

benchmarks using different CLASS and [P;O;M] combina-

tions. We explored the execution space for the 32 problem

sizes (4 classes: A,B,C,D for the 8 benchmarks) with P

(concurrency) ranging from from 1 to 1024, O (OS-processes

per node) in the range 1 to 8 and M (number of nodes)

varying from 1 to 16. The maximum number of OS-processes

(O) per node was fixed to the number of physical cores per

node. The mapping of OS-processes to nodes was done in

blocks of eight, with the first eight on first node and next

eight on the next, etc. We do not oversubscribe OS-processes

to cores for reasons discussed in [1], which reports a 10%

performance degradation for the NAS benchmarks with MPI.

Our goal in these experiments is to focus on the effects of

added concurrency on MPI performance.

We view nfg as a variable to the execution that can be used

to adjust cache locality and message sizes independently from

the size of the cluster. For each of the benchmark problem

sizes, we experimentally varied nfg to determine the best FG-

MPI performance for different [P;O;M] (P > 1) executions,
and compared that to the MPI performance achieved with

[1;O;M] executions. Note that when P=1, only the MPICH2

middleware executes in the OS-process, which is equivalent to

an MPI execution without the added concurrency. We present

our results by normalizing the MPI performance and reporting

the FG-MPI results as a percentage increase or decrease. We

roughly characterize problem sizes running under a minute as

short-lived and above that as long-lived. For the benchmarks

considered, our results show that added concurrency has

different effect on short and long-lived problem sizes.

Figure 5 presents our results7. We are omitting results

for class A as this is a small problem size that is mostly

relevant for testing purposes. Each of the bars represent the

7Results for CG and MG class D could not be obtained due to problems
with their execution. The NAS benchmarks do not contain an implementation
for IS class D.

percentage effect of added concurrency on the execution time

of the benchmarks over the best performance achieved for

MPI [1;O;M]. Cores=O×M represent the number of physical

cores for the best MPI performance. Concurrency in [P;O;M]

executions is the value of P=nfg per OS-process for the same

values of O and M as above. Figure 5 also shows the MPI

execution times in seconds to allow differentiation between

short and long-lived applications.

B. Discussion of Results

Figure 5 shows a clear trend for short and long-lived

applications, which are discussed below.

• For the long-lived benchmarks like BT, SP and FT the

performance improvement increases with larger class

sizes. The results discussed in Section III-D on cache be-

havior corroborate these findings that added concurrency

can result in lower working set sizes and better cache

locality for general programs with a mix of communica-

tion and computation. Also, as shown in Section III, these

benefits outweigh the extra overheads due to messaging

and context switches.

• We achieve substantial performance improvements of

30% for problem sizes like BT-D and SP-D which execute

for more than 15 minutes under MPI and 20% improve-

ment for FT-D which executes for around 6 minutes with

MPI.

• The performance improvements for long-lived applica-

tions were achieved with concurrency per OS-process that

ranged from 4 to 16.

• For short-lived applications like (IS, MG, CG), there was

performance decrease with added concurrency ranging

from 2 to 8. The amount of performance degradation,

however, decreased with larger class sizes. Note that IS

and MG both lie towards the lower spectrum of short-

lived; i.e., their execution times for class B were a fraction

of a second and class C less than 2 seconds. Because

of the small data size and the relatively short execution

time, the opportunity to take advantage of cache locality

and smaller message is slight and, as expected, there

is only the added costs of the added concurrency. The

short execution time magnifies the overheads in terms of

relative performance. In absolute terms, the degradation

ranges from 0.03 to 1.99 seconds, however, in this case

there is no advantage to using added concurrency.

• EP (Embarrassingly Parallel) application is computation-

ally intensive and was mostly agnostic to added concur-

rency. We saw modest improvements of around 4% with

this benchmark.

• LU-C and LU-D were the exception to the performance

improvement trend seen for long-lived applications. LU-

C which ran in around 18 sec and LU-D which ran in 336

sec (5.6 mins) with MPI, showed a performance decrease

of 21% and 1% respectively. The amount of degradation,

however, was substantially lower for the larger class D.

One reason that LU benchmark behaves differently may

be due to that it is more communication intensive [18],
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(1;O;M). O=8 per M (machine).

compared to others and does not have locality that could

benefit from added concurrency. In this case, the added

concurrency may give advantages for cache locality but

not sufficient enough to overcome the added overhead in

messaging for short messages and collectives.

There are two performance benefits to using FG-MPI that

are not shown in Figure 5. The first one is due to the decou-

pling of the problem from the hardware, so for benchmarks

like BT and SP that have a restriction that the number of MPI

processes be square, it is possible for us to run on a non-square

number of cores (e.g. 128) as long as the P×O×M product is

a square. The performance improvements with [P;8;16] over

MPI [1;8;8] go up significantly, ranging from 36.7% to 63.5%,

with SP and BT, class sizes C and D.

Another interesting result is for the CG benchmark. We

noticed FG-MPI can achieve performance comparable to MPI

for CG while using fewer number of cores. That is, FG-MPI

provides better resource utilization while achieving similar

execution times.

CLASS P=nfg O×M Time (sec)

MPI 1 32 0.14

A FG-MPI 2 32 0.17

MPI 1 128 3.92

B FG-MPI 2 64 4.03

MPI 1 128 9.17

C FG-MPI 2 64 9.35

TABLE VI
COMPARING MPI AND FG-MPI FOR CG BENCHMARK.

Table VI shows the results for CG, where FG-MPI uses half the

number of cores (O×M) as compared to MPI. This indicates

that communication costs may be the limiting factor for CG

and keeping it more localized helps.

In conclusion, for the benchmarks considered, added con-

currency showed substantial benefits for the long-lived appli-

cations and larger problem sizes. For short-lived applications

and more communication intensive applications FG-MPI did

not provide any improvements. FG-MPI makes it easy to

add concurrency to the runtime execution of MPI programs,

since it is a runtime parameter, it can be adjusted, without

re-compilation, to different problem sizes. Large amounts

of concurrency is possible, which may be useful for larger

problem sizes, and one can always omit the nfg option

when its use is not indicated. For existing MPI program FG-

MPI provides a flexible runtime parameter to optimize cache

locality and message-size independent from the number of

cores and machines in the cluster.

V. RELATED WORK

There is past work on thread-based implementations of

MPI which introduce their own runtime system. Prior to

1999, there were some projects [19], [20], [21], [22] that

focused on thread-based MPI implementations targeted for

multi-programmed shared memory environments. Some of

the thread-based implementations required special prefixes for

MPI routines [20] and none were actively supported and have

remained incomplete.

The main focus of thread-based work was to represent

an MPI process as a thread with the objective of reducing

communication and context switching overhead among MPI

processes on a single machine. These early attempts at using

threads did not scale and were designed to run as a single Unix

process. None of the thread-based approaches have reported

experimental results scaling beyond tens of MPI processes.

Much of this research focused on thread synchronization and

locking mechanisms and avoidance of race conditions. Our

approach in FG-MPI is very different since our use of non-

preemptive scheduling avoids many of the synchronization and

locking overheads that arises with threads [23].

A recent paper [1] studied the issue of over-subscription

on multicore. Although they report a 10% performance degra-

dation for MPI they were able to obtain some benefit with

over-subscription from using MPI and UPC, using pthreads

instead of OS-processes. This was only used to obtain a

modest amount of over-subscription (2 or 4) and, as discussed



in their paper, a problem with increasing the amount of over-

subscription is that the OS scheduler is not aware of the

cooperative nature of the parallel application on a dedicated

machine. “Over-subscription” in FG-MPI is done through a

user-level scheduler integrated with the MPICH2 progress

engine and the effects of the non-aware OS scheduler is

minimized by not over-subscribing cores.

Where possible, we have compared FG-MPI to AMPI [2]

since it is the closest in terms of providing a relatively com-

plete implementation of MPI that supports added concurrency.

AMPI is built on top of Charm++ [24], an object oriented

system based on C++, which uses remote method invocation

to pass messages between processes. There are benefits to

implementing MPI on top of a more flexible runtime system

like Charm++ since it becomes possible to support process

migration, which is the main focus of AMPI. FG-MPI takes

a completely different approach that integrates added con-

currency directly into MPICH2. This approach reduces the

overheads that arises from over-decomposition so that the

benefits of adding concurrency can hopefully be extended to

more problems. Static load-balancing is possible in FG-MPI

since the programmer has complete control on where and how

much concurrency to use during execution, as yet, we do not

have process migration capability to support dynamic load-

balancing.

VI. CONCLUSIONS

FG-MPI extends the MPICH2 implementation of MPI to

make it possible to have multiple MPI processes inside an

OS-process. FG-MPI achieves the following. (a) Decouples the

notion of a process from that of hardware and makes it possible

to adjust the granularity of programs independently from the

hardware. (b) Reduces the overhead of adding concurrency by

integrating the FG-MPI runtime into the MPI middleware. (c)

Provides a single unified programming model as an alternative

to the hybrid MPI+X model. We measured the benefits of

added concurrency for cache awareness and message size and

described ways in which FG-MPI minimizes the resulting

overheads for context switching and communication on mul-

ticore machines. Using the NAS benchmarks we showed that

substantial performance gains are possible on some bench-

mark programs where the gains out-weigh the overheads.

We discussed trade-offs between adding concurrency and

communication to better understand which programs could

make effective use of added concurrency. Runtime support

for added concurrency in MPI programs helps raise the level

of abstraction for MPI and makes it possible to change the

execution behavior of the program to take advantage of the

characteristics of machines like multicore architectures.
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