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Abstract Fine-Grain MPI (FG-MPI) extends the execution model of MPI to allow

for interleaved execution of multiple concurrentMPI processes inside an OS-process.

It provides a runtime that is integrated into the MPICH2 middleware and uses light-

weight coroutines to implement an MPI-aware scheduler. In this paper we describe

the FG-MPI runtime system and discuss the main design issues in its implementation.

FG-MPI enables expression of function-level parallelism, which along with a runtime

scheduler, can be used to simplify MPI programming and achieve performance with-

out adding complexity to the program. As an example, we use FG-MPI to re-structure

a typical use of non-blocking communication and show that the integrated scheduler

relieves the programmer from scheduling computation and communication inside the

application and brings the performance part outside of the program specification into

the runtime.

Keywords MPICH2 · Function-level Parallelism · Fine-Grain · MPI-aware

Scheduler · MPI Runtime.

1 Introduction

MPI has the reputation of being difficult to program (Gropp, 2001). Although some

of the difficulties may be inherent to message passing, many of the popular paral-

lel languages used on multicore processors also use message-passing. However, one

notable difference between MPI and these parallel languages is the granularity of

MPI processes. Processes in MPI are coarse grained and programmed to make it easy

to match the number of processes to the available hardware, whereas many paral-

lel languages support finer grain to match processes to the structure of the program.
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By fine grain we mean function-level parallelism where processes may have tens of

instructions rather than the thousands of instructions in coarse grain program-level

parallelism. One can have function-size programs in MPI but it is not done because

over-subscribing processes to processor cores is inefficient due to the context switch

time between OS-level processes and because the OS scheduler is unaware of the

cooperative nature of the processes. There are also OS limitations, even with lighter-

weight OS processes, when there are too many processes on a compute node1.

We introduced Fine-GrainMPI (FG-MPI) to investigate the extent to which function-

level parallelism can be supported in MPI. FG-MPI extends the execution model of

MPI to allow for interleaved execution of multiple concurrent MPI processes inside

an OS-process. FG-MPI is integrated into MPICH2 middleware and supports hun-

dreds and thousands of finer-grain MPI processes within an OS-process. There are

more MPI processes than cores and we still can match the number of OS-processes

to number of cores to maximize the parallelism, but now we can map multiple MPI

processes to each OS-process. There is still “over-subscription”, but it is now the

FG-MPI runtime and scheduler that is managing the MPI processes inside each OS-

process. This makes it possible to support the added concurrency that results when

functions are processes.

When writing FG-MPI programs we noticed that we did not need to rely as much

on non-blocking communication. Non-blocking communication makes it possible to

havemultiple outstandingmessages that increases asynchrony and allows one to over-

lap communication with computation. This can reduce the idle time that results when

processes are blocked waiting for a message to arrive. To avoid idle time the program-

mer tries to post messages as soon as possible, overlap that with some computation

while periodically checking for new messages to process as well as posting new ones.

Optimizing the messaging in this manner to reduce idle time and increase “slackness”

breaks the cohesion of the program structure, adds complexity, and is less portable

with respect to performance. Our key observation is that having multiple processes

per OS-process with an MPI-aware scheduler provides an alternative way to achieve

the performance without the complications to the program. The runtime scheduler

acts as an abstraction device that the programmer can use to replace the hand-coded

message scheduling parts of their program. As a result, the program is easier to un-

derstand and the performance-oriented aspect is outside of the specification of the

application in the runtime where performance can be tuned with few, if any, changes

to the code.

In the paper we describe two main design issues in FG-MPI that made it possible

to support this MPI runtime model: (a) the use of coroutines and non-preemptive

threads, (b) the integration of FG-MPI into existing middleware (MPICH2) rather

than a layer running on top of MPI (Section 2). In Section 3, we describe the design of

the scheduler and how it interacts with the MPI progress engine. Finally in Section 4,

we give an example of using FG-MPI to re-structure a typical use of non-blocking

communication and measure the effect of introducing additional concurrency and the

overhead of the scheduler.

1 We will be using the terms “node” and “machine” interchangeably in this paper to refer to a single

computational node with multiple processor cores, operating under a single operating system.



An Integrated Fine-Grain Runtime System for MPI 3

Our hope is that the FG-MPI design and its proof of concept in a working sys-

tem may provide a way for other MPI implementations to augment MPI to support

this fine-grain model. Secondly we hope, by way of illustration in this paper, that

extending MPI’s runtime model to fine-grain can make MPI programming easier and

a better overall solution that can seamlessly scale from a multicore node to multiple

machines in a cluster.

2 FG-MPI Runtime

One major decision in the design of FG-MPI and the support of multiple MPI pro-

cesses within an OS-process was the use of coroutines as a basis for non-preemptive

scheduling of the processes.2 Our system uses a modular approach and is capable

of making use of different coroutine libraries through a configuration option. We

currently support Toernig’s coroutine library, and PCL (Portable Coroutine Library).

Capriccio (Von Behren et al, 2003) and other systems have shown that coroutine-

based threads have fast context-switching time, low communication and synchro-

nization overhead and scale to support large numbers of threads. The benefits of

coroutines at the language level are well-known and they are supported in many

languages (Python, Lua) including parallel languages used on multicore (Erlang,

Go Language). Cooperative multitasking can be difficult in general but for MPI the

messaging-passing and calls to the middleware provide a natural yield point.

With regards to implementation, having non-preemptive processes was crucial.

Since only one co-located process is active, it was possible to share the middleware

without using locks and ensure that the middleware is in a consistent state between

scheduling points. Previous attempts at pre-emptive thread-based MPI implemen-

tations (Demaine, 1997; Tang and Yang, 2001) have remained largely incomplete

due to the complexity of managing synchronization primitives and the challenges in

scaling. The challenges and overheads of thread-safety of MPI middleware are well

known (Balaji et al, 2008; Thakur and Gropp, 2007) and it is an important problem

but the use of coroutines circumvents the need for locks to support multitasking and

the guaranteed atomicity made it easier to reason about the state of the middleware.

The second major design decision was integration of FG-MPI directly into MPI

rather than an attempt to design a new implementation of MPI or to use coroutines

and layer it on top of MPI. Adaptive MPI is an implementation of MPI that supports

fine-grain processes, however, AMPI (Huang et al, 2003) implements the MPI library

on top of Charm++ rather than directly into an existing MPI implementation. This re-

quires their own implementation of MPI and the Charm++ runtime also needs a com-

munication layer. This can result in an MPI sandwich, with MPI running on top of

Charm++ which in turn runs over MPI. In FG-MPI, all MPI communication directly

invokes the corresponding lower level MPI implementation of the call in the middle-

ware, whereas in the layered approach only a subset of the MPI communication in the

lowest layer is used. More importantly, a scheduler layered on top of MPI operates

independently from the lower level MPI progress engine. The result is multiple inde-

pendent control loops and schedulers, where it is difficult to coordinate their activities

2 MPI processes sharing the same address space are referred to as co-located processes.
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Fig. 1 FG-MPI Architecture. Shading shows the layers of MPICH2 that were augmented in the FG-MPI

implementation. Figure adapted from Argonne National Laboratory, USA (2007).

with regards to the scheduling of asynchronous and synchronous messages. On the

other hand, we integrated FG-MPI into the MPI library by extending the MPICH2

middleware. Figure 1 shows the integration of FG-MPI in the layered modular ar-

chitecture of MPICH2. The first layer, below the application, defines the MPI API

and implements user abstractions such as MPI data types and communicators, etc.

The second ADI3 (Abstract Device Interface) layer contains the progress engine and

provides abstract middleware services to support the functionality of the first layer.

Representation in this layer is in terms of MPI requests/messages and the functions

for manipulating those requests. The third layer provides the device interface such as

communication protocols and implements the ADI for the channels. FG-MPI uses the

Nemesis CH3 channel, as the communication subsystem (Buntinas et al, 2006). The

Nemesis communication subsystem is designed for scalability and low shared mem-

ory communication overhead, making it suitable for our fine-grain system. Commu-

nication among processes in different OS-processes, on the same physical node, takes

place through Nemesis’s low latency, lock-free shared memory queues. The commu-

nication through shared memory employs optimizations to reduce L2 cache misses

and techniques such as “fastboxes” to speed up message transfers. Communication

across different physical nodes is enabled through its multi-network support and in-

tegration allows FG-MPI to leverage MPICH2’s rich support for network fabrics in

cluster environments. As well, we exploit the locality of MPI processes in the system

and implement optimized communication between concurrent processes in the same

OS-process.

One of the main considerations in FG-MPI was to support large amounts of con-

currency through scalable sharing of MPI structures among the coroutines. To this

end, a large number of MPI storage structures such as posted receive queues, unex-

pected messages queues, communicator and request pools are shared by the corou-

tines. Figure 2 shows a high-level picture of the FG-MPI runtime system. It shows

a number of key components of the middleware and in the following sections we

describe how FG-MPI augments the middleware to support large-scale concurrency

with multiple MPI processes within an OS-process.
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Fig. 2 FG-MPI Runtime System. Shaded regions show the middleware structures shared among the co-

located MPI processes.

2.1 Separation of Namespaces

FG-MPI decouples the MPI processes from the OS-processes, which requires sep-

arating the namespace of the OS process’s network point of attachment from the

namespace of the MPI process ranks. In this section we describe how connection

information is stored in MPICH2 and our approach to decoupling the MPI process

names from the connection routing information.

InMPI, communicators are used to define separate communication contexts where

communication within one group of processes cannot interfere with another group.

In order for a process to communicate with another it must provide a communica-

tion context (i.e., communicator) and the local rank of the process in that commu-

nicator. Each process also needs to maintain connection information about the other

processes with which it communicates. The MPICH2 implementation stores the con-

nection state information in a virtual connection (VC) object, and creates one VC for

every MPI process. MPICH2 maintains a virtual connection reference table (VCRT)

for each communicator and translates the communication context and the local rank

of the process to the appropriate VC object. The VCRT is stored as a dense array of

pointers to the VC objects and is indexed by the local process rank in the communi-

cator. The process rank, in this case, is tightly associated with the connection routing

information.

In FG-MPI, we decouple the MPI processes from the hardware and have taken

a different approach than MPICH2 to storing process connections. The MPI process

groups are not tied to the VCRT, but instead we maintain two tables in each OS-process

(a) a single VCRT for all the OS-processes in the execution environment that maps OS-

processes to the virtual connections. The size of VCRT is proportional to the number of
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TAG SOURCE RANK DEST RANK CONTEXT ID

Fig. 3 Structure of the message envelope.

OS-processes, (b) a process name table that uses MPI COMM WORLD3 ranks and maps

the MPI processes to OS-processes. All the MPI processes co-located within an OS-

process are assigned the same point of attachment. There is a single shared instance

of each of these tables per OS-process. There is, however, still the issue of efficiently

storing the process group in each communicator (Balaji et al, 2009; Träff, 2010). As

the process group is decoupled from the VCRT, this allows us to employ a number of

techniques and representations to reduce the amount of space required to store the

process groups. We describe the implementation of these techniques in FG-MPI in

Section 2.3.

The separation of the two namespaces requires that we have a two-level hierar-

chy of ranks: (a) an OS-process namespace for virtual connection management and

routing and (b) a namespace for MPI processes in MPI COMM WORLD. We emphasize

the separation of these two namespaces because it is an example of the importance of

naming in a distributed system (Saltzer, 1993). Although we have not yet considered

process mobility, it simplifies that as well.

2.2 Message multiplexing

An interesting issue related to separation of namespaces is the message match header

(envelope) in MPICH2. This header (see Figure 3) is appended to each message that

is communicated between processes and contains the MPI tag, rank of the sender

(source) process and the context ID of the communicator. In MPICH2, the message

envelope does not contain the rank of the receiver (destination) process because that

information is implicit from the OS-process identifier and hence the corresponding

virtual connection used for message transmission. In FG-MPI, since there may be

multiple MPI processes inside an OS-process, the destination rank of the process is

necessary to de-multiplex the message from the OS-process network point of attach-

ment to the MPI process. As a result we had to extend the message envelope as well

as increase the packet header size to include the destination rank. This destination

rank is the rank of the receiver in MPI COMM WORLD and uniquely identifies it.

A second issue is that theMPICH2 versionwe used as our code base used int16 t

for storing the rank. This was not sufficient for supporting an environment with mil-

lions of MPI processes. We use 32-bit integers for both the source and destination

ranks. There are trade-offs in extending the message envelope.MPICH2’s motivation

for using 16-bit ranks was to fit the entire message header in a 64-bit field to allow 64-

bit instruction comparisons on platforms that support it and also slow communication

links can benefit from a smaller header size (Balaji and Goodell, 2008). Although we

have not done a low-level comparison we have not noticed any performance differ-

ences at the application layer as a result of our extension.

3 We do not support MPI dynamic process management functionality.
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Fig. 4 Sharing of process group map inside communicators among co-located MPI processes.

2.3 Scalability of Communicators

FG-MPI’s ability to expose large-scale concurrency allows for more opportunities to

structure and group processes, which makes it more important to support efficient cre-

ation and storage of communicators. In this section we give a high-level overview of

our group sharing and communicator creation techniques. More detail on the design

of the different components can be found in Kamal et al (2010).

InMPI, all processes belong to groups and a communicator encapsulates the com-

munication context and the process group in one object. As mentioned in Section 2.1,

the MPI processes in FG-MPI are not coupled to the VCRT and we store a process

group map in each communicator that maps the local rank of that process in that

communicator to its rank in MPI COMM WORLD. In order for FG-MPI to expose large-

scale concurrency the creation of communicators and storage of the process maps

must be scalable and space efficient. A simple calculation shows that keeping sepa-

rate process maps as arrays for P processes takes O(P2) space, which is not feasible

in a system with millions of MPI processes. We employ three techniques for com-

municator creation and storage that is both time and space efficient (Kamal et al,

2010): (1) We enable sharing of process maps among co-located processes that are

part of the same communicator. (2) We use different memory reduction techniques

for storage of process maps and provide a framework that allows selection of different

storage structures as a configurable option. (3) We define new efficient algorithms for

communicator creation MPI Comm split and MPI Comm create and an algorithm

for creation of a globally unique context ID. The process map for MPI COMM WORLD

is simply an identity vector and stored as a function.

Figure 4 shows an example of three co-located processes which share the maps

of different communicators. During the communicator creation operation, one of the
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members of the communicator creates the process map and stores a pointer to it in a

global hash table. The context ID of each communicator is globally unique (Kamal

et al, 2010) in our implementation and is used as the key for the hash table. Other

co-located processes of the same communicator lookup the pointer to this process

map in the hash table and cache it locally in their communicator structures. We thus

store a single process map per OS-process for each communicator. Sharing is also

enabled if a routine like MPI Comm dup is used to duplicate any communicator. In

Figure 4, communicator B is created by duplicating communicator A. The entry in

the hash table corresponds to the new context ID for communicator B, however, the

process map is shared. Notice that the hash table lookup is only done once to access

the pointer to the process map, during communicator creation, and then the pointer is

cached locally. This allows us to use reference counting to keep track of how many

MPI processes are sharing a map. If communicator A is freed, the entry corresponding

to it in the hash table is removed, however, process map A remains until all references

to it are removed.

MPI provides routines like MPI Comm group to access the process group asso-

ciated with a communicator. We use a uniform definition for process maps inside

MPI group and communicator structures. For certain routines like MPI Comm group,

this allows us to use reference counting, in a way similar to that described for the

MPI Comm dup routine, to share the process maps across communicators and associ-

ated MPI groups. In general, creation of MPI groups from existing groups through

routines like MPI Group incl are not scalable, as these are local operations and store

their individual maps. However, if a group is used to create a new communicator as in

MPI Comm create, then we de-allocate all of the individual maps of the group mem-

bers that are co-located and share a single map with the new communicator. However,

as mentioned in Gropp et al (1999), routines to create new groups from existing ones

are rarely needed and the use of MPI Comm split is recommended for creation of

communicators. We discuss scalability of group management operations, details of

memory storage for process maps and communicator creation algorithms in our past

work (Kamal et al, 2010).

2.4 MPI Environment Initialization and Synchronization

MPICH2 uses external agents called process managers to launch and manage paral-

lel jobs. These agents communicate with MPI processes through an interface called

PMI (Process Manager Interface) via the mpiexec command. We extended the PMI

to support an nfg (number of fine-grain) flag to the mpiexec command. Using nfg

the user can choose how many MPI processes to run per OS-process in combination

with the n flag specifying the number of OS-processes. For example, the mpiexec

-nfg 10 -n 4 myprogram command specifies that there are ten co-located MPI

processes in each of the four OS-processes. The FG-MPI runtime system inside each

OS-process is initialized through a call to a function called FGmpiexec(), called

from main(). At the beginning of the program execution there exists a single main

coroutine (MAIN CO), which communicates with the process manager and gathers the

environment settings. The main coroutine plays an additional initialization and syn-
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Fig. 5 Initialization of the MPI environment during MPI Init.

chronization role in the MPI Init() and MPI Finalize() calls, but otherwise be-

haves identically to the other co-located coroutines during program execution. When

the FGmpiexec() function is called by the main coroutine, it performs two functions:

firstly, it initializes the MPI execution environment and secondly it spawns the other

coroutines.

Figure 5 shows the major structures that are created and initialized by the main

coroutine and subsequently shared among all the co-locatedMPI processes in an OS-

process. These include the Nemesis communication subsystem queues and shared

memory segments, progress engine initialization and creation of VCRT and commu-

nicator hash table. The MPI storage structures such as posted receive queues, un-

expected messages queues and request pools are also global in the middleware and

shared among the coroutines. Sharing of the request queues and progress engine not

only enables scalability, it also allows one MPI process to cooperatively progress

messages for another co-located MPI process. We describe message progression in

more detail in Section 3. The last step of the MPI initialization is the creation of

scheduler queues and the spawning of the co-located MPI processes in each OS-

process.

We have two levels of mapping in FG-MPI. The first level of mapping is per-

formed by the mpiexec command that maps OS-processes to different cores and

machines. The FGmpiexec function provides a second dimension to the mapping

and binds co-located MPI processes, within each OS-process, to different functions.



10 Humaira Kamal, Alan Wagner

The binding of processes to functions can be defined in a general way through a user-

defined function that takes a process’s MPI COMM WORLD rank as its input parameter

and returns a pointer to the function that MPI process will be executing. Each of

these functions, which the processes are bound to, are written as regular MPI pro-

grams beginning with MPI Init and ending with MPI Finalize calls. The number

of co-located processes is specified by the nfg parameter to mpiexec and the co-

located MPI process ranks are assigned in consecutive block ranges of size nfg. The

main coroutine yields at this point and each of the spawned processes are run by the

scheduler and they initialize their coroutine state (described in Section 2.5) and share

the common structures created by the main coroutine. All co-located MPI processes

synchronize at the end of their MPI Init calls and are queued for scheduling.

2.5 Coroutine State Descriptor

Each coroutine maintains a descriptor to store the state of execution of the MPI pro-

cess associated with it. This MPI state information per coroutine is 1,328 bytes on

a 64-bit machine and consists of the process’s unique rank in MPI COMM WORLD, a

pointer to the pre-defined built-in communicators, pointer to its context ID bitmap

indicating the available and used communicator context IDs for this process and

the state of initialization, i.e., whether it has called MPI Init (and similarly for

MPI Finalize). Each coroutine has its own stack with a default size of 128 Kbytes.

The lower bound on the stack size for the Toernig’s and the PCL coroutine libraries

is 1K bytes and 4K bytes, respectively. We currently have a fixed stack size for each

coroutine, however, it is possible to extend FGmpiexec to provide the stack size as

an argument.

Based on our experience we believe this type of integration is possible with other

implementations of MPI. Finally, note that FG-MPI extends MPICH2 and the FG-

MPI runtime is only set-up when there is more than one MPI process in an OS-

process and it is possible to freely mix OS-processes with one process with those

having multiple processes.

3 Integrated MPI Scheduler

We maintain a run queue and a blocked queue for co-located MPI processes in-

side each OS-process. Scheduling events inside the middleware invoke the scheduler,

which according to the scheduling policy, blocks the current process or adds it back

onto the run queue, and chooses the next process to resume. We provide a scheduler

framework that allows us to add new policies as the need may arise. The selection of

the scheduler is provided as a command line option to mpiexec. The most interesting

aspect of the scheduler is its integration into the MPI middleware and interaction with

events occurring inside the progress engine.

As Figure 2 shows, many of the key data structures in the middleware, such as

the message queues, the request pools and the communicator pool, are shared among

all of the co-located MPI processes. In FG-MPI, communication can be both internal
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(among co-located processes) and external (between non-colocated processes). When

a process makes an MPI call it progresses its request as far as possible. For example,

consider the case of standard communication through MPI Send and MPI Recv be-

tween co-located processes. If the receiver process runs first, it queues its request in

the posted receive queue and yields to the scheduler, which blocks it and resumes

another co-located process to run. When the corresponding sender process runs, it

matches the pre-posted receive request and complete its call. The sender sends a no-

tification to the scheduler to unblock the receiver process and continues executing.

However, in case the matching receive has not yet been posted, the send request

is placed in the unexpected message queue and the sender yields to the scheduler

so that the receiver can run. When the corresponding receiver executes, it finds and

completes the matching request and continues execution.

For the case of communication between non-colocated processes, when a process

sends a message it initiates a communication transfer over the external link to the

receiver. Depending on the size of the send request, it may be able to complete the

transfer and continue executing or it may require an acknowledgement from the re-

ceiver to complete the call as, for example, in a long message rendezvous transfer.

In the latter case, the sender’s message is queued among the pending sends in the

progress engine, the sender yields to the scheduler and another co-located process

runs. Symmetrically, a message arriving over the network at the message matching

layer may complete a pending request or this may be an unexpected message, which

will be queued until a matching receive request arrives.

In case of non-blocking MPI calls, the process does not block but continues ex-

ecuting until, for example, a corresponding wait is called. Depending on the state

of the process’s request at that point it may be able to complete the call or yield to

another co-located process.

Most importantly, however, since the state of the progress engine is shared, MPI

processes can cooperatively progress pending messages for other co-located pro-

cesses and notify the scheduler. The scheduler, based on the notification may add

processes to the run queue. An example of cooperation between co-located processes

is that of a pre-posted receive request for which a ready-to-send (RTS) arrives to ini-

tiate the long message handshake. It is possible that the MPI process, which posted

that receive request, is not currently executing, but a clear-to-send (CTS) can be sent

by the currently executing process on its behalf.

One effect of non-preemptive scheduling is that a process that is a busy computing

blocks the progress of all other co-located processes. One assumes that as long as the

process is busy it is making progress, however, we did add MPIX Yield() to handle

cases when a fairer scheduling is needed. MPIX Yield() is a FG-MPI specific routine

which allows the calling process to voluntarily yield control to the scheduler.

Internal communication is optimized to take advantage of a single address space

and it is an opportunity for the scheduler, depending on the type of the communi-

cation, to block one process until the communication can be completed after which

both processes can proceed. For co-located processes, the scheduler follows a nat-

ural order where a send message schedules the corresponding receive process that

can continue to progress the message chain. The communication among co-located

processes involves a single memcpy, avoiding any intermediate system copies (Ka-
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mal and Wagner, 2012). Similarly for external events, once a message is received

and completed the corresponding MPI process is scheduled to continue advancing

the computation. As well, for collectives such as barrier, the last co-located process

completing the barrier can gang-schedule all of the processes in the barrier since they

can all proceed (Kamal and Wagner, 2012).

In many cases we have found that even a very basic round-robin (RR) scheduler

which keeps all the processes on the run queue is adequate. As the scheduling over-

head is relatively small, as long as the co-located processes are easy to keep busy, the

RR scheduler works well. One more additional advantage of the RR scheduler is that

it is deterministic and gives more predictable executions. This is one of the nice prop-

erties of introducing a user-level scheduler instead of scheduling by the OS, where

the programmer has less control over when the processes are de-scheduled. The de-

terministic property of RR has also been useful as a tool for debugging programs.

It is not sufficient to have only RR since there are simple cases where RR does

extremely poorly. For example, consider the simple ring program, the forward com-

munication of messages works well when it is the same order as the scheduling order,

however, communication in the reverse direction is slow due to re-scheduling delay

of all of the processes on the run queue. But more generally it was important to in-

troduce a scheduling framework rather than one or more fixed policies. The policy

ultimately depends on the application where ideally processes on the critical execu-

tion path are scheduled first. Finally, note that the scheduling policy is local to an

OS-process and the runtime inside each OS-process can select its own scheduling

policy.

One interesting problem that arises with the scheduler, that allows blocking of

MPI processes, is indefinite waiting of the processes in the scheduler’s block queue.

Indefinite blocking can occur, for instance, when all of the co-located processes are

blocked on a receive call, waiting for an external event, and there is no runnable

process that can check for the arrival of messages and unblock those processes. One

alternative is simply not to block all processes or to simply keep one or more pro-

cesses on the queue. Deciding on whether or not to block a process depending on

the state of other co-located processes is complicated. There are a large number of

MPI calls and different scenarios that would need to be considered including analysis

of corner cases involving collectives and the many different communication modes,

where a change in the implementation could inadvertently cause problems.

However, there is a simple and scalable solution to this problem. We solved the

potential indefinite blocking problem by introducing a progress coroutine in our run-

time that comes into existence the first time an MPI process blocks on a receive call.

Once created, the progress coroutine remains on the run queue. When called, this

coroutine executes the progress-loop in the middleware and progresses pending in-

coming and outgoing messages. Whenever there is a receive that could be matched

by a message from a remote process it ensures that we poll the external link for more

data and on arrival of such a message wakes up the blocked process. As well, as

discussed above, a clear-to-send (CTS) may be sent by the progress coroutine for a

pre-posted receive. A progress coroutine avoids the checking that would have been

necessary when blocking processes and also provides an easy way to measure the idle

time and “slackness” during runtime.
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4 Programmability and Non-blocking Communication

Non-blocking communicationmakes it possible to overlap communicationwith com-

putation by increasing asynchrony in the system, but it breaks the cohesion of the pro-

gram structure and is less portable with respect to performance. It typically involves

structuring the code into stages and scheduling these stages inside the application

code. Exposing and scheduling even modest number of stages in the application can

result in complex code that is hard to read and maintain (Marjanović et al, 2010).

One of the advantages of our approach is that it reduces the need for non-blocking

communication.

Consider the program in Listing 1, showing a simple use of non-blocking com-

munication, which tries to post as many messages as possible to keep the process

busy.

int main( int argc , char *argv[] )

{ ...

MPI_Irecv (..., recvRequests[0]);

MPI_Irecv (..., recvRequests[1]);

do {

compute_local (...);

MPI_Waitany (2, recvRequests , &index , recvStatus );

switch (recvStatus ->MPI_TAG ) {

case tag1:

compute_A ();

MPI_Send (...);

MPI_Irecv (..., recvRequests[index ]);

break;

case tag2:

compute_B ();

MPI_Send (...);

MPI_Irecv (..., recvRequests[index ]);

break;

}

}while (...);

}

Listing 1 Scheduling communication and computation by non-blocking operations

There are three main parts to the program: (a) allocating and managing message re-

quest buffers, (b) checking for message completions and then processing the mes-

sages, (c) a compute part that may or may not depend on the messages sent and

received. Some of the complexities in Listing 1 are:

(i) The compute and communication parts of the code are interleaved and the pro-

grammer needs to balance the computation with the polling of the link via the

middleware.

(ii) The user needs to manage the request buffers for the multiple outstanding mes-

sages. The programmer also needs to be aware of all the different types of out-

standing messages and how messages are matched. This often results in the use

of MPI ANY SOURCE and MPI ANY TAG.

With FG-MPI, as shown in Listing 2, we can achieve a similar overlap by re-

organizing the code fragment into three smaller processes: compute local(),
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process A() and process B(). As opposed to Listing 1, there are no non-blocking

requests and associated structures in Listing 2 and no need to remember that the

posted requests have to be checked for completion. Listing 1 has requests that are

global over the entire program and no clear demarcation between different types of

requests. FG-MPI places all of corresponding computation and communication code

pertaining to one activity into one process. This adds to the cohesiveness of the pro-

gram and makes it easier to read and change the code.

int main( int argc , char *argv[] ){

FGmpiexec (&argc , &argv , &binding_func);

return (0);

}

int process_A ( int argc , char ** argv ){

MPI_Init (...); ...

do{

MPI_Recv (..., tag1 ,...);

compute_A ();

MPI_Send (...);

}while (...);

MPI_Finalize();

}

int process_B ( int argc , char ** argv ){

MPI_Init (...); ...

do{

MPI_Recv (..., tag2 ,...);

compute_B ();

MPI_Send (...);

}while (..);

MPI_Finalize();

}

int compute_local( int argc , char** argv ){

MPI_Init (...); ...

do{ ...

if (...) MPIX_Yield ();

}while (...);

MPI_Finalize();

}

Listing 2 Defining MPI processes as concurrent functions all mapped to the same

OS-process. Each MPI process also calls MPI Init and MPI Finalize.

The purpose of the control loop in Listing 1 is to schedule different parts of the

code based on the message events from MPI Waitany(). In the FG-MPI version of

the code there is no MPI Waitany(). The control loop is now handled by the FG-

MPI scheduler, which acts as an abstraction device, so that the programmer does not

have to hand-code it into the program. In Listing 2, should process A() now require

we receive two messages rather than one, we only need to add another MPI Recv(),

however, for Listing 1 there are questions as to whether we need to introduce another

case and tag and how it might be matched. In both listings it is important that the

compute local() code invoke the progress engine sufficiently often to not unduly

delay the remaining computation and communication. In Listing 2, MPIX Yield()

can be appropriately placed when needed to provide an explicit de-scheduling point

that automatically resumes at the proper place. Changing the rate at which the net-
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work is polled in Listing 1 requires reorganizing the computation, which is yet an-

other complication.

Expressing additional concurrency in the program gives us the opportunity to ex-

ploit it, however, it does require structuring the code and mapping MPI processes

to functions as we now have the MPMD (Multiple Program Multiple Data) process

model. In Listing 2, we encapsulate different receive actions in separate MPI pro-

cesses and the sender process needs to use the appropriate receiver process’s rank to

trigger the right computation. As discussed in Section 2.4, FGmpiexec spawns the

co-located MPI processes and the mapping of process ranks to functions is specified

through the user-defined binding func, which takes as input the MPI COMM WORLD

rank of a process and returns a pointer to the function that the process is bound to.

The extra-level of mapping gives us more flexibility in mapping to OS-processes and

cores. As well, we can match the OS-processes to the cores to minimize the effect of

OS-noise and not rely on the OS scheduler, which introduces yet another control loop

that is unaware of the cooperative nature of the MPI processes (Ferreira et al, 2008).
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Fig. 6 Performance comparison of non-blocking code using MPI Waitany with function-level concur-

rency in FG-MPI. Number of OS-Processes is same in both cases. In FG-MPI, the MPI processes are

evenly distributed across the OS-Processes.

We created a benchmark program, similar to the codes in Listings 1 and 2, to

evaluate the effect of exposing function-level parallelism and the overhead of the

scheduler in FG-MPI. The MPI code of the benchmark launches N MPI processes as

OS-processes, each of which uses non-blocking MPI Isend and MPI Irecv calls to

pre-post send and receive requests for all the other processes. The MPI code carries

out some local computation and then calls MPI Waitany on these requests to progress

them. The local computation and progression of the requests is done in a loop until

all the requests are completed. The FG-MPI code also launches N OS-processes,

however, each of these OS-processes contain N+ 1 co-located MPI processes. The

MPI processes within each OS-process are organized as follows. (A) There is one

MPI sender process that calls MPI SendN−1 times to send to one receiver in each of

the N OS-processes. (B) There are N−1 receiver processes that call MPI Recv. Each
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of these receivers is matched with the sender in one of the OS-processes. (C) There

is one compute process that does local computation similar to compute() function

in Listing 2. To allow computation and communication overlap, all messages sent

in this benchmark are long messages that use the rendezvous protocol in MPICH2.

The MPI code introduces asynchrony by pre-posting non-blocking operations and

then manages scheduling of the computation and the communication through explicit

calls to the middleware via the MPI Waitany calls. The FG-MPI version, on the

other hand, re-structures the code so that there is a separate MPI process for each

of the receive calls. The scheduling of computation and communication is outside

of the application specification and is managed by the runtime scheduler. In order to

isolate the effects of introducing additional concurrency by mapping MPI processes

to functions, we did not introduce any dependency between the computation and the

communication in this benchmark.

Figure 6, shows the results of this benchmark. For the MPI non-blocking code,

the number of MPI processes are equal to the number of OS processes, while in

the FG-MPI code the number of MPI processes are a multiple of the nfg parame-

ter and the number of OS-processes. The time reported is for ten iterations of the

benchmark. Our results show that even with the introduction of more than 24,000

fine-grain MPI processes compared to 156 coarse-grain processes, the performance

remains the same. As we increase beyond this to more than 43,000 processes, there

is a small overhead of 8.7%. We are not sure of the reason for the deviation after

24,000 processes, however, the MPI code has an advantage in this benchmark, since

it pre-posts all the send requests. Multiple of these pre-posted send requests can be

progressed in the MPI Waitany call. The FG-MPI code has a single sender process

which makes MPI Send calls one after the other. This benchmark, however, stress

tests asynchrony at a large scale and shows that the overhead incurred by exposing

function-level parallelism remains low.

5 Conclusions

Our runtime scheduler, through direct integration in MPICH2, is reactive to MPI

events occurring inside the progress engine and its light-weight design enables defini-

tion of MPI processes as functions that can be flexibly mapped to OS-processes, cores

and nodes. FG-MPI provides a task-oriented programming approach and support for

MPMD that makes it easier, by exposing more concurrency, to overlap communica-

tion with computation. This relieves the programmer from scheduling computation

and communication inside the application and focus on “what” needs to be scheduled

rather than “how” to manage it.
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