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ABSTRACT
Theoretical running time complexity analysis is a widely adopted
method for studying the scaling behaviour of algorithms. However,
theoretical analysis remains intractable for many high-performance,
heuristic algorithms. Recent advances in statistical methods for
empirical running time scaling analysis have shown that many
state-of-the-art algorithms can achieve significantly better scal-
ing in practice than expected. However, current techniques have
only been successfully applied to study algorithms on randomly
generated instance sets, since they require instances that can be
grouped into “bins”, where each instance in a bin has the same
size. In practice, real-world instance sets with this property are
rarely available. We introduce a novel method that overcomes this
limitation. We apply our method to a broad range of scenarios
and demonstrate its effectiveness by revealing new insights into
the scaling of several prominent algorithms; e.g., the SAT solver
lingeling often appears to achieve sub-polynomial scaling on promi-
nent bounded model checking instances, and the training times
of scikit-learn’s implementation of SVMs scale as a lower-degree
polynomial than expected (≈ 1.51 instead of 2).
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1 INTRODUCTION
The scaling of the performance, notably: running time, of algorithms
with input size is of great theoretical and practical interest. In most
cases, theoretical analysis is limited to asymptotic results with
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unknown constants and lower-order terms, which can and often do
play an important role when using an algorithm in practice – e.g.,
for deciding whether and at what cost an algorithm can be used in
a given use case, which of several algorithms to use, and even to
critically assess the impact of improvements in algorithm design
and implementation.

Empirical analysis of performance scaling, using principled sta-
tistical methods, provides an interesting alternative. Here, we build
on a line of previous work that has already succeeded in showing
that many state-of-the-art algorithms obtain better-than-expected
performance on prominent NP-complete and NP-hard problems,
including propositional satisfiability (SAT) and the travelling sales-
person problem (see, e.g., Mu and Hoos [26], Mu et al. [27]). In
particular, empirical scaling analysis revealed several prominent, in-
complete SAT solvers show sub-exponential and perhaps even poly-
nomial scaling on random 3-SAT phase transition instances [26].

The methodology that enables these and similar results, which
has been made broadly available in a tool dubbed empirical scaling
analyzer (ESA) [30], assumes that the inputs or problem instances
that form the basis for the empirical scaling analysis are grouped
into “bins”, where each instance in a given bin has the same size.
However, for many practical, “real-world” applications, instances
that are grouped in this way are unavailable (see, e.g., the instance
sets we study in Section 3.1). As a result, applications of this type
of empirical scaling analysis have been inherently limited to algo-
rithms running on randomly generated instance sets.

In this work, we propose a new and enhanced method for em-
pirical scaling analysis that overcomes this limitation, making it
applicable to a broad range of interesting performance prediction
and modelling tasks in genetic and evolutionary computation, and
beyond. At its core, our methodology can be viewed as a dedicated
transfer learning procedure specially designed for algorithm run-
ning time scaling analysis and prediction. That is, it uses a novel fit-
ting procedure to train candidate scaling models on a set of running
time data used as a training set, and then validates these models’
extrapolations on a set of test data with larger instance sizes. We
also introduce a novel bootstrap sampling procedure, which allows
it to perform a statistical analysis of the consistency of the model
predictions with the test data.

Our method tests hypotheses about an algorithm’s empirical
scaling behaviour. For example, “Is the observed empirical run-
ning time scaling of algorithm A consistent with the scaling model
class exp(x) = a · bx ?”. This is unlike theoretical analysis, which
can prove bounds on an algorithm’s scaling (e.g., A ∈ O(n log(n))).
Nevertheless, a major advantage of our method is that it returns con-
crete instantiations of models (including their parameters) which
can be used to predict A’s scaling. In contrast, theoretical analysis
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abstracts away lower order terms and constant values, and there-
fore cannot make predictions about an algorithm’s running times
on unseen instances. This advantage is substantial, since small-
scale tests can be used to reason about the relative and absolute
performance of algorithms on larger problem instances.

To the best of our knowledge, very few statistically principled
methods for empirical performance scaling analysis exist. Most
prior work combines measuring target algorithm performance in
terms of some features (e.g., running time or operation counts) and
fitting models to explain performance features as a function of an in-
put feature. For example, Goldsmith et al. [14] measure the number
of times blocks of code are executed, and they fit models of the form
a ·x +b and a ·xb to the performance measurements using linear re-
gression (or linear regression on a log-log scale). Some of the more
advanced approaches automatically extract notions of instance size
or algorithm performance (see, e.g.. Zaparanuks and Hauswirth
[34] or Coppa et al. [8]). McGeoch et al. [25] introduce several ex-
perimental procedures for fitting and bounding polynomial models
to performance data. However, none of these methods leverage the
power of statistical methods to quantify the degree to which learned
models can be trusted in challenging extrapolation scenarios. One
of the more advanced methods [13] partially addresses the problem
of model trust by automatically determining model complexity (i.e.,
the number of model parameters) by analysing the source code of
the target algorithm. They argue that more complex algorithms
give rise to performance scaling that cannot be described without
additional scaling model parameters. However, they do not provide
any validation of model extrapolations.

This work represents a significant advance in the state of the art
of empirical complexity analysis for two reasons: First, our method-
ology (see Section 2) can be applied to a substantially broader range
of application scenarios, thereby allowing it to be applied to many
important real-world problems. And second, the most obvious so-
lutions to the problem do not work well in practice. In particular,
the custom optimization procedure that we develop in Section 2.1
proved to be critically important to obtain robust, high-quality scal-
ing model parameters. We experimented with over a dozen different
pre-existing, state-of-the-art optimization procedures (e.g., IP- or
LP-basedmethods), some ofwhichwere chosen in consultationwith
numerical optimization experts, yet none of which yielded good
results. A second contribution, is comprised of several case studies
that demonstrate the utility of our method through the discovery
of several surprising results (see Section 3). For example: lingeling
often appears to obtain sub-polynomial scaling on bounded model
checking SAT instances (as opposed to the well-known exponential
worst-case theoretical bound). And, on the MNIST data set, random
forest scaling appears to be slightly sub-linear (indicating that it
may need less than one full pass over the data set) and support
vector machine scaling is consistent with a polynomial model of
degree ≈ 1.51 (much less than expected from theory [20, 21]). We
also provide a comparison to previous results by Mu and Hoos [26]
(see Section 4). We close with concluding remarks and a discus-
sion of future work (see Section 5). To facilitate broad use of our
methodology for empirical scaling analysis, we make it available
as version 2 of ESA. 1

1www.cs.ubc.ca/labs/beta/Projects/ESA

2 METHOD
The original method by Mu and Hoos [26] starts from statistics (e.g.,
median running times) calculated for each instance size “bin”, and
fits scaling models to these statistics with least squares regression.
It uses stratified bootstrap sampling and an extrapolation test to
assess the quality of each model. However, these statistics (and
therefore the model fitting procedure) and the stratified bootstrap
sample all require sets of equally sized instances.

Our method contains three major improvements that overcome
these limitations and improve the quality of the results. First, we fit
directly to the full training set, using a custom quantile regression
procedure (see Section 2.1), which allows us to obtain more robust
model fits (see Section 4). Second, we use a new method for calcu-
lating observed statistics (see Section 2.2) that does not require bins.
And third, we introduce a novel bootstrap sampling procedure (see
Section 2.3 that, like stratification, provides a variance-reduction
technique for bootstrapping of regression problems without bins.

At a high-level, our method proceeds as follows:
(1) We run an algorithm on a set of problem instances with

varying instance sizes in a random order while measuring
performance in CPU seconds.2

(2) We partition the running time data set by instance size into
a training and test set;

(3) We use the training set to fit scaling models that we hypoth-
esize may describe the data well;

(4) We use bootstrap sampling to obtain confidence intervals;
and finally,

(5) We evaluate the consistency of the models’ predictions with
observations on the test set.

2.1 Fitting Models
Our method can be performed on different statistics of the running
time distribution: In particular, the mean, median or arbitrary quan-
tiles. One advantage to using median or quantile scaling, is that
these statistics are more robust than means. Perhaps most impor-
tantly, they are un-affected by a modest number of censored runs
of the algorithm (i.e., runs which could not be completed within a
pre-defined running time cutoff, T ).

Fitting scaling models to the mean of the running time distri-
bution is straightforward and can be easily done using standard
least squares regression (i.e., using the L2-norm loss function). To
fit medians we minimize the residuals using the L1-norm loss [17]
and we generalize this by weighting each “arm” of the loss function
with weights (1 − q) and q, where 0 < q < 1, to obtain quantile
regression for quantile q [22]. This yields the objective function∑

i
|ρq (y[i] − ŷ[i])|, (1)

where the function ρq is defined as

ρq (r ) =

{
r · (1 − q) if r < 0
r · q otherwise;

(2)

2In some cases we have observed changes in running times up to a factor of 2 for
extended periods of time due to environmental noise (e.g., clock speed changes designed
to improve performance without over-heating the machine). Therefore, identically
and independently distributing these effects is critical to obtain robust results.
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where y[i] is the observed running time for instance i and where
ŷ[i] is the running time statistic predicted by the scaling model for
training instance i with size x[i], e.g.,

ŷ[i] = poly(x[i]) = a · x[i]b . (3)

In theory, any high quality optimization procedure can be used
to fit any scaling model using the objective function in Equation 1.
However, in practice, we were unable to find any out-of-the-box
method that could reliably obtain high-quality results for all of
the scaling models we studied here. One method that we found
particularly effective for median regression with linear models was
iteratively reweighted least squares (IRLS) [17]. IRLS calculates a
weight for each instance i in the next iteration as 1

|r [i] | , where
r [i] = y[i] − ŷ[i] is the residual for instance i using the model fit
in the previous iteration. Hence, the objective function for median
regression becomes ∑

i

(
y[i] − ŷj [i]

)2��y[i] − ŷj−1[i]
�� , (4)

where ŷj [i] is the running time statistic predicted by the model
fitted in the jth iteration of IRLS for instance size x[i]. The sequence
of regression problems terminates when the loss stops improving.
We heuristically warm-start the procedure by using least squares
regression to fit to the observed statistics (see Section 2.2 for how
these are obtained) in the first iteration, which yields the initial
values for ŷ0[i].

By noting that lim
j→∞

��r j−1[i] − r j [i]
�� = 0 (provided that the se-

quence does not diverge) and by switching ρq (·) to ρ1−q (·) we can
move ρ to the denominator, yielding∑

i

(
y[i] − ŷj [i]

)2��ρ1−q (y[i] − ŷj−1[i])
�� , (5)

which means that ρ can be absorbed into the weights. This allows us
to formulate the original non-smooth, quantile regression problem
as a sequence of smooth, least squares regression problems, which
can be easily solved for any linear model using standard methods.

However, while Equation 5 works well for linear models, we
also want to study non-linear models, e.g., exp(x) = a · bx or
poly(x) = a · xb . We transform these into linear problems by
taking the log of the running times and the log of the models. For
example,

log(poly(x)) = log(a · xb )

= log(b) · x + log(a)
= a′ · x + b ′

= lin′(x),

(6)

where we have introduced the transformations a′ = log(b) and
b ′ = log(a). Then, by introducing y′[i] = log(y[i]), we can fit the
model lin′(x) = a′ · x + b ′ to y′ using the objective function in
Equation 5. Finally, we use the inverse transformations to retrieve
approximations for the optimal values of a and b from the fitted
values for a′ and b ′.

Unfortunately, these transformations distort the residuals, which
effectively increases the weight for smaller running times. To com-
pensate, we use a similar heuristic to Eggensperger et al. [11] and

further weight instance i using the predicted running time for
instances with size x[i] from the previous iteration of IRLS. The
objective function then becomes∑

i

(
log(y[i]) − log(ŷj [i])

)2
· ŷj−1[i]��ρ1−q (

log(y[i]) − log(ŷj−1[i])
) �� . (7)

For example, putting everything together with the poly model
yields the sequence of optimization problems: for j = 1, 2, ... mini-
mize over a′j , b

′
j the weighted L2 loss function∑

i

(
y′[i] − a′ · x[i] − b ′

)2
·W(a′j−1,b

′
j−1)

[i], (8)

where

W(a′j−1,b
′
j−1)

[i] =
(exp(b ′j−1) · x

exp(a′j−1))���ρ1−q (y′[i] − a′j−1 · x[i] − b ′j−1)
��� (9)

is a constant weight that can be calculated using the fitted values
for a′j−1 and b ′j−1 from the previous iteration. We terminate this
sequence of problems when the original L1-loss (without taking
the log) stops improving.

This sequence of problems can be easily solved using any weight-
ed, linear-least squares regression procedure for any of the models
studied in this work. However, the log transformation and heuristic
correction of the running times is only required for some of the
scaling model classes (i.e., those that are already linear do not re-
quire this step). Similar transformations and heuristic corrections
can also be performed to extend this method to an even broader
range of scaling model classes than those studied here.

2.2 Calculating Observed Statistics
We take inspiration from Yu and Jones [33] and fit a linear model
lin(x) = a ·x+b (see Section 2.1) to the running times within a local,
sliding window. In the first iteration, to obtain a0 and b0, we fit the
model using un-weighted linear least squares regression. To reduce
biases introduced by any curvature in the running time scaling, we
weight the training examples using a normal curve centered at the
middle of the window. We record the running time predicted by the
linear model at the centre of the window as the observed running
time statistic. Linear interpolation is used to estimate performance
between observations.

2.3 Bootstrap Sampling
We take bootstrap samples of the data sets and repeat the steps
outlined above on each of these. We then use the bootstrapped
distributions of the fitted model predictions and observed statis-
tics thus obtained to obtain 95 percentile confidence intervals. To
reduce variance in fitted models, we perform bootstrap sampling
in a novel way: We use a sliding window centered around each
instance exactly once. The window is modular so that each window
contains the same number of instances. Then, for each position
of the window, we sample one instance from within the window,
which yields a single, balanced bootstrap sample.



GECCO ’20, July 8–12, 2020, Cancún, Mexico Yasha Pushak and Holger H. Hoos

2.4 Quality of Model Fits
We use a heuristic decision model that is firmly grounded in sta-
tistics to describe the quality of model fits. That is, we say that a
model fits the observed test statistics if at least 90% of the boot-
strap confidence intervals for the test instance size observations
are consistent (overlap) with the bootstrap confidence intervals for
the model’s predictions. We say that a model over/under-estimates
the observed test statistics if the model does not fit the data well,
and if at least 90% of the bootstrap confidence intervals for the
test instance sizes are below/above or are consistent with the boot-
strap confidence intervals for the model’s predictions. We note
that the first of these statements (whether or not the model fits)
can be viewed analogously to hypothesis testing, where we are
checking to see if there is enough evidence to reject a hypothesis
given the observations; however, the second statement (whether
or not the model over/under-estimates the data), does not corre-
spond to hypothesis testing, but should instead be viewed as a
researcher’s observation regarding what appears to be a systematic
bias in the data. While the second is technically a weaker statement,
it nevertheless provides valuable insight into the behaviour of the
algorithm. For example, if a poly(x) model over-estimates the test
data, then this may imply that the algorithm’s underlying scaling
is sub-polynomial.

3 CASE STUDIES
We applied our method to several new scenarios. In each, we used
500 bootstrap samples with a window size of 101, and we used
the first 30% of the running time data as training data. All of our
experiments were run on a machine running thirty-two 2.10 GHz
Intel Xeon E5-2683 v4 CPUs sharing a 40 960 KB cache and 96 GB
RAM. They were running openSUSE Leap 42.1 (x86_64). We used a
single core per CPU and limited RAM use to 3 GB in all experiments.

3.1 Bounded Model Checking
A commonly studied benchmark set from the algorithm configura-
tion library (ACLib) [19] is comprised of bounded model checking
instances, which are encoded in one of the most prominent combi-
natorial optimization problem types: SAT. Problem instances are
obtained by unrolling loops in hardware circuits to varying depth,
in order to verify correctness. We were unable to use the existing
instance set, because instances that could not be solved within spec-
ified minimum and maximum running time cutoffs were removed
to obtain a benchmark set with roughly similar difficulty.3 Instead,
we used aigunroll [5] to unroll the original set of circuits from the
2008 Hardware Model Checking Competition (HWMCC08) [3] to
various depths. In particular, we choose 5 circuits from the orig-
inal set and unrolled them to depths 0, 1, ..., 500 to generate 500
instances for each circuit. Some of the smallest SAT instances were
trivial and could be solved by aigunroll; we discarded these.

We then ran lingeling [4], a prominent, state-of-the-art SAT
solver, once on each instance and recorded its running times. We
measured the size of the SAT instances as the number of variables.
Then, we used ESA v2 to fit two models, exp(x) = a · bx and
poly(x) = a · xb , to the median running time of lingeling on each
circuit.
3Personal communication with the author.

Table 1: Lingeling Scaling Models

Circuit Best-Fit Model Fit

139454p5 4.02 · 10−5 · x1.00 over
csmacdp0neg 8.20 · 10−11 · x2.09 fits
pdtvisvsar29 8.67 · 10−6 · x1.25 under
prodconspold4 1.78 · 10−6 · x1.33 over
texastwoprocp5 1.14 · 10−5 · x1.13 over
all 5.15 · 10−7 · x1.44 over

The best-fit models (according to test loss) are shown in rows
1–5 of Table 1. Surprisingly, for all 5 circuits, the exp scaling model
was rejected as an over-estimate with 95% confidence. Even more
surprisingly, the poly models appeared to over-estimate the test
data for three of the five circuits. For the other two, one circuit
had test data consistent with and one slightly under-estimated
by the poly model, respectively. An example of each is shown in
Figures 1a–c (where the dotted black line is the train/test split and
the dashed black line is the running time cutoff). Visually, the exp
model in Figure 1a appears to provide a good upper bound for
the test data. However, we also applied our method to study the
95th quantile of the data, and found that it rejected the exp model
with 95% confidence, with the true scaling falling between the two
models (data not shown).

These results provide fairly strong evidence that the empirical
running time scaling of lingeling on these bounded model checking
problems is sub-exponential and perhaps even sub-polynomial.
However, in light of our theoretically-motivated expectations, how
much confidence should we have that these results will generalize
to other, similar circuits? To answer this question, we generated one
additional set of bounded model checking instances by unrolling
each of the hardware circuits from the HWMCC08 to depths 25, 50,
..., 250. We performed the same analysis on these, and found that,
once again, both models continued to over-estimate the test data
(see row 6 in Table 1 and Figure 1d).

3.2 Machine Learning
A very popular field of modern AI is machine learning, which
often operates on large data sets. The recent success of machine
learning in many applications has lead to its widespread adoption
for solving problems in all areas of computer science, including
genetic and evolutionary computation, see e.g., the use of random
forest surrogate models in a gender-based genetic algorithm [1].
We applied ESA v2 to study the training times for three prominent
machine learning classification algorithms: random forests (RF) [6],
k nearest neighbours (KNN) [12] and support vector machines
(SVM) [9]. In this context, a problem instance corresponds to a
training set, and the size of an instance is defined as the number
of training examples. To obtain a training set, we sub-sampled n
training examples from the MNIST [23] data set – one training
instance set for each n ∈ [2 500, 2 519, ..., 50 000].

We used scikit-learn version 0.18.1’s [31] implementation of
the three learning procedures. Since the default configuration of
SVMs did not produce good test performance, we used SMAC [18]
to perform hyper-parameter optimisation for all three algorithms
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Figure 1: Empirical Scaling Of Lingeling On (a) 139454p5, (b) Csmacdp0neg, (c) Pdtvisvsar29 And (d) All Circuits (For Details,
See Text).

by training on instances of size 5 000. In particular, for each ma-
chine learning algorithm we performed 25 runs of SMAC, each
with budgets of 1 000 target algorithm runs, and we took the hyper-
parameter configuration with the best validation performance on a
withheld set of training data. The final hyper-parameter configu-
rations had average validation scores of 89% (RF), 94% (KNN) and
95% (SVM) when trained and validated on sub-samples of size 5 000.
The best-fit scaling models for the training times of each machine
learning model are summarized in Table 2.

3.2.1 Random Forests. We ran ESA v2 with the poly and exp
models. Surprisingly, the poly model slightly over-estimated the
training times for random forests, e.g., for the largest test instance
size the poly model prediction was 1.11 times larger than the
observation. The fact that the 95% confidence interval for the
degree, b, of the polynomial scaling model was determined as
[1.07, 1.10] indicates observed scaling slightly better than linear.
We performed the analysis again using a linear model which was
fitted as lin(x) = 3.60 · 10−4 · x − 0.28. The result was consistent
with our hypothesis: it also over-estimated the test data, although
it did provide a slightly tighter bound, i.e. the lin model prediction
was 1.03 times larger than the observation for the largest test size.
This appears to indicate that random forest training can done with
slightly less than one full pass over the training set. One possible
alternative explanation is that there are sub-linear start-up costs
(see e.g., Section 3.3); however, we observed that several other mod-
els with lower-order terms (such as a ·x +b · log(x)) over-estimated

the test data with 95% confidence, so we did not find support for
this hypothesis.

3.2.2 k-Nearest Neighbours. A brute-force implementation of
KNN should run in linear time, since it only memorizes the training
set [10]; however, the variant we studied is more advanced and
builds a k-d tree during training to save computation at test time.
Building k-d trees can be done in O(n · log(n)) time [7], so in ad-
dition to the exp and poly models, we tried fitting a linlog(x) =
a ·x ·log(x)+b model. The expmodel clearly over-estimated the data,
so we do not discuss it further. Surprisingly, both the poly(x) =
4.71 · 10−6 · x1.30 and the linlog(x) = 8.93 · 10−6 · x · log(x) − 0.08
models clearly under-estimated the running times for KNN; e.g., the
observed median training time was 1.45 times larger than the poly
model prediction for the largest test instance size. KNN had the
smallest running times of the three machine learning algorithms
(starting at 0.122 CPU seconds), so it is possible that start-up costs
or floor-effects affected running times observed for small train-
ing instance sizes. However, we were not able to find support for
this hypothesis when rerunning our analysis without some of the
smaller instance sizes, nor by using different models with addi-
tional terms. Even when using only n ≥ 30 000, the poly model
still under-estimated the data. For n ≥ 35 000 the poly model did
appear to fit the data; however, there was also so little data left that
the exponential model provided a very tight upper bound on the
data, hence we could only conclude that there was no longer suffi-
cient data (nor sufficient room for extrapolation) to make powerful
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Table 2: ML Training Time Scaling Models

ML Model Best-Fit Model Fit

RF 3.60 · 10−4 · x − 0.28 over
KNN 4.71 · 10−6 · x1.30 under
SVM 5.03 · 10−5 · x1.51 fits

statistical statements. To the best of our knowledge, the implemen-
tation of KNN we studied does not use dimensionality reduction
or any other tricks to reduce the computational cost at test time,
leading us to conjecture that there may be a performance bug in
the implementation, causing super-polynomial scaling.

3.2.3 Support VectorMachines. As expected, SVM training times
were clearly over-estimated by the exp model and consistent with
the predictions from the poly model. However, counter to our ex-
pectations, the best-fit poly model had degree b = 1.51 with a
95% confidence interval of [1.50, 1.52]. There exist many different
versions of SVMs, and while some can run faster, common methods
are expected to have quadratic or worse running time complex-
ity [20, 21]. Furthermore, the documentation for scikit-learn’s SVM
implementation explicitly states that the training time is quadratic
in the number of training examples.4 Our analysis indicates that
the scaling of SVMs is better than expected, which may be because
the implementation we studied exploits structure in the training
set.

3.3 Sorting
Sorting large data sets is a common sub-problem that is broadly
relevant to all areas of computer science. The scaling of sorting
algorithms is also a very interesting choice for empirical running
time scaling analysis, as there are many well-known and well-
established theoretical results we can use as a baseline. For example,
Hoare’s QuickSort [16] has worst case scaling inO(n2), but expected
scaling in O(n · log(n)). Furthermore, it is known to have a linear
lower-order term [16]. It is also known that the choice of the pivot
rule affects QuickSort’s performance [2]. To investigate empirical
scaling, we implemented a very simple version of Hoare’s QuickSort
and studied three different pivot rules: a random pivot (R), the
median of three random elements (M3) and the ninther (N), i.e., the
median of three medians of three. Theoretically, using the median
element (of the entire array) is the optimal choice for the pivot;
however, this is not done in practice since finding the exact median
at each iteration is more expensive than using a random element.
Hence, the median of three and ninther pivot rules can trade off
between the quality of the pivot and the time required to pick
the pivot. As a result, it has been recommended to use the more
complicated pivot rules only when sorting large lists [2].

We generated instances with n elements by sampling n integers
uniformly from [0, 100·n]. For eachn ∈ [10 000, 20 000, ..., 9 990 000],
we generated one instance and ran each configuration of QuickSort
once. We considered four candidate scaling models: the exp and
poly models used in Section 3.1, as well as linlog(x) = a · x ·

log(x) + b and linlog+lin(x) = a · x · log(x) + b · x , motivated

4https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Table 3: Quicksort Scaling Models

Quicksort Best-Fit Model Fit

(R) 2.02 · 10−6 · x · log(x) + 7.91 · 10−6 · x fits
(M3) 7.76 · 10−7 · x · log(x) + 2.56 · 10−6 · x fits
(N) 9.84 · 10−7 · x · log(x) + 9.90 · 10−6 · x fits

Table 4: Extended Quicksort Extrapolation Test

Quicksort 95% Interval (CPU Sec.) Factor

(R)

linlog [4 706.29, 4 786.85] 1.16
poly [4 611.82, 5 022.09] 1.22
linlog+lin [4 498.23, 4 797.24] 1.16
observation [4 115.58, 4 192.05] -

(M3)

linlog [1 745.96, 1 766.13] 1.04
poly [1 703.52, 1 788.02] 1.06
linlog+lin [1 660.95, 1 727.87] 1.02
observation [1 692.21, 1 722.13] -

(N)

linlog [3 043.42, 3 092.70] 1.26
poly [2 728.16, 3 022.21] 1.23
linlog+lin [2 700.77, 2 930.88] 1.19
observation [2 457.71, 2 483.12] -

by our theoretical expectations [16]. The exp model clearly over-
estimated the data for all three configurations, so we do not discuss
it further. The predictions from the linlog and poly models over-
estimated the test data for some of the configurations, and those
from the linlog+lin model were consistent with the test data for
all of the configurations, as shown in Table 3. However, the poly
and linlog models still provide tight upper-bounds for the test
data. To challenge this finding, we ran each version of QuickSort on
eleven instances with n = 100 000 000 (See Table 4, where “factor” is
a 95% confidence upper bound on how much the model predictions
over-estimate the observations and where we show predictions that
are consistent with the observations in boldface). For these tests, the
predictions from any of the models over-estimated the observed
running times by a factor of at most 1.26, and the linlog+lin
model continued to provide the best predictions. Considering that
these instances are 33 times larger than the largest training instance
size, all models are providing rather accurate predictions.

We also studied Python 2.7’s implementation of TimSort [32] (the
default sorting algorithm in Python, callable via sorted(lst)) for
list lst), with running time complexity inO(n log(n)) and Ω(n) and
expected running time inO(n log(n)). Again, the exp model clearly
over-estimated the data, so we do not discuss it further. The other
three models produced better results. According to test loss, the best
model for the median scaling was the poly(x) = 7.77 · 10−8 · x1.19
model, with the linlog+lin(x) = 2.14·10−7 ·x ·log(x)−1.85·10−6 ·x
model as a close second, followed by linlog(x) = 8.79 · 10−8 · x ·

log(x) − 0.04 (the 95% confidence intervals for their test losses are
all overlapping). However, while the poly and linlog+lin model
predictions are both consistent with the test data, the linlogmodel
was reported to under-estimate it. Again, we further challenged the

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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models by performing eleven runs at instance size n = 100 000 000,
and used these to estimate the observed median running time at
201.05 with a 95% bootstrap confidence interval of [199.30, 233.32].
We found that for this instance size the confidence interval for the
poly model [256.30, 308.06] no longer fits the data well, but in-
stead provides a relatively tight upper bound. Similarly, the linlog
model continues to provide a lower bound for the observations
[159.86, 166.07], as predicted. However, the confidence interval for
the linlog+lin model is almost identical to the interval for the
observations [205.88, 223.10]. This result agrees very well with
what we would expect from theory, since the linlog+lin model
contains two scaling terms that match theoretical upper and lower
bounds on performance, respectively.

4 COMPARISON TO ESA V1
In our case studies in Section 3, we were unable to compare our new
method to the earlier methodology for empirical scaling analysis,
which is available as a tool called ESA v15 (Empirical Scaling Ana-
lyzer), because none of the instance sets have instances grouped
by size, as required by the underlying approach. Therefore, to com-
pare both approaches, we applied ESA v2 to some of the scenarios
previously studied with ESA v1. In particular, we chose two sce-
narios from the work by Mu and Hoos [26]: BalancedZ [24] and
march_hi [15] on random 3-SAT phase transition instances, and one
scenario from the work by Mu et al. [27]: (the default configuration
of) EAX [28] on RUE TSP instances.

4.1 3-SAT Phase Transition Scenarios
Upon examining the random 3-SAT phase transition instance set
by Mu and Hoos [26], we noticed that there was a simple off-by-
one error in the code they used to generate these instances. After
correcting the error and using their code to generate a new set of
instances with the correct clause-to-variable ratios, we repeated
their analysis using ESA v1. We observed no qualitative difference
from their original results.

In Table 5, we can see the best fit models from running the two
methods for march_hi. Both methods picked the same model class
and in fact fit almost identical models in this scenario (more preci-
sion than shown is required to see the difference). Both methods
indicated that the model predictions had the same level of consis-
tency with the test data when using bootstrap analysis. Another
metric that we can look at between the two methods is the size of
the model prediction’s bootstrap intervals. In theory, smaller boot-
strap intervals correspond to greater statistical power. We define
the size of an interval to be the upper bound divided by the lower
bound. The exp model for ESA v2 has a 95% confidence interval
for the model predictions at instance size 1 000 of [1 651, 2 977],
therefore, its interval size is 1.80, which is slightly smaller than
that for ESA v1 at 2.20. One possible reason for this is that ESA v2
is able to obtain models that fit the data more robustly. However,
the cost for this increase in statistical power is that ESA v2 also re-
quires additional time to perform the analysis (33 695 CPU seconds
compared to 665).

In Table 6, we show the best-fitted models for BalancedZ on the
random 3-SAT phase transition instances. Rows 1 and 3 provide
5https://www.cs.ubc.ca/~w-esa/ESA

Table 5: ESA v1 vs ESA v2 for march_hi

Method Best-Fit Model Fit

ESA v1 7.30 · 10−5 · 1.032x fits
ESA v2 7.50 · 10−5 · 1.032x fits

Table 6: ESA v1 vs ESA v2 for BalanacedZ

Method Best-Fit Model Fit

ESA v1 - full 3.20 · 10−9 · x2.69 fits
ESA v2 - full 5.21 · 10−8 · x2.23 under
ESA v2 - no small 1.77 · 10−9 · x2.79 fits

the results of applying ESA v2 and ESA v1 to the full running time
data set, respectively. In this case, the results of the analysis do
not match. We believe that the reason for this lies in the different
methods used to fit the models. Since ESA v1 uses least squares to
fit to summary statistics of each instance size, it is implicitly biased
towards weighting larger running times more heavily. In contrast,
the poly model fitted by ESA v2 weights the different instance
sizes more evenly and therefore provides more of a “compromise”
between the smaller and larger training instance sizes.

Manual inspection of the residuals for the poly model fitted by
ESA v1 reveals that the observations for the smallest two instance
sizes are larger than the fitted model predictions, while the remain-
ing instance sizes have model predictions that are consistent with
the observations (data not shown). This observation indicates that
the poly model fitted by ESA v1 does not completely describe the
empirical scaling behaviour of BalancedZ on the training instance
set. However, if there are reasons to believe that the running times
on the smallest instance sizes are unreliable (e.g., because of floor
effects or lower-order terms), ESA v1’s model may still provide
better predictions for the asymptotic scaling of BalancedZ. Never-
theless, under this assumption, a user-defined weighting scheme
can be used with ESA v2 that weights larger instance sizes more
heavily. In particular, we re-ran our analysis with ESA v2 using a
very simple binary weighting scheme: weight 0 for the first two in-
stance sizes and weight 1 for the remainder. We present the results
of this analysis in row 3 of Table 6. In this case, we see that ESA
v2 provides a result much more similar to that from ESA v1, and
the poly model is now reported to fit the test data. We believe that
ESA v2’s ability to explicitly capture such information offers a more
principled approach than ESA v1’s implicit heuristic assumption
that smaller instance sizes are less important.

For the largest test instance size (n = 1 000), the size of the
confidence interval is 1.74 for ESA v1’s poly model predictions.
For ESA v2 with the full data set, the size of the interval is 1.66,
compared to 1.33 when omitting the smallest two instance sizes,
providing further evidence that ESA v2 has more statistical power
than ESA v1. However, once again ESA v2 required more running
time than ESA v1 (6 748 CPU seconds with the full training set and
321 CPU seconds with the reduced training set compared to 57 CPU
seconds for ESA v1). It is also interesting to note that ESA v2without
the smallest two instance sizes took substantially less time to run

https://www.cs.ubc.ca/~w-esa/ESA
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Table 7: ESA v1 vs ESA v2 for EAX

Method Best-Fit Model Fit

ESA v1 0.25 · 1.12
√
x fits

ESA v2 0.20 · 1.13
√
x fits

than with the full training set; we believe there are two reasons for
this: First, the training time is approximately cubic in the size of
the training set (since it performs matrix multiplication to solve the
linear least squares regression problem); and second, much fewer
iterations of the iteratively reweighted least squares algorithm were
needed to fit the models, since the initial mean regression problem
provided a better initial estimate for the median scaling when the
two smallest (outlying) instance sizes were removed.

4.2 EAX on TSP RUE Instances
We also studied the running time data set used by Mu et al. [27]
to study the empirical running time complexity of EAX [28], a
state-of-the-art genetic algorithm for the TSP. We downloaded and
ran the latest version of ESA v1 using the same three models from
their original analysis: (exp(x) = a · bx , sqrtexp(x) = a · b

√
x and

poly(x) = a · xb ) on the data and compared it to the analysis using
ESA v2. The resulting best-fit models are shown in Table 7. We
note that the best-fit models are very similar, and the automated
analysis produces the same qualitative statements regarding the
consistency of model predictions with observed test data.

Again, the bootstrap intervals for the model predictions are
slightly smaller for ESA v2 than for ESA v1 at 1.075 vs 1.081, re-
spectively. As in previous experiments, ESA v2 took substantially
longer to run than ESA v1 (227 243 CPU seconds compared to 52
CPU seconds for ESA v1). We note that this was by far the largest
data set we studied (with 11 000 training instances); for most of our
other scenarios (all of which had less than 1 500 training instances),
we were able to run ESA v2 in well under an hour.

5 CONCLUSION
The most significant contribution of this work is the introduction of
a statistically principled method for performing empirical running
time scaling analysis on instance sets that are not grouped by bins.
This procedure allows advanced statistical analysis of empirical
performance scaling to be applied to a substantially broader range
of interesting problem instances sets. As a second contribution, we
have implemented our method in an easy-to-use tool: ESA v2 6.

We have demonstrated the effectiveness of ESA v2 by using it to
reveal new insights about the empirical scaling of several prominent
algorithms. Specifically, we showed that the well-known SAT solver
lingeling [4] appears to obtain not only sub-exponential scaling,
but even sub-polynomial scaling on bounded model checking SAT
instances. Furthermore, ESA v2 was able to accurately discriminate
between models differing by only a log(x) lower-order term when
applied to QuickSort. When we further tested our method on even
larger test instance sizes (see Table 4), the correct scaling model
class was no longer always consistent with the observations, but
6https://www.cs.ubc.ca/~w-esa/ESA/

it still nevertheless provided very accurate predictions consider-
ing the magnitude of the difference between the test instance size
and the largest training instance size (a factor of 33). We also ap-
plied ESA v2 to the training times for several prominent machine
learning algorithms on the MNIST digits data set [23]. We showed
several surprising results: First, random forests [6] appeared to ob-
tain sub-linear scaling (i.e., it probably did not need the full training
set). Second, k nearest neighbours [12] exhibited super-polynomial
scaling (perhaps indicating a bug). And third, support vector ma-
chine [9] scaling was consistent with a lower-degree polynomial
model than expected (≈ 1.51 instead of 2). Finally, we demonstrated
that ESA v2 can obtain similar (but more robust) results to ESA
v1 by applying it to three previously studied applications with
instances grouped into bins.

There are two common pitfalls that are important to avoid when
performing empirical scaling analysis. First, the target algorithm
must be run on the instances in a random order, otherwise envi-
ronmental noise from background processes is not identically and
independently distributed, which can lead to erroneous conclusions.
In some of our preliminary work, we were quite surprised by the
results until we realized we had fallen subject to this pitfall. Second,
it is essential to ensure that only one property controlling instance
difficulty is varied, otherwise the scaling behaviour of algorithms
may abruptly change in unpredictable ways. In fact, we discovered
precisely such a scenario working with FCC SAT instances [29]
where the scaling of SAT solvers first appeared to be benign, be-
fore abruptly becoming super-exponential. Upon further study, we
found evidence for a previously undiscovered phase transition in
the underlying instance distribution.

Perhaps the biggest open challenge for future work lies in the
accurate detection and modelling of lower-order terms. If prior
information is available, our method can facilitate user-defined
weights to specify which training data should be trusted the most
(to effectively ignore lower-order terms) or to explicitly add ad-
ditional scaling terms (so that lower-order terms can be included
without additional model complexity). However, it may also be pos-
sible to add lower-order terms by developing a grey-box approach
(see, e.g., Goldsmith [13]) that uses additional profiling information
about the target algorithm runs to build more complex models,
i.e., by measuring, modelling and then combining the performance
of different loops or function calls within an algorithm, thereby
considering the sources of each scaling term independently. Such
a procedure could be immensely useful in practice, by allowing
algorithm developers to use small scale experiments to determine
where algorithmic bottlenecks occur for large scale instances, since
in practice different bottlenecks often occur for different instance
sizes. An alternative direction is to include hypothesis testing to
determine whether or not the running time distribution of the test
set is similar to the distribution on the training set. A dissimilar
running time distribution may indicate that a scaling model that
appears to fit the data well may not be accurately summarizing
all of the relevant information and hence may become unreliable
for even larger instance sizes. Future work could also extend the
method to predict running time as a function of multiple instance
features (e.g., the number of edges and vertices in a graph), or to
apply the method to other performance metrics.

https://www.cs.ubc.ca/~w-esa/ESA/
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