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Abstract. The time complexity of algorithms, i.e., the scaling of the time required for solving a problem instance as a function
of instance size, is of key interest in theoretical computer science and practical applications. In this work, we present a fully
automated tool – Empirical Scaling Analyzer (ESA) – for performing sophisticated and detailed empirical scaling analyses.
The methodological approach underlying ESA is based on a combination of automatic function fitting and bootstrap sampling;
previous versions of the methodology have been used in prior work to characterize the empirical scaling behaviour of several
prominent, high-performance SAT and TSP solvers. ESA is applicable to any algorithm or system, as long as running time data
can be collected on sets of problem instances of various sizes. We present results from rigorous stress-testing to critically assess
ESA on scenarios with challenging characteristics. We also give an overview of empirical scaling results obtained using ESA.

Keywords: Empirical scaling analysis, Running time scaling

1. Introduction

In theoretical computer science, time complexity is
one of the most prominent concepts arising in the anal-
ysis of problems and algorithms. The time complex-
ity of an algorithm describes the time required for
solving a problem instance as a function of instance
size and is traditionally studied by means of theo-
retical analysis. For instance, the Boolean satisfiabil-
ity problem (SAT) and the travelling salesman prob-
lem (TSP) are two prominent NP-hard problems, for
which the best algorithms currently known have expo-
nential time complexity in the worst case. However,
worst-case behaviour may be encountered rarely or
never at all in practical situations. Therefore, empirical
analysis of time complexity has seen increasing inter-
est, because it permits predicting the running times of
high-performance algorithms in practice and may also
provide useful insights into their behaviour [1–3].

Very few methods exist for performing empirical
running time scaling analysis that handle noise and the
stochastic behaviour of algorithms in a principled, sta-

*Corresponding author. E-mail: hh@liacs.nl.

tistical way [4]. Common practice among empirically
oriented algorithm researchers is to perform relatively
small numbers of algorithm runs while varying prob-
lem instance size, with some of the more advanced
methods taking means over independent runs of the al-
gorithm on the same input instances to reduce the vari-
ance in observations [5]. In some cases, the mean over
tens or hundreds of runs on problems of the same size
are plotted for varying instance sizes, and these points
are compared against each other for two competing al-
gorithms to show that one out-performs the other. In
slightly more advanced work, standard least squares re-
gression and curve-fitting procedures are used to fit and
subsequently visualize trend lines [6]. An improve-
ment to this practice was introduced by McGeoch et
al. [7], who described and evaluated several prototype
methods for fitting and bounding empirical running
time data with polynomial models.

Somewhat related to our work are methods designed
to perform algorithm profiling that can automatically
extract notions of problem instance size and algorithm
running time; however, even these rely on the simple
methods we have described above [6, 8, 9]. Ultimately,
the goal of performing empirical running time scaling
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analysis is to obtain estimates or bounds on how well
we can expect an algorithm to perform for larger prob-
lem instance sizes than those used to perform the anal-
ysis. However, neither the work by McGeoch et al. [7]
nor simple curve-fitting procedures address the ques-
tion of how much faith we should have in the accu-
racy of extrapolations obtained from empirical models
of performance scaling.

This article summarizes and extends an ongoing line
of research [4, 10–15] on the empirical analysis of
performance scaling that addresses two previously ig-
nored or poorly handled challenges: the variability of
running time across inputs of the same size and the ac-
curacy of extrapolations obtained from scaling models.
This is accomplished by introducing a bootstrap sam-
pling procedure that handles the variability in running
time in a statistically meaningful way, and by assess-
ing extrapolation accuracy using a set of challenge in-
stances withheld during the model fitting process. We
extend this methodology and introduce it in the form
of a fully automated tool: the Empirical Scaling Ana-
lyzer (ESA). ESA takes an input file providing running
time data for an algorithm (referred to as target algo-
rithm hereafter), as well as other optional files to con-
figure ESA. ESA is not limited to fitting and assessing
a single scaling model, but can deal with multiple mod-
els simultaneously – in other words, once data collec-
tion is finished, a user can collate all running time data
into a file, feed it into ESA and obtain results from the
scaling analysis using several parametric models. The
results are presented in a technical report, which con-
tains easy-to-read tables and figures for the scaling of
the target algorithm. ESA also automatically interprets
the results and assesses whether a model describes the
running time data well, using a decision model newly
developed here.

The advanced statistical scaling analysis technique
underlying ESA has previously been applied to state-
of-the-art local search algorithms for Euclidean TSP
instances [12], and a prototype of ESA was used to
study the empirical scaling of high-performance SAT
solvers [4], which were later extended to two classes
of 4-SAT instances [13]. Earlier versions of ESA have
also been used to perform empirical analysis of two in-
exact TSP solvers and to investigate the impact of auto-
mated algorithm configuration on their empirical run-
ning time scaling [13, 14]. ESA has also been used to
extend the analysis of these cutting-edge inexact TSP
algorithms to compare their scaling with that of a state-
of-the-art exact TSP algorithm [15].

We believe that ESA will prove to be useful for
other researchers who want to study the empirical time

solver
running
times

fit parametric
models

challenge by
extrapolation

technical
report

use bootstrap re-sampling
for further assessment

Fig. 1. Empirical scaling analysis approach underlying ESA.

complexity of other algorithms. ESA is available as
an easy-to-use on-line service1 and can also be down-
loaded and installed locally as a command-line tool
with additional functionality (for an overview on how
to use ESA, see Section 3).

Our work presented in the following makes two
main contributions: we present ESA (see Section 3),
a fully-automated implementation of an advanced em-
pirical running time scaling analysis methodology (see
Section 2 for a summary of the methodology and our
improvements to it); and we summarize the results of
performing rigorous experiments with ESA on chal-
lenging scenarios (see Sections 5 and 6). Improve-
ments to ESA over an earlier, preliminary version in-
clude a nested bootstrap sampling procedure for ran-
domized target algorithms and a novel method for au-
tomatically assessing the quality of fitted models (de-
scribed in Section 2). To design challenging bench-
marking tests for ESA, we also introduce a novel
method for artificially generating realistic running time
data (see Section 4). We further discuss several suc-
cessful applications of the methodology underlying
ESA in previous work (see Section 7), demonstrating
its power and ability to provide meaningful insights in
a diverse set of applications. Finally, we provide some
general conclusions and briefly discuss future exten-
sions to ESA (see Section 8).

2. Methodology

The methodology underlying ESA was first pro-
posed by Hoos [10]; however, for completeness we re-
summarize this methodology here and highlight sev-
eral new additions and minor improvements that we
have made. At a high level, this methodology is illus-
trated in Figure 1. In more detail, it works as follows:

1www.cs.ubc.ca/labs/beta/Projects/ESA

www.cs.ubc.ca/labs/beta/Projects/ESA
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(1) Splitting the data. The input set of instances and
their corresponding running time and instance
size data are split into two sets: a support set and
a challenge set. These two sets are chosen such
that all of the instances in the support set are
smaller than the instances in the challenge set.

(2) Fitting parametric models. A pre-defined set of
candidate scaling models are each fitted to the
support set using the Levenberg-Marquardt algo-
rithm, a prominent numerical optimization pro-
cedure.
If there is only a single running time available for
each problem instance, then we use the same pro-
cedure as Mu & Hoos [4]. To be precise, we first
calculate summary statistics, e.g., median run-
ning times, for each instance size n based on kn
given instances, and then use these n data points
to fit the scaling models.
For randomized algorithms, running time will
vary between independent runs on the same in-
stance. In this situation, we have multiple in-
stances per given size and multiple running times
per instance. We therefore use a nested approach
that first calculates an inner summary statistic
for each individual instance, e.g., median running
time over independent runs. Next, we calculate
the n outer summary statistics for each instance
size using the values of these inner statistics.

(3) Extrapolation Test. The resulting fitted scaling
models are evaluated using the previously unseen
running time data from the challenge set.

(4) Bootstrap Analysis. The real power of ESA
comes from its statistical analysis, which is used
to further quantify the confidence we can have in
the scaling models and their predictions on the
challenge set.

(a) Creating bootstrap samples. Using boot-
strap sampling, we create b replicates of the
support and challenge sets, respectively. If
there is only a single running time available
for each problem instance, we use the same
procedure as Mu & Hoos [4]. In particular,
for each support and challenge instance size n
with kn observed running times, we create one
of the b bootstrap replicates by re-sampling kn
instances uniformly at random, with replace-
ment.
If we have multiple running times per in-
stance, then we use a novel, nested bootstrap
sampling procedure to incorporate this infor-
mation. In detail, this procedure works as fol-

lows: We first use an inner bootstrap sampling
procedure to create binner bootstrap replicates
of the running times for each individual in-
stance, where for each instance I with lI in-
dependent runs, we create one of the binner
bootstrap replicates by re-sampling lI running
times uniformly at random, with replacement.
Next, we use an outer bootstrap sampling pro-
cedure to create bouter bootstrap replicates of
the support and challenge sets. In particular,
for each support and challenge instance size
n with kn instances (each of which contains
binner bootstrap replicates), we create one of
the bouter bootstrap replicates by sampling uni-
formly at random one of the binner bootstrap
replicates for each of kn randomly chosen in-
stances.

(b) Fitting bootstrapped models. We fit each of
the candidate scaling models to each of the
bouter bootstrap replicates of the support set.
This is done in precisely the same manner as
Step 2.

(c) Extrapolation test. We evaluate the consis-
tency of each candidate scaling model with
the running time data from the challenge set.
To do this, we calculate bootstrap percentile
confidence intervals for a given confidence
level α, i.e., using the (1− α)/2 and 1− (1−
α)/2 quantiles of the empirical distribution of
the bootstrapped statistics. We calculate these
intervals for the running time statistics of each
instance size in the challenge set (where these
statistics are calculated in the same way as
done in Step 2). Similarly, for each candi-
date scaling model, we calculate predictions
for challenge instance size n using each of the
bouter fitted scaling models. Then, for each of
these sets of predictions for each instance size,
we again calculate bootstrap percentile con-
fidence intervals. Finally, these intervals are
used to determine whether or not a parametric
model should be rejected at confidence level
α (see below for more details).

ESA generates text-based interpretations for the re-
sults of the (bootstrap-based) scaling analysis, which
are included in the form of a discussion in the automat-
ically generated technical report. This is done by as-
sessing how well a model fits the given challenge data,
based on the percentage of challenge instance sizes for
which the model predicts the corresponding running
times reasonably accurately. If a model produces good
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predictions for most challenge sizes, then the model
should be accepted as a good fit. Technically, we define
a very good prediction, or a strongly consistent predic-
tion, as one for which the bootstrap confidence inter-
val for the model performance prediction contains the
confidence interval for the observed challenge statistic,
and we define a good prediction, or a weakly consis-
tent prediction, as one for which the confidence inter-
vals for the predicted and observed performances are
overlapping.

Our interpretation procedure especially emphasizes
the challenge points for larger instance sizes, as those
provide more information regarding whether the model
predictions scale with instance size. Each statement is
determined using the percentage of model predictions
that are strongly and weakly consistent with the obser-
vations, so the procedure is best viewed as a heuristic
grounded in a statistical method. We designed the pro-
cedure and carefully hand-picked the minimum per-
centage of the predictions required to be strongly con-
sistent, weakly consistent, etc. based on extensive ex-
periments with several use cases (both real and artifi-
cial), to produce statements similar to those that would
be made by an expert upon viewing a plot of the fit-
ted models. However, we note that these statements
(e.g., “the model tends to over-estimate the challenge
data”) do not technically correspond to statistical tests,
since a hypothetico-deductive method (such as the one
used by ESA) can only be used to reject a hypothe-
sis, rather than to accept it. Nevertheless, these state-
ments still provide valuable, easy-to-interpret insights
into the characterization of the scaling of the algo-
rithm, and thereby enhance the overall usefulness of
ESA. The detailed criteria for the various statements
included in our interpretation are as follows:

• very good fit: the model predicts very well for
most of the challenge sizes; more precisely, >
90% of the predictions for challenge sizes are
strongly consistent, or > 90% of the predic-
tions for the larger half of the challenge sizes are
strongly consistent and > 90% of all of the pre-
dictions for all challenge sizes are weakly consis-
tent;

• fair fit: the model predicts well for most of the
challenge sizes; more precisely, > 90% of the
predictions for challenge sizes or > 90% of pre-
dictions for the larger half of the challenge sizes
are weakly consistent;

• tends to over-/under-estimate: the model pre-
dictions are over-/under-estimates or are weakly
consistent with observed running time data for

most of the challenge instance sizes; more pre-
cisely, > 10% of the confidence intervals for pre-
dictions on challenge instance sizes are disjoint
from the confidence intervals for observed run-
ning time data and > 90% of the prediction in-
tervals are above/below or are consistent with the
observation intervals;

• over-/under-estimate: the model predictions are
over-/under-estimates of a large percentage of the
challenge sizes; more precisely, > 70% of the
confidence intervals for predictions on all chal-
lenge instance sizes or > 70% of those on the
larger half of the challenge sizes are above/below
the observation intervals.

These criteria are combined into the fully automated
interpretation procedure illustrated in Figure 2. Note
that when medians (or other statistics) are not defi-
nitely known (due to instances with unknown running
times), we create bootstrap confidence intervals for the
medians that combine both the uncertainty from the
variability in running times and the uncertainty from
unknown running times, and we compare these inter-
vals against those for the predicted running times. To
be more precise, we determine confidence intervals for
statistics that combine both sources of variability using
an optimistic-pessimistic strategy, whereby we treat an
unknown running time as zero when we calculate the
lower bound of the confidence interval and as infin-
ity in the upper bound of the confidence interval. In
this way, we can guarantee that the confidence inter-
vals must contain the desired statistic of the sample,
regardless of what values the unknown running times
might have taken if they had been observed. Then, we
say a confidence interval Io for observed running time
on a given challenge instance size is below the corre-
sponding confidence interval Ip for predicted running
time, if the upper bound of Io is smaller than the lower
bound of Ip.

3. Running ESA

ESA implements the methodology described in Sec-
tion 2 in Python 2.7, also making use of gnuplot and
LATEX to automatically generate and compile an easy-
to-read technical report (in the form of a PDF file) con-
taining detailed empirical scaling analysis results pre-
sented in tables and figures and their interpretation us-
ing our new procedure outlined in Section 2. ESA can
be used in two ways: either as a simple web-based sys-
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Fig. 2. Procedure used by ESA for automatic interpretation of scaling analysis results. Details on the conditions are provided in the main text.

tem or as a command-line tool2. While the web-based
system provides easy access to most of ESA’s features,
the command-line tool provides some additional func-
tionality. For many datasets, ESA can be run in 10 min-
utes or less; however, the running time of ESA depends
primarily on how easily the scaling models can be fit-
ted to the training set and on the number of bootstrap
samples. Larger training sets, an increased number of
bootstrap samples and scaling models that poorly fit
the data (hence requiring more time to fit), all tend to
increase the running time of ESA.

To perform scaling analysis, ESA requires input
data containing the sizes of the instances studied and
the running times of the target algorithm on those in-
stances. The user may also specify the number of in-
stances for some sizes; if there are fewer entries for a
given instance size than specified explicitly, ESA will
treat the missing entries as instances with unknown
running times. An example for such data is found in
a recent study by Dubois et al. [12], in the context of
analyzing the scaling behaviour of two inexact TSP al-
gorithms, where the running times of some instances
were unknown due to unknown optimal tour lengths.
An excerpt of an input file for ESA is shown in Fig-
ure 3. In this example, multiple running times are pro-
vided for each instance, each of which corresponds to
an independent run of the target algorithm on the spec-
ified instance. The user is required to include at least
one column with running times; however, any number
of additional columns may be appended to the file to
add additional independent runs per instance.

2Both are available at www.cs.ubc.ca/labs/beta/Projects/ESA.

#instance, size, datum (running time), datum, ...
500-1.tsp, 500, 1.60276, 1.54476, ...
500-2.tsp, 500, 1.52777, 1.42378, ...
500-3.tsp, 500, 1.41978, 1.53777, ...
...
500-1000.tsp, 500, 1.72774, 1.72074, ..
600-1.tsp, 600, 3.45747, 3.2595, ...
600-2.tsp, 600, 1.92, 2.35964, ...
...
4500-96.tsp, 4500, 1132.75, 2436.47, ...
4500-97.tsp, 4500, 227.771, 1027.32, ...
4500-99.tsp, 4500, 399.643, 188.184, ...
#instances,4000,100
#instances,4500,100

Fig. 3. Example input file for ESA, where “...” represents omitted
lines analogous to those shown. Data shown is from EAX [16] on
RUE instances.

In many applications, a user may wish to substitute
an instance feature other than size that is known to af-
fect instance difficulty. In such a scenario, it is also
important for the user to ensure that all features other
than the one being varied are held constant, or that the
other feature values are independently and identically
distributed over the instance set, so as to avoid invali-
dating the results of the statistical analysis due to com-
pounding factors.

ESA also takes as input a configuration file, con-
taining details on the target algorithm (algName), the
instance distribution (instName), the number of sup-
port instance sizes (numTrainingData), etc. Each line
of this file specifies one parameter setting in the format
of “name : value”.

There are a number of other files that a user may
supply, including: a file specifying the models to be fit-
ted, a LATEX template specifying the content and format
of the output report, and gnuplot templates specifying

www.cs.ubc.ca/labs/beta/Projects/ESA
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Table 1
Support data summary for EAX on RUE instances

n 500 600 · · · 1500

# instances 1000 1000 · · · 1000
# running times 1000 1000 · · · 1000

mean 1.901 2.951 · · · 29.15

coefficient of variation 0.4569 1.05 · · · 6.151

Q(0.1) 1.495 2.111 · · · 10.84

Q(0.25) 1.601 2.253 · · · 11.58

median 1.73 2.516 · · · 13.21

Q(0.75) 1.917 2.774 · · · 24.97

Q(0.9) 2.08 3.181 · · · 34.69

the format of the plots appearing in the report. The first
of these is needed, because ESA supports customized
models, as long as the models are supported by python
(including the math and numpy packages) and gnu-
plot. Each line of this file specifies one parametric scal-
ing model, including the model name (e.g., Exponen-
tial), the number of parameters (e.g., 2), LATEX, python
and gnuplot expressions for the model, as well as de-
fault values for the fitting parameters. In the mathe-
matical expressions for the models, x represents the
instance size, while model parameters are written as
@@a@@,@@b@@, etc.

ESA comes with a default LATEX template for the
report containing the results of the scaling analysis.
This template can be customized easily by anyone with
working knowledge of LATEX. Dynamic elements are
enclosed in “@@” in the template; e.g., the target algo-
rithm name specified in the configuration file is refer-
enced as “@@algName@@”. Users of ESA can also
modify the formatting of the plots used for graphically
presenting scaling analysis results, by editing the de-
fault template gnuplot script, e.g., to obtain log-log or
semi-log plots.

Here, we illustrate some examples of ESA output
from our analysis on EAX [16], a state-of-the-art in-
exact TSP solver based on an evolutionary algorithm
with a special edge assembly crossover operator [17].
The tables and figures include:

• Two tables showing statistics of running times for
support and challenge data, respectively, to sum-
marize the data set. An example of the support
data summary is illustrated in Table 1.

• A table presenting fitted models and correspond-
ing root mean squared error (RMSE) values,
which can be used to easily see which model best
fits the data according to the challenge RMSE
(which is highlighted in boldface), as illustrated
in Table 2.

Table 2
Individual scaling models fitted to EAX on RUE Instances

Model
RMSE RMSE

(support) (challenge)

EAX
Exp. Model 1.0511× 1.0017x 1.1903 [674.26, 864.85]

RootExp. Model 0.15777 × 1.1215
√

x 0.22553 [24.586, 183.39]
Poly. Model 1.409× 10−5 × x1.8788 0.11865 [122.17, 300.04]

Table 3
Confidence intervals for scaling model parameters from Table 2

Solver Model Confidence interval of a Confidence interval of b

EAX
Exp. [1.0177, 1.079] [1.0017, 1.0017]

RootExp. [0.14835, 0.16531] [1.1198, 1.1236]

Poly.
[
1.1187× 10−5, 1.6711× 10−5

]
[1.8542, 1.9122]

Table 4
Bootstrap confidence intervals for RMSE of EAX scaling models

Solver Model
Support RMSE Challenge RMSE

Median Confidence Interval Median Confidence Interval

EAX
Exp. 0.45758 [0.40345, 0.51484] 780.07 [417.88, 980.96]

RootExp. 0.20977 [0.16623, 0.28264] 82.313 [11.721, 468.78]
Poly. 0.21901 [0.15746, 0.28357] 200.36 [95.001, 574.23]

• A figure showing running times, fitted models and
corresponding bootstrap confidence intervals for
each model, which provides a very useful and
easy to understand visualization of the analysis
performed, as illustrated in Figure 4.

• A figure showing the residues of the fitted mod-
els, which helps the user easily identify trends, as
illustrated in Figure 5.

• A table of bootstrap confidence intervals for all
model parameters, which allows a user to assess
the uncertainty in the fitted models and perhaps
reject (or fail to reject) hypotheses about whether
or not empirical observations match theoretical
expectations about an algorithm’s scaling. An ex-
ample is shown in Table 3.

• A table of medians and bootstrap confidence in-
tervals for the support and challenge RMSE of
each model, which provides more information
about how well the models fit the data than Ta-
ble 2 by leveraging the bootstrap analysis, as il-
lustrated in Table 4.

• Two tables, for each model, of bootstrap confi-
dence intervals for observed and predicted run-
ning times, one for support data and the other
for challenge data. These tables allow the user
to easily identify which model predictions are
weakly or strongly consistent with the observa-
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Fig. 4. Example output of ESA for EAX on RUE instances – running times, fitted scaling models and corresponding bootstrap confidence
intervals.
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Fig. 5. Example output of ESA for EAX on RUE Instances – residues of the fitted models.

tions through boldface and asterisks. An example
for challenge data is illustrated in Table 5.

A snapshot of the report generated by ESA using the
default LATEX template is shown in Figure 6, the full
report can be found online 3.

4. Benchmark sets

In order to assess the quality of the results obtained
by ESA, it is important to study “real” application sce-
narios (i.e., running time data sets obtained by running

3www.cs.ubc.ca/labs/beta/Projects/ESA/samples/scaling_EAX.
pdf

an algorithm on a set of instances) as well as “artifi-
cial” scenarios, where we have complete control over
the properties of the running time data set and are thus
able to verify that ESA produces the correct output. To
this end, we have developed a novel technique for pro-
ducing approximately realistic running time data sets
with known scaling properties. We perform a rigorous
analysis of ESA’s performance on such artificial data
sets and derive advice and best-practices in Section 5
and we perform additional experiments investigating
ESA’s performance on artificial data sets with compet-
ing, lower-order terms in Section 6. Finally, in Sec-
tion 7, we present a summary of successful applica-
tions of ESA’s methodology on real-world data sets.

www.cs.ubc.ca/labs/beta/Projects/ESA/samples/scaling_EAX.pdf
www.cs.ubc.ca/labs/beta/Projects/ESA/samples/scaling_EAX.pdf


8 Y. Pushak et al. / Empirical Scaling Analyzer

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Confidence intervals for observed and predicted challenge data

Solver n
Prediction confidence intervals Observed median run-time

RootExp. model Point estimates Confidence intervals

EAX

2000 [26.06, 27.26] 26.19 [25.3, 27.92]

2500 [47.37, 50.44] 46.82 [39.03, 68.04]

· · · · · · · · · · · ·
4500 [327.5, 369.2] [303.3, 766.8] [207.5, 1482]

Fig. 6. A snapshot of the 7-page technical report generated by ESA.

Any artificially generated data set of running times
should display to the greatest possible degree charac-
teristics similar to those of realistic application scenar-
ios. Towards this end, we simulated a randomized algo-
rithm with three distinct sources of variability in run-
ning time: variance due to differences between prob-
lem instances (of the same size); variance in running
times between multiple independent runs on the same
problem instance; and changes in running times as a
function of instance size. To simulate the variance from
independent runs on a single instance, we draw sam-
ples from an exponential distribution, parameterized to
have a median running time equal to the desired run-
ning time for the instance. In theory, many families
of distributions could be used to model the variabil-
ity in running times, and each would likely produce

slightly different results. However, since we are par-
ticularly interested in being able to apply the lessons
learned from this analysis to scenarios with NP-hard
problems, we chose an exponential distribution, which
is known to closely resemble behaviour observed for a
range of prominent stochastic local search algorithms
(see, e.g., [18]).

Similarly, to determine the median running time for
a given instance, we draw a sample from an expo-
nential distribution with a prescribed median. While
we expect that the distribution in running times be-
tween instances will vary between applications, we
chose an exponential distribution because we have ob-
served high variability and heavy tails in (median) run-
ning times across instances of the same size for several
scenarios we studied previously (i.e., three complete
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and three incomplete SAT solvers for Random 3-SAT
phase transition instances [4] and two state-of-the-art,
inexact TSP solvers on RUE instances [14]). Finally, to
determine the median running time for a given instance
size, we use a given scaling model mapping instance
size to median running time.

As an example, assume we want to generate running
times for a randomized algorithm with quadratic scal-
ing on an instance of size n = 1000. First, we would
pick the running time scaling model, e.g., 10−6 · n2,
and use it to compute the median running time for in-
stance size 1 000 – in this case 10−6 ·1 0002 = 1 (CPU
second). Second, we draw a sample from an exponen-
tial distribution with median 1. In this case, assume we
draw a value of 0.83291 (CPU seconds); this means
that 0.83291 is the median running time for that partic-
ular instance. Finally, if we want to simulate 3 indepen-
dent runs of the algorithm on this instance, we would
draw 3 samples from an exponential distribution with
median 0.83291.

5. Stress testing

There are many potential factors that could cause
ESA to report misleading or incorrect results: for ex-
ample, it could erroneously accept an incorrect scal-
ing model because of misleading lower-order terms, or
because the confidence intervals for the model predic-
tions are so large that any model fits the data. Clearly,
the latter case is more benign than the first, but it is
not always clear how to resolve the problem. To better
understand the robustness and limitations of ESA, we
conducted a series of carefully designed stress-testing
experiments. Specifically, by varying properties of arti-
ficially generated benchmark sets of running time (see
Section 4), we studied the performance of ESA for a
range of challenging situations, i.e.,

• decreasing the number of instances per instance
size;

• decreasing the number of support instance sizes;
• reducing the number of independent runs per in-

stance;
• increasing the extrapolation distance; and
• decreasing the number of bootstrap samples ESA

uses.

We discuss the additional challenges imposed by the
presence of competing, lower order terms in an algo-
rithm’s running time scaling in Section 6.

We generated two data sets, using a polynomial
and an exponential scaling model. For the polynomial
model, we used 2.58 · 10−10 · n3.37, which tended to
fit some real running time data obtained from a TSP
solver in preliminary experiments. We fitted the expo-
nential model to data from the polynomial model, to
make the two models as similar as possible. We gen-
erated running times for 21 instance sizes: 500, 600,
..., 1 900, 2 000, 2 500, ..., 4 500, and we used 16 sup-
port instance sizes, 5 challenge instance sizes, 500 in-
stances per size and 10 independent runs per instance.
Since the instance sets are sampled from a probabil-
ity distribution, we created a very large data set with
10 000 instances per size and 100 independent runs per
instance. This allowed us to perform 1 000 independent
runs of ESA on various sub samples of the original data
sets with the desired properties, e.g., 100 instances per
support instance size. For all of our experiments, we set
ESA’s parameters to their default values, using 1 000
bootstrap samples (unless otherwise indicated) and an
alpha value of 95, and we studied the median running
time of the per-instance medians.

In the following, we provide only a high-level sum-
mary of our findings, and distill from these results
generic advice on best-practices for using ESA. For a
substantially more detailed discussion and presentation
of the results, please see our online, supplementary ma-
terial4.

What happens when we decrease the number of
instances per instance size? We studied ESA’s per-
formance with 10, 20, 50, 100, 200, 500 and 1 000
instances per instance size. We found that ESA can
identify that the correct model fits the data even with
a very small number of instances per size; however,
this is mostly because the size of the bootstrap confi-
dence intervals for the fitted model predictions grows
much more quickly than the size of the confidence in-
tervals for the observed challenge statistics, i.e., all of
the fitted models fit the data very well for small in-
stance sets. For example, for the polynomial model on
the polynomial data set and for 10 support instances
per size, the median confidence interval size for pre-
dictions on challenge instance size 4 500 was 247.2,
where we measure the size of a confidence interval as
the upper bound divided by the lower bound. That is
to say, the upper bound of the 95% confidence inter-
val was 247.2 times larger than the lower bound, for
the median size of the confidence intervals determined
from our 1 000 runs of ESA. On the other hand, the

4 www.cs.ubc.ca/labs/beta/Projects/ESA

www.cs.ubc.ca/labs/beta/Projects/ESA
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median confidence interval size for observed running
times on instance size 4 500 was only 6.1, i.e., the inter-
val for performance predictions was 40.2 times larger
than that for observations. In comparison, when using
1 000 instances per instance size, the interval for pre-
dictions was only 1.4 times larger than that for obser-
vations. We observed qualitatively similar results for
the other models and on the exponential data set. Given
how much more quickly the confidence intervals for
predictions grow than those for observed performance
as we decrease the number of instances per instance
size, it is unsurprising that ESA determines that all of
the fitted models fit the challenge data very well.

What happens when we decrease the number of
support instance sizes? To avoid conflating changes
to the number of support instance sizes with changes to
other properties of the data set (e.g., the extrapolation
distance or the range covered by the support sizes), we
fixed the location of all of the challenge instance sizes
and the largest support instance size, and we forced the
smallest support instance size to always be either 500
or 600. Then, to control the number of support instance
sizes we varied their density. For example, when using
8 support instance sizes instead of 16, we used every
second support instance size from our overall settings
of n = 500, 600, ..., 2000.

To our surprise, we observed that ESA reported far
less false positives in this case than when we reduced
the number of instances per instance size, relative to
the total number of support instances available. For ex-
ample, the square-root exponential model was reported
to tend to fit the data 6.4% of the time for the polyno-
mial data set and 14.7% of the time for the exponen-
tial data set when given only 3 support instance sizes.
In comparison, when given 16 support instance sizes,
but only 100 instances per size – a roughly compa-
rable total number of support instances – the square-
root exponential model tended to fit the data to 51.4%
and 51.0% of the time, for the polynomial and expo-
nential data sets respectively. Specifically, when given
1 600 instances spread between 16 support instance
sizes, ESA reported false positives 8.0 times more of-
ten for the polynomial data set and 3.5 times more of-
ten for the exponential data set, than when given 1 500
instances spread between 3 instance sizes.

However, while this may indicate a good option for
saving on computational expenses, we advise extreme
caution when analyzing results with ESA that use very
small numbers of support instance sizes. In particu-
lar, when ESA does report a false positive, it does so
with confidence intervals for model predictions that are

smaller than in the case with less instances per instance
size; e.g., for instance size 4 500 the median inter-
val size for the square-root exponential model perfor-
mance predictions on the polynomial data set was 3.2
when using 1 500 instances spread between 3 instance
sizes, compared to 7.4 for 1 600 instances spread be-
tween 16 support instance sizes. As a result, a user may
be lead to incorrectly assume that ESA’s best-fit model
accurately captures the true scaling. In real scenarios,
we expect there to be an added challenge for ESA: cop-
ing with the effects of lower order scaling terms, which
would likely significantly increase the probability that
ESA will incorrectly classify the scaling when only a
few support instances sizes are used. Furthermore, as
we discuss in Section 6, the best safeguard of which we
are aware against making incorrect assumptions due to
lower order terms consists of looking at the degree to
which the model fits both the support and challenge
data. When a very small number of support instance
sizes are available, this type of safeguard becomes im-
possible, because there is not enough data to observe
systematic deviations in the fitted models compared to
the running times observed on the smallest support in-
stance sizes.

What happens when we reduce the number of in-
dependent runs per instance? For randomized target
algorithms, or in situations where significant noise in
the execution environment is present, it is common to
perform multiple independent runs of the algorithm on
each instance and then take the median running time
for each instance in order to obtain stable performance
estimates [5]. We studied a set of 6 values for the num-
ber of independent runs per instance: 1, 2, 5, 10, 20 and
50.

We observed a similar trend as when we reduced the
number of instances per instance size; however, the de-
crease in confidence interval size and the increase in
false positives are more benign in this case. In particu-
lar, consider the decrease from 10 runs per instance to
1 run per instance, compared to the difference from us-
ing 500 instances per instance size to 50 instances per
size. In both cases, we are decreasing the total number
of algorithm runs by a factor of 10. However, the re-
sponse in the size of the bootstrap intervals, and hence
in ESA’s interpretation of the model fit, is drastically
different in the two cases. In particular, for 1 run per
instance, the median size of the bootstrap interval for
the running time predicted by the polynomial model on
the polynomial data set for instance size 4 500 is 2.6,
compared to 9.9 for 50 instances per instance size. The
percentage of false positives for the square-root expo-
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nential model on the polynomial data set is only 4.1%
with 1 run per instance compared to 74.1% with 50
instances per instance size – i.e., there are 18.1 times
as many false positives for the square-root exponen-
tial model on the polynomial data set when reducing
the number of instances per size by a factor of 10 than
when reducing the number of runs per instance by a
factor of 10.

Based on this striking difference, it is clear that if
the time required to collect all of the running time
data is constrained, then the best option is to use very
few independent runs per instance and more instances
per instance size, assuming these instances are avail-
able. This result aligns with our expectations, since us-
ing multiple instances captures variability due to both
randomness in the algorithm (and/or noise in the ex-
ecution environment) as well as differences between
instances, whereas performing multiple runs per in-
stance captures a strict subset of the total variabil-
ity. This insight also underlies a theoretical result by
Birattari [19], which shows that using only a single
run per instance with many instances is the optimal
choice when estimating the mean performance of a
randomised algorithm over a distribution of multiple
problem instances. Nevertheless, in the event that ad-
ditional instances are unavailable for study, the quality
of the resulting analysis can still be improved by using
the nested bootstrap procedure presented in this work
to properly quantify the variance due to additional in-
dependent runs per instance.

What happens when we increase the extrapola-
tion distance? To isolate the effect of varying the ex-
trapolation distance, we used only a single challenge
instance size for these experiments. We also used only
11 support instance sizes, 500, 600, ..., 2 000, instead
of the 16 used in the previous experiments, in order to
work with 5 different challenge instance sizes: 2 500,
3 000, ..., 4 500.

Overall, these results line up well with our intuition:
the farther the extrapolation, the higher the probability
that ESA will correctly identify the true scaling and re-
ject incorrect scaling hypotheses. Consider, for exam-
ple, the exponential data set. The exponential model
was reported to tend to fit or to fit the data very well
in at least 99.8% of runs for each location of the chal-
lenge instance size. However, as the challenge instance
size was moved from 2 500 to 4 500, the percentage of
times it was reported to fit the data very well increased
from 16.7% to 88.1%. At the same time, the square-
root exponential model was reported to tend to fit the
data 94.8% of the time with challenge size 2 500, but

only 0.1% of the time with challenge size 4 500. We
obtained analogous results for the polynomial data set.
While this may seem somewhat unsurprising, it does
indicate that the separation of the models fitted by ESA
grows more quickly than the size of the intervals for
the model predictions, otherwise ESA’s ability to dis-
tinguish between the models would not increase. As a
result, increasing the extrapolation distance is one of
the best ways to obtain more reliable and statistically
significant results with ESA. Of course, this comes at
the cost of the target algorithm runs themselves requir-
ing more running time.

What happens when we decrease the number of
bootstrap samples used by ESA? We tried seven val-
ues for the number of bootstrap samples used by ESA
with approximately logarithmic spacing: 20, 50, 100,
200, 500, 1 000 and 2 000. We found that modifying
this parameter had a mostly negligible effect on ESA’s
performance, which is somewhat surprising, especially
in the context of very small numbers of bootstrap sam-
ples. Overall, the largest effect that we observed was
a change in ESA’s running time, which is roughly lin-
ear with the number of bootstrap samples. We believe
that we would have observed more significant effects
on ESA’s performance had we also used less support
data, so we still recommend to use at least 1 000 boot-
strap samples, since the cost is typically small relative
to performing additional algorithm runs. On the other
hand, we observed no significant benefit to increasing
the number of bootstrap samples beyond 1 000.

6. Lower-order terms

One possible source of difficulty for ESA occurs
when a given target algorithm shows scaling of running
time characterised by a function that includes lower-
order terms in addition to the asymptotically dominant
term. For example, an algorithm may show exponen-
tial asymptotic scaling of running time with instance
size; however, for small instance sizes, the scaling may
appear to be polynomial, because the running times are
dominated by polynomial costs incurred by initializing
data structures.

To investigate these effects, we used running time
data sets generated with two polynomial terms with
degrees 2 and 5. For the degree-2 polynomial term,
we used the coefficient 9.6 · 10−7, and for the degree-
5 polynomial term, we considered three coefficients:
4.8 · 10−15, 4.8 · 10−16 and 4.8 · 10−17. These val-
ues were chosen so that the transition occurs near the



12 Y. Pushak et al. / Empirical Scaling Analyzer

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

low, middle and high end of our support instance sizes,
respectively. Our data sets contained 11 independent
runs per instance with 1 000 instances for each of the
21 instance sizes 500, 600, ..., 1 900, 2 000, 2 500, ...,
4 500.

In addition, we ran ESA three times using three dif-
ferent values for the number of support instance sizes:
8, 12 and 16; in each case, all remaining instance sizes
were used as challenge data. These experiments pro-
duced a total of nine different ESA reports, which we
examined in detail. We also provided ESA with a four-
parameter, two-term polynomial model of the form
a·nb+c·nd, to determine if the scaling behaviour could
be correctly identified, and accurate scaling models
could be produced.

What happens when the transition is early?
When the transition between dominant terms occurs
within the lower range of small support instance sizes,
the fit of the single-term model is able to capture the
asymptotic scaling relatively accurately, e.g., see Fig-
ure 7, where a polynomial model of degree 4.97 fits the
challenge data very well. In comparison, the two-term
polynomial model provides a better fit for the small
instance sizes, but yields larger bootstrap intervals for
the model predictions. For this model, ESA fit a degree
of 2.00 for one of the polynomial terms and a degree
of 5.14 for the other, and reported that this model also
fit the data very well. Considering the large number of
parameters in the more flexible two-term polynomial
model, this is not surprising.

These results are positive, but we note that ESA
experiences some difficulties fitting the 4 parameter
model. In particular, higher-quality initial parameter
values are needed for the two term model than for
single-term models. Furthermore, the confidence inter-
vals for the degrees of each term in the four-parameter
model are relatively large and overlapping, at b ∈
[1.41, 4.87] and d ∈ [4.77, 6.26]. We believe that this
is caused by outliers in the data for large support
instances sizes that lead to some model over-fitting
within ESA.

What happens when the transition occurs near
the middle of the support range? As the transition
between the two terms moves closer to the large end of
the support instance sizes, the quality of the ESA report
starts to degrade. Overall, ESA is still able to do quite
well, as long as the location of the transition is com-
pletely covered by the support instance sizes, as seen
in Figure 8, where the bootstrap intervals for the pre-
dictions obtained from both types of polynomial mod-
els capture the observed challenge data. The single-

term model is reported to “fit the data very well”, al-
though it does not quite capture the true degree of the
asymptotic scaling with a reported confidence interval
of [4.00, 4.74]. On the other hand, the two-term model,
which is only reported to “tend to fit the data”, does
capture the true asymptotic scaling, with the confi-
dence intervals of b ∈ [1.50, 2.30] and d ∈ [4.78, 7.06].

In this case, we also see that ESA had less trou-
ble distinguishing between the two polynomial terms
when fitting the two-term polynomial model, as ev-
idenced by the disjoint bootstrap intervals for b and
d. However, we also see that the size of the bootstrap
intervals for the two-term model predictions has in-
creased significantly (see Figure 8). We believe this is
caused by the fact that there is only a small number of
instance sizes past the midpoint of the transition, and
hence less data to help ESA recover from the effects
of outliers. When we decrease the number of support
instance sizes (data not shown) we find that the confi-
dence intervals for the model predictions are similar in
size for the two-term polynomial model; however, the
single-term model is unable to accurately capture the
asymptotic scaling.

What happens when the transition is late? The
worst-case scenario for ESA occurs when the transition
in dominance between two competing terms occurs for
instance sizes close to or beyond the largest support in-
stance size, so that the true asymptotic scaling is heav-
ily obscured on the given running time data. This can
be seen in Figure 9, where the square-root exponential
model appears to fit the data very well. However, ESA
also identifies that the two-term polynomial model fits
the data very well, and thereby does not dismiss the
correct scaling model. In practice, the safest course of
action in such cases is to collect more running time
data – in particular, for larger challenge instance sizes
– and to run ESA again. In cases where this is impos-
sible, a pragmatic user would be inclined to choose the
square-root exponential model as the one that is the
best fit, while keeping in mind that it may be an over-
estimate for the true running time scaling. In our ex-
ample, we can see limited support that the square-root
exponential model is an over-estimate by examining
the smallest support instance sizes, for which the cur-
vature of the square-root exponential model is just be-
ginning to pull the model above the observed running
times. Similar situations may occur in other scenarios
where the best-fit model may not accurately capture
the asymptotic scaling due to the effects of lower-order
terms. One useful method for detecting this is to exam-
ine the residual plots generated by ESA, and in partic-
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Fig. 7. Early transition example: generated using 4.8 · 10−15 · x5 + 9.6 · 10−7 · x2 with 16 support instance sizes.
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Fig. 8. Mid transition example: generated using 4.8 · 10−16 · x5 + 9.6 · 10−7 · x2 with 16 support instance sizes.

ular to zoom in on the smallest support instance sizes
to look for systematic deviations or trends indicating
that the model may not accurately predict the data for
smaller instance sizes (and hence may also not fit the
data for larger instance sizes).

We also observed that the size of the bootstrap inter-
vals for predicted running times continues to increase
for the four-parameter model. This is even more clear
for the case with only 12 support instance sizes (data

not shown), where the bootstrap intervals for predicted
running times are very large (4.4 · 104 for instance size
4 500). When running ESA on a variant of this scenario
with only 8 support instance sizes, we found that the
Levenberg-Marquardt algorithm simply was unable to
fit the four-parameter model to the data – even when
the default fitting parameters were set to the true values
for the running time scaling, the implementation of the
Levenberg-Mardquart algorithm used in ESA simply
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Fig. 9. Late transition example: generated using 4.8 · 10−17 · x5 + 9.6 · 10−7 · x2 with 16 support instance sizes.

crashed.
What happens if we have prior knowledge about

the lower-order terms? Practical applications of ESA
to algorithms with competing terms may have known
scaling for start-up costs; e.g., the initialization of a
data structure may be known to have quadratic scal-
ing. Hence we may be inclined to use a scaling model
that captures this prior knowledge, such as a three-
parameter, two term polynomial model of the form
a · nb + c · n2.

We ran ESA again on each of our 9 scenarios; how-
ever, this time we used the three-parameter, two-term
polynomial model a · nb + c · n2. Overall, the re-
sults produced by ESA did not change much. In a few
cases, the fit of the 3-parameter model was slightly
better for the small instance sizes; however, it ap-
peared to remain unchanged for the challenge instance
sizes. We also observed that the bootstrap intervals
for predicted running times were slightly smaller and
located slightly higher in most of the scenarios. The
only exception to this observation was for the function
4.8 ·10−15 · x5+9.6 ·10−7 · x2 when ESA was run with
8 support instance sizes (a mid-range transition sce-
nario). We found that the bootstrap confidence inter-
vals for predictions obtained from the four-parameter
model were very large (comparable to those in Fig-
ure 9); however, the three-parameter model produced
substantially smaller confidence intervals (comparable
to those in Figure 8). Unfortunately, the Levenberg-
Mardquart algorithm was still unable to run success-

fully on some of the 1 000 bootstrap samples of the
4.8 · 10−17 · x5 + 9.6 · 10−7 · x2 data set when only 8
support instance sizes were used.

7. Successful applications

During the development of ESA, earlier versions
were used in several projects to analyze the empiri-
cal scaling of high-performance algorithms for several
widely studied NP-hard problems. These early appli-
cations provided interesting results, as well as valuable
insights that guided the development of the version of
ESA presented here. In the following, we outline the
findings obtained from these earlier applications.

The methodology underlying ESA was first used
to study the empirical scaling of the running time of
Concorde, a prominent TSP solver. Concorde repre-
sents the long-standing state of the art in exact TSP
solving; it incorporates mechanisms based on over 50
years of research on the TSP and has been used to
solve the largest non-trivial TSP instances for which
provably optimal solutions are known [20, 21]. Us-
ing the methodology underlying ESA, Hoos & Stüt-
zle fitted an exponential model of the form a · bn with
b ≈ 1.003 to the running times observed for Concorde
on one of the most widely studied types of TSP in-
stances – so-called random uniform Euclidean (RUE)
instances [11]. Challenged on larger instance sizes, this
model was rejected with 95% confidence in favour of
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a square-root exponential model of the form a · b
√

n,
with b ≈ 1.24. This clearly indicates that solving this
widely studied class of TSP instances, which up to this
point were believed to be challenging, is substantially
easier than expected based on theoretical worst-case
complexity results.

In another application of the ESA methodology,
Dubois et al. studied the scaling for the state-of-the-
art inexact TSP solvers, EAX [16] and LKH [22] on
the same set of RUE instances [12]. They found ev-
idence that the running time of EAX shows square-
root exponential scaling, with small support for poly-
nomial scaling with degree b ≈ 1.95. The scaling they
observed for LKH 1.3 was only consistent with the
square-root exponential model. For LKH 2, they found
that there was also some evidence that the scaling was
between a square-root exponential model and a poly-
nomial model with degree b ≈ 2.9. However, all three
algorithms showed better scaling of the running time
required for finding optimal solutions than Concorde,
with bases b ≈ 1.12, 1.20 and 1.19 for the square-root
exponential models fitted for EAX, LKH 1.3 and LKH
2, respectively. Later, these results were improved us-
ing much longer runs of Concorde to find the optimal
solutions for nearly all of the instances used in these
experiments (see Section 6.3 in [13]). ESA indicated
that the performance of EAX was inconsistent with
a polynomial model, but was still mostly consistent
with a square-root exponential model, while for LKH
2, the observed scaling falls between a square-root ex-
ponential and a polynomial model of degree b ≈ 2.9.
These studies demonstrate how the methodology un-
derlying ESA can reveal substantial differences in em-
pirical performance scaling between different state-of-
the-art algorithms, and between different versions of
the same algorithm. Furthermore, they indicate quali-
tative differences in the empirical complexity of state-
of-the-art exact and inexact TSP solvers.

Finally, Mu et al. used ESA to investigate the impact
of parameter settings and automated algorithm config-
uration on the performance scaling of the two inex-
act TSP algorithms [14]. For EAX, algorithm config-
uration helps improve the scaling, which can be fur-
ther improved by adapting the population size with in-
stance size. In particular, they achieved a ≈ 1.13-fold
improvement in the median running time for EAX to
solve RUE instances of size n = 4500 and found evi-
dence for more substantial improvements on larger in-
stances. For LKH, significant impact of parameter set-
tings on performance scaling was observed; however,
the state-of-the-art algorithm configurator SMAC [23]

tends to overfit the running times for smaller in-
stances and thus produces configurations for which
LKH scales worse. These results indicate that param-
eter settings of heuristic, state-of-the-art algorithms
for computationally challenging problems, such as the
TSP, can impact the qualitative scaling behaviour (i.e.,
lead to improvements in running times beyond con-
stant factors). Unfortunately, they also reveal that cur-
rent automated algorithm configuration methods may
not be able to realise those improvements, since they
do not sufficiently take into account performance scal-
ing.

In a second line of work, the empirical scaling anal-
ysis approach underlying ESA has been used to study
high-performance solvers for the propositional satisfi-
ability problem (SAT). Specifically, Mu & Hoos stud-
ied three prominent, incomplete SAT solvers based on
stochastic local search (SLS) [24]: BalancedZ [25],
WalkSAT/SKC [26] and probSAT [27]. They also stud-
ied three prominent DPLL-based, complete solvers,
kcnfs [28], march_hi [29] and march_br [30] (version
SAT+UNSAT), on random phase-transition 3-SAT in-
stances [4]. For each algorithm, they used ESA to in-
vestigate a polynomial model (a · nb) and an exponen-
tial model (a · bn) of scaling of running time with in-
stance size. For the SLS-based algorithms, they anal-
ysed the scaling of median running times on the sat-
isfiable instances and found that the observed scaling
was consistent with a polynomial model with degree
b ≈ 3, whereas the exponential model was inconsistent
with most of the observations for the challenge data.
Looking at the confidence intervals for the polynomial
model parameters for the three SLS-based solvers, they
found no evidence that any algorithm scaled signifi-
cantly better than any other. The DPLL-based, com-
plete SAT solvers were analysed on the satisfiable and
unsatisfiable instances; here, the median running time
was found to be consistent with an exponential model
with b ≈ 1.03 and inconsistent with the polynomial
model. This was confirmed to also be the case when
considering only the satisfiable instances. These re-
sults clearly indicate that random-3-SAT at the solubil-
ity phase transition is hard for state-of-the-art complete
SAT solvers, yet easy for cutting-edge SLS-based al-
gorithms – a result that calls into doubt the suitability
of this class of instances as a benchmark that captures
the complexity of SAT.

Mu later expanded this analysis to two classes of
random 4-SAT instances; this work, described in de-
tail in Section 5.4 of [13], yielded several interesting
results. On random phase-transition 4-SAT instances,
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an exponential model with b ≈ 1.02 was found to be
consistent with the observed performance data for Bal-
ancedZ, whereas a root-exponential model (which was
fitted with b ≈ 2.8 for WalksSAT/SKC and b ≈ 1.6
for probSAT) was found to accurately describe the per-
formance scaling of the other two SLS-based, incom-
plete SAT solvers. The DPLL-based, complete solvers
continued to demonstrate scaling behaviour consistent
with exponential models; however, the degree of the
model (b ≈ 1.1) was found to be significantly higher
than in the case of 3-SAT instances. Mu also stud-
ied WalkSAT/SKC and kcnfs on a class of random
4-SAT instances below the phase transition that are
believed to be intrinsically challenging and showed
that both solvers scale significantly better than on
phase-transition random instances, in that a polyno-
mial model best describes the observed performance
scaling. As in the case of random-3-SAT, these re-
sults challenge prior beliefs and assumptions that were
based on combinations of theoretical complexity re-
sults and simpler forms of empirical performance as-
sessment, and open interesting avenues for future in-
vestigation.

Of course, one may wonder how all these results
compare to those produced by the improved version of
ESA presented in this article. Our biggest change to
the methodology underlying ESA is the addition of the
nested bootstrap sampling procedure to handle multi-
ple independent runs of a randomized algorithm on a
given problem instance. However, considering the re-
sults from Section 5, we would not expect this modifi-
cation to the method to substantially affect these earlier
results. Unfortunately, the only remaining copies of the
data from earlier studies contain per-instance median
running times, so we were unable to test this hypothe-
sis using direct comparisons of the earlier and most re-
cent versions of ESA on the original data. We therefore
re-ran EAX on the same TSP RUE instance set (using
the improved optimality results by Mu [13]), but this
time, we performed 11 independent runs per instance.
On this data, the version of ESA described here yielded
results that are qualitatively very similar to those re-
ported by Mu et al.. [14]. We found that the sizes of the
bootstrap confidence intervals for the observed running
times on challenge instances increased by 4.2% on av-
erage, where the size of the interval is defined as its
upper bound divided by its lower bound. Similarly, the
size of the confidence intervals for the square-root ex-
ponential model that best describes the running times
increased by 0.1% on average. This is unsurprising –
we expect an increase in confidence interval size, be-

cause the resampling over multiple independent runs
per instance allows us to capture additional variability
in the scaling models due to randomization of the target
algorithm, whereas previously, the statistical nature of
the observed median running times was not taken into
account. In addition, the relatively small size of the in-
crease is consistent with our observations in Section 5.

The only other change we made to ESA’s method-
ology was to include for the first time the decision
model described in Section 2 used to automatically
summarize the scaling results. However, while this en-
hancement augments the previous scaling analysis re-
sults and provides a well-defined, principled and rigor-
ous way for assessing the scaling models, it does not
change any of the previous results. As an example, the
new procedure describes the exponential model pre-
dictions as being over-estimates for the observed scal-
ing of the three SLS-based SAT solvers on the random
3-SAT phase transition instances and characterises the
polynomial model as being a very good fit for the ob-
servations for WalkSAT/SKC and probSAT; however,
because the polynomial model predictions are only
weakly consistent with the observations for the largest
two instance sizes for BalancedZ, it describes the poly-
nomial scaling model for BalancedZ as being a fair fit.

8. Conclusions and future work

In this work, we introduced the empirical scaling
analyzer (ESA), an automated tool for analyzing the
empirical scaling of algorithm performance with input
size. ESA can fit multiple models on running time data
collected for a given algorithm across a series of in-
puts of varying sizes and generate results in the form
of technical reports. These reports contain easy-to-read
figures and tables, as well as automatically generated
interpretations. We also presented new methodology to
appropriately handle the variance between independent
runs of a randomized algorithm and a novel method for
automatically interpreting the scaling analysis results.

We presented a rigorous analysis of ESA’s perfor-
mance on several types of challenging scenarios. In
many cases, if ESA’s output appears unreliable (e.g.,
the size of bootstrap confidence intervals for the model
predictions is large for all of the fitted models), more
data is needed – perhaps running times for more in-
stance sizes, larger challenge instance sizes, more in-
stances per size or more independent runs per instance.
In particular, we found that increasing the number of
instances per instance size is a more cost-effective
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means of increasing the power of the statistical analy-
ses performed by ESA than increasing the number of
independent runs per instance. In addition, increasing
the extrapolation distance by using larger challenge in-
stance sizes is one of the most reliable (albeit costly)
means to increase ESA’s ability to discriminate be-
tween different scaling models. Based on our exten-
sive empirical analysis, we also caution against using
small numbers of support instance sizes, since this can
make it challenging or impossible to identify detrimen-
tal effects of lower-order terms or outliers on the results
obtained from ESA. From our experience, we recom-
mend to use around 11 support instance sizes, although
the exact number required varies between application
scenarios.

We found that ESA can correctly recognize the
asymptotic performance scaling of a given algorithm
when lower-order terms are present, provided that the
transition between the two competing terms of the scal-
ing model occurs towards the lower end of the sup-
port instance sizes used for the scaling analysis. How-
ever, increasing the number of parameters in a para-
metric model to capture the lower-order terms and the
asymptotic scaling substantially increases the size of
the bootstrap confidence intervals for the model per-
formance predictions and can cause ESA to experience
difficulties in fitting the models. If the effect of a lower-
order term dominates that of the asymptotic scaling be-
haviour across all support instance sizes, ESA is likely
to correctly recognize the true asymptotic scaling.

Overall, we have found that ESA is able to per-
form well in most scenarios. Unlike theoretical run-
ning time analysis, there is always the risk that a lower-
order term is initially dominating the running time,
and hence larger instance sizes are needed to accu-
rately identify the true asymptotic scaling. Neverthe-
less, empirical scaling analysis plays a key role in char-
acterizing and understanding the behaviour of high-
performance algorithms for important problems. This
is particularly true for scenarios where the observed
performance of algorithms exceeds the expectations
provided by a worst-case analysis, as well as in cases
where theoretical assumptions about the expected be-
haviour of an algorithm may not hold for real-world
instances. The methodology underlying ESA is widely
applicable to problems and algorithms where running
time data can be gathered for various instance sizes.
ESA provides an easy and convenient way to apply em-
pirical scaling analysis to algorithms of interest. Thus,
we believe that ESA will prove to be a useful tool for
researchers studying both the empirical and theoretical

scaling behaviour of algorithms, and we hope that ESA
will promote and enhance such studies.

There are several directions for future improvements
of ESA. In particular, it would be interesting to auto-
matically select models from a large family of func-
tions based on input data. This could also facilitate
fitting of models with lower-order terms. One possi-
ble approach towards this end involves repeated fit-
ting of models, first on the original data, then on the
residues, in order to obtain a model with several terms.
It would also be interesting to use an automated ma-
chine learning method, such as Auto-WEKA [31] or
auto-sklearn [32], to determine a scaling model; how-
ever, special care would need to be taken to preserve
the statistical significance of the results through mul-
tiple testing correction (and perhaps through the use
of a validation set with instances of intermediate size).
Currently, one of ESA’s biggest limiting factors is the
requirement that instances be grouped by size. Since it
is not always possible to collect instances grouped by
size, it would be extremely useful for many practical
application scenarios to develop new methodology for
empirical scaling analysis that overcomes this limita-
tion. Furthermore, we believe that many users of ESA
may be motivated to find upper or lower bounds on the
running times required to solve very large instances.
To this end, future extensions of ESA could be devel-
oped that fit tight bounds on the running time scaling
to provide users with such estimates.

ESA’s implementation is currently restricted to an-
alyzing a single feature, describing instance size or
difficulty, at a time. However, applications where two
or more features affect instance difficulty arise com-
monly. In principle, with relatively minor modifica-
tions to the methodology, ESA could be extended to
study such scenarios. However, this would give rise to
more complex classes of scaling models; as we have
seen in Section 6, this can pose challenges for ESA.
Therefore, we expect that substantial additional work
may be required to achieve a usable, robust exten-
sion of ESA that can deal with multiple instance fea-
tures. Nevertheless, such an improvement could be im-
mensely useful, as it would also enable users to easily
reason about the relative and absolute impact of vari-
ous instance features on the running time of an algo-
rithm. In principle, this type of comparative feature im-
portance analysis could be performed by applying the
existing version of ESA multiple times with different
instance features. However, special attention would be
required when generating or collecting instance sets.
Ideally, only one parameter controlling instance diffi-
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culty should be varied at a time when using ESA; oth-
erwise, interaction effects may invalidate the results.
If it is impractical to obtain one such instance set for
each feature studied, it might be possible to vary all
of the features independently and identically across the
instance set; however, this would substantially increase
the effective variability in the running time of the algo-
rithm, and may make it practically impossible to obtain
statistically significant results.

Another interesting avenue of study is the perfor-
mance of ESA when used to analyze the scaling of
polynomial-time algorithms. Preliminary results indi-
cate that such algorithms tend to show significantly
less statistical variation in their running times than the
heuristic, NP-hard algorithms that have been the pri-
mary subject of our study so far. Very small bootstrap
intervals can provide new challenges for ESA that will
need to be overcome in future extensions, since in such
cases, all of the fitted models tend to be rejected. The
introduction of tight upper and lower bounds into the
methodology underlying ESA may provide a way to
overcome this challenge.

The current version of ESA is limited to given, static
datasets. However, in practice, users may find after
running ESA that there is insufficient data to yield sta-
tistically meaningful results. In this case, a user would
likely want to collect more running time data and re-
peat the analysis. Future versions of ESA could be ex-
tended to automatically alert the user that more data
would be beneficial. Alternatively, ESA could be mod-
ified to perform additional runs of the algorithm to col-
lect more data automatically. Similarly, a variant of
ESA could be developed that automatically interleaves
the collection of running time data with scaling analy-
sis, until there is sufficient evidence to reject with 95%
confidence all but one of the candidate scaling models,
thereby minimizing the amount of running time data
that needs to be collected.

In addition, we are currently working on uses of
ESA in the development of automated algorithm con-
figuration procedures for better scaling behaviour.
Such procedures could make automated configuration
even more applicable to real-world situations, as prob-
lem instances of practical interest can take a long
time to solve. Automated configuration usually re-
quires many runs of the given target algorithm with dif-
ferent parameter settings, which can make it impracti-
cal to run a configuration procedure directly on large,
challenging instances. Previous work on the problem
of automatically configuring algorithms for improved
performance scaling has focused on generic protocols

for using existing configurators [33, 34]. An alternative
consists of incorporating empirical scaling analysis, as
performed by ESA, more directly into algorithm con-
figuration. Unfortunately, the current version of ESA
requires running time data for many problem instances
of different sizes, which can take a long time to pro-
duce. Thus, it will be important to design a way to re-
duce the time, possibly by leveraging previously fitted
models, e.g., by integrating Bayesian methods into em-
pirical scaling analysis, with a previous model acting
as the prior for model fitting. This could lead to an en-
hanced version of ESA that could then be integrated
into a future configuration procedure.
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