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Complexity and SAT

Time complexity is key in theoretical CS and practical applications

@ Scaling of running time as function of instance size
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Complexity and SAT

Time complexity is key in theoretical CS and practical applications

@ Scaling of running time as function of instance size

Propositional satisfiability problem (SAT)
@ First problem proved to be .4 &?-complete (Cook, 1971)
@ Intense academic interest & many practical applications

e Dramatic & sustained progress in SAT solving
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Background — Phase Transition

Soluability phase transition: 50% of random instances satisfiable
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Background — Phase Transition

Soluability phase transition: 50% of random instances satisfiable
@ Phase transition is sharp (Cheeseman et al., 1991)

o Believed to converge to fixed threshold
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Background — Phase Transition

Soluability phase transition: 50% of random instances satisfiable
@ Phase transition is sharp (Cheeseman et al., 1991)

o Believed to converge to fixed threshold

Widely studied instance distribution
@ Prominent model of computational hardness in SAT and beyond

» For DPLL-based solvers (Mitchell et al., 1992)
» For SLS-based solvers (Yokoo, 1997)

> ...
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Location of Phase Transition

Best previous model (Crawford and Auton, 1996):

me = 4.258-n+58.26-n"2/3
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Location of Phase Transition

Best previous model (Crawford and Auton, 1996):

me = 4.258-n+58.26-n"2/3

Weaknesses:

@ Inconsistent with results from cavity method (Mertens et al., 2006):

lim mc/n=4.26675=+0.00015

n—oo

@ Under-estimates m. for larger n
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Location of Phase Transition
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Location of Phase Transition
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Refined model:

me = 4.26675 - n+ 447.884 - n~ 00390967 _ 430,232 . 00276188
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Questions & Experiments

Scientific questions:
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Questions & Experiments

Scientific questions:

@ How do running times of high-performance SAT solvers scale?
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Questions & Experiments

Scientific questions:
@ How do running times of high-performance SAT solvers scale?
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» Between SLS- and DPLL-based solvers?
» Between two solvers of same kind?

@ How much faster are complete solvers solving satisfiable instances?

Solvers studied:
o DPLL-based: kenfs, march _hi, march_br
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Related Work

Observations on empirical scaling of:
@ SLS-based solvers, e.g., Gent and Walsh (1993); Gent et al. (1997)
@ DPLL-based solvers, e.g., Coarfa et al. (2003)
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Related Work

Observations on empirical scaling of:
@ SLS-based solvers, e.g., Gent and Walsh (1993); Gent et al. (1997)
@ DPLL-based solvers, e.g., Coarfa et al. (2003)

Limitations:

@ # variable flips vs. actual running times,
e.g., Gent and Walsh (1993); Gent et al. (1997)

@ Inconclusive results, e.g., Gent and Walsh (1993)
@ Simple curve fitting & vague definition of “good fit"
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I\/Iethodology (Hoos, 2009; Hoos and Stiitzle, 2014)

solver
running
times

fit parametric
models
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I\/Iethodology (Hoos, 2009; Hoos and Stiitzle, 2014)

solver
running
times

challenge by
extrapolation

fit parametric
models

@ use bootstrap re-sampling
for further assessment
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I\/Iethodology (Hoos, 2009; Hoos and Stiitzle, 2014)

solver
running
times

fit parametric challenge by
models extrapolation

use bootstrap re-sampling
for further assessment

Extensions made in this work:
o Use confidence intervals of observed data to assess models

@ Compare scaling models of two solvers based on confidence intervals
of observed/predicted data
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Empirical Scaling Results — DPLL-based Solvers

Divide instance sets into support and challenge:
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Empirical Scaling Results — DPLL-based Solvers

Fit parametric models:

RMSE RMSE
Model
(support) (challenge)
kenfs Exp. Model 4.30400 x 1075x1.03411" 0.05408 143.3
Poly. Model ~ 9.40745 x 10731 x n121005 (06822 1516
100000 T T T T
10000 E e
— 1000 F o ]
" -
2 100 £ et ]
a g
o -
- 10 & e - 4
g -
= 1F s i
2 A=
€ 0.1 F i J
S -+
[ .
0.01 ¢ -7 g Supportdata + 7
-7 Exp. model: 6.05099e-05 x 1.03311" - - - -
0.001 ¢ Poly. model: 1.00831e-30 x n1208155 3
Challenge data
0.0001 L L L L
100 200 300 400 500 600

n

Mu & Hoos (UBC) Empirical Complexity of Random 3-SAT

10



Empirical Scaling Results — DPLL-based Solvers

Bootstrap re-sampling:

Solver Predicted confidence intervals Observed median run-time (sec)
v Poly. model Exp. model Point estimates  Confidence intervals
450 [98.326,122.115] [120.078,161.444] 156.480 [143.340,166.770]
kenfs 500 [327.997,430.089]  [561.976,889.428]* 750.510 [708.290,806.130]

550 [971.862,1402.255] [2622.488,4901.661]* 3896.450 [3633.630,4130.915]
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Empirical Scaling Results — DPLL-based Solvers

Bootstrap re-sampling:

Solver Model ‘ Confidence interval of a Confidence interval of b
kenfs Poly. [ [3.33969 x 1073T,4.30846 x 10~2°] [11.4234,12.2674]
Exp. | [3.33378x107°,1.07425 x107%] [1.03136,1.03476]
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Empirical Scaling Results — DPLL-based Solvers

Compare scaling models:
e No significant difference between two march-variants
@ Two march-variants scale significantly better than kenfs

Scaling models of march _hi:
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Empirical Scaling Results — DPLL-based Solvers

Compare scaling models:
e No significant difference between two march-variants
@ Two march-variants scale significantly better than kenfs

Compare scaing models of kenfs against march _hi:
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Empirical Scaling Results — DPLL-based Solvers

Difference in solving satisfiable instances and unsatisfiable instances:
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Empirical Scaling Results — DPLL-based Solvers

Difference in solving satisfiable instances and unsatisfiable instances:
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Empirical Scaling Results — DPLL-based Solvers

Difference in solving satisfiable instances and unsatisfiable instances:

o |s the difference a constant factor?
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Empirical Scaling Results — DPLL-based Solvers
Difference in solving satisfiable instances and unsatisfiable instances:
@ Is the difference a constant factor?
e Fit running times of solving unsatisfiable instances with model a- b,

» Slower in solving unsatisfiable instances by constant factor only

104 T T T T %)
103 o .
X
— 102 F 0 s 3
= 10! u X7 3
=) 100 | - -+ 4
P i
£ -1 = 1 -
9107 F o+ 3
£ + i
£ 102F - Support data for sat. instances -+
2 3 o7 Challenge data for sat. instances X
07 - Exp. model for sat.: 8.33113e-06 x 1.03119" -~ -~ 7
s Exp. model bootstrap intervals for sat.
104 F Support data for unsat. instances W
) IChallenge dataI for unsat. instlances O
107
100 200 300 400 500 600

Mu & Hoos (UBC) Empirical Complexity of Random 3-SAT

13



Empirical Scaling Results — SLS-based Solvers

Fit parametric models:

RMSE RMSE
(support)  (challenge)
Exp. Model  6.89157 x 10 #x1.00798”  0.0008564  0.7600
Poly. Model 8.83962 x 10711 x n318915  ,0007433  0.03142
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Empirical Scaling Results — SLS-based Solvers

Bootstrap re-sampling:

Solver Predicted confidence intervals Observed median run-time (sec)
Poly. model Exp. model  Point estimates Confidence intervals
600 [0.054,0.081] [0.067,0.104] 0.056 [0.050,0.070]
WalkSAT /SKC : : : : :
1000 [0.229,0.557]* [1.151,4.200] 0.385 [0.327,0.461]
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Empirical Scaling Results — SLS-based Solvers

Bootstrap re-sampling:

Solver Model ‘ Confidence interval of a Confidence interval of b
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Empirical Scaling Results — SLS-based Solvers

No significant difference among scaling models for WalkSAT /SKC,
BalancedZ & probSAT
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Empirical Scaling Results — SLS-based Solvers

No significant difference among scaling models for WalkSAT /SKC,
BalancedZ & probSAT

Higher quantiles:

@ Scaling of 0.75- and 0.9-quantile of running times still consistent
with polynomial model
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Empirical Scaling Results — SLS-based Solvers

No significant difference among scaling models for WalkSAT /SKC,
BalancedZ & probSAT
Higher quantiles:

@ Scaling of 0.75- and 0.9-quantile of running times still consistent
with polynomial model

Even larger instances:

e Limited experiments on instances of n € {1500,2000,5000}
e Data consistent with polynomial models
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Conclusions

Refined model for location of 3-SAT phase transition
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Conclusions

Refined model for location of 3-SAT phase transition

Empirical scaling results for phase-transition random 3-SAT:
@ How do running times of high-performance SAT solvers scale?

» DPLL-based solvers: exponentially; SLS-based solvers: polynomially
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Conclusions

Refined model for location of 3-SAT phase transition
Empirical scaling results for phase-transition random 3-SAT:
@ How do running times of high-performance SAT solvers scale?
» DPLL-based solvers: exponentially; SLS-based solvers: polynomially
@ Is scaling difference between solvers significant?

» March-variants scale significantly better than kenfs
» No significant differences between SLS-based solvers

@ How much faster are complete solvers solving satisfiable instances?

» Constant factor only

Methodology applicable to other algorithms, instances and problems

o ESA: automated tool for scaling analysis (Mu and Hoos, 2015)
www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html
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