


Empirical Scaling Analyser (ESA)

An Automated System for Empirical Analysis of Performance Scaling

Zongxu Mu & Holger H. Hoos · University of British Columbia

- [1] on algorithm running times
- SAT [3], TSP [2], etc.
- Projects/ESA/esa-online.html

	median	0.0021	0.0045	0.0075	0.0109	0.0182	0.0241	0.0365
	Q(0.75)	0.0057	0.0121	0.0210	0.0298	0.0536	0.0867	0.1292
	Q(0.9)	0.0157	0.0364	0.0599	0.0891	0.2392	0.3534	0.4375
_	n		600	700	800	900	1000	
=	# Instances		572	636	584	592	593	
	moon		2 5027	2 2021	0 7717	15 5252	20 150/	

# Instances	572	636	584	592	593
mean	2.5027	3.3031	2.7717	15.5353	30.1594
coefficient of variation	13.3185	7.8551	5.1294	6.3333	5.4317
Q(0.1)	0.0124	0.0184	0.0268	0.0359	0.0540
Q(0.25)	0.0240	0.0395	0.0550	0.0801	0.1190
median	0.0564	0.1083	0.1797	0.2668	0.3845
Q(0.75)	0.2014	0.4775	0.7455	1.3348	1.8264
Q(0.9)	1.0791	2.0195	3.3366	8.3035	14.4725

Model Fitting

Fitted models of median running times:

		Model	RMSE	RMSE
				(challenge)
WalkSAT/SKC	Exp. Model	$\begin{array}{c} 6.89157 \times 10^{-4} \times 1.00798^{n} \\ \textbf{8.83962} \times \textbf{10}^{-11} \times \textbf{n}^{\textbf{3.18915}} \end{array}$	0.0008564	0.7600
	Poly. Model	$8.83962 \times 10^{-11} \times n^{3.18915}$	0.0007433	0.03142

95% confidence intervals for model parameters:

- fair fit: > 70% challenge points or > 70% of larger half of challenge points within predicted bootstrap intervals
- very good fit: > 95% challenge points within predicted bootstrap intervals
- over-/under-estimate: > 75% challenge points or > 75%of larger half of challenge points below/above predicted bootstrap intervals

Solver	Model		Conf. interval of b
	Poly.	$2.58600 \times 10^{-12}, 8.63869 \times 10^{-10}$	[2.80816, 3.76751]
	Exp.	$ \begin{bmatrix} 2.58600 \times 10^{-12}, 8.63869 \times 10^{-10} \\ [4.05064 \times 10^{-4}, 1.00662 \times 10^{-3}] \end{bmatrix} $	[1.00709, 1.00924]

Challenging Fitted Models

95% confidence intervals for predicted & observed data:

Solver	п	Predicted conf. intervals		Observed median running time		
Solver		Poly. model	Exp. model	Point estimates	Conf. intervals	
	600	[0.054 , 0.081]	[0.067, 0.104]	0.056	[0.050, 0.070]	
	700	[0.083 , 0.146]	[0.137, 0.264]	0.121	[0.105, 0.145]	
WalkSAT/SKC	800	[0.122, 0.238]	[0.277, 0.664]	0.180	[0.132, 0.209]	
	900	[0.170 , 0.373]	[0.565, 1.676]	0.267	[0.222, 0.323]	
	1000	[0 . 229 , 0 . 557]	[1.151, 4.200]	0.385	[0.327, 0.461]	

References

Holger H. Hoos. A bootstrap approach to analysing the scaling of [1] empirical run-time data with problem size. Technical report, TR-2009-16, Department of Computer Science, University of British Columbia, 2009.

Holger H. Hoos and Thomas Stützle. On the empirical scaling of 2 run-time for finding optimal solutions to the travelling salesman problem. European Journal of Operational Research, 238(1):87–94, 2014.

[3] Zongxu Mu and Holger H. Hoos. On the empirical time complexity of random 3-SAT at the phase transition. *IJCAI* 2015, to appear.