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Time Complexity

Time complexity is key in theoretical CS and practical applications

Scaling of running time as function of instance size

Approaches:

Theoretical: rigorous combinatorial analysis

I E.g., worst case time complexity for Quicksort is O
(
n2
)

Empirical: well-designed statistical analysis

I Applicable to sophisticated (heuristic-based) algorithms,
including state of the art solvers for important problems

I Key idea: �t parametric functions on running times
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Time Complexity � Empirical Approach

Key idea: �t parametric functions on running times
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Propositional satis�ability problem (SAT)

Determining existence of interpretation satisfying Boolean formula

Literal: variable or negation of variable

Clause: disjunction of literals

Conjunctive normal form (CNF): conjunction of clauses

(x1∨ x2∨ x3)∧ (¬x2∨ x3∨¬x4)∧ (¬x1∨ x2∨ x4)

First problem proved to be N P-complete [Cook, 1971]

Intense academic interest & many practical applications

Dramatic & sustained progress in SAT solving
I International SAT Competitions / Challenges
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Travelling salesperson problem (TSP)

Given: cities and pair-wise distances
Objective: shortest roundtrip route to pass through each city exactly once

Figure from http://www.math.uwaterloo.ca/tsp/usa50/

Prominent combinatorial optimisation problem

General TSP [Garey and Johnson, 1979] and Euclidean TSP
[Papadimitriou, 1977] are both N P-hard

Sustained academic and practical interest

Testbed for new algorithmic ideas in combinatorial optimisation
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Methodology [Hoos, 2009, Hoos and Stützle, 2014]

solver
running
times

�t parametric
models

challenge by
extrapolation

result
use bootstrap re-sampling
for further assessment

My contributions:

Use con�dence intervals of observed data to assess models

Compare scaling models of two solvers based on con�dence intervals
of observed/predicted data
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Methodology [Hoos, 2009, Hoos and Stützle, 2014]

1. Solver running times:
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Methodology [Hoos, 2009, Hoos and Stützle, 2014]

2. Fit parametric models:
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Methodology [Hoos, 2009, Hoos and Stützle, 2014]

3. Challenge by extrapolation:
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Methodology [Hoos, 2009, Hoos and Stützle, 2014]

4. Use bootstrap re-sampling for further assessment:
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SAT � Scienti�c Questions

Scienti�c questions:

How do running times of high-performance SAT solvers scale?

Is scaling di�erence between solvers signi�cant?

I Between SLS- and DPLL-based solvers?
I Between two solvers of same kind?

How much faster are complete solvers solving satis�able instances?

Solvers:

SLS-based: WalkSAT/SKC, BalancedZ, probSAT

DPLL-based: kcnfs, march_hi, march_br

Problem instances:

Phase-transition random 3-SAT [Mu and Hoos, 2015a]
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Results for SAT � Phase Transition

Soluability phase transition: 50% of random instances satis�able

Figure from [Mitchell et al., 1992]
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Phase transition is sharp [Cheeseman et al., 1991]

Believed to converge to �xed threshold
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SAT � Phase Transition

Best previous model [Crawford and Auton, 1996]:

mc = 4.258 ·n+58.26 ·n−2/3

Weaknesses:

Inconsistent with results from cavity method [Mertens et al., 2006]:

lim
n→∞

mc/n = 4.26675±0.00015

Under-estimates mc for larger n
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SAT � Phase Transition
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SAT � Related Work

Work on empirical scaling of:

SLS-based solvers, e.g., Gent and Walsh [1993], Gent et al. [1997]

DPLL-based solvers, e.g., Coarfa et al. [2003]

Limitations:

# variable �ips vs. actual running times,
e.g., Gent and Walsh [1993], Gent et al. [1997]

Inconclusive results, e.g., Gent and Walsh [1993]

Simple curve �tting & vague de�nition of �good �t�
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Empirical Scaling Results � DPLL-based Solvers
Divide instance sets into support and challenge:

n 200 250 300 350 400
median 0.040 0.200 0.950 5.455 27.580

n 450 500 550
median 156.480 750.510 3896.450
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Empirical Scaling Results � DPLL-based Solvers
Fit parametric models:

Model
RMSE RMSE

(support) (challenge)

kcnfs
Exp. Model 4.30400×10−5×1.03411n 0.05408 143.3

Poly. Model 9.40745×10−31×n12.1005 0.06822 1516
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Empirical Scaling Results � DPLL-based Solvers
Bootstrap re-sampling:

Solver n
Predicted con�dence intervals Observed median run-time (sec)

Poly. model Exp. model Point estimates Con�dence intervals

kcnfs
450 [98.326,122.115] [120.078,161.444] 156.480 [143.340,166.770]
500 [327.997,439.089] [561.976,889.428]* 750.510 [708.290,806.130]
550 [971.862,1402.255] [2622.488,4901.661]* 3896.450 [3633.630,4130.915]
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Empirical Scaling Results � DPLL-based Solvers
Bootstrap re-sampling:

Solver Model Con�dence interval of a Con�dence interval of b

kcnfs
Poly.

[
3.33969×10−31,4.30846×10−29

]
[11.4234,12.2674]

Exp.
[
3.33378×10−5,1.07425×10−4

]
[1.03136,1.03476]
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Empirical Scaling Results � DPLL-based Solvers

Compare scaling models:

No signi�cant di�erence between two march-variants

Two march-variants scale signi�cantly better than kcnfs

Scaling models of march_hi:
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Empirical Scaling Results � DPLL-based Solvers

Di�erence in solving satis�able instances and unsatis�able instances:

Is the di�erence a constant factor?

I Fit running times of solving unsatis�able instances with model a ·bn
sat

I Slower in solving unsatis�able instances by constant factor only
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Exp. model for sat.: 8.33113e-06 × 1.03119n

Exp. model bootstrap intervals for sat.
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Empirical Scaling Results � DPLL-based Solvers

Di�erence in solving satis�able instances and unsatis�able instances:

Is the di�erence a constant factor?

I Fit running times of solving unsatis�able instances with model a ·bn
sat

I Slower in solving unsatis�able instances by constant factor only
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Empirical Scaling Results � SLS-based Solvers
Fit parametric models:

Model
RMSE RMSE

(support) (challenge)

WalkSAT/SKC
Exp. Model 6.89157×10−4×1.00798n 0.0008564 0.7600

Poly. Model 8.83962×10−11×n3.18915 0.0007433 0.03142
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Empirical Scaling Results � SLS-based Solvers
Bootstrap re-sampling:

Solver n
Predicted con�dence intervals Observed median run-time (sec)
Poly. model Exp. model Point estimates Con�dence intervals

WalkSAT/SKC
600 [0.054,0.081] [0.067,0.104] 0.056 [0.050,0.070]
...

...
...

...
...

1000 [0.229,0.557]* [1.151,4.200] 0.385 [0.327,0.461]
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Empirical Scaling Results � SLS-based Solvers
Bootstrap re-sampling:

Solver Model Con�dence interval of a Con�dence interval of b

WalkSAT/SKC
Exp.

[
4.05064×10−4,1.00662×10−3

]
[1.00709,1.00924]

Poly.
[
2.58600×10−12,8.63869×10−10

]
[2.80816,3.76751]
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Empirical Scaling Results � SLS-based Solvers

No signi�cant di�erence among scaling models for WalkSAT/SKC,
BalancedZ & probSAT

Higher quantiles:

Scaling of 0.75- and 0.9-quantile of running times still consistent with
polynomial model

Even larger instances:

Limited experiments on instances of n ∈ {1500,2000,5000}
Data consistent with polynomial models
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Empirical Scaling Results � 4-SAT

Re�ned model for 4-SAT phase transition

Phase-transition random 4-SAT

SLS-based solvers: exponential or root-exponential

DPLL-based solvers: exponential

Under-constrained instances with m = 2k−1 ·n
WalkSAT/SKC: polynomial model is a better �t

kcnfs: root-exponential model is a better �t
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TSP � Scienti�c Questions

Finding time: time required for �nding optimal solutions w/o proving

For complete solvers:

How do �nding times scale with instance size?

How do �nding times scale di�erently from proving times?

For incomplete solvers:

How do running times scale with instance size?

Are incomplete solvers signi�cantly faster from scaling point of view?

Solvers:

Complete: Concorde [Applegate et al., 2012]

Incomplete: LKH [Helsgaun, 2009], EAX [Nagata and Kobayashi, 2013]

Problem instances: random uniform Euclidean (RUE)
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TSP � Related Work

Work on running time distribution of:

Concorde: Hoos and Stützle [2014, 2015]

LKH & EAX: Dubois-Lacoste et al. [2015]

Work on empirical scaling of

Concorde (proving): Applegate et al. [2006], Hoos and Stützle [2014]

LKH & EAX: Dubois-Lacoste et al. [2015]

Extensions:

Empirical scaling of �nding times of Concorde

Comparison of scaling of complete & incomplete algorithms
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Empirical Scaling Results � Concorde

Optimistic & pessimistic treatment of timeout runs

Finding times consistent with root-exponential model

Exponential and polynomial models rejected with high con�dence
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Empirical Scaling Results � Concorde

Finding and proving times di�er by constant factor:

Intervals of b in both models:

I Proving: [1.2212,1.2630]
I Finding: [1.2280,1.2760]

Fit model a ·b
√
n

proving on �nding time

I Very good �t
I a for proving vs. �nding: 0.21 vs. 0.11
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Empirical Scaling Results � LKH & EAX

Optimistic & pessimistic treatment of instances with unknown optimal

Running times of LKH bounded by polynomial & root-exponential
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Empirical Scaling Results � LKH & EAX

Optimistic & pessimistic treatment of instances with unknown optimal

Running times of EAX consistent with root-exponential
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Empirical Scaling Results � LKH & EAX

LKH & EAX scale signi�cantly better than Concorde

Comparison of intervals of b's

Fit model a ·b
√
n

Concorde on running times of LKH & EAX
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Empirical Scaling Results � EAX Con�guration

Con�guration experiments:

SMAC [Hutter et al., 2011]

2 parameters: population size & restarting iterations

25 parallel runs

E�ect on scaling models:

b in root-exponential model: from ≈ 1.14 to ≈ 1.12

E�ect of varying population size:

Population size ∝ instance size

Best �t: polynomial instead of root-exponential
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Empirical Scaling Analyser (ESA)

Automated tool for empirical scaling analysis [Mu and Hoos, 2015b]

Available as web service or command-line tool

I www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

One algorithm

Multiple models

Input of running times

I Timeout or crashed runs
I Unknown running times

Output as technical report

I Figures of �tted models
I Tables of �tted models and bootstrap intervals
I Automatically generated interpretations
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ESA � Example Input
# instance name, size, datum (running time)

portgen-500-1000.tsp,500,2.3

portgen-500-100.tsp,500,2.58

portgen-500-101.tsp,500,2.36

portgen-500-102.tsp,500,2.51

portgen-500-103.tsp,500,2.63

portgen-500-104.tsp,500,2.84

portgen-500-105.tsp,500,2.62

portgen-500-106.tsp,500,3

...

portgen-600-1000.tsp,600,3.42

...

portgen-4500-10.tsp,4500,727.68

portgen-4500-11.tsp,4500,inf

...

#instances,4000,100

#instances,4500,100
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ESA � Example Output
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Contributions

Empirical scaling results for:

Phase-transition random 3-SAT:

I SLS-based solvers: polynomially; DPLL-based solvers: exponentially
I DPLL-based: faster by constant factor for solving satis�able instances

Phase-transition & under-constrained random 4-SAT

Euclidean TSP:

I All solvers: root-exponentially
I Concorde: �nding & proving times di�er by constant factor
I LKH & EAX: scale signi�cantly better than Concorde �nding times

Methodology re�nements and extensions:

Extended use of conf. intervals for model assessment & comparison

ESA: automated tool for scaling analysis [Mu and Hoos, 2015b]

I www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html
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Future Work

Potential methodology improvements:

Nested bootstrap re-sampling

Automatic model selection from large library of models

More sophisticated models with lower-order terms

Analysis when no instance generator available

I One or a few instances at each size
I Fewer instances overall
I Outlier detection

Apply to other problem domains

Planning, scheduling, MIP, etc.

Explore use beyond time complexity of algorithms

E.g., learning curves of ML algorithms
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