
Analysing the Empirical Time Complexity
of High-performance Algorithms for SAT and TSP

MSc Thesis Presentation

Zongxu Mu

Department of Computer Science

University of British Columbia

Vancouver, BC, Canada

9 September 2015

Supervisor: Prof. Holger H. Hoos
Second Reader: Prof. David Poole

Time Complexity

Time complexity is key in theoretical CS and practical applications

Scaling of running time as function of instance size

Approaches:

Theoretical: rigorous combinatorial analysis

I E.g., worst case time complexity for Quicksort is O
(
n2
)

Empirical: well-designed statistical analysis

I Applicable to sophisticated (heuristic-based) algorithms,
including state of the art solvers for important problems

I Key idea: �t parametric functions on running times

Z. Mu (UBC) Analysing Empirical Time Complexity 1

Time Complexity

Time complexity is key in theoretical CS and practical applications

Scaling of running time as function of instance size

Approaches:

Theoretical: rigorous combinatorial analysis

I E.g., worst case time complexity for Quicksort is O
(
n2
)

Empirical: well-designed statistical analysis

I Applicable to sophisticated (heuristic-based) algorithms,
including state of the art solvers for important problems

I Key idea: �t parametric functions on running times

Z. Mu (UBC) Analysing Empirical Time Complexity 1

Time Complexity

Time complexity is key in theoretical CS and practical applications

Scaling of running time as function of instance size

Approaches:

Theoretical: rigorous combinatorial analysis

I E.g., worst case time complexity for Quicksort is O
(
n2
)

Empirical: well-designed statistical analysis

I Applicable to sophisticated (heuristic-based) algorithms,
including state of the art solvers for important problems

I Key idea: �t parametric functions on running times

Z. Mu (UBC) Analysing Empirical Time Complexity 1

Time Complexity

Time complexity is key in theoretical CS and practical applications

Scaling of running time as function of instance size

Approaches:

Theoretical: rigorous combinatorial analysis

I E.g., worst case time complexity for Quicksort is O
(
n2
)

Empirical: well-designed statistical analysis

I Applicable to sophisticated (heuristic-based) algorithms,
including state of the art solvers for important problems

I Key idea: �t parametric functions on running times

Z. Mu (UBC) Analysing Empirical Time Complexity 1

Time Complexity � Empirical Approach

Key idea: �t parametric functions on running times

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)
Support data
Exp. model:
Poly. model:

Z. Mu (UBC) Analysing Empirical Time Complexity 2

Propositional satis�ability problem (SAT)

Determining existence of interpretation satisfying Boolean formula

Literal: variable or negation of variable

Clause: disjunction of literals

Conjunctive normal form (CNF): conjunction of clauses

(x1∨ x2∨ x3)∧ (¬x2∨ x3∨¬x4)∧ (¬x1∨ x2∨ x4)

First problem proved to be N P-complete [Cook, 1971]

Intense academic interest & many practical applications

Dramatic & sustained progress in SAT solving
I International SAT Competitions / Challenges

Z. Mu (UBC) Analysing Empirical Time Complexity 3

Propositional satis�ability problem (SAT)

Determining existence of interpretation satisfying Boolean formula

Literal: variable or negation of variable

Clause: disjunction of literals

Conjunctive normal form (CNF): conjunction of clauses

(x1∨ x2∨ x3)∧ (¬x2∨ x3∨¬x4)∧ (¬x1∨ x2∨ x4)

First problem proved to be N P-complete [Cook, 1971]

Intense academic interest & many practical applications

Dramatic & sustained progress in SAT solving
I International SAT Competitions / Challenges

Z. Mu (UBC) Analysing Empirical Time Complexity 3

Propositional satis�ability problem (SAT)

Determining existence of interpretation satisfying Boolean formula

Literal: variable or negation of variable

Clause: disjunction of literals

Conjunctive normal form (CNF): conjunction of clauses

(x1∨ x2∨ x3)∧ (¬x2∨ x3∨¬x4)∧ (¬x1∨ x2∨ x4)

First problem proved to be N P-complete [Cook, 1971]

Intense academic interest & many practical applications

Dramatic & sustained progress in SAT solving
I International SAT Competitions / Challenges

Z. Mu (UBC) Analysing Empirical Time Complexity 3

Travelling salesperson problem (TSP)

Given: cities and pair-wise distances
Objective: shortest roundtrip route to pass through each city exactly once

Figure from http://www.math.uwaterloo.ca/tsp/usa50/

Prominent combinatorial optimisation problem

General TSP [Garey and Johnson, 1979] and Euclidean TSP
[Papadimitriou, 1977] are both N P-hard

Sustained academic and practical interest

Testbed for new algorithmic ideas in combinatorial optimisation

Z. Mu (UBC) Analysing Empirical Time Complexity 4

http://www.math.uwaterloo.ca/tsp/usa50/

Travelling salesperson problem (TSP)

Given: cities and pair-wise distances
Objective: shortest roundtrip route to pass through each city exactly once

Figure from http://www.math.uwaterloo.ca/tsp/usa50/

Prominent combinatorial optimisation problem

General TSP [Garey and Johnson, 1979] and Euclidean TSP
[Papadimitriou, 1977] are both N P-hard

Sustained academic and practical interest

Testbed for new algorithmic ideas in combinatorial optimisation

Z. Mu (UBC) Analysing Empirical Time Complexity 4

http://www.math.uwaterloo.ca/tsp/usa50/

Outline

1 Introduction

2 Empirical Scaling Analysis � Methodology

3 Empirical Scaling Results for SAT

4 Empirical Scaling Results for TSP

5 Empirical Scaling Analyser (ESA)

6 Conclusions

Z. Mu (UBC) Analysing Empirical Time Complexity 5

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

solver
running
times

�t parametric
models

challenge by
extrapolation

result
use bootstrap re-sampling
for further assessment

My contributions:

Use con�dence intervals of observed data to assess models

Compare scaling models of two solvers based on con�dence intervals
of observed/predicted data

Z. Mu (UBC) Analysing Empirical Time Complexity 6

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

solver
running
times

�t parametric
models

challenge by
extrapolation

result
use bootstrap re-sampling
for further assessment

My contributions:

Use con�dence intervals of observed data to assess models

Compare scaling models of two solvers based on con�dence intervals
of observed/predicted data

Z. Mu (UBC) Analysing Empirical Time Complexity 6

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

solver
running
times

�t parametric
models

challenge by
extrapolation

result
use bootstrap re-sampling
for further assessment

My contributions:

Use con�dence intervals of observed data to assess models

Compare scaling models of two solvers based on con�dence intervals
of observed/predicted data

Z. Mu (UBC) Analysing Empirical Time Complexity 6

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

solver
running
times

�t parametric
models

challenge by
extrapolation

result
use bootstrap re-sampling
for further assessment

My contributions:

Use con�dence intervals of observed data to assess models

Compare scaling models of two solvers based on con�dence intervals
of observed/predicted data

Z. Mu (UBC) Analysing Empirical Time Complexity 6

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

1. Solver running times:

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)

Z. Mu (UBC) Analysing Empirical Time Complexity 7

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

1. Solver running times:

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)

Z. Mu (UBC) Analysing Empirical Time Complexity 7

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

1. Solver running times:

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)

Z. Mu (UBC) Analysing Empirical Time Complexity 7

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

1. Solver running times:

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)

Z. Mu (UBC) Analysing Empirical Time Complexity 7

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

1. Solver running times:

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)

Z. Mu (UBC) Analysing Empirical Time Complexity 7

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

1. Solver running times:

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)

Z. Mu (UBC) Analysing Empirical Time Complexity 7

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

1. Solver running times:

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)
Support data

Z. Mu (UBC) Analysing Empirical Time Complexity 7

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

2. Fit parametric models:

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)
Support data
Exp. model:
Poly. model:

Z. Mu (UBC) Analysing Empirical Time Complexity 8

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

3. Challenge by extrapolation:

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)
Running times (challenge)

Support data
Exp. model:
Poly. model:

Challenge data

Z. Mu (UBC) Analysing Empirical Time Complexity 9

Methodology [Hoos, 2009, Hoos and Stützle, 2014]

4. Use bootstrap re-sampling for further assessment:

10-4

10-3

10-2

10-1

100

101

102

103

 50 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Running times (support)
Running times (challenge)

Support data
Exp. model
Poly. model

Exp. model bootstrap intervals
Poly. model bootstrap intervals

Challenge data (w/ conf. intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 10

SAT � Scienti�c Questions

Scienti�c questions:

How do running times of high-performance SAT solvers scale?

Is scaling di�erence between solvers signi�cant?

I Between SLS- and DPLL-based solvers?
I Between two solvers of same kind?

How much faster are complete solvers solving satis�able instances?

Solvers:

SLS-based: WalkSAT/SKC, BalancedZ, probSAT

DPLL-based: kcnfs, march_hi, march_br

Problem instances:

Phase-transition random 3-SAT [Mu and Hoos, 2015a]

Z. Mu (UBC) Analysing Empirical Time Complexity 11

SAT � Scienti�c Questions

Scienti�c questions:

How do running times of high-performance SAT solvers scale?

Is scaling di�erence between solvers signi�cant?

I Between SLS- and DPLL-based solvers?
I Between two solvers of same kind?

How much faster are complete solvers solving satis�able instances?

Solvers:

SLS-based: WalkSAT/SKC, BalancedZ, probSAT

DPLL-based: kcnfs, march_hi, march_br

Problem instances:

Phase-transition random 3-SAT [Mu and Hoos, 2015a]

Z. Mu (UBC) Analysing Empirical Time Complexity 11

SAT � Scienti�c Questions

Scienti�c questions:

How do running times of high-performance SAT solvers scale?

Is scaling di�erence between solvers signi�cant?

I Between SLS- and DPLL-based solvers?
I Between two solvers of same kind?

How much faster are complete solvers solving satis�able instances?

Solvers:

SLS-based: WalkSAT/SKC, BalancedZ, probSAT

DPLL-based: kcnfs, march_hi, march_br

Problem instances:

Phase-transition random 3-SAT [Mu and Hoos, 2015a]

Z. Mu (UBC) Analysing Empirical Time Complexity 11

SAT � Scienti�c Questions

Scienti�c questions:

How do running times of high-performance SAT solvers scale?

Is scaling di�erence between solvers signi�cant?

I Between SLS- and DPLL-based solvers?
I Between two solvers of same kind?

How much faster are complete solvers solving satis�able instances?

Solvers:

SLS-based: WalkSAT/SKC, BalancedZ, probSAT

DPLL-based: kcnfs, march_hi, march_br

Problem instances:

Phase-transition random 3-SAT [Mu and Hoos, 2015a]

Z. Mu (UBC) Analysing Empirical Time Complexity 11

SAT � Scienti�c Questions

Scienti�c questions:

How do running times of high-performance SAT solvers scale?

Is scaling di�erence between solvers signi�cant?

I Between SLS- and DPLL-based solvers?
I Between two solvers of same kind?

How much faster are complete solvers solving satis�able instances?

Solvers:

SLS-based: WalkSAT/SKC, BalancedZ, probSAT

DPLL-based: kcnfs, march_hi, march_br

Problem instances:

Phase-transition random 3-SAT [Mu and Hoos, 2015a]

Z. Mu (UBC) Analysing Empirical Time Complexity 11

SAT � Scienti�c Questions

Scienti�c questions:

How do running times of high-performance SAT solvers scale?

Is scaling di�erence between solvers signi�cant?

I Between SLS- and DPLL-based solvers?
I Between two solvers of same kind?

How much faster are complete solvers solving satis�able instances?

Solvers:

SLS-based: WalkSAT/SKC, BalancedZ, probSAT

DPLL-based: kcnfs, march_hi, march_br

Problem instances:

Phase-transition random 3-SAT [Mu and Hoos, 2015a]

Z. Mu (UBC) Analysing Empirical Time Complexity 11

Results for SAT � Phase Transition

Soluability phase transition: 50% of random instances satis�able

Figure from [Mitchell et al., 1992]

Z. Mu (UBC) Analysing Empirical Time Complexity 12

Results for SAT � Phase Transition

Soluability phase transition: 50% of random instances satis�able

Phase transition is sharp [Cheeseman et al., 1991]

Believed to converge to �xed threshold

Widely studied instance distribution

Prominent model of computational hardness in SAT and beyond

I For DPLL-based solvers [Mitchell et al., 1992]
I For SLS-based solvers [Yokoo, 1997]
I · · · · · ·

Z. Mu (UBC) Analysing Empirical Time Complexity 12

Results for SAT � Phase Transition

Soluability phase transition: 50% of random instances satis�able

Phase transition is sharp [Cheeseman et al., 1991]

Believed to converge to �xed threshold

Widely studied instance distribution

Prominent model of computational hardness in SAT and beyond

I For DPLL-based solvers [Mitchell et al., 1992]
I For SLS-based solvers [Yokoo, 1997]
I · · · · · ·

Z. Mu (UBC) Analysing Empirical Time Complexity 12

SAT � Phase Transition

Best previous model [Crawford and Auton, 1996]:

mc = 4.258 ·n+58.26 ·n−2/3

Weaknesses:

Inconsistent with results from cavity method [Mertens et al., 2006]:

lim
n→∞

mc/n = 4.26675±0.00015

Under-estimates mc for larger n

Z. Mu (UBC) Analysing Empirical Time Complexity 13

SAT � Phase Transition

Best previous model [Crawford and Auton, 1996]:

mc = 4.258 ·n+58.26 ·n−2/3

Weaknesses:

Inconsistent with results from cavity method [Mertens et al., 2006]:

lim
n→∞

mc/n = 4.26675±0.00015

Under-estimates mc for larger n

Z. Mu (UBC) Analysing Empirical Time Complexity 13

SAT � Phase Transition

 4.25

 4.255

 4.26

 4.265

 4.27

 4.275

 4.28

 4.285

 4.29

 4.295

 4.3

 0 200 400 600 800 1000 1200 1400

m
c/

n

n

Support data from Crawford&Auton (1996)
Support data (all solved)
Support data (estimated)

Challenge data (estimated)
Bounds (95% confidence)

Fitted model

Re�ned model:

mc = 4.26675 ·n+447.884 ·n−0.0350967−430.232 ·n−0.0276188

Z. Mu (UBC) Analysing Empirical Time Complexity 14

SAT � Phase Transition

 4.25

 4.255

 4.26

 4.265

 4.27

 4.275

 4.28

 4.285

 4.29

 4.295

 4.3

 0 200 400 600 800 1000 1200 1400

m
c/

n

n

Support data from Crawford&Auton (1996)
Support data (all solved)
Support data (estimated)

Challenge data (estimated)
Bounds (95% confidence)

Fitted model

Re�ned model:

mc = 4.26675 ·n+447.884 ·n−0.0350967−430.232 ·n−0.0276188

Z. Mu (UBC) Analysing Empirical Time Complexity 14

SAT � Related Work

Work on empirical scaling of:

SLS-based solvers, e.g., Gent and Walsh [1993], Gent et al. [1997]

DPLL-based solvers, e.g., Coarfa et al. [2003]

Limitations:

variable �ips vs. actual running times,
e.g., Gent and Walsh [1993], Gent et al. [1997]

Inconclusive results, e.g., Gent and Walsh [1993]

Simple curve �tting & vague de�nition of �good �t�

Z. Mu (UBC) Analysing Empirical Time Complexity 15

SAT � Related Work

Work on empirical scaling of:

SLS-based solvers, e.g., Gent and Walsh [1993], Gent et al. [1997]

DPLL-based solvers, e.g., Coarfa et al. [2003]

Limitations:

variable �ips vs. actual running times,
e.g., Gent and Walsh [1993], Gent et al. [1997]

Inconclusive results, e.g., Gent and Walsh [1993]

Simple curve �tting & vague de�nition of �good �t�

Z. Mu (UBC) Analysing Empirical Time Complexity 15

Empirical Scaling Results � DPLL-based Solvers
Divide instance sets into support and challenge:

n 200 250 300 350 400
median 0.040 0.200 0.950 5.455 27.580

n 450 500 550
median 156.480 750.510 3896.450

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data
Challenge data

Z. Mu (UBC) Analysing Empirical Time Complexity 16

Empirical Scaling Results � DPLL-based Solvers
Fit parametric models:

Model
RMSE RMSE

(support) (challenge)

kcnfs
Exp. Model 4.30400×10−5×1.03411n 0.05408 143.3

Poly. Model 9.40745×10−31×n12.1005 0.06822 1516

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data
Exp. model: 6.05099e-05 × 1.03311n

Poly. model: 1.00831e-30 × n12.08155

Challenge data

Z. Mu (UBC) Analysing Empirical Time Complexity 17

Empirical Scaling Results � DPLL-based Solvers
Bootstrap re-sampling:

Solver n
Predicted con�dence intervals Observed median run-time (sec)

Poly. model Exp. model Point estimates Con�dence intervals

kcnfs
450 [98.326,122.115] [120.078,161.444] 156.480 [143.340,166.770]
500 [327.997,439.089] [561.976,889.428]* 750.510 [708.290,806.130]
550 [971.862,1402.255] [2622.488,4901.661]* 3896.450 [3633.630,4130.915]

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data
Exp. model: 6.05099e-05 × 1.03311n

Poly. model: 1.00831e-30 × n12.08155

Exp. model bootstrap intervals
Poly. model bootstrap intervals

Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 18

Empirical Scaling Results � DPLL-based Solvers
Bootstrap re-sampling:

Solver Model Con�dence interval of a Con�dence interval of b

kcnfs
Poly.

[
3.33969×10−31,4.30846×10−29

]
[11.4234,12.2674]

Exp.
[
3.33378×10−5,1.07425×10−4

]
[1.03136,1.03476]

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data
Exp. model: 6.05099e-05 × 1.03311n

Poly. model: 1.00831e-30 × n12.08155

Exp. model bootstrap intervals
Poly. model bootstrap intervals

Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 18

Empirical Scaling Results � DPLL-based Solvers

Compare scaling models:

No signi�cant di�erence between two march-variants

Two march-variants scale signi�cantly better than kcnfs

Scaling models of march_hi:

10-3

10-2

10-1

100

101

102

103

104

105

 100 200 300 400 500 600

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support Data
Exponential Model Bootstrap Intervals

Exponential Model: 7.22871e-05 × 1.03181n

Challenge Data

Z. Mu (UBC) Analysing Empirical Time Complexity 19

Empirical Scaling Results � DPLL-based Solvers

Compare scaling models:

No signi�cant di�erence between two march-variants

Two march-variants scale signi�cantly better than kcnfs

Compare scaling models of kcnfs against march_hi:

10-3

10-2

10-1

100

101

102

103

104

105

 100 200 300 400 500 600

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support Data
Exponential Model Bootstrap Intervals

Exponential Model: 7.22871e-05 × 1.03181n

Challenge Data
Support Data of kcnfs

Challenge Data of kcnfs

Z. Mu (UBC) Analysing Empirical Time Complexity 19

Empirical Scaling Results � DPLL-based Solvers

Di�erence in solving satis�able instances and unsatis�able instances:

Is the di�erence a constant factor?

I Fit running times of solving unsatis�able instances with model a ·bn
sat

I Slower in solving unsatis�able instances by constant factor only

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

 100 200 300 400 500 600

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data for sat. instances
Challenge data for sat. instances

Exp. model for sat.: 8.33113e-06 × 1.03119n

Exp. model bootstrap intervals for sat.

Z. Mu (UBC) Analysing Empirical Time Complexity 20

Empirical Scaling Results � DPLL-based Solvers

Di�erence in solving satis�able instances and unsatis�able instances:

Is the di�erence a constant factor?

I Fit running times of solving unsatis�able instances with model a ·bn
sat

I Slower in solving unsatis�able instances by constant factor only

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

 100 200 300 400 500 600

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data for sat. instances
Challenge data for sat. instances

Exp. model for sat.: 8.33113e-06 × 1.03119n

Exp. model bootstrap intervals for sat.
Support data for unsat. instances

Challenge data for unsat. instances

Z. Mu (UBC) Analysing Empirical Time Complexity 20

Empirical Scaling Results � DPLL-based Solvers

Di�erence in solving satis�able instances and unsatis�able instances:

Is the di�erence a constant factor?

I Fit running times of solving unsatis�able instances with model a ·bn
sat

I Slower in solving unsatis�able instances by constant factor only

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

 100 200 300 400 500 600

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data for sat. instances
Challenge data for sat. instances

Exp. model for sat.: 8.33113e-06 × 1.03119n

Exp. model bootstrap intervals for sat.
Support data for unsat. instances

Challenge data for unsat. instances

Z. Mu (UBC) Analysing Empirical Time Complexity 20

Empirical Scaling Results � DPLL-based Solvers

Di�erence in solving satis�able instances and unsatis�able instances:

Is the di�erence a constant factor?

I Fit running times of solving unsatis�able instances with model a ·bn
sat

I Slower in solving unsatis�able instances by constant factor only

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

 100 200 300 400 500 600

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data for sat. instances
Challenge data for sat. instances

Exp. model for sat.: 8.33113e-06 × 1.03119n

Exp. model bootstrap intervals for sat.
Support data for unsat. instances

Challenge data for unsat. instances

Z. Mu (UBC) Analysing Empirical Time Complexity 20

Empirical Scaling Results � SLS-based Solvers
Fit parametric models:

Model
RMSE RMSE

(support) (challenge)

WalkSAT/SKC
Exp. Model 6.89157×10−4×1.00798n 0.0008564 0.7600

Poly. Model 8.83962×10−11×n3.18915 0.0007433 0.03142

10-4

10-3

10-2

10-1

100

101

 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data
Exp. model: 6.89157e-04 × 1.00798n

Poly. model: 8.83962e-11 × n3.18915

Challenge data

Z. Mu (UBC) Analysing Empirical Time Complexity 21

Empirical Scaling Results � SLS-based Solvers
Bootstrap re-sampling:

Solver n
Predicted con�dence intervals Observed median run-time (sec)
Poly. model Exp. model Point estimates Con�dence intervals

WalkSAT/SKC
600 [0.054,0.081] [0.067,0.104] 0.056 [0.050,0.070]
...

...
...

...
...

1000 [0.229,0.557]* [1.151,4.200] 0.385 [0.327,0.461]

10-4

10-3

10-2

10-1

100

101

 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data
Exp. model: 6.89157e-04 × 1.00798n

Poly. model: 8.83962e-11 × n3.18915

Exp. model bootstrap intervals
Poly. model bootstrap intervals

Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 22

Empirical Scaling Results � SLS-based Solvers
Bootstrap re-sampling:

Solver Model Con�dence interval of a Con�dence interval of b

WalkSAT/SKC
Exp.

[
4.05064×10−4,1.00662×10−3

]
[1.00709,1.00924]

Poly.
[
2.58600×10−12,8.63869×10−10

]
[2.80816,3.76751]

10-4

10-3

10-2

10-1

100

101

 100 200 500 1000

R
u
n
n
in

g
 t

im
e
 [

C
P
U

 s
e
c]

n

Support data
Exp. model: 6.89157e-04 × 1.00798n

Poly. model: 8.83962e-11 × n3.18915

Exp. model bootstrap intervals
Poly. model bootstrap intervals

Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 22

Empirical Scaling Results � SLS-based Solvers

No signi�cant di�erence among scaling models for WalkSAT/SKC,
BalancedZ & probSAT

Higher quantiles:

Scaling of 0.75- and 0.9-quantile of running times still consistent with
polynomial model

Even larger instances:

Limited experiments on instances of n ∈ {1500,2000,5000}
Data consistent with polynomial models

Z. Mu (UBC) Analysing Empirical Time Complexity 23

Empirical Scaling Results � SLS-based Solvers

No signi�cant di�erence among scaling models for WalkSAT/SKC,
BalancedZ & probSAT

Higher quantiles:

Scaling of 0.75- and 0.9-quantile of running times still consistent with
polynomial model

Even larger instances:

Limited experiments on instances of n ∈ {1500,2000,5000}
Data consistent with polynomial models

Z. Mu (UBC) Analysing Empirical Time Complexity 23

Empirical Scaling Results � SLS-based Solvers

No signi�cant di�erence among scaling models for WalkSAT/SKC,
BalancedZ & probSAT

Higher quantiles:

Scaling of 0.75- and 0.9-quantile of running times still consistent with
polynomial model

Even larger instances:

Limited experiments on instances of n ∈ {1500,2000,5000}
Data consistent with polynomial models

Z. Mu (UBC) Analysing Empirical Time Complexity 23

Empirical Scaling Results � 4-SAT

Re�ned model for 4-SAT phase transition

Phase-transition random 4-SAT

SLS-based solvers: exponential or root-exponential

DPLL-based solvers: exponential

Under-constrained instances with m = 2k−1 ·n
WalkSAT/SKC: polynomial model is a better �t

kcnfs: root-exponential model is a better �t

Z. Mu (UBC) Analysing Empirical Time Complexity 24

Empirical Scaling Results � 4-SAT

Re�ned model for 4-SAT phase transition

Phase-transition random 4-SAT

SLS-based solvers: exponential or root-exponential

DPLL-based solvers: exponential

Under-constrained instances with m = 2k−1 ·n
WalkSAT/SKC: polynomial model is a better �t

kcnfs: root-exponential model is a better �t

Z. Mu (UBC) Analysing Empirical Time Complexity 24

Empirical Scaling Results � 4-SAT

Re�ned model for 4-SAT phase transition

Phase-transition random 4-SAT

SLS-based solvers: exponential or root-exponential

DPLL-based solvers: exponential

Under-constrained instances with m = 2k−1 ·n
WalkSAT/SKC: polynomial model is a better �t

kcnfs: root-exponential model is a better �t

Z. Mu (UBC) Analysing Empirical Time Complexity 24

TSP � Scienti�c Questions

Finding time: time required for �nding optimal solutions w/o proving

For complete solvers:

How do �nding times scale with instance size?

How do �nding times scale di�erently from proving times?

For incomplete solvers:

How do running times scale with instance size?

Are incomplete solvers signi�cantly faster from scaling point of view?

Solvers:

Complete: Concorde [Applegate et al., 2012]

Incomplete: LKH [Helsgaun, 2009], EAX [Nagata and Kobayashi, 2013]

Problem instances: random uniform Euclidean (RUE)

Z. Mu (UBC) Analysing Empirical Time Complexity 25

TSP � Scienti�c Questions

Finding time: time required for �nding optimal solutions w/o proving

For complete solvers:

How do �nding times scale with instance size?

How do �nding times scale di�erently from proving times?

For incomplete solvers:

How do running times scale with instance size?

Are incomplete solvers signi�cantly faster from scaling point of view?

Solvers:

Complete: Concorde [Applegate et al., 2012]

Incomplete: LKH [Helsgaun, 2009], EAX [Nagata and Kobayashi, 2013]

Problem instances: random uniform Euclidean (RUE)

Z. Mu (UBC) Analysing Empirical Time Complexity 25

TSP � Scienti�c Questions

Finding time: time required for �nding optimal solutions w/o proving

For complete solvers:

How do �nding times scale with instance size?

How do �nding times scale di�erently from proving times?

For incomplete solvers:

How do running times scale with instance size?

Are incomplete solvers signi�cantly faster from scaling point of view?

Solvers:

Complete: Concorde [Applegate et al., 2012]

Incomplete: LKH [Helsgaun, 2009], EAX [Nagata and Kobayashi, 2013]

Problem instances: random uniform Euclidean (RUE)

Z. Mu (UBC) Analysing Empirical Time Complexity 25

TSP � Scienti�c Questions

Finding time: time required for �nding optimal solutions w/o proving

For complete solvers:

How do �nding times scale with instance size?

How do �nding times scale di�erently from proving times?

For incomplete solvers:

How do running times scale with instance size?

Are incomplete solvers signi�cantly faster from scaling point of view?

Solvers:

Complete: Concorde [Applegate et al., 2012]

Incomplete: LKH [Helsgaun, 2009], EAX [Nagata and Kobayashi, 2013]

Problem instances: random uniform Euclidean (RUE)

Z. Mu (UBC) Analysing Empirical Time Complexity 25

TSP � Scienti�c Questions

Finding time: time required for �nding optimal solutions w/o proving

For complete solvers:

How do �nding times scale with instance size?

How do �nding times scale di�erently from proving times?

For incomplete solvers:

How do running times scale with instance size?

Are incomplete solvers signi�cantly faster from scaling point of view?

Solvers:

Complete: Concorde [Applegate et al., 2012]

Incomplete: LKH [Helsgaun, 2009], EAX [Nagata and Kobayashi, 2013]

Problem instances: random uniform Euclidean (RUE)

Z. Mu (UBC) Analysing Empirical Time Complexity 25

TSP � Related Work

Work on running time distribution of:

Concorde: Hoos and Stützle [2014, 2015]

LKH & EAX: Dubois-Lacoste et al. [2015]

Work on empirical scaling of

Concorde (proving): Applegate et al. [2006], Hoos and Stützle [2014]

LKH & EAX: Dubois-Lacoste et al. [2015]

Extensions:

Empirical scaling of �nding times of Concorde

Comparison of scaling of complete & incomplete algorithms

Z. Mu (UBC) Analysing Empirical Time Complexity 26

TSP � Related Work

Work on running time distribution of:

Concorde: Hoos and Stützle [2014, 2015]

LKH & EAX: Dubois-Lacoste et al. [2015]

Work on empirical scaling of

Concorde (proving): Applegate et al. [2006], Hoos and Stützle [2014]

LKH & EAX: Dubois-Lacoste et al. [2015]

Extensions:

Empirical scaling of �nding times of Concorde

Comparison of scaling of complete & incomplete algorithms

Z. Mu (UBC) Analysing Empirical Time Complexity 26

Empirical Scaling Results � Concorde

Optimistic & pessimistic treatment of timeout runs

Finding times consistent with root-exponential model

Exponential and polynomial models rejected with high con�dence

100

101

102

103

104

105

106

107

108

 500 1000 2000 4000

C
P

U
 ti

m
e

[s
ec

]

n

Support data
Exp. model

RootExp. model
Poly. model

Exp. model bootstrap intervals
RootExp. model bootstrap intervals

Poly. model bootstrap intervals
Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 27

Empirical Scaling Results � Concorde

Optimistic & pessimistic treatment of timeout runs

Finding times consistent with root-exponential model

Exponential and polynomial models rejected with high con�dence

100

101

102

103

104

105

106

107

108

 500 1000 2000 4000

C
P

U
 ti

m
e

[s
ec

]

n

Support data
Exp. model

RootExp. model
Poly. model

Exp. model bootstrap intervals
RootExp. model bootstrap intervals

Poly. model bootstrap intervals
Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 27

Empirical Scaling Results � Concorde

Finding and proving times di�er by constant factor:

Intervals of b in both models:

I Proving: [1.2212,1.2630]
I Finding: [1.2280,1.2760]

Fit model a ·b
√
n

proving on �nding time

I Very good �t
I a for proving vs. �nding: 0.21 vs. 0.11

Z. Mu (UBC) Analysing Empirical Time Complexity 28

Empirical Scaling Results � Concorde

Finding and proving times di�er by constant factor:

Intervals of b in both models:

I Proving: [1.2212,1.2630]
I Finding: [1.2280,1.2760]

Fit model a ·b
√
n

proving on �nding time

I Very good �t
I a for proving vs. �nding: 0.21 vs. 0.11

Z. Mu (UBC) Analysing Empirical Time Complexity 28

Empirical Scaling Results � Concorde

Finding and proving times di�er by constant factor:

Intervals of b in both models:

I Proving: [1.2212,1.2630]
I Finding: [1.2280,1.2760]

Fit model a ·b
√
n

proving on �nding time

I Very good �t
I a for proving vs. �nding: 0.21 vs. 0.11

Z. Mu (UBC) Analysing Empirical Time Complexity 28

Empirical Scaling Results � LKH & EAX

Optimistic & pessimistic treatment of instances with unknown optimal

Running times of LKH bounded by polynomial & root-exponential

10-1

100

101

102

103

104

105

 500 1000 2000 4000

C
P

U
 ti

m
e

[s
ec

]

n

Support data
Exp. model

RootExp. model
Poly. model

Exp. model bootstrap intervals
RootExp. model bootstrap intervals

Poly. model bootstrap intervals
Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 29

Empirical Scaling Results � LKH & EAX

Optimistic & pessimistic treatment of instances with unknown optimal

Running times of LKH bounded by polynomial & root-exponential

10-1

100

101

102

103

104

105

 500 1000 2000 4000

C
P

U
 ti

m
e

[s
ec

]

n

Support data
Exp. model

RootExp. model
Poly. model

Exp. model bootstrap intervals
RootExp. model bootstrap intervals

Poly. model bootstrap intervals
Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 29

Empirical Scaling Results � LKH & EAX

Optimistic & pessimistic treatment of instances with unknown optimal

Running times of EAX consistent with root-exponential

100

101

102

103

104

 500 1000 2000 4000

C
P

U
 ti

m
e

[s
ec

]

n

Support data
Exp. model

RootExp. model
Poly. model

Exp. model bootstrap intervals
RootExp. model bootstrap intervals

Poly. model bootstrap intervals
Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 30

Empirical Scaling Results � LKH & EAX

LKH & EAX scale signi�cantly better than Concorde

Comparison of intervals of b's

Fit model a ·b
√
n

Concorde on running times of LKH & EAX

10-1

100

101

102

103

104

105

 500 1000 2000 4000

C
P

U
 ti

m
e

[s
ec

]

n

Support data
Fixed-base RootExp. model

RootExp. model bootstrap intervals
Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 31

Empirical Scaling Results � LKH & EAX

LKH & EAX scale signi�cantly better than Concorde

Comparison of intervals of b's

Fit model a ·b
√
n

Concorde on running times of LKH & EAX

10-1

100

101

102

103

104

105

 500 1000 2000 4000

C
P

U
 ti

m
e

[s
ec

]

n

Support data
Fixed-base RootExp. model

RootExp. model bootstrap intervals
Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 31

Empirical Scaling Results � LKH & EAX

LKH & EAX scale signi�cantly better than Concorde

Comparison of intervals of b's

Fit model a ·b
√
n

Concorde on running times of LKH & EAX

10-1

100

101

102

103

104

105

 500 1000 2000 4000

C
P

U
 ti

m
e

[s
ec

]

n

Support data
Fixed-base RootExp. model

RootExp. model bootstrap intervals
Challenge data (with confidence intervals)

Z. Mu (UBC) Analysing Empirical Time Complexity 31

Empirical Scaling Results � EAX Con�guration

Con�guration experiments:

SMAC [Hutter et al., 2011]

2 parameters: population size & restarting iterations

25 parallel runs

E�ect on scaling models:

b in root-exponential model: from ≈ 1.14 to ≈ 1.12

E�ect of varying population size:

Population size ∝ instance size

Best �t: polynomial instead of root-exponential

Z. Mu (UBC) Analysing Empirical Time Complexity 32

Empirical Scaling Results � EAX Con�guration

Con�guration experiments:

SMAC [Hutter et al., 2011]

2 parameters: population size & restarting iterations

25 parallel runs

E�ect on scaling models:

b in root-exponential model: from ≈ 1.14 to ≈ 1.12

E�ect of varying population size:

Population size ∝ instance size

Best �t: polynomial instead of root-exponential

Z. Mu (UBC) Analysing Empirical Time Complexity 32

Empirical Scaling Results � EAX Con�guration

Con�guration experiments:

SMAC [Hutter et al., 2011]

2 parameters: population size & restarting iterations

25 parallel runs

E�ect on scaling models:

b in root-exponential model: from ≈ 1.14 to ≈ 1.12

E�ect of varying population size:

Population size ∝ instance size

Best �t: polynomial instead of root-exponential

Z. Mu (UBC) Analysing Empirical Time Complexity 32

Empirical Scaling Analyser (ESA)

Automated tool for empirical scaling analysis [Mu and Hoos, 2015b]

Available as web service or command-line tool

I www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

One algorithm

Multiple models

Input of running times

I Timeout or crashed runs
I Unknown running times

Output as technical report

I Figures of �tted models
I Tables of �tted models and bootstrap intervals
I Automatically generated interpretations

Z. Mu (UBC) Analysing Empirical Time Complexity 33

www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

Empirical Scaling Analyser (ESA)

Automated tool for empirical scaling analysis [Mu and Hoos, 2015b]

Available as web service or command-line tool

I www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

One algorithm

Multiple models

Input of running times

I Timeout or crashed runs
I Unknown running times

Output as technical report

I Figures of �tted models
I Tables of �tted models and bootstrap intervals
I Automatically generated interpretations

Z. Mu (UBC) Analysing Empirical Time Complexity 33

www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

Empirical Scaling Analyser (ESA)

Automated tool for empirical scaling analysis [Mu and Hoos, 2015b]

Available as web service or command-line tool

I www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

One algorithm

Multiple models

Input of running times

I Timeout or crashed runs
I Unknown running times

Output as technical report

I Figures of �tted models
I Tables of �tted models and bootstrap intervals
I Automatically generated interpretations

Z. Mu (UBC) Analysing Empirical Time Complexity 33

www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

Empirical Scaling Analyser (ESA)

Automated tool for empirical scaling analysis [Mu and Hoos, 2015b]

Available as web service or command-line tool

I www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

One algorithm

Multiple models

Input of running times

I Timeout or crashed runs
I Unknown running times

Output as technical report

I Figures of �tted models
I Tables of �tted models and bootstrap intervals
I Automatically generated interpretations

Z. Mu (UBC) Analysing Empirical Time Complexity 33

www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

ESA � Example Input
instance name, size, datum (running time)

portgen-500-1000.tsp,500,2.3

portgen-500-100.tsp,500,2.58

portgen-500-101.tsp,500,2.36

portgen-500-102.tsp,500,2.51

portgen-500-103.tsp,500,2.63

portgen-500-104.tsp,500,2.84

portgen-500-105.tsp,500,2.62

portgen-500-106.tsp,500,3

...

portgen-600-1000.tsp,600,3.42

...

portgen-4500-10.tsp,4500,727.68

portgen-4500-11.tsp,4500,inf

...

#instances,4000,100

#instances,4500,100

Z. Mu (UBC) Analysing Empirical Time Complexity 34

ESA � Example Output

Z. Mu (UBC) Analysing Empirical Time Complexity 35

Contributions

Empirical scaling results for:

Phase-transition random 3-SAT:

I SLS-based solvers: polynomially; DPLL-based solvers: exponentially
I DPLL-based: faster by constant factor for solving satis�able instances

Phase-transition & under-constrained random 4-SAT

Euclidean TSP:

I All solvers: root-exponentially
I Concorde: �nding & proving times di�er by constant factor
I LKH & EAX: scale signi�cantly better than Concorde �nding times

Methodology re�nements and extensions:

Extended use of conf. intervals for model assessment & comparison

ESA: automated tool for scaling analysis [Mu and Hoos, 2015b]

I www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

Z. Mu (UBC) Analysing Empirical Time Complexity 36

www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

Contributions

Empirical scaling results for:

Phase-transition random 3-SAT:

I SLS-based solvers: polynomially; DPLL-based solvers: exponentially
I DPLL-based: faster by constant factor for solving satis�able instances

Phase-transition & under-constrained random 4-SAT

Euclidean TSP:

I All solvers: root-exponentially
I Concorde: �nding & proving times di�er by constant factor
I LKH & EAX: scale signi�cantly better than Concorde �nding times

Methodology re�nements and extensions:

Extended use of conf. intervals for model assessment & comparison

ESA: automated tool for scaling analysis [Mu and Hoos, 2015b]

I www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

Z. Mu (UBC) Analysing Empirical Time Complexity 36

www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

Contributions

Empirical scaling results for:

Phase-transition random 3-SAT:

I SLS-based solvers: polynomially; DPLL-based solvers: exponentially
I DPLL-based: faster by constant factor for solving satis�able instances

Phase-transition & under-constrained random 4-SAT

Euclidean TSP:

I All solvers: root-exponentially
I Concorde: �nding & proving times di�er by constant factor
I LKH & EAX: scale signi�cantly better than Concorde �nding times

Methodology re�nements and extensions:

Extended use of conf. intervals for model assessment & comparison

ESA: automated tool for scaling analysis [Mu and Hoos, 2015b]

I www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

Z. Mu (UBC) Analysing Empirical Time Complexity 36

www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html

Future Work

Potential methodology improvements:

Nested bootstrap re-sampling

Automatic model selection from large library of models

More sophisticated models with lower-order terms

Analysis when no instance generator available

I One or a few instances at each size
I Fewer instances overall
I Outlier detection

Apply to other problem domains

Planning, scheduling, MIP, etc.

Explore use beyond time complexity of algorithms

E.g., learning curves of ML algorithms

Z. Mu (UBC) Analysing Empirical Time Complexity 37

Future Work

Potential methodology improvements:

Nested bootstrap re-sampling

Automatic model selection from large library of models

More sophisticated models with lower-order terms

Analysis when no instance generator available

I One or a few instances at each size
I Fewer instances overall
I Outlier detection

Apply to other problem domains

Planning, scheduling, MIP, etc.

Explore use beyond time complexity of algorithms

E.g., learning curves of ML algorithms

Z. Mu (UBC) Analysing Empirical Time Complexity 37

Future Work

Potential methodology improvements:

Nested bootstrap re-sampling

Automatic model selection from large library of models

More sophisticated models with lower-order terms

Analysis when no instance generator available

I One or a few instances at each size
I Fewer instances overall
I Outlier detection

Apply to other problem domains

Planning, scheduling, MIP, etc.

Explore use beyond time complexity of algorithms

E.g., learning curves of ML algorithms

Z. Mu (UBC) Analysing Empirical Time Complexity 37

Future Work

Potential methodology improvements:

Nested bootstrap re-sampling

Automatic model selection from large library of models

More sophisticated models with lower-order terms

Analysis when no instance generator available

I One or a few instances at each size
I Fewer instances overall
I Outlier detection

Apply to other problem domains

Planning, scheduling, MIP, etc.

Explore use beyond time complexity of algorithms

E.g., learning curves of ML algorithms

Z. Mu (UBC) Analysing Empirical Time Complexity 37

Future Work

Potential methodology improvements:

Nested bootstrap re-sampling

Automatic model selection from large library of models

More sophisticated models with lower-order terms

Analysis when no instance generator available

I One or a few instances at each size
I Fewer instances overall
I Outlier detection

Apply to other problem domains

Planning, scheduling, MIP, etc.

Explore use beyond time complexity of algorithms

E.g., learning curves of ML algorithms

Z. Mu (UBC) Analysing Empirical Time Complexity 37

Future Work

Potential methodology improvements:

Nested bootstrap re-sampling

Automatic model selection from large library of models

More sophisticated models with lower-order terms

Analysis when no instance generator available

I One or a few instances at each size
I Fewer instances overall
I Outlier detection

Apply to other problem domains

Planning, scheduling, MIP, etc.

Explore use beyond time complexity of algorithms

E.g., learning curves of ML algorithms

Z. Mu (UBC) Analysing Empirical Time Complexity 37

Future Work

Potential methodology improvements:

Nested bootstrap re-sampling

Automatic model selection from large library of models

More sophisticated models with lower-order terms

Analysis when no instance generator available

I One or a few instances at each size
I Fewer instances overall
I Outlier detection

Apply to other problem domains

Planning, scheduling, MIP, etc.

Explore use beyond time complexity of algorithms

E.g., learning curves of ML algorithms

Z. Mu (UBC) Analysing Empirical Time Complexity 37

References I

David L Applegate, Robert E Bixby, Vasek Chvátal, and William J Cook. The Traveling Salesman Problem: A
Computational Study. Princeton University Press, 2006.

David L Applegate, Robert E Bixby, Vasek Chvátal, and William J Cook. The traveling salesman problem, concorde
TSP solver. http://www. tsp. gatech. edu/concorde, 2012.

P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems are. In IJCAI, pages 331�337, 1991.

Cristian Coarfa, Demetrios D Demopoulos, Alfonso San Miguel Aguirre, Devika Subramanian, and Moshe Y Vardi.
Random 3-SAT: The plot thickens. Constraints, 8(3):243�261, 2003.

Stephen A Cook. The complexity of theorem-proving procedures. In STOC, pages 151�158. ACM, 1971.

James M Crawford and Larry D Auton. Experimental results on the crossover point in random 3-SAT. Arti�cial
Intelligence, 81(1):31�57, 1996.

Jérémie Dubois-Lacoste, Holger H Hoos, and Thomas Stützle. On the empirical scaling behaviour of state-of-the-art
local search algorithms for the Euclidean TSP. In GECCO, pages 377�384. ACM, 2015.

Michael R Garey and David S Johnson. Computers and intractability: A guide to the theory of NP-completeness.
San Francisco, CA: Freeman, 1979.

Ian P Gent and Toby Walsh. Towards an understanding of hill-climbing procedures for SAT. In AAAI, volume 93,
pages 28�33, 1993.

Ian P Gent, Ewan MacIntyre, Patrick Prosser, and Toby Walsh. The scaling of search cost. In AAAI/IAAI, pages
315�320, 1997.

Keld Helsgaun. General k-opt submoves for the lin�kernighan tsp heuristic. Mathematical Programming
Computation, 1(2-3):119�163, 2009.

Holger H. Hoos. A bootstrap approach to analysing the scaling of empirical run-time data with problem size.
Technical report, Technical Report TR-2009-16, Department of Computer Science, University of British
Columbia, 2009.

Holger H. Hoos and Thomas Stützle. On the empirical scaling of run-time for �nding optimal solutions to the
travelling salesman problem. European Journal of Operational Research, 238(1):87�94, 2014.

Z. Mu (UBC) Analysing Empirical Time Complexity 38

References II

Holger H Hoos and Thomas Stützle. On the empirical time complexity of �nding optimal solutions vs proving
optimality for Euclidean TSP instances. Optimization Letters, 2015. doi: 0.1007/s11590-014-0828-5.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general algorithm
con�guration. In Learning and Intelligent Optimization, pages 507�523. Springer, 2011.

Stephan Mertens, Marc Mézard, and Riccardo Zecchina. Threshold values of random k-SAT from the cavity
method. Random Structures and Algorithms, 28(3):340�373, 2006.

David Mitchell, Bart Selman, and Hector Levesque. Hard and easy distributions of SAT problems. In AAAI,
volume 92, pages 459�465, 1992.

Zongxu Mu and Holger H. Hoos. On the empirical time complexity of random 3-SAT at the phase transition. IJCAI,
2015a.

Zongxu Mu and Holger H Hoos. Empirical scaling analyser: An automated system for empirical analysis of
performance scaling. In GECCO Companion, pages 771�772, 2015b.

Yuichi Nagata and Shigenobu Kobayashi. A powerful genetic algorithm using edge assembly crossover for the
traveling salesman problem. Informs journal on computing, 25(2):346�363, 2013.

Christos H Papadimitriou. The euclidean travelling salesman problem is np-complete. Theoretical Computer
Science, 4(3):237�244, 1977.

Andrew J Parkes and Joachim P Walser. Tuning local search for satis�ability testing. In AAAI/IAAI, volume 1,
pages 356�362, 1996.

Makoto Yokoo. Why adding more constraints makes a problem easier for hill-climbing algorithms: Analyzing
landscapes of CSPs. In CP97, pages 356�370. Springer, 1997.

Z. Mu (UBC) Analysing Empirical Time Complexity 39

	Introduction
	Results
	Appendix

