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In this document, we introduce an automated tool – the Empirical Scaling Analyser
(ESA) – that can perform core elements of the analysis described in [2]. To use ESA,
a user needs to prepare an input file of running time data of an algorithm (referred to
as target algorithm hereafter), as well as other optional files, including a configuration
file, a file specifying the parametric models to be fitted, a LATEX template and a gnuplot
template. Details of these input files will be given in Section 1. Note that ESA is
not limited to fitting and assessing a single scaling model, but can deal with multiple
models simultaneously. In other words, once data collection is finished, a user can put
all running time data into a file, feed it into ESA and obtain the results from the scaling
analysis using several parametric models. Results are presented in a technical report,
which contains easy-to-read tables and figures for the scaling of the target algorithm.
The details of the output report are described in Section 2.

We believe the tool is useful for other researchers who want to study the empir-
ical time complexity of other algorithms, and can thus promote the use of such ana-
lysis for other problems and algorithms. The tool is available as an easy-to-use online
service at www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html and as
a command-line tool with additional functionality (see Section 5 on how to run ESA).
Here, we describe all features available in the command-line version.

1 Input
To perform scaling analysis, ESA requires input data containing the sizes of the in-
stances studied and the running times the target algorithm requires for solving these
instances. The input running time data need to follow the following formatting rules:

• the input file contains lines of details of the instances, one instance per line;

• in each line, the following three pieces of information are provided in order and
are separated by “,”:

– instance name (e.g., file name) and other optional information (this field
is for the user’s reference only; ESA does not use this field in the scaling
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# instance name , size , datum (running time)

portgen -500 -1000.tsp ,500 ,2.3

portgen -500 -100.tsp ,500 ,2.58

portgen -500 -101.tsp ,500 ,2.36

portgen -500 -102.tsp ,500 ,2.51

portgen -500 -103.tsp ,500 ,2.63

portgen -500 -104.tsp ,500 ,2.84

portgen -500 -105.tsp ,500 ,2.62

portgen -500 -106.tsp ,500 ,3

...

portgen -600 -1000.tsp ,600 ,3.42

...

portgen -4500 -10.tsp ,4500 ,727.68

portgen -4500 -11.tsp ,4500, inf

...

#instances ,4000 ,100

#instances ,4500 ,100

Figure 1: Excerpt of an input file for ESA, where deleted lines are represented by “...”.

analysis);

– instance size;

– running time required to solve the instance, which itself may be a statistic
for multiple runs of the target algorithm solving the instance and may be
“inf" for time-out or crashed runs.

Besides, the user may specify the number of instances for some sizes. If there are
not enough entries for one size, ESA will treat the missing entries as instances with
unknown running time. An example for such data is described in [1], in the context of
analysing the scaling behaviour of EAX and LKH, where the running times of some
instances are unknown because no optimal solution has been found in previous runs of
Concorde. An excerpt of an input file for ESA is in Figure 1.

ESA also takes as input a configuration file, containing details on the target al-
gorithm (algName), the instance distribution (instName), the number of bootstrap samples
(numTrainingData), etc. The file contains lines of configurations, one configuration per
line. Each configuration follows the “name : value” format. An example of a con-
figuration file is shown in Figure 2.

There are a number of other files that a user may supply (if not supplied, ESA will
use the default file(s) distributed with the code), including:

• a file specifying the models to be fit

• a LATEX template specifying the content and format of the output report

• gnuplot templates specifying the format of the plots
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fileName : runtimes.csv

algName : WalkSAT/SKC

instName : random 3-SAT instances at phase transition

modelFileName : models.txt

numTrainingData : 7

alpha : 95

numBootstrapSamples : 1000

statistic : median

latexTemplate : template -AutoScaling.tex

modelPlotTemplate : template_plotModels.plt

residuePlotTemplate : template_plotResidues.plt

Figure 2: Example of a configuration file for ESA.

Exp ,2,@@a@@\times @@b@@ ^{x},@@a@@*@@b@@ **x,@@a@@*@@b@@

**x,1e-4 ,1.01

Poly ,2,@@a@@\times x^{ @@b@@},@@a@@*x**@@b@@ ,@@a@@*x**

@@b@@ ,1e-8,1

Figure 3: An example of model specification for ESA.

The first of these is needed, because ESA supports customised models, as long as the
models are supported by python (including the math and the numpy packages) and
gnuplot. This file contains lines of models, one model per line. Each contains the
following items, separated by “,”:

• Model name (e.g., Exponential)

• Number of parameters (e.g., 2)

• LATEXexpression of the model

• Python expression of the model

• Gnuplot expression of the model

• Default values of the parameters, separated by “,”

For all expressions of the models, x represents the size, and the parameters should be
a,b, . . ., and should be surrounded by “@@”. For example, the specification in Figure
3, which is also the default model specification, tells ESA to fit an exponential and a
polynomial model of the form a ·bx and a · xb respectively:

For the LATEX template, ESA will use the default template, if no customised tem-
plate is found. In the template, dynamic values should be surrounded by “@@”. For
instance, the name of the algorithm (which is defined in the configuration file) is a
dynamic value. Wherever mentioned in the template file, the user should use “@@alg-
Name@@”, and ESA will instantiate it to be the real name of the algorithm when
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n 500 600 700 800
# instances 1000 1000 1000 1000

# running times 1000 1000 1000 1000
mean 19.33 31.55 56.8 89.35

coefficient of variation 1.164 1.418 1.303 1.455
Q(0.1) 0.43 2.21 6.73 10.62

Q(0.25) 3.75 8.75 15.3 22.31
median 12.22 18.64 33.15 48.95
Q(0.75) 25.01 37.64 68.29 102.5
Q(0.9) 47.33 70.35 130.4 195.5

n 900 1000 1100 1200
# instances 1000 1000 1000 1000

# running times 1000 1000 1000 1000
mean 139.7 201.2 314.6 385.4

coefficient of variation 1.734 1.759 1.851 1.713
Q(0.1) 17.23 23.28 28.8 38.76

Q(0.25) 32.72 43.23 60.84 78.66
median 70.64 98.56 145.7 177.2
Q(0.75) 142.7 216.1 341.3 409.2
Q(0.9) 302.7 429.4 693.2 846.3

n 1300 1400 1500
# instances 1000 1000 1000

# running times 1000 1000 1000
mean 548.7 749 1072

coefficient of variation 1.859 2.227 2.109
Q(0.1) 53.27 73.78 93.04

Q(0.25) 112.2 153.3 210.1
median 271.7 344.3 483.5
Q(0.75) 583.6 783.6 1136
Q(0.9) 1190 1517 2277

Table 1: Example output of ESA – statistics of running times for support data.

generating the report. Users can also specify the formats of the plots via the template
gnuplot script. For instance, users may choose whether to use a log-log plot or a semi-
log plot via the template gnuplot script. Default templates are available for download
together with the source code (see Section 5 for details).

2 Output
ESA automatically generates a technical report containing detailed empirical scaling
analysis results and interpretation. This report contains tables and figures that users
can easily read, including:

• two tables of statistics of running times, one for support data and the other for
challenge, as illustrated in Tables 1 & 2, respectively;

• a table of fitted models and corresponding RMSE values, as illustrated in Table
3;

• a figure of running times, fitted models and corresponding bootstrap confidence
intervals of each model, as illustrated in Figure 4;
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n 2000 2500 3000
# instances 1000 100 100

# running times 1000 100 100
mean 5402 ∞ ∞

coefficient of variation 2.624 N/A N/A
Q(0.1) 307 671.5 3538

Q(0.25) 765.5 1694 8188
median 1969 6149 1.84×104

Q(0.75) 5207 1.766×104 4.118×104

Q(0.9) 1.137×104 4.611×104 9.048×104

n 3500 4000 4500
# instances 100 100 100

# running times 100 100 100
mean ∞ ∞ ∞

coefficient of variation N/A N/A N/A
Q(0.1) 6060 2.096×104 3.041×104

Q(0.25) 1.226×104 4.125×104 1.22×105

median 3.246×104 1.312×105 2.633×105

Q(0.75) 9.717×104 3.938×105 ∞

Q(0.9) 2.76×105 ∞ ∞

Table 2: Example output of ESA – statistics of running times for challenge data.

Model RMSE RMSE
(support) (challenge)

Concorde
Exp. Model 4.0388×1.0032x 7.7847 2.7852×106

RootExp. Model 0.083457×1.2503
√

x 7.0439 9169.4
Poly. Model 1.6989×10−10× x3.9176 9.9327 1.038×105

Table 3: Example output of ESA – fitted models and corresponding RMSE values.
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Figure 4: Example output of ESA – a figure of running times, fitted models and cor-
responding bootstrap confidence intervals of each model.
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Figure 5: Example output of ESA – a figure of residues of the fitted models.

Solver Model Confidence interval of a Confidence interval of b

Concorde
Exp. [2.6108,5.2975] [1.003,1.0036]

RootExp. [0.037056,0.15111] [1.2287,1.2793]
Poly.

[
6.1872×10−12,1.7351×10−9

]
[3.5859,4.3713]

Table 4: Example output of ESA – bootstrap confidence intervals for all model para-
meters.

• a figure of residues of the fitted models, as illustrated in Figure 5;

• a table of bootstrap confidence intervals for all model parameters, as illustrated
in Table 4;

• two tables of bootstrap confidence intervals for observed and predicted running
times, one for support data and the other for challenge, as illustrated in Tables 5
& 6.

A snapshot of the reported generated by ESA using the default LATEX template is shown
in Figure 6.

3 Automated Interpretation of Scaling Results
In addition, ESA generates automated interpretations for scaling analysis results. It
evaluates how well a model fits the given data based on the percentage of challenge
sizes for which the model predicts the corresponding running times reasonably accur-
ately. If a model predicts well for most challenge sizes, then the model should be
accepted as a good fit. Technically, the evaluation is based on the percentage of chal-
lenge points that lie within the predicted bootstrap confidence intervals of the model. It
especially emphasises the challenge points for larger input sizes, as those provide more
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Solver n
Predicted confidence intervals Observed median run-time

Exp. model Point estimates Confidence intervals

Concorde

500 [15.43,23.47] 12.22 [11.01,13.33]
600 [22,31.52] 18.64 [16.99,20.16]
700 [31.38,42.57]# 33.15 [30.38,35.9]
800 [44.68,57.59]# 48.95 [44.05,53.15]
900 [63.49,77.63]* 70.64 [64.34,77.28]

1000 [90.18,104.8]# 98.56 [90.16,107.8]
1100 [127.6,141.9] 145.7 [130.9,158.6]
1200 [178.6,193] 177.2 [165.8,196.1]
1300 [244.7,266.8] 271.7 [244.9,298.3]
1400 [332.7,375.7]# 344.3 [318.9,383.3]
1500 [448.8,534.7]# 483.5 [432.8,532.9]

Solver n
Predicted confidence intervals Observed median run-time

RootExp. model Point estimates Confidence intervals

Concorde

500 [9.176,15.31]* 12.22 [11.01,13.33]
600 [15.56,23.81]* 18.64 [16.99,20.16]
700 [25.21,35.83]# 33.15 [30.38,35.9]
800 [39.43,52.46]# 48.95 [44.05,53.15]
900 [60.23,74.99]# 70.64 [64.34,77.28]

1000 [89.56,105.2]# 98.56 [90.16,107.8]
1100 [130.4,145.2] 145.7 [130.9,158.6]
1200 [184.4,199.1] 177.2 [165.8,196.1]
1300 [252,274]# 271.7 [244.9,298.3]
1400 [336.6,380.4]# 344.3 [318.9,383.3]
1500 [442,522.8]# 483.5 [432.8,532.9]

Solver n
Predicted confidence intervals Observed median run-time

Poly. model Point estimates Confidence intervals

Concorde

500 [4.206,8.58] 12.22 [11.01,13.33]
600 [9.398,16.47] 18.64 [16.99,20.16]
700 [18.41,28.62] 33.15 [30.38,35.9]
800 [32.91,46.48] 48.95 [44.05,53.15]
900 [55.04,71.24]# 70.64 [64.34,77.28]

1000 [86.98,104.3]# 98.56 [90.16,107.8]
1100 [131.4,147.6]# 145.7 [130.9,158.6]
1200 [188.5,204.4] 177.2 [165.8,196.1]
1300 [257.9,280.1]# 271.7 [244.9,298.3]
1400 [339.3,384.2]# 344.3 [318.9,383.3]
1500 [435.4,516.3]# 483.5 [432.8,532.9]

Table 5: Example output of ESA – bootstrap confidence intervals for observed and
predicted running times for support data.

7



Solver n
Predicted confidence intervals Observed median run-time

Exp. model Point estimates Confidence intervals

Concorde

2000 [1988,3179] 1969 [1739,2222]
2500

[
8718,1.884×104] 6149 [4084,8812]

3000
[
3.853×104,1.103×105

]
1.84×104

[
1.332×104,2.669×104

]
3500

[
1.698×105,6.479×105

]
3.246×104

[
2.581×104,5.038×104

]
4000

[
7.5×105,3.809×106

]
1.312×105

[
7.073×104,2.024×105

]
4500

[
3.301×106,2.245×107

]
2.633×105

[
1.73×105,4.419×105

]
Solver n

Predicted confidence intervals Observed median run-time
RootExp. model Point estimates Confidence intervals

Concorde

2000 [1528,2269]* 1969 [1739,2222]
2500 [4536,8335]# 6149 [4084,8812]
3000

[
1.212×104,2.694×104]* 1.84×104

[
1.332×104,2.669×104

]
3500

[
3.001×104,7.925×104]# 3.246×104

[
2.581×104,5.038×104

]
4000

[
6.95×104,2.163×105]* 1.312×105

[
7.073×104,2.024×105

]
4500

[
1.528×105,5.563×105]* 2.633×105

[
1.73×105,4.419×105

]
Solver n

Predicted confidence intervals Observed median run-time
Poly. model Point estimates Confidence intervals

Concorde

2000 [1228,1795] 1969 [1739,2222]
2500 [2737,4771] 6149 [4084,8812]
3000

[
5252,1.057×104

]
1.84×104

[
1.332×104,2.669×104

]
3500

[
9149,2.069×104

]
3.246×104

[
2.581×104,5.038×104

]
4000

[
1.477×104,3.708×104

]
1.312×105

[
7.073×104,2.024×105

]
4500

[
2.248×104,6.205×104

]
2.633×105

[
1.73×105,4.419×105

]
Table 6: Example output of ESA – bootstrap confidence intervals for observed and
predicted running times for support data.

Figure 6: Snapshot of the technical report generated by ESA.
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Figure 7: Flow diagram on how ESA automatically interprets the fitting results. De-
tailed definitions of the conditions are given in the main text.

information regarding whether the model predicts well. The detailed criteria, which we
design based on extensive experiments with SAT and TSP algorithms, are as follows:

• fair fit: the model predicts well for a fair percentage of the challenge sizes, more
precisely, > 70% of the challenge points or > 70% of the larger half of the
challenge points are within the predicted bootstrap intervals;

• very good fit: the model predicts well for almost all challenge sizes, more precisely,>
95% of the challenge points are within the predicted bootstrap intervals;

• over-/under-estimate: the model over-/under-estimates the running times of a
significant percentage of the challenge sizes, more precisely, > 75% of the chal-
lenge points or > 75% of the larger half of the challenge points are below/above
the predicted bootstrap intervals.

These criteria are combined into the fully automated interpretation procedure illus-
trated in Figure 7. Note that when medians (or other quantiles) are not definitely known
(due to instances with unknown running times), we compare the intervals of the medi-
ans against the predicted bootstrap intervals. To be more precise, for instance, we say
a challenge point is below the predicted bootstrap interval, if the upper bound of the
median is smaller than the lower bound of the bootstrap interval.
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4 Implementation
ESA is implemented in python 2.7 and calls gnuplot to generate plots. All provided
gnuplot scripts are prepared for gnuplot version 4.6, but only minimal modifications, if
any, will be needed to use with another gnuplot version. The online service has a clear
user interface implemented with HTML/CSS, and the back-end service was realised
using python CGI.

ESA was designed to work with customisable LATEX and gnuplot templates (see
Sec. 1 for details). There is a special LATEX syntax that can be used as "variables"
in the LATEX template, which will be replaced by actual content when ESA runs. The
LATEX template can also be compiled "as-is"to make it easier for users to adapt it to their
specific needs. We chose gnuplot for plot generation so that users can easily supply a
template for customised figure formatting. ESA also supports user-defined models for
scaling analysis. To achieve this, ESA defines functions on-the-fly from user-supplied
strings.

5 Downloading and Running ESA

5.1 Downloading and Running ESA from the Command Line
ESA can be downloaded from the project page online at www.cs.ubc.ca/labs/
beta/Projects/ESA/. After unzipping the compressed file, there will be a direct-
ory named ESA, which contains runESA.sh, the source code and other support files. A
user needs to have python and gnuplot installed in order to run ESA. We used python
2.7 and gnuplot 4.6 in our environment, but expect ESA to work for other versions with
minimal modifications, if any.

To run ESA from command line, a user should follow the following steps:

1. Create a directory for input and output files.

2. Put the primary input file for running time data into the directory.

3. Create files for models and LATEX and gnuplot templates (optional; if not provided,
ESA will use the default files distributed with the source code).

4. Create a configuration file named configurations.txt within the directory, telling
ESA the details it requires, including names of the algorithm and the instance
set/distribution, file names of running time data and, if used, the file names of
model specifications and LATEX and gnuplot templates.

5. Run the script in the ESA directory by ./runESA.sh <directory name>, and
ESA will run according to the specifications in <directory name>/configurations.txt.

5.2 Running ESA as a Web Service
ESA is also available online as a web service, which supports the essential but not all
features of the command-line version. In particular:
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Figure 8: The user interface of ESA as a web service.

• it only supports three pre-defined models, include:

– exponential: a ·bn,

– root-exponential: a ·b
√

n, and

– polynomial: a ·nb;

• it uses the default LATEX and gnuplot templates for report generation;

• it only supports a limited number of statistics, include median, mean, as well as
75th, 90th and 95th percentiles.

To run ESA as a web service, visit www.cs.ubc.ca/labs/beta/Projects/ESA/
esa-online.html, upload the file of running time data and fill in the other details of
the form. After submission, ESA will run in the back and redirect the user to the output
technical report. The user interface is shown in Figure 8.
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