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Lexical Inference

A directional semantic relation from one term to another: x → y

Encapsulates various relations, for example:

Synonymy: (elevator, lift)
Is a / hypernymy: (pineapple, fruit), (green, color), (Obama, president)
Hyponymy: (fruit, pineapple), (color, green), (president, Obama)
Meronymy: (London, England), (hand, body)
Holonymy: (England, London), (body, hand)
Causality: (flu, fever)

Each relation is used to infer y from x in certain contexts:

I ate a pineapple → I ate a fruit
I hate fruit → I hate pineapples
I visited London → I visited England
I left London 6→ I left England
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Recognizing Lexical Inference

Given two terms, x and y , decide whether x → y

in some senses of x and y , e.g. apple → fruit, apple → company
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Example Motivation - Question Answering

Question

“What animals inhabit the Arctic regions?”

Candidate Passages

1 Polar bears inhabit the Arctic regions.

2 Indigenous people inhabit the Arctic regions.

Knowledge

bear → animal, but people 6→ animal.

Vered Shwartz (Bar-Ilan University) Recognizing Lexical Inference August 2016 4 / 48



Example Motivation - Query Expansion

Query

“Actors engaged in Scientology”

Results

Knowledge

Tom Cruise → actor, John Travolta → actor.
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Outline

1 Resource-based Methods
WordNet-based Methods
Learning to Exploit Structured Resources for Lexical Inference

2 Corpus-based Methods
Distributional Approach
Path-based Approach
Integrated Path-based and Distributional Method

3 What’s Next?
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Resource-based Methods
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Resource-based Methods for Lexical Inference

Based on knowledge from hand-crafted resources

Dictionaries
Taxonomies (e.g. WordNet)

Resources specify the lexical-semantic relation between terms

The decision is based on the paths between x and y

Need to predefine which relations are relevant for the task
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Learning to Exploit Structured Resources
for Lexical Inference

Vered Shwartz, Omer Levy, Ido Dagan and Jacob Goldberger

CoNLL 2015
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WordNet-based Methods for Lexical Inference

High precision

Limited recall:

WordNet is small
Not up-to-date

Recent terminology is missing: Social Network

Contains mostly common nouns

For example, it can’t tell us that Lady Gaga is a singer
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Community-built Resources

Huge:

6M entities, 12K properties

4.5M entities, 14K properties

10M entities, 70 properties

(WordNet: 150K entities, 11 properties)

Frequently updated

Contain proper-names
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Utilizing Community-built Resources

Idea: extend WordNet-based method using these resources

Problem: utilizing these resources manually is infeasible

thousands of relations to select from!

Solution: learn to exploit these resources

Using genetic search
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Utilizing Community-built Resources

Input: a dataset of (x , y) term-pairs, annotated to whether x → y , for
a certain target lexical inference relation (e.g. “is a”)

Training: learn which properties are indicative of the target lexical
inference relation

Inference: x → y if there is a path of indicative edges from x to y
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Results

We replicate WordNet-based methods for common nouns

We extract high-precision inferences including proper-names (e.g.
Lady Gaga→ singer)

Non-trivial resource relations are learned:

occupation Daniel Radcliffe → actor

gender Louisa May Alcott → woman

genre Touch→ drama

position played on sports team Jason Collins → center

We complement corpus-based methods in high-precision scenarios,
but with lower recall
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Corpus-based Methods
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Hypernymy Detection

Some of the following works focus on detecting hypernymy, which is a
common lexical inference relation

the hyponym (x) is a type of / instance of the hypernym (y)
e.g. (pineapple, fruit), (green, color), (Obama, president)

The hypernymy detection task: given two terms, x and y , decide
whether y is a hypernym of x

in some senses of x and y , e.g. (apple, fruit), (apple, company)
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Corpus-based Methods

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

New
Dataset

Results &
Analysis
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Prior Methods

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work

New
Dataset

Results &
Analysis
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Distributional Approach

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work

New
Dataset

Results &
Analysis
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Distributional Approach

Recognize the relation between x and y based on their separate
occurrences in the corpus

Distributional Hypothesis [Harris, 1954]:
Words that occur in similar contexts tend to have similar meanings

e.g. elevator and lift will both appear next to up, floor and stairs
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Unsupervised Distributional Methods

Words are represented as distributional (count-based) vectors:

0 0 ... 0.56 0 ... 0.89 0 ... 0

↑ ↑
up stairs

Vector-based measures for “directional similarity”:

Inclusion: If x → y , then the prominent contexts of x are included in y
[Weeds and Weir, 2003, Kotlerman et al., 2010].

Generality: If x → y , then the most typical linguistic contexts of y are
less informative than those of x [Santus et al., 2014, Rimell, 2014].
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Supervised Distributional Methods

Words are represented using low-dimensional word embeddings
[Mikolov et al., 2013, Pennington et al., 2014]

(x , y) term-pairs are represented as a feature vector, based of the
terms’ embeddings:

Concatenation ~x ⊕ ~y [Baroni et al., 2012]
Difference ~y − ~x [Roller et al., 2014, Weeds et al., 2014]

Train a classifier to predict whether x → y (or: y is a hypernym of x)

Achieved very good results on common datasets

Is it a solved task?

Probably not. They don’t learn the relation between x and y , but
mostly that y is a prototypical hypernym [Levy et al., 2015].

e.g. that (x, fruit) or (x, animal) are always hypernyms

Vered Shwartz (Bar-Ilan University) Recognizing Lexical Inference August 2016 22 / 48



Supervised Distributional Methods

Words are represented using low-dimensional word embeddings
[Mikolov et al., 2013, Pennington et al., 2014]

(x , y) term-pairs are represented as a feature vector, based of the
terms’ embeddings:

Concatenation ~x ⊕ ~y [Baroni et al., 2012]
Difference ~y − ~x [Roller et al., 2014, Weeds et al., 2014]

Train a classifier to predict whether x → y (or: y is a hypernym of x)

Achieved very good results on common datasets

Is it a solved task?

Probably not. They don’t learn the relation between x and y , but
mostly that y is a prototypical hypernym [Levy et al., 2015].

e.g. that (x, fruit) or (x, animal) are always hypernyms

Vered Shwartz (Bar-Ilan University) Recognizing Lexical Inference August 2016 22 / 48



Supervised Distributional Methods

Words are represented using low-dimensional word embeddings
[Mikolov et al., 2013, Pennington et al., 2014]

(x , y) term-pairs are represented as a feature vector, based of the
terms’ embeddings:

Concatenation ~x ⊕ ~y [Baroni et al., 2012]
Difference ~y − ~x [Roller et al., 2014, Weeds et al., 2014]

Train a classifier to predict whether x → y (or: y is a hypernym of x)

Achieved very good results on common datasets

Is it a solved task?

Probably not. They don’t learn the relation between x and y , but
mostly that y is a prototypical hypernym [Levy et al., 2015].

e.g. that (x, fruit) or (x, animal) are always hypernyms

Vered Shwartz (Bar-Ilan University) Recognizing Lexical Inference August 2016 22 / 48



Supervised Distributional Methods

Words are represented using low-dimensional word embeddings
[Mikolov et al., 2013, Pennington et al., 2014]

(x , y) term-pairs are represented as a feature vector, based of the
terms’ embeddings:

Concatenation ~x ⊕ ~y [Baroni et al., 2012]
Difference ~y − ~x [Roller et al., 2014, Weeds et al., 2014]

Train a classifier to predict whether x → y (or: y is a hypernym of x)

Achieved very good results on common datasets

Is it a solved task?

Probably not. They don’t learn the relation between x and y , but
mostly that y is a prototypical hypernym [Levy et al., 2015].

e.g. that (x, fruit) or (x, animal) are always hypernyms

Vered Shwartz (Bar-Ilan University) Recognizing Lexical Inference August 2016 22 / 48



Supervised Distributional Methods

Words are represented using low-dimensional word embeddings
[Mikolov et al., 2013, Pennington et al., 2014]

(x , y) term-pairs are represented as a feature vector, based of the
terms’ embeddings:

Concatenation ~x ⊕ ~y [Baroni et al., 2012]
Difference ~y − ~x [Roller et al., 2014, Weeds et al., 2014]

Train a classifier to predict whether x → y (or: y is a hypernym of x)

Achieved very good results on common datasets

Is it a solved task?

Probably not. They don’t learn the relation between x and y , but
mostly that y is a prototypical hypernym [Levy et al., 2015].

e.g. that (x, fruit) or (x, animal) are always hypernyms

Vered Shwartz (Bar-Ilan University) Recognizing Lexical Inference August 2016 22 / 48



Supervised Distributional Methods

Words are represented using low-dimensional word embeddings
[Mikolov et al., 2013, Pennington et al., 2014]

(x , y) term-pairs are represented as a feature vector, based of the
terms’ embeddings:

Concatenation ~x ⊕ ~y [Baroni et al., 2012]
Difference ~y − ~x [Roller et al., 2014, Weeds et al., 2014]

Train a classifier to predict whether x → y (or: y is a hypernym of x)

Achieved very good results on common datasets

Is it a solved task?

Probably not. They don’t learn the relation between x and y , but
mostly that y is a prototypical hypernym [Levy et al., 2015].

e.g. that (x, fruit) or (x, animal) are always hypernyms

Vered Shwartz (Bar-Ilan University) Recognizing Lexical Inference August 2016 22 / 48



Path-based Approach

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work

New
Dataset

Results &
Analysis
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Path-based Approach

Recognize the relation between x and y based on their joint
occurrences in the corpus

Hearst Patterns [Hearst, 1992] - patterns connecting x and y may
indicate that y is a hypernym of x

e.g. X or other Y, X is a Y, Y, including X

Patterns can be represented using dependency paths:

apple is a fruit
NOUN VERB DET NOUN

NSUBJ

ATTR

DET
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Supervised Path-based Approach

Supervised method to recognize hypernymy [Snow et al., 2004]:

Features: all dependency paths that connected x and y in a corpus:

0 0 ... 58 0 ... 97 0 ... 0
↑ ↑

X and other Y such Y as X

Supervision: set of known hyponym/hypernym pairs from WordNet
Trained a logistic regression classifier to predict hypernymy
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Path-based Approach Issues

The feature space is too sparse:

Similar paths share no information:
X inc. is a Y
X group is a Y
X organization is a Y

PATTY [Nakashole et al., 2012] generalized paths, by replacing a
word by:

Some of these generalizations are too general:

X is defined as Y ≈ X is described as Y via X is VERB as Y
X is defined as Y 6= X is rejected as Y
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X is defined as Y 6= X is rejected as Y
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HypeNET: Integrated Path-based and Distributional Method
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path-based
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distributional

Integrated Model
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New
Dataset

Results &
Analysis
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First Step: Improving Path Representation
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Path Representation (1/2)

1 Split each path to edges

X is a Y ⇒
‘X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<’ ⇒

‘X/NOUN/nsubj/>’ ‘be/VERB/ROOT/-’ ‘Y/NOUN/attr/<’

Each edge consists of 4 components:
dependent lemma / dependent POS / dependency label / direction

We learn embedding vectors for each component

Lemma embeddings are initialized with pre-trained word embeddings

The edge’s vector is the concatenation of its components’ vectors:

be/VERB/ROOT/-

Generalization: similar edges should have similar vectors!
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Path Representation (2/2)

2 Feed the edges sequentially to an LSTM

X/NOUN/dobj/>define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

Use the last output vector as the path embedding
The LSTM may focus on edges that are more informative for the
classification task, while ignoring others
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Term-pair Classification

The LSTM encodes a single path

Each term-pair has multiple paths

Represent a term-pair as its averaged path embedding

Classify for hypernymy (path-based network):

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

~op

. . .

X/NOUN/dobj/>define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

(x , y) paths in Path LSTM Term-pair Classifier

average

pooling (x , y)

classification
(softmax)

~vxy

Embeddings:
lemma
POS
dependency label
direction
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Second Step: Integrating Distributional Information
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Second Step: Integrating Distributional Information

Integrated network: add distributional information

Simply concatenate x and y ’s word embeddings to the averaged path

Classify for hypernymy (integrated network):

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

~op

. . .

X/NOUN/dobj/>define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

(x , y) paths in Path LSTM Term-pair Classifier

average

pooling

~vwx

(x , y)

classification
(softmax)

~vwy

~vxy

Embeddings:
lemma
POS
dependency label
direction
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Evaluation

Hypernymy Detection
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New Dataset

Distant supervision from knowledge resources

Size: 70,679 entries
Positive instances: term-pairs related via hypernymy relations

e.g. instance of

Negative instances: term-pairs related via other relations
Filtering: pairs must co-occur at least twice (like [Snow et al., 2004])

Train / test / validation split: random (70% - 25% - 5%)
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Results

method precision recall F1

Path-based
Snow 0.843 0.452 0.589
Snow + GEN 0.852 0.561 0.676
HypeNET Path-based 0.811 0.716 0.761

Distributional Best Supervised 0.901 0.637 0.746

Combined HypeNET Integrated 0.913 0.890 0.901

Path-based:

Compared to Snow + Snow with PATTY style generalizations
Our method outperforms path-based baselines with improved recall
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HypeNET Path-based 0.811 0.716 0.761

Distributional Best Supervised 0.901 0.637 0.746

Combined HypeNET Integrated 0.913 0.890 0.901

Distributional:

Compared to several supervised/unsupervised methods
HypeNET Path-based performs similarly to best distributional method
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Results

method precision recall F1

Path-based
Snow 0.843 0.452 0.589
Snow + GEN 0.852 0.561 0.676
HypeNET Path-based 0.811 0.716 0.761

Distributional Best Supervised 0.901 0.637 0.746

Combined HypeNET Integrated 0.913 0.890 0.901

The integrated method substantially outperforms both path-based
and distributional methods
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Analysis
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Analysis - Path Representation (1/2)

Identify hypernymy-indicating paths:

Baselines: according to logistic regression feature weights

HypeNET: measure path contribution to positive classification:

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

~op ~op

Term-pair Classifier

Path LSTM

~0

(x , y)

classification
(softmax)

~0

Take the top scoring paths according to softmax(W · [~0, ~op,~0])[1]
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Analysis - Path Representation (2/2)

Snow’s method finds certain common paths:

X company is a Y
X ltd is a Y

PATTY-style generalizations find very general, possibly noisy paths:

X NOUN is a Y

HypeNET makes fine-grained generalizations:

X association is a Y
X co. is a Y
X company is a Y
X corporation is a Y
X foundation is a Y
X group is a Y
...
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What’s Next?
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What’s Next?

Recognizing lexical inferences within context:

Detect the correct sense of a term (apple) within the given context
Base the entailment decision on the sentence and the semantic
relation, e.g. hypernymy in upward/downward monotone sentences:

I ate an apple → I ate a fruit
I hate fruit → I hate apples
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First Step: Recognizing Multiple Semantic Relations I

1 Extend HypeNET to support multiple semantic relations (LexNET):

X/NOUN/nsubj > be/VERB/ROOT < Y/NOUN/attr

X/NOUN/dobj > define/VERB/ROOT Y/NOUN/pobj< as/ADP/prep <

Path LSTM Term-pair Classifier

~op

average

pooling

~vwx

..
.

(x , y)

classification
(softmax)

~vwy

~vxy

Embeddings:
lemma
POS
dependency label
direction
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First Step: Recognizing Multiple Semantic Relations II

2 Test on common semantic relations datasets:

K&H+N BLESS ROOT09 EVALution
method P R F1 P R F1 P R F1 P R F1

Path-based 0.713 0.604 0.55 0.759 0.756 0.755 0.788 0.789 0.788 0.53 0.537 0.503

Distributional 0.909 0.906 0.904 0.811 0.812 0.811 0.636 0.675 0.646 0.531 0.544 0.525

Distributional NN 0.983 0.984 0.983 0.891 0.889 0.889 0.712 0.721 0.716 0.57 0.573 0.571

LexNET 0.985 0.986 0.985 0.894 0.893 0.893 0.813 0.814 0.813 0.601 0.607 0.6

LexNET outperforms individual path-based and distributional methods
Path-based contribution over distributional info small but consistent,
especially when:

The dataset is not biased (i.e. when lexical memorization is disabled),
e.g. random:(toaster, vehicle).

x or y are polysemous, e.g. mero:(piano, key).

x or y are rare, e.g. hyper:(mastodon, proboscidean).
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First Step: Recognizing Multiple Semantic Relations III

3 Which relations can be learned? (F1 × 100 score):
relation Path-based Distributional LexNET ∆

antonym 23.6 50.7 52.9 +2.2

attribute 78.0 85.9 88.4 +2.5

co-hyponym 37.9 94.4 96.2 +1.8

event 73.9 88.3 89.3 +1.0

hypernym 57.8 80.4 81.3 +0.9

meronym 60.4 80.1 82.3 +2.2

synonym 10.6 33.3 36.4 +3.1

Both methods are not good in recognizing synonyms and antonyms.
Path-based information adds over the distributional one mostly for
relations that it learned well (attribute) or for those that the
distributional method did not (synonym).
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Future Work: Lexical Inference in Context

Developing a method to recognize lexical inferences within context:
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Questions?
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