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Lexical Inference

* Adirectional semantic relation from one term (x) to another (y)

* Encapsulates various relations, for example:
* Synonymy: (elevator, lift)
* Isa/hypernymy: (apple, fruit), (Barack Obama, president)
Hyponymy: (fruit, apple)
Meronymy: (London, England), (chest, body)
Holonymy: (England, London), (body, chest)
Causality: (flu, fever)

Each relation is used to infer y from x (x — y) in certain contexts:
 |ateanapple — latea fruit
e | hate fruit — | hate apples
* |visited London — lvisited England
e |left London -+ |left England (What if | left to Manchester?)



Motivation

* Question answering:

Question: “When was Friends first aired?”

Text: “Friends was first broadcast in 1994”

Knowledge: broadcast — air

Answer: 1994 "ii_ ‘_ o
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Outline

* Learning to Exploit Structured Resources for Lexical Inference

* Improving Hypernymy Detection with an Integrated Path-based and
Distributional Methods
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Resource-based methods for lexical inference

* Based on knowledge from hand-crafted resources T
* Dictionaries wcarnwore \%&\
e Taxonomies (e.g. WordNet) w o
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* Resources specify the lexical-semantic ® =)
relation between terms )

The decision is based on the paths between x and y
* Need to predefine which relations are relevant for the task




Resource-based methods for lexical inference

e High precision

e Limited recall:
* WordNet is small
* Not up-to-date
Recent terminology is missing:
e Contains mostly common nouns
For example, it can’t tell us that IS a



Community-built Resources
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* Frequently updated :

» Contain proper-names
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Utilizing Community-built Resources

* |[dea: extend WordNet-based method using these resources

* Problem: utilizing these resources manually is infeasible
* thousands of relations to select from!

e Solution: learn to exploit these resources



Our Method

* Goal: learn which properties are indicative
of given lexical inference relation (e.g. “is a”)

e Approach: supervised learning
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Results

* We replicate WordNet-based methods for common nouns
* We extract high-precision inferences including proper-names:
Lady Gaga — person of

Radio performero instance_of @/ rock

Gaga @ band



Results

e Non-trivial resource relations are learned:

occupation Daniel Radclif fe — actor
gender Louisa May Alcott - woman
position in sports team Jason Collins — center

* We complement corpus-based methods in high-precision scenarios
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Hypernymy Detection

* We focus on detecting hypernymy relations, which are common in
inference:



Corpus-based methods for hypernymy detection

e Consider the statistics of term occurrences in a large corpus

* Roughly divided to two sub-approaches:
 Distributional approach
* Path-based approach



Distributional approach

* Distributional Hypothesis (Harris, 1954):
Words that occur in similar contexts tend to have similar meanings

* e.g. and will both appear next to down, up, building, floor, and stairs

* Measuring word similarity:
e Represent words as distributional vectors

0 0 12 0 43 0 0
! !
down up

* Measure the distance between the vectors (e.g. cosine similarity)



Unsupervised Distributional Methods

 But...

* Word similarity !=lexical inference
* Antonyms are similar
* Mutually exclusive terms are also similar

* Directional similarity

* Inclusion: If x — y, then the contexts of x are expected to be possible
contexts for y (Weeds and Weir, 2003; Kotlerman et. al, 2010)

* Generality: the most typical linguistic contexts of a hypernym are less
informative than those of its hyponyms (Santus et al., 2014; Rimell, 2014).



Supervised Distributional Methods
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Supervised Distributional Methods

* Represent (X, y) as a combination of each term embeddings vector:

 Concatenation x @y (Baroni et al., 2012)
« Difference y — x (Roller et al., 2014; Fu et al.,2014; Weeds et al., 2014)
e Similarity X - y

* Train a classifier over these vectors to predict entailment / hypernymy
* Achieved high performance

* However, these methods don’t learn anything about the relation
between x and y — they only learn characteristics of each term (Levy
et al., 2015).



Path-based approach

* |exico-syntactic paths = dependency paths or textual patterns,
with POS tags and lemma

e Some patterns indicate semantic relations between terms:
* e.g. indicates that X is of type Y

* If x and y hold a certain semantic relation, they are expected to occur
in the corpus as the arguments of such patterns

*eg.




Hearst Patterns

e Hearst (1992) - automatic acquisition of hypernyms

* Found a few indicative patterns based on occurrences of known
hypernyms in the corpus:

Y suchas X
suchY as X

X or otherY

X and otherY

Y including X

Y, especially X



Snow et al. (2004)

e Supervised method to recognize hypernymy
* Predict whether y is a hypernym of x
e Supervision: set of known hyponym/hypernym pairs
* Features: all dependency paths between x and y in a corpus

0 0 12 0 43 0
“x and other y” “suchyas x”

Successfully restores Hearst patterns (and adds many more)
* Used for analogy identification, taxonomy creation, etc.



Problem with lexico-syntactic paths

* The feature space is too sparse:

X city 18 a
NOUN iS ].Elfld VERB DET
company
village

band
NOUN

* Some words along the path don’t change the meaning



PATTY

e Ataxonomy created from free text (Nakashole et al., 2012)
* The relation between terms is based on the dependency paths between them

e Paths are generalized —a word might be replaced by:
* its POS tag
* a wild card
* its ontological type

place




LSTM-based path representation

* |dea: learn “smarter” generalizations




LSTM-based hypernymy detection

Embeddings:
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* Process each path edge-by-edge, using an LSTM




LSTM-based hypernymy detection

Embeddings:
() lemma
8 lom 000000
@ dependency label - .
softmax
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* Represent each edge as a concatenation of:

Lemma vector

* Part-of-speech vector

* Dependency label vector

Direction vector




LSTM-based hypernymy detection

Embeddings: (=3
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e Use the LSTM output as the path vector
e Each term-pair has multiple paths




LSTM-based hypernymy detection

Embeddings: il
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e Use the LSTM output as the path vector
e Each term-pair has multiple paths
 Compute the averaged path embedding



LSTM-based hypernymy detection

Embeddings:
lemma
@ POs
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e Each pair (x, y) is represented using the concatenation of:
* x's embedding vector

* the averaged path vector

* v'sembedding vector




LSTM-based hypernymy detection

Embeddings:
() lemma
@ POS
@ dependency label S >
@ direction \ (x, )
classificatiok

(softmax)
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* This vector is used as the input of a network that predicts whethery
is @ hypernym of x



Results

random split

lexical split

method precision | recall F precision | recall Fy
Snow 0.843 0.452 | 0.589 0.760 0.438 | 0.556
Path-based Snow + Gen 0.852 0.561 | 0.676 0.759 0.530 | 0.624
LSTM (this paper) 0.811 0.716 | 0.761 0.691 0.632 | 0.660
Distributional SLQS (Santus et al., 2014) 0.246 0.213 | 0.228 0.270 0.222 | 0.243
Best supervised (concatenation) 0.901 0.637 | 0.746 0.754 0.551 | 0.637
Combined LSTM-Integrated (this paper) 0.913 0.890 | 0.901 0.809 0.617 | 0.700

e Path-based:

* Our method outperforms the baselines

* The generalizations yield improved recall

* The combined method outperforms both path-based and distributional methods




Analysis — Path Representation

* Snow’s method finds certain common paths:

X companyisayY
XltdisayY

* PATTY-style generalizations find very general, possibly noisy paths:
XNOUNisaY

* Our method makes fine-grained generalizations:
X (association|co.|company|corporation| foundation|group|inc.|international |limited|ltd.)isa Y



Thanks!
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