

Recognizing Lexical Inference

April 2016

Lexical Inference

- A directional semantic relation from one term (x) to another (y)
- Encapsulates various relations, for example:
 - Synonymy: (*elevator*, *lift*)
 - Is a / hypernymy: (*apple, fruit*), (*Barack Obama, president*)
 - Hyponymy: (*fruit, apple*)
 - Meronymy: (*London, England*), (*chest, body*)
 - Holonymy: (*England*, *London*), (*body*, *chest*)
 - Causality: (*flu, fever*)
- Each relation is used to infer y from $x (x \rightarrow y)$ in certain contexts:
 - Late an *apple* \rightarrow Late a *fruit*
 - I hate *fruit* \rightarrow I hate *apples*
 - I visited *London* \rightarrow I visited *England*
 - I left *London* → I left *England* (What if I left to Manchester?)

Motivation

• Question answering:

<u>Question</u>: "When was *Friends* first aired?" <u>Text</u>: "*Friends* was first broadcast in 1994" <u>Knowledge</u>: $broadcast \rightarrow air$ <u>Answer</u>: 1994

Outline

- Learning to Exploit Structured Resources for Lexical Inference
- Improving Hypernymy Detection with an Integrated Path-based and Distributional Methods

Learning to Exploit Structured Resources for Lexical Inference

Vered Shwartz, Omer Levy, Ido Dagan and Jacob Goldberger CoNLL 2015

Resource-based methods for lexical inference

- Based on knowledge from hand-crafted resources
 - Dictionaries
 - Taxonomies (e.g. WordNet)
- Resources specify the lexical-semantic relation between terms

- The decision is based on the paths between x and y
- Need to predefine which relations are relevant for the task

Resource-based methods for lexical inference

- High precision
- Limited recall:
 - WordNet is small
 - Not up-to-date
 - Recent terminology is missing: Social Network
 - Contains mostly common nouns

For example, it can't tell us that *Lady Gaga* is a *singer*

Community-built Resources

- Huge
- Frequently updated
- Contain proper-names

6,000,000 entities in English

1,200 different properties

4,500,000 entities 1,367 different properties

10,000,000 entities in English 70 different properties

Utilizing Community-built Resources

- Idea: extend WordNet-based method using these resources
- Problem: utilizing these resources manually is infeasible
 - thousands of relations to select from!
- Solution: learn to exploit these resources

Our Method

- <u>Goal</u>: learn which properties are indicative of given lexical inference relation (e.g. "is a")
- <u>Approach</u>: supervised learning

Results

- We replicate WordNet-based methods for common nouns
- We extract high-precision inferences including proper-names:

Lady Gaga \rightarrow person \checkmark

Results

• Non-trivial resource relations are learned:

occupation	Daniel Radcliffe \rightarrow actor
gender	Louisa May Alcott \rightarrow woman
position in sports team	Jason Collins \rightarrow center

• We complement corpus-based methods in high-precision scenarios

Improving Hypernymy Detection with an Integrated Path-based and Distributional Method

Vered Shwartz, Yoav Goldberg, and Ido Dagan Submitted to ACL 2016

Hypernymy Detection

- We focus on detecting hypernymy relations, which are common in inference:
 - (apple, fruit)
 - (Barack Obama, president)

Corpus-based methods for hypernymy detection

- Consider the statistics of term occurrences in a large corpus
- Roughly divided to two sub-approaches:
 - Distributional approach
 - Path-based approach

Distributional approach

- Distributional Hypothesis (Harris, 1954): Words that occur in similar contexts tend to have similar meanings
 - e.g. *elevator* and *lift* will both appear next to *down, up, building, floor,* and *stairs*

- Measuring word similarity:
 - Represent words as distributional vectors

• Measure the distance between the vectors (e.g. cosine similarity)

Unsupervised Distributional Methods

• But...

- Word similarity != lexical inference
- Antonyms are similar
- Mutually exclusive terms are also similar

e.g. small, big e.g. football, basketball

- Directional similarity
 - Inclusion: If $x \rightarrow y$, then the contexts of x are expected to be possible contexts for y (Weeds and Weir, 2003; Kotlerman et. al, 2010)
 - Generality: the most typical linguistic contexts of a hypernym are less informative than those of its hyponyms (Santus et al., 2014; Rimell, 2014).

Supervised Distributional Methods

- Word Embeddings
 - Distributional vectors are high-dimensional and sparse
 - Word embeddings are dense and low-dimensional more efficient
 - Similar words are still close to each other in the vector space
 - Bengio et al. (2003), word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014)

Supervised Distributional Methods

- Represent (x, y) as a combination of each term embeddings vector:
 - Concatenation $\vec{x} \oplus \vec{y}$ (Baroni et al., 2012)
 - Difference $\vec{y} \vec{x}$ (Roller et al., 2014; Fu et al., 2014; Weeds et al., 2014)
 - Similarity $\vec{x} \cdot \vec{y}$
- Train a classifier over these vectors to predict entailment / hypernymy
- Achieved high performance
- However, these methods don't learn anything about the relation between x and y – they only learn characteristics of each term (Levy et al., 2015).

Path-based approach

- lexico-syntactic paths = dependency paths or textual patterns, with POS tags and lemma
- Some patterns indicate semantic relations between terms:
 - e.g. X or other Y indicates that X is of type Y
- If x and y hold a certain semantic relation, they are expected to occur in the corpus as the arguments of such patterns
 - e.g. apple or other fruit

Hearst Patterns

- Hearst (1992) automatic acquisition of hypernyms
- Found a few indicative patterns based on occurrences of known hypernyms in the corpus:

Y such as X such Y as X X or other Y X and other Y Y including X Y, especially X

Snow et al. (2004)

- Supervised method to recognize hypernymy
 - Predict whether *y* is a hypernym of *x*
 - Supervision: set of known hyponym/hypernym pairs
 - Features: all dependency paths between x and y in a corpus

- Successfully restores Hearst patterns (and adds many more)
- Used for analogy identification, taxonomy creation, etc.

Problem with lexico-syntactic paths

• The feature space is too sparse:

• Some words along the path don't change the meaning

PATTY

- A taxonomy created from free text (Nakashole et al., 2012)
- The relation between terms is based on the dependency paths between them
- Paths are generalized a word might be replaced by:
 - its POS tag
 - a wild card

LSTM-based path representation

• Idea: learn "smarter" generalizations

• Process each path edge-by-edge, using an LSTM

- Represent each edge as a concatenation of:
 - Lemma vector
 - Part-of-speech vector
 - Dependency label vector
 - Direction vector

- Use the LSTM output as the path vector
- Each term-pair has multiple paths

- Use the LSTM output as the path vector
- Each term-pair has multiple paths
 - Compute the averaged path embedding

- Each pair (x, y) is represented using the concatenation of:
 - x's embedding vector
 - the averaged path vector
 - y's embedding vector

• This vector is used as the input of a network that predicts whether y is a hypernym of x

Results

		random split			lexical split		
method		precision	recall	F_1	precision	recall	F_1
Path-based	Snow	0.843	0.452	0.589	0.760	0.438	0.556
	Snow + Gen	0.852	0.561	0.676	0.759	0.530	0.624
	LSTM (this paper)	0.811	0.716	0.761	0.691	0.632	0.660
Distributional	SLQS (Santus et al., 2014)	0.246	0.213	0.228	0.270	0.222	0.243
	Best supervised (concatenation)	0.901	0.637	0.746	0.754	0.551	0.637
Combined	LSTM-Integrated (this paper)	0.913	0.890	0.901	0.809	0.617	0.700

- Path-based:
 - Our method outperforms the baselines
 - The generalizations yield improved recall
- The combined method outperforms both path-based and distributional methods

Analysis – Path Representation

- Snow's method finds certain common paths:
 - X company is a Y
 - X ltd is a Y
- PATTY-style generalizations find very general, possibly noisy paths: X NOUN is a Y
- Our method makes fine-grained generalizations: X (association|co.|company|corporation| foundation|group|inc.|international|limited|ltd.) is a Y

Thanks!

References

[1] Vered Shwartz, Omer Levy, Ido Dagan, and Jacob Goldberger. Learning to Exploit Structured Resources for Lexical Inference. CoNLL 2015.

- [2] Zellig S. Harris Distributional structure. Word. 1954.
- [3] Julie Weeds and David Weir. A general framework for distributional similarity. EMNLP 2003.
- [4] Lili Kotlerman et al. Directional distributional similarity for lexical inference. Natural Language Engineering 16.04: 359-389. 2010.
- [5] Enrico Santus et al. Chasing Hypernyms in Vector Spaces with Entropy. EACL 2014.
- [6] Laura Rimell. Distributional Lexical Entailment by Topic Coherence. EACL 2014.
- [7] Yoshua Bengio et al., A neural probabilistic language model, The Journal of Machine Learning Research, 2003.
- [8] Tomas Mikolov et. al *Efficient estimation of word representations in vector space*. CoRR, 2013.
- [9] Jeffrey Pennington et al. *GloVe: Global Vectors for Word Representation*. EMNLP 2014.
- [10] Marco Baroni et al. *Entailment above the word level in distributional semantics*. EACL 2012.
- [11] Stephen Roller et al. Inclusive yet selective: Supervised distributional hypernymy detection. COLING 2014.
- [12] Ruiji Fu et al. *Learning semantic hierarchies via word embeddings*. ACL 2014.
- [13] Julie Weeds et al. Learning to distinguish hypernyms and co-hyponyms. COLING 2014.
- [14] Omer Levy et al. Do supervised distributional methods really learn lexical inference relations? NAACL 2015.
- [15] Marti A. Hearst Automatic acquisition of hyponyms from large text corpora. ACL, 1992.
- [16] Rion Snow et al. Learning syntactic patterns for automatic hypernym discovery. Advances in Neural Information Processing Systems 17. 2004.
- [17] Ndapandula Nakashole et al. PATTY: A taxonomy of relational patterns with semantic types. EMNLP 2012.