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SNLI [Bowman et al., 2015]

A large scale dataset for NLI (Natural Language Inference;
Recognizing Textual Entailment [Dagan et al., 2013])

Premises are image captions, hypotheses generated by
crowdsourcing workers:

Premise
Street performer is doing his act for kids

Hypotheses
1. A person performing for children on the street⇒ ENTAILMENTENTAILMENT

2. A juggler entertaining a group of children on the street⇒ NEUTRALNEUTRAL

3. A magician performing for an audience in a nightclub⇒ CONTRADICTIONCONTRADICTION

Event co-reference assumption
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Neural NLI Models

End-to-end, either sentence-encoding or attention-based
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1[Gururangan et al., 2018, Poliak et al., 2018]: by learning “easy clues”



Annotation Artifacts in SNLI

[Gururangan et al., 2018, Poliak et al., 2018]: good performance
on SNLI based on the hypothesis alone

This is a result of the annotation procedure
Negation (not, never, nobody) is correlated with contradiction
. . .and “cat” as well (many dog images)
Generic words (animal, instrument) are correlated with entailment
Sentence length: entailment < contradiction < neutral
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Do neural NLI models implicitly learn
lexical semantic relations?



New Test Set
We constructed a new test set to answer this question

Premise: sentences from the SNLI training set
Hypothesis:

Replacing a single term w in the premise with a related term w′

w′ is in the SNLI vocabulary and in pre-trained embeddings
Crowdsourcing labels (mostly contradictions!)

Contradiction
The man is holding a saxophone→ The man is holding an electric guitar

Entailment
A little girl is very sad→ A little girl is very unhappy

Neutral
A couple drinking wine→ A couple drinking champagne
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Evaluation Setting

3 representative models:
Residual-Stacked-Encoder [Nie and Bansal, 2017]
ESIM (Enhanced Sequential Inference Model) [Chen et al., 2017]
Decomposable Attention [Parikh et al., 2016]

Train on SNLI training set, test on the original & new test set
In the paper: enhancing with additional existing datasets
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Results
Can neural NLI models recognize lexical inferences?

Decomposable Attention ESIM Residual-Stacked-Encoder
0
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84.7
87.9 86

51.9

65.6
62.2

SNLI Test Set

New Test Set

Dramatic drop in performance across models.



Sanity Check
Performance of WordNet-informed Models

0
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100

65.6

83.5 85.8
Best Neural Model

KIM [Chen et al., 2018]

WordNet baseline

The test set is solvable using WordNet.



What do neural NLI models learn with
respect to lexical semantic relations?



Analysis 1: Word Similarity

Models err on contradicting word-pairs with similar embeddings
A man starts his day in India→ A man starts his day in Malaysia

Especially for fixed word embeddings
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Analysis 2: Frequency in Training

Tuning embeddings may associate specific (word, replacement)
pairs to a label, e.g. (man, woman)→ contradiction

Accuracy increases with frequency in training set

0 1-4 5-9 10-49 50-99 100+

40

60

80

100

40.2

70.6

91.4 92.1

97.5 98.5

Frequency of (word, replacement) pairs in contradiction training examples

ES
IM
Ac
cu
ra
cy



Analysis 2: Frequency in Training

Tuning embeddings may associate specific (word, replacement)
pairs to a label, e.g. (man, woman)→ contradiction
Accuracy increases with frequency in training set

0 1-4 5-9 10-49 50-99 100+

40

60

80

100

40.2

70.6

91.4 92.1

97.5 98.5

Frequency of (word, replacement) pairs in contradiction training examples

ES
IM
Ac
cu
ra
cy



Breaking NLI
Recap

New NLI test set that evaluates systems’ ability to make
inferences that require very simple lexical knowledge

SOTA systems perform poorly on the test set

Systems are limited in their generalization ability

Related Work:
“Stress tests” [Naik et al., 2018]: similar findings on a broader
range of linguistic phenomena
Inference with single word differences:
[Pavlick and Callison-Burch, 2016, Kalouli et al., 2018]
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But current LM-based NLI models address
entailment-related phenomena better, no?



Pre-trained LM based NLI models

Label

Classifier

Pooler

[CLS] Premise [SEP] Hypothesis



Diversify Your Datasets:
Analyzing Generalization

via Controlled Variance in Adversarial Datasets
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MultiNLI [Williams et al., 2018]

Collected like SNLI (existing premises, generated hypotheses)

Multiple geners
Mismatched evaluation (not in our focus)
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Probing→ Inoculation

Analyzing Generalization in NLI Models
Ohad Rozen, Vered Shwartz, Roee Aharoni and Ido Dagan

Bar Ilan University

Our Question:

Has the model really learned the phenomenon and 
can generalize to differently distributed datasets?
Or – has the model just overfitted the dataset?

Challenge Datasets Generation

We control the diversity of the examples using our templating method:
We manually create a template from a sentence picked from MultiNLI dataset 
and let turkers rephraze predefined sections of it.

1. Extracted Premise: [The Citigroup deal], [from beginning to end], [took] less than 5 [weeks].
2. Premise Template: ARG1, ARG2, ARG3 RELATION NUM ARG4.

Hypothesis Template (Ent.): ARG1, ARG2, ARG3 more than NUM-smaller ARG4.
3. Gen. Premise: [My marriage], [despite much frustration], [lasted] more than 7 [years].

Gen. Hypothesis (Ent.): [My marriage], [despite much frustration], [lasted] more than 2 [years].

1000s of different training examples with similar syntax
from 1 original sentence

Experiments

Before fine-tuning – model fails for both phenomena.

After fine-tuning – model succeeds for both phenomena.

Inoculation

Generalization Capacity

Different Syntactic Complexity (left): generalization is challenging yet possible. 

➔ Complex syntax is required in training.

Different Dative Verb (right): generalization is good. 

➔ No need in a large diversity of the dative verbs.

Background

▪ Probing dataset - might reveal a model’s 
failure to address a specific phenomenon –
e.g. numerical reasoning.

▪ We can often amend this failure using 
inoculation – fine-tuning the model on the 
original probing dataset (Liu et al., 2019).  

Numerical Reasoning

Model

Numerical 
Reasoning 

Dataset

(A)

Numerical 
Reasoning 

Dataset

(A)

Numerical 
Reasoning 

Dataset

(B)

Example Learned
Premise: There are 31 apples on the table.
Hypothesis: There are more than 25 apples 

on the table.
Label:  Entailment

Example Tested
Premise: I see 260 coins in the bucket.
Hypothesis:  I see more than 232 coins

in the bucket.
Label:  Entailment

Model

Model

Methodology: Testing Generalization Capacity

1. Split the challenge dataset to different variations 
across the dimension in focus.

2. Fine-tune on one set and test on another.
Range:

100 - 200

(A-1)

Numerical 
Reasoning 

(A)

Range:
100 - 200

(A-1)

Range:
400 - 500

(A-2)

Fine-Tune Test

Success

Good generalization 
capacity

Failure

Poor generalization 
capacity

We demonstrate our methodology with dative alternations and numerical reasoning.

Dative Alternation Example:

Premise:          I baked my mom a cake
Hypothesis 1: I baked a cake for my mom
Label:  Entailment

Dative Alternations

Different Syntactic Complexity (left): generalization is good. 

➔ Using only simple sentences is sufficient.

Different Number Ranges (right): model can not generalize over different ranges.

➔ Inherent weakness of the model to learn the phenomenon.

?

Range:
400 - 500

(A-2)

▪ Nelson F Liu, Roy Schwartz, and Noah A Smith. 2019a. Inoculation by fine-tuning: A method for analyzing challenge datasets. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota. Association for Computational Linguistics. 

To answer that, we need to vary training and test sets.

Conclusion

For both probing and teaching models a phenomenon - we need to vary 
train and test sets and analyze whether the phenomenon was learned in a 
generic manner.

Probing: does the representation
capture a certain property?
[Glockner et al., 2018,
Naik et al., 2018]

Inoculation [Liu et al., 2019]: can
the representation learn a certain
property?



Probing→ Inoculation

Analyzing Generalization in NLI Models
Ohad Rozen, Vered Shwartz, Roee Aharoni and Ido Dagan

Bar Ilan University

Our Question:

Has the model really learned the phenomenon and 
can generalize to differently distributed datasets?
Or – has the model just overfitted the dataset?

Challenge Datasets Generation

We control the diversity of the examples using our templating method:
We manually create a template from a sentence picked from MultiNLI dataset 
and let turkers rephraze predefined sections of it.

1. Extracted Premise: [The Citigroup deal], [from beginning to end], [took] less than 5 [weeks].
2. Premise Template: ARG1, ARG2, ARG3 RELATION NUM ARG4.

Hypothesis Template (Ent.): ARG1, ARG2, ARG3 more than NUM-smaller ARG4.
3. Gen. Premise: [My marriage], [despite much frustration], [lasted] more than 7 [years].

Gen. Hypothesis (Ent.): [My marriage], [despite much frustration], [lasted] more than 2 [years].

1000s of different training examples with similar syntax
from 1 original sentence

Experiments

Before fine-tuning – model fails for both phenomena.

After fine-tuning – model succeeds for both phenomena.

Inoculation

Generalization Capacity

Different Syntactic Complexity (left): generalization is challenging yet possible. 

➔ Complex syntax is required in training.

Different Dative Verb (right): generalization is good. 

➔ No need in a large diversity of the dative verbs.

Background

▪ Probing dataset - might reveal a model’s 
failure to address a specific phenomenon –
e.g. numerical reasoning.

▪ We can often amend this failure using 
inoculation – fine-tuning the model on the 
original probing dataset (Liu et al., 2019).  

Numerical Reasoning

Model

Numerical 
Reasoning 

Dataset

(A)

Numerical 
Reasoning 

Dataset

(A)

Numerical 
Reasoning 

Dataset

(B)

Example Learned
Premise: There are 31 apples on the table.
Hypothesis: There are more than 25 apples 

on the table.
Label:  Entailment

Example Tested
Premise: I see 260 coins in the bucket.
Hypothesis:  I see more than 232 coins

in the bucket.
Label:  Entailment

Model

Model

Methodology: Testing Generalization Capacity

1. Split the challenge dataset to different variations 
across the dimension in focus.

2. Fine-tune on one set and test on another.
Range:

100 - 200

(A-1)

Numerical 
Reasoning 

(A)

Range:
100 - 200

(A-1)

Range:
400 - 500

(A-2)

Fine-Tune Test

Success

Good generalization 
capacity

Failure

Poor generalization 
capacity

We demonstrate our methodology with dative alternations and numerical reasoning.

Dative Alternation Example:

Premise:          I baked my mom a cake
Hypothesis 1: I baked a cake for my mom
Label:  Entailment

Dative Alternations

Different Syntactic Complexity (left): generalization is good. 

➔ Using only simple sentences is sufficient.

Different Number Ranges (right): model can not generalize over different ranges.

➔ Inherent weakness of the model to learn the phenomenon.

?

Range:
400 - 500

(A-2)

▪ Nelson F Liu, Roy Schwartz, and Noah A Smith. 2019a. Inoculation by fine-tuning: A method for analyzing challenge datasets. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota. Association for Computational Linguistics. 

To answer that, we need to vary training and test sets.

Conclusion

For both probing and teaching models a phenomenon - we need to vary 
train and test sets and analyze whether the phenomenon was learned in a 
generic manner.

Probing: does the representation
capture a certain property?
[Glockner et al., 2018,
Naik et al., 2018]

Inoculation [Liu et al., 2019]: can
the representation learn a certain
property?



Has the model learned a general notion of
the property, or does it overfit to the

specific dataset?



Testing Generalization Capacity
Methodology

1. Split the challenge dataset to different variations across the
dimension in focus.
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Challenge Datasets Generation

We control the diversity of the examples using our templating method:
We manually create a template from a sentence picked from MultiNLI dataset 
and let turkers rephraze predefined sections of it.

1. Extracted Premise: [The Citigroup deal], [from beginning to end], [took] less than 5 [weeks].
2. Premise Template: ARG1, ARG2, ARG3 RELATION NUM ARG4.

Hypothesis Template (Ent.): ARG1, ARG2, ARG3 more than NUM-smaller ARG4.
3. Gen. Premise: [My marriage], [despite much frustration], [lasted] more than 7 [years].

Gen. Hypothesis (Ent.): [My marriage], [despite much frustration], [lasted] more than 2 [years].

1000s of different training examples with similar syntax
from 1 original sentence

Experiments

Before fine-tuning – model fails for both phenomena.

After fine-tuning – model succeeds for both phenomena.

Inoculation

Generalization Capacity

Different Syntactic Complexity (left): generalization is challenging yet possible. 

➔ Complex syntax is required in training.

Different Dative Verb (right): generalization is good. 

➔ No need in a large diversity of the dative verbs.

Background

▪ Probing dataset - might reveal a model’s 
failure to address a specific phenomenon –
e.g. numerical reasoning.

▪ We can often amend this failure using 
inoculation – fine-tuning the model on the 
original probing dataset (Liu et al., 2019).  
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We demonstrate our methodology with dative alternations and numerical reasoning.

Dative Alternation Example:

Premise:          I baked my mom a cake
Hypothesis 1: I baked a cake for my mom
Label:  Entailment

Dative Alternations

Different Syntactic Complexity (left): generalization is good. 

➔ Using only simple sentences is sufficient.

Different Number Ranges (right): model can not generalize over different ranges.

➔ Inherent weakness of the model to learn the phenomenon.
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Before fine-tuning – model fails for both phenomena.

After fine-tuning – model succeeds for both phenomena.
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We demonstrate our methodology with dative alternations and numerical reasoning.

Dative Alternation Example:
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Hypothesis 1: I baked a cake for my mom
Label:  Entailment

Dative Alternations
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➔ Using only simple sentences is sufficient.

Different Number Ranges (right): model can not generalize over different ranges.

➔ Inherent weakness of the model to learn the phenomenon.

?

Range:
400 - 500

(A-2)

▪ Nelson F Liu, Roy Schwartz, and Noah A Smith. 2019a. Inoculation by fine-tuning: A method for analyzing challenge datasets. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota. Association for Computational Linguistics. 

To answer that, we need to vary training and test sets.

Conclusion
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train and test sets and analyze whether the phenomenon was learned in a 
generic manner.
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Our Question:

Has the model really learned the phenomenon and 
can generalize to differently distributed datasets?
Or – has the model just overfitted the dataset?

Challenge Datasets Generation

We control the diversity of the examples using our templating method:
We manually create a template from a sentence picked from MultiNLI dataset 
and let turkers rephraze predefined sections of it.

1. Extracted Premise: [The Citigroup deal], [from beginning to end], [took] less than 5 [weeks].
2. Premise Template: ARG1, ARG2, ARG3 RELATION NUM ARG4.

Hypothesis Template (Ent.): ARG1, ARG2, ARG3 more than NUM-smaller ARG4.
3. Gen. Premise: [My marriage], [despite much frustration], [lasted] more than 7 [years].

Gen. Hypothesis (Ent.): [My marriage], [despite much frustration], [lasted] more than 2 [years].

1000s of different training examples with similar syntax
from 1 original sentence

Experiments

Before fine-tuning – model fails for both phenomena.

After fine-tuning – model succeeds for both phenomena.

Inoculation

Generalization Capacity

Different Syntactic Complexity (left): generalization is challenging yet possible. 

➔ Complex syntax is required in training.

Different Dative Verb (right): generalization is good. 

➔ No need in a large diversity of the dative verbs.

Background

▪ Probing dataset - might reveal a model’s 
failure to address a specific phenomenon –
e.g. numerical reasoning.

▪ We can often amend this failure using 
inoculation – fine-tuning the model on the 
original probing dataset (Liu et al., 2019).  
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We demonstrate our methodology with dative alternations and numerical reasoning.

Dative Alternation Example:

Premise:          I baked my mom a cake
Hypothesis 1: I baked a cake for my mom
Label:  Entailment

Dative Alternations

Different Syntactic Complexity (left): generalization is good. 

➔ Using only simple sentences is sufficient.

Different Number Ranges (right): model can not generalize over different ranges.

➔ Inherent weakness of the model to learn the phenomenon.
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▪ Nelson F Liu, Roy Schwartz, and Noah A Smith. 2019a. Inoculation by fine-tuning: A method for analyzing challenge datasets. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota. Association for Computational Linguistics. 

To answer that, we need to vary training and test sets.

Conclusion

For both probing and teaching models a phenomenon - we need to vary 
train and test sets and analyze whether the phenomenon was learned in a 
generic manner.
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Our Question:

Has the model really learned the phenomenon and 
can generalize to differently distributed datasets?
Or – has the model just overfitted the dataset?

Challenge Datasets Generation

We control the diversity of the examples using our templating method:
We manually create a template from a sentence picked from MultiNLI dataset 
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3. Gen. Premise: [My marriage], [despite much frustration], [lasted] more than 7 [years].
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1000s of different training examples with similar syntax
from 1 original sentence

Experiments

Before fine-tuning – model fails for both phenomena.

After fine-tuning – model succeeds for both phenomena.
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Different Syntactic Complexity (left): generalization is challenging yet possible. 
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Different Dative Verb (right): generalization is good. 

➔ No need in a large diversity of the dative verbs.

Background

▪ Probing dataset - might reveal a model’s 
failure to address a specific phenomenon –
e.g. numerical reasoning.

▪ We can often amend this failure using 
inoculation – fine-tuning the model on the 
original probing dataset (Liu et al., 2019).  

Numerical Reasoning

Model

Numerical 
Reasoning 

Dataset

(A)

Numerical 
Reasoning 

Dataset

(A)

Numerical 
Reasoning 

Dataset

(B)

Example Learned
Premise: There are 31 apples on the table.
Hypothesis: There are more than 25 apples 

on the table.
Label:  Entailment

Example Tested
Premise: I see 260 coins in the bucket.
Hypothesis:  I see more than 232 coins

in the bucket.
Label:  Entailment

Model

Model

Methodology: Testing Generalization Capacity

1. Split the challenge dataset to different variations 
across the dimension in focus.

2. Fine-tune on one set and test on another.
Range:

100 - 200

(A-1)

Numerical 
Reasoning 

(A)

Range:
100 - 200

(A-1)

Range:
400 - 500

(A-2)

Fine-Tune Test

Success

Good generalization 
capacity

Failure

Poor generalization 
capacity

We demonstrate our methodology with dative alternations and numerical reasoning.

Dative Alternation Example:

Premise:          I baked my mom a cake
Hypothesis 1: I baked a cake for my mom
Label:  Entailment

Dative Alternations
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Different Number Ranges (right): model can not generalize over different ranges.
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To answer that, we need to vary training and test sets.

Conclusion
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generic manner.
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Recap

Simple methodology to test model generalization of a specific
learned phenomenon

NLI-BERT fails to generalize dative alternation and numeric
reasoning

Fine-tuning on the phenomenon-specific data may decrease the
main task performance (also in [Richardson et al., 2020]).
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Diversify your Datasets
Recap

Simple methodology to test model generalization of a specific
learned phenomenon

NLI-BERT fails to generalize dative alternation and numeric
reasoning

Fine-tuning on the phenomenon-specific data may decrease the
main task performance (also in [Richardson et al., 2020]).



Real-world examples: partial entailments

S1: Amazon To Acquire Whole Foods Market For $13.7 Billion

S2: Amazon is buying Whole Foods for almost $14 billion in cash



Real-world examples: partial entailments

S1: Researchers have discovered wreckage of the lost warship ,
the USS Indianapolis after 72 years

S2: Wreckage of missing WWII ship found in Pacific Ocean



Breaking Building

NLI [Glockner et al., 2018]
[Rozen et al., 2019]

Coreference [Shwartz et al., 2017]
[Barhom et al., 2019]
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Cross-document Coreference Resolution

Tara Reid has entered a rehab center…
 
...She checked into the facility today...

...the American Pie star headed to a Malibu treatment facility on Tuesday...

Doc #1

Doc #2
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Our Research Focus

● Entity and Event Coreference are closely interdependent - calls for a joint approach

● Only single such prior work  (Lee et al., 2012)

● We revisit the joint resolution approach, suggesting new neural models to address it
○ Achieving new SOTA
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Common Approach - Lexical Similarity between Arguments

1. Tara Reid has entered a rehab center

2. The American Pie star headed to a Malibu treatment facility on Tuesday

Is that good enough?  



Joint Entity and Event Coreference

● Lee et al., (2012) introduced a system that models entity and event coreference 
jointly



Joint Entity and Event Coreference

● Lee et al., (2012) introduced a system that models entity and event coreference 
jointly

● Iterative method that constructs clusters of entity and event mentions



Joint Entity and Event Coreference

● Lee et al., (2012) introduced a system that models entity and event coreference 
jointly

● Iterative method that constructs clusters of entity and event mentions

● Linear regression to model cluster merge operations, based on discrete features



Joint Entity and Event Coreference

● Lee et al., (2012) introduced a system that models entity and event coreference 
jointly

● Iterative method that constructs clusters of entity and event mentions

● Linear regression to model cluster merge operations, based on discrete features

● We revisit the joint approach, suggesting a neural models to address it
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● Hierarchical clustering requires a cluster pair merging score

● Average link: average all mention pair scores across the two candidate clusters
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● Average link: average all mention pair scores across the two candidate clusters
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GloVe & Character 
Embeddings 
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Mention-Pair Representation

1. Tara Reid has entered a rehab center
2. The American Pie star headed to a Malibu treatment facility on Tuesday

Arg 0

Arg 0

Arg 1

Arg 1

Rehab 
center

Malibu 
treatment 
facility

High similarity 
between argument 
vectors!
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Training

● We train two distinct pairwise scorers (one for entities and one for events)

● The training procedure simulates the inference step
○ Allows the models to be trained on various predicted clustering configurations

● Training examples: all mention pairs  that belong to different clusters in the 
current clustering configuration

● Scorers are repeatedly trained and then used for clusters merging 
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Dataset

● ECB+ (Event-Coreference-Bank; Cybulska and Vossen, 2014).
○ Within- and cross-document coreference annotations for both entities and events
○ ~1000 documents, clustered into 43 topics, discussing different seminal events

Topic 1: A celebrity enters into rehab  

...Tara Reid finally checks 
into rehab…

...Actress Tara Reid 
entered well-known Malibu 
rehab center ...

...Lindsay Lohan checks 
into rehab…

.

...The NYDN says that 
LiLo eventually made it 
to Morningside 
Recovery...
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○ Corpus’s subset which has been validated for correctness
○ Use the gold mentions during evaluation 



Evaluation Setup

● We follow Cybulska and Vossen (2015) and Kenyon-Dean et al., (2018)
○ Corpus’s subset which has been validated for correctness
○ Use the gold mentions during evaluation 

~1000 sentences 
for training 
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First entity 
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results on ECB+



Correct Model’s Decisions

Entity coreference:
● [WWDC, San Francisco gathering’s, conference]
● [West Papua, region, in remote eastern Indonesia]
● [Matt Smith, actor]

Event coreference:
● [launches, unveiled]
● [rattled, struck, hit]
● [acquires, buys, purchase]



Wrong Model’s Decisions 

Entity coreference:
● [next generation of MacBook Pro, MacBook Pro]
● [five people, four people]
● [Wednesday, on Monday]

Event coreference:
● [recorded, occurred]
● [sales, acquisition]
● [gone official, go ahead]
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Wrong Model’s Decisions 

Entity coreference:
● [next generation of MacBook Pro, MacBook Pro]
● [five people, four people]
● [Wednesday, on Monday]

Event coreference:
● [recorded, occurred]
● [sales, acquisition]
● [gone official, go ahead]

Same Head 
Lemma 



Error Analysis

Event Errors Entity Errors
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Acquiring Predicate Paraphrases from News Tweets2

[a]0 introduce [a]1 [a]0 welcome [a]1
[a]0 appoint [a]1 [a]0 to become [a]1
[a]0 die at [a]1 [a]0 pass away at [a]1
[a]0 hit [a]1 [a]0 sink to [a]1

[a]0 be investigate [a]1 [a]0 be probe [a]1
[a]0 eliminate [a]1 [a]0 slash [a]1
[a]0 announce [a]1 [a]0 unveil [a]1
[a]0 quit after [a]1 [a]0 resign after [a]1
[a]0 announce as [a]1 [a]0 to become [a]1
[a]0 threaten [a]1 [a]0 warn [a]1
[a]0 die at [a]1 [a]0 live until [a]1

[a]0 double down on [a]1 [a]0 stand by [a]1
[a]0 kill [a]1 [a]0 shoot [a]1

[a]0 approve [a]1 [a]0 pass [a]1
seize [a]0 at [a]1 to grab [a]0 at [a]1

Binary verbal predicate
paraphrases
Extracted from Twitter
Ever-growing resource:
currently around 5.2M
paraphrases

2Available at https://github.com/vered1986/Chirps

https://github.com/vered1986/Chirps


Assumptions
Main assumption: redundant news headlines of the same event
are likely to describe it with different words
[Shinyama et al., 2002, Barzilay and Lee, 2003].

This work: propositions extracted from tweets discussing news
events, published on the same day, that agree on their
arguments, are predicate paraphrases.
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Extract
Propositions

Generate
Paraphrase
Instances

Generate
Types

Resource
Release

Query the Twitter Search API for news tweets in English

Amazon is buying Whole Foods in $13.7B

Amazon to acquire Whole Foods Market in deal valued at nearly $14 billion

· · ·
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Extract propositions from tweets using PropS
[Stanovsky et al., 2016]
Get binary verbal predicate templates, and apply argument
reduction [Stanovsky and Dagan, 2016]

[Amazon] buy [Whole Foods]
[Amazon] acquire [Whole Foods Market]

· · ·
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Release

We consider two predicates as paraphrases if:
1. They appear on the same day.
2. Each of their arguments aligns with a unique argument in the
other predicate.

Two levels of argument matching: strict (exact match / short edit
distance) and loose (partial token matching / WordNet synonyms)

[a]0 buy [a]1 [a]0 acquire [a]1 Amazon Whole Foods
[a]0 buy [a]1 [a]0 acquire [a]1 Intel Mobileye

· · ·
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Heuristic score for a predicate paraphrase type:
p1 = [a]0 buy [a]1, p2 = [a]0 acquire [a]1

s(p1, p2) = count(p1, p2) ·
(
1+ days(p1,p2)

N

)
count(p1, p2) assigns high scores for frequent paraphrases
N - number of days since the resource collection begun
days(p1,p2)

N eliminates noise from two arguments participating in
different events on the same day

1) Last year when Chuck Berry turned 90; 2) Chuck Berry dies at 90
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Release

We release our resource daily, with two files:
Instances: predicates, arguments and tweet IDs.
Types: predicate paraphrase pair types ranked in a descending
order according to the heuristic accuracy score.
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Thank you!
Questions?

@VeredShwartz vereds@allenai.org
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