
Multi-word Units
Under the Magnifying Glass

Vered Shwartz
Natural Language Processing Lab, Bar-Ilan University

Talk @ ONLP, December 26, 2018



Multi-Word Units (MWUs)∗

A sequence of consecutive words that creates a new concept

Noun compounds: flea market, flea bite, flea bite treatment, .. .
Adjective-noun compositions: hot tea, hot day, .. .
Verb-particle constructions: wake up, let go, .. .
Light-verb constructions: make a decision, take a walk, .. .
Idioms: look what the cat dragged in, .. .

May combine in a non-trivial way
Implicit meaning
Non-literal word usage

* Also referred to as Multi-Word Expressions or phrases
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Previous MWUs Representations

Compositional Distributional Representations:
vec(olive oil) = f (vec(olive), vec(oil))
Many ways to learn f [Mitchell and Lapata, 2010,
Zanzotto et al., 2010, Dinu et al., 2013]
Usually applied to AN or NC, limited to specific number of words

Phrase Embeddings:
Arbitrarily long phrases
Supervision from PPDB [Wieting et al., 2015]

Limited in coverage
Generalizing word2vec [Poliak et al., 2017]

Can compose vectors for unseen phrases
Naive composition, doesn’t handle the complexity of phrases
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Enter contextualized word embeddings!
• Represent a word in context
◦ Good for word sense induction

• Trained as language models
◦ On a large corpus
◦ Capture world knowledge

• Improve performance of
various NLP applications

• Named after characters
from Sesame Street

Are meaningful MWU representations built-in in these models?
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Probing Tasks

Simple tasks designed to test a single linguistic property
[Adi et al., 2017, Conneau et al., 2018]

Representation Minimal Model Prediction

SkipThoughts(s) What is s’s length?
InferSent(s) Is w in s?
... ...

We follow the same for MWUs, with various representations
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Representations

Word Embeddings Sentence Embeddings Contextualized
Word Embeddings

word2vec SkipThoughts ELMo
GloVe InferSent∗ OpenAI Transformer
fastText GenSen∗ BERT

∗ supervised
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Tasks and Results



1. MWU Type
Task Definition

Dataset: Wiki50 corpus [Vincze et al., 2011]
Input: sentence
Goal: sequence labeling to BIO tags

MWUs: noun compounds, adjective-noun compositions, idioms,
light verb constructions, verb-particle constructions
Named entities: person, location, organization

Example:

Authorities meted out summary justice in cases as this

O B-MW_VPC I-MW_VPC B-MW_NC I-MW_NC O O O O

Vered Shwartz and Ido Dagan · How well do Pre-trained Text Representations Address Multi-word Units? 8 / 34



1. MWU Type
Results
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(1) Identifying MWU type is difficult; (2) Named entities are easier; (3) Context helps
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2. Noun Compound Literality
A constituent word may be used in a non-literal way
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2. Noun Compound Literality
Task Definition

Dataset: based on [Reddy et al., 2011] and [Tratz, 2011]
Input: sentence s, target word w ∈ s (part of NC)
Goal: is w literal in NC?

Example:

The crash course in litigation made me a better lawyer

Non-Literal Literal
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2. Noun Compound Literality
Results
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(1) word embeddings < sentence embeddings < contextualized; (2) Far from humans
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2. Noun Compound Literality
Analysis

ELMo OpenAI Transformer BERT

A search team located the [crash]L site and found small amounts of human remains.

landfill body archaeological
wreckage place burial
Web man wreck
crash missing excavation
burial location grave

After a [crash]N course in tactics and maneuvers, the squadron was off to the war...

crash few short
changing while successful
collision moment rigorous
training long brief
reversed couple training

(1) BERT > ELMo, both reasonable
(2) OpenAI Transformer errs due to uni-directionality
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2. Noun Compound Literality
Analysis

ELMo OpenAI Transformer BERT

The gold/[silver]L price ratio is often analyzed by traders, investors, and buyers.

silver platinum silver
blue black copper
platinum gold platinum
purple silver gold
yellow red diamond

Growing up with a [silver]N spoon in his mouth, he was always cheerful...

silver mother wooden
rubber father greasy
iron lot big
tin big silver
wooden man little

Things get tougher when both constituent nouns are non-literal!
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3. Noun Compound Relations

NCs express semantic relations between the constituent words

May require world knowledge and common sense to interpret
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3. Noun Compound Relations
Task Definition

Dataset: based on [Hendrickx et al., 2013]
Input: sentence s, NC ∈ s, paraphrase p
Goal: does p explicate NC?

Example: access road
Road that makes access possible X
Road forecasted for access season ×
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3. Noun Compound Relations
Results
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(1) word embeddings < sentence embeddings < contextualized; (2) Far from humans;
(3) Open AI Transformer fails
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3. Noun Compound Relations
Analysis
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No clear signal from BERT. Capturing implicit information is challenging!
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4. Adjective-Noun Relations

Adjectives select different attributes of the noun they combine with

The hot debate about the hot office (or: the cold war over the cold office)
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4. Adjective-Noun Relations
Task Definition

Dataset: based on [Hartung, 2015]
Input: sentence s, AN ∈ s, attribute w
Goal: is the attribute w conveyed in AN?

Example: warm support:
temperature ×
emotionality X
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4. Adjective-Noun Relations
Results
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Best model performs only slightly better than majority
(Capturing implicit information is challenging)
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5. Adjective-Noun Entailment
Task Definition

Dataset: [Pavlick and Callison-Burch, 2016]
Input: premise p, hypothesis h, differ by a single adjective
Goal: p→ h?

Example:
p: Most people die in the class to which they were born.
h: Most people die in the social class to which they were born. X
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5. Adjective-Noun Entailment
Results
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Bad performance for all models, best for sentence embeddings trained on RTE
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6. Verb-Particle Classification

VPC meanings differ from their verbs’ meanings
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6. Verb-Particle Classification
Task Definition

Dataset: [Tu and Roth, 2012]
Input: sentence s, VP ∈ s
Goal: is VP a VPC?

Example:

We did get on together Which response did you get on that?
VPC Non-VPC
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6. Verb-Particle Classification
Results
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Similar performance for all models. Is the good performance merely due to label imbalance?
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6. Verb-Particle Classification
Analysis
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Very weak signal from ELMo. Mostly performs well due to label imbalance.
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Future Directions



Can we learn MWUs like humans do?

[Cooper, 1999]: how do L2 learners process idioms?
Infer from context: 28% (57% success rate)
Rely on literal meaning: 19% (22% success rate)
...
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Inferring from context
We need richer context modeling

Previous news stories may help
understand that “crocodile tears”
refer to manipulative behavior

[Asl, 2013]: L2 learners interpret
idioms with more success through
extended contexts (stories) than
through sentential contexts
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Relying on literal meaning
We need world knowledge

“Cradle is something that you put
the baby in”

“You’re stealing a child from a
mother”

“So robbing the cradle is like dating
a really young person”

[Cooper, 1999]
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Recap

1. Testing Existing Pre-trained Representations
Contextualized word embeddings provide better MWU
representations, but there is still a long way to go

2. Future Directions
To represent MWUs like humans do, we need better context and
world knowledge modeling

Thank you!
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