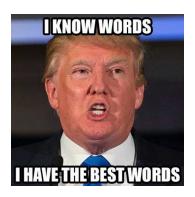
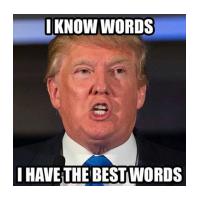
Acquiring Lexical Semantic Knowledge

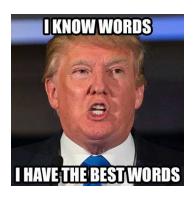
Vered Shwartz

Natural Language Processing Lab, Bar-Ilan University

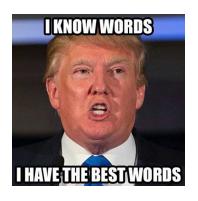




Knowledge about lexical items (words, MWEs)



- Knowledge about lexical items (words, MWEs)
- How do they relate to each other?



- Knowledge about lexical items (words, MWEs)
- How do they relate to each other?
- Helpful for dealing with lexical variability in NLP applications

Example Application - Question Answering

Question

"When did Donald Trump visit in Alabama?"

Candidate Passages

- Trump visited Huntsville on September 23.
- 2. Trump visited Mississippi on June 21.

Knowledge

Huntsville is a meronym of Alabama, Mississippi is not.

Provide semantic representations of words

- Provide semantic representations of words
- Commonly used across NLP applications with great success

- Provide semantic representations of words
- Commonly used across NLP applications with great success
- Pre-trained / learned / fine-tuned for a specific application

- Provide semantic representations of words
- Commonly used across NLP applications with great success
- Pre-trained / learned / fine-tuned for a specific application
- Common claim:

Word embeddings are all you need for lexical semantics

- Provide semantic representations of words
- Commonly used across NLP applications with great success
- Pre-trained / learned / fine-tuned for a specific application
- Common claim:

Word embeddings are all you need for lexical semantics

- Reality:
 - They are great in capturing general semantic relatedness

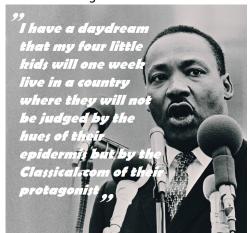
- Provide semantic representations of words
- Commonly used across NLP applications with great success
- Pre-trained / learned / fine-tuned for a specific application
- Common claim:

Word embeddings are all you need for lexical semantics

- Reality:
 - They are great in capturing general semantic relatedness
 - ...but they mix all semantic relations together!

Word Embeddings

■ To illustrate, take famous texts and replace nouns with their word2vec neighbours:¹



¹More examples here: https://goo.gl/LJHzbi

Word Embeddings

■ To illustrate, take famous texts and replace nouns with their word2vec neighbours:¹

¹More examples here: https://goo.gl/LJHzbi

What's in this talk?

Recognizing Lexical Semantic Relations

Interpreting Noun Compounds

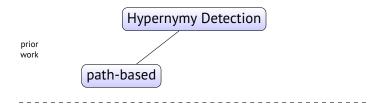
Recognizing Lexical Semantic Relations

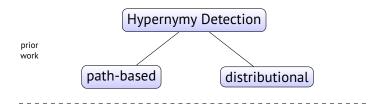
The Hypernymy Detection Task

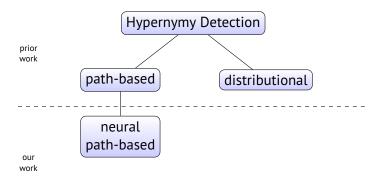
- Hypernymy
 - The hyponym is a subclass of / instance of the hypernym
 - **■** (cat, animal), (Google, company)

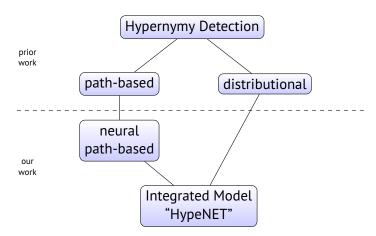
The Hypernymy Detection Task

- Hypernymy
 - The hyponym is a subclass of / instance of the hypernym
 - **■** (cat, animal), (Google, company)
- \blacksquare Given two terms, x and y, decide whether y is a hypernym of x
 - \blacksquare in some senses of x and y, e.g. (apple, fruit), (apple, company)

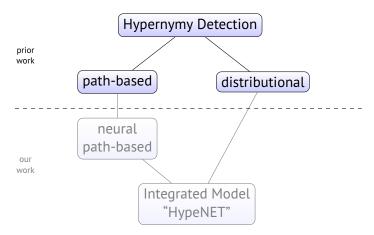




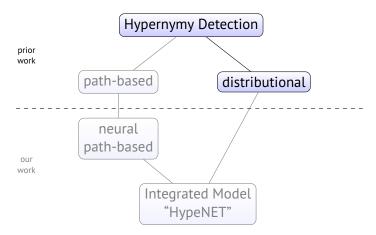




Prior Methods



Distributional Approach

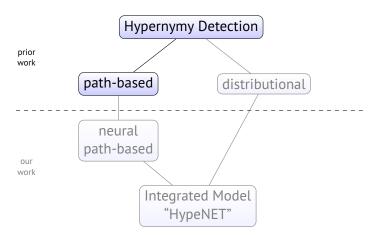


■ Recognize the relation between words based on their *separate* occurrences in the corpus

- Recognize the relation between words based on their separate occurrences in the corpus
- Train a classifier to predict hypernymy using the terms' embeddings:
 - Concatenation $\vec{x} \oplus \vec{y}$ [Baroni et al., 2012]
 - Difference $\vec{y} \vec{x}$ [Roller et al., 2014, Weeds et al., 2014]

- Recognize the relation between words based on their separate occurrences in the corpus
- Train a classifier to predict hypernymy using the terms' embeddings:
 - Concatenation $\vec{x} \oplus \vec{y}$ [Baroni et al., 2012]
 - Difference $\vec{y} \vec{x}$ [Roller et al., 2014, Weeds et al., 2014]
- Achieved very good results on common hypernymy detection / semantic relation classification datasets

- Recognize the relation between words based on their separate occurrences in the corpus
- Train a classifier to predict hypernymy using the terms' embeddings:
 - Concatenation $\vec{x} \oplus \vec{y}$ [Baroni et al., 2012]
 - Difference $\vec{y} \vec{x}$ [Roller et al., 2014, Weeds et al., 2014]
- Achieved very good results on common hypernymy detection / semantic relation classification datasets
- [Levy et al., 2015a]: "lexical memorization": overfitting to the most common relation of a specific word
 - Training: (cat, animal), (dog, animal), (cow, animal), ... all labeled as hypernymy
 - \blacksquare Model: (x, animal) is a hypernym pair, regardless of x

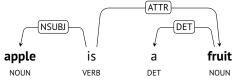


■ Recognize the relation between *x* and *y* based on their *joint* occurrences in the corpus

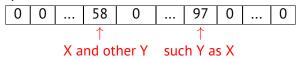
- Recognize the relation between x and y based on their joint occurrences in the corpus
- Hearst Patterns [Hearst, 1992] patterns connecting x and y may indicate that y is a hypernym of x
 - e.g. X or other Y, X is a Y, Y, including X

- Recognize the relation between x and y based on their joint occurrences in the corpus
- Hearst Patterns [Hearst, 1992] patterns connecting x and y may indicate that y is a hypernym of x
 - e.g. X or other Y, X is a Y, Y, including X
- Patterns can be represented using dependency paths:

- Recognize the relation between x and y based on their joint occurrences in the corpus
- Hearst Patterns [Hearst, 1992] patterns connecting *x* and *y* may indicate that *y* is a hypernym of *x*
 - e.g. X or other Y, X is a Y, Y, including X
- Patterns can be represented using dependency paths:



■ [Snow et al., 2004]: logistic regression classifier, dependency paths as sparse features



Path-based Approach Issues

■ The feature space is too sparse:

Path-based Approach Issues

- The feature space is too sparse:
 - Similar paths share no information:

X inc. is a Y X group is a Y X organization is a Y

Path-based Approach Issues

- The feature space is too sparse:
 - Similar paths share no information:

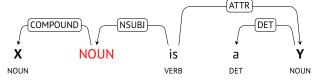
```
X inc. is a Y
X group is a Y
X organization is a Y
```

PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:



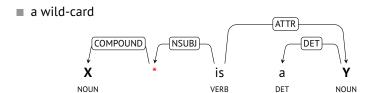
- The feature space is too sparse:
 - Similar paths share no information:

```
X inc. is a Y
X group is a Y
X organization is a Y
```

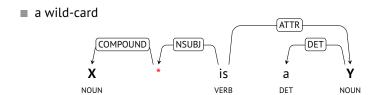
- The feature space is too sparse:
 - Similar paths share no information:

```
X inc. is a Y
X group is a Y
X organization is a Y
```



- The feature space is too sparse:
 - Similar paths share no information:

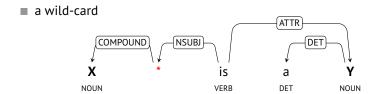
```
X inc. is a Y
X group is a Y
X organization is a Y
```



- Some of these generalizations are too general:
 - \blacksquare X is defined as Y \approx X is described as Y via X is VERB as Y

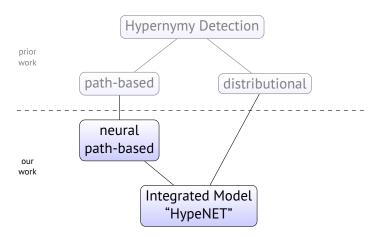
- The feature space is too sparse:
 - Similar paths share no information:

```
X inc. is a Y
X group is a Y
X organization is a Y
```

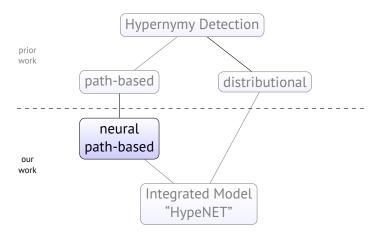


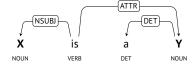
- Some of these generalizations are too general:
 - \blacksquare X is defined as Y \approx X is described as Y via X is VERB as Y
 - \blacksquare X is defined as Y \neq X is rejected as Y

HypeNET: Integrated Path-based and Distributional Method [Shwartz et al., 2016]

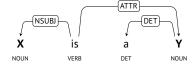


First Step: Improving Path Representation





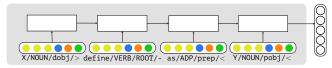
- We learn embedding vectors for each component
 - Lemma: initialized with pre-trained word embeddings



- We learn embedding vectors for each component
 - Lemma: initialized with pre-trained word embeddings
- The edge's vector is the concatenation of its components' vectors:

```
[ dependent lemma ; dependent POS ; dependency label ; direction ]
```


- We learn embedding vectors for each component
 - Lemma: initialized with pre-trained word embeddings
- The edge's vector is the concatenation of its components' vectors:
 - [dependent lemma ; dependent POS ; dependency label ; direction]
- Feed the edges sequentially to an LSTM, use the last output vector as the path embedding:

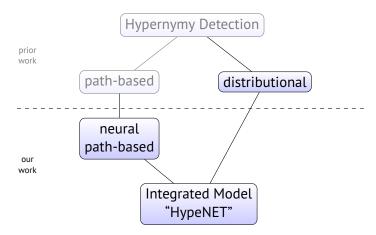


Term-pair Classification

- The LSTM encodes a single path
- Each term-pair has multiple paths
 - Represent a term-pair as its averaged path embedding
- Classify for hypernymy (path-based network):

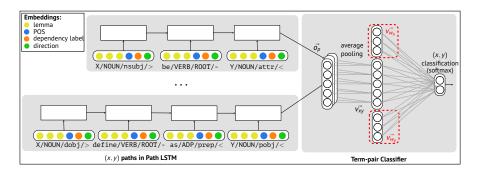


Second Step: Integrating Distributional Information



Second Step: Integrating Distributional Information

- Integrated network: add distributional information
 - Concatenate *x* and *y*'s word embeddings to the averaged path
- Classify for hypernymy (integrated network):



Results

On a new dataset, built from knowledge resources

method		precision	recall	F ₁
Path-based	Snow	0.843	0.452	0.589
	Snow + GEN	0.852	0.561	0.676
	HypeNET Path-based	0.811	0.716	0.761
Distributional	Best Supervised	0.901	0.637	0.746
Integrated	HypeNET Integrated	0.913	0.890	0.901

Path-based:

- Compared to Snow + Snow with PATTY style generalizations
- HypeNET outperforms path-based baselines with improved recall

Results

On a new dataset, built from knowledge resources

method		precision	recall	<i>F</i> ₁
Path-based	Snow	0.843	0.452	0.589
	Snow + GEN	0.852	0.561	0.676
	HypeNET Path-based	0.811	0.716	0.761
Distributional	Best Supervised	0.901	0.637	0.746
Integrated	HypeNET Integrated	0.913	0.890	0.901

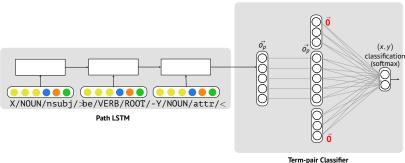
The integrated method substantially outperforms both path-based and distributional methods

Analysis - Path Representation (1/2)

- Identify hypernymy-indicating paths:
 - Baselines: according to logistic regression feature weights

Analysis - Path Representation (1/2)

- Identify hypernymy-indicating paths:
 - Baselines: according to logistic regression feature weights
 - HypeNET: measure path contribution to positive classification:



Take the top scoring paths according to $softmax(W \cdot [\vec{0}, \vec{o_n}, \vec{0}])[1]$

Analysis - Path Representation (2/2)

Snow's method finds certain common paths:

X company is a Y X ltd is a Y

Analysis - Path Representation (2/2)

Snow's method finds certain common paths:

```
X company is a Y X ltd is a Y
```

■ PATTY-style generalizations find very general, possibly noisy paths:

X NOUN is a Y

Analysis - Path Representation (2/2)

Snow's method finds certain common paths:

```
X company is a Y X Itd is a Y
```

PATTY-style generalizations find very general, possibly noisy paths:

```
X NOUN is a Y
```

■ HypeNET makes fine-grained generalizations:

```
X association is a Y
X co. is a Y
X company is a Y
X corporation is a Y
X foundation is a Y
X group is a Y
```

Application of HypeNET for multiple relations

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods
- Path-based contribution over distributional info is prominent when:

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods
- Path-based contribution over distributional info is prominent when:
 - Lexical memorization is disabled (lexical split)

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods
- Path-based contribution over distributional info is prominent when:
 - Lexical memorization is disabled (lexical split)
 - \blacksquare x or y are polysemous, e.g. mero:(piano, key).

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods
- Path-based contribution over distributional info is prominent when:
 - Lexical memorization is disabled (lexical split)
 - \blacksquare x or y are polysemous, e.g. mero:(piano, key).
 - the relation is not prototypical, e.g. *event:(cherry, pick)*.

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods
- Path-based contribution over distributional info is prominent when:
 - Lexical memorization is disabled (lexical split)
 - \blacksquare x or y are polysemous, e.g. mero:(piano, key).
 - the relation is not prototypical, e.g. *event:(cherry, pick)*.
 - *x* or *y* are rare, e.g. *hyper:(mastodon, proboscidean)*.

Interpreting Noun Compounds

Noun-compounds hold an implicit semantic relation between the head and its modifier(s).

- Noun-compounds hold an implicit semantic relation between the head and its modifier(s).
 - *apple cake*: cake *made of* apples

- Noun-compounds hold an implicit semantic relation between the head and its modifier(s).
 - apple cake: cake made of apples
 - birthday cake: cake eaten on a birthday

- Noun-compounds hold an implicit semantic relation between the head and its modifier(s).
 - apple cake: cake made of apples
 - birthday cake: cake eaten on a birthday
- They are like "text compression devices" [Nakov, 2013]

- Noun-compounds hold an implicit semantic relation between the head and its modifier(s).
 - *apple cake*: cake *made of* apples
 - birthday cake: cake eaten on a birthday
- They are like "text compression devices" [Nakov, 2013]
- We're pretty good in decompressing them!

We are good at Interpreting Noun-Compounds

We are good at Interpreting Noun-Compounds

Interpreting new Noun Compounds

■ Noun-compounds are prevalent in English, but most are rare

- Noun-compounds are prevalent in English, but most are rare
- We easily interpret noun-compounds we've never seen before

- Noun-compounds are prevalent in English, but most are rare
- We easily interpret noun-compounds we've never seen before
- What is a "parsley cake"?

- Noun-compounds are prevalent in English, but most are rare
- We easily interpret noun-compounds we've never seen before
- What is a "parsley cake"?

1

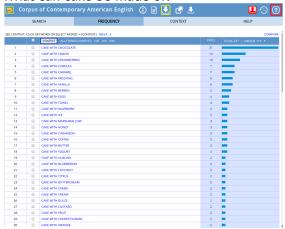
cake with/from parsley

(from http://www.bazekalim.com)

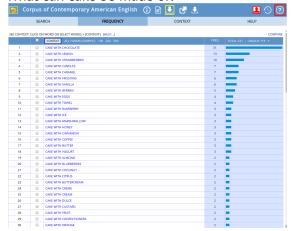
2.

cake for parsley

■ What can cake be made of?

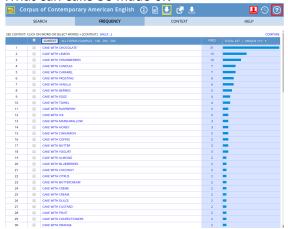


■ What can cake be made of?



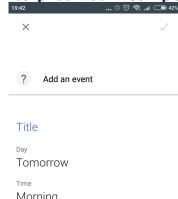
Parsley (sort of) fits into this distribution

■ What can cake be made of?



- Parsley (sort of) fits into this distribution
- Similar to "selectional preferences" [Pantel et al., 2007]

We need Computers to Interpret Noun-Compounds

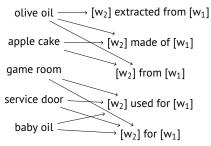


create a morning meeting

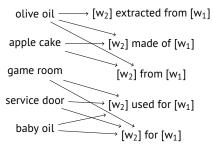
Morning

Noun-Compound Interpretation Tasks

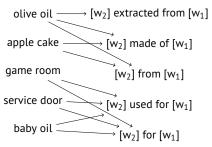
- Compositionality Prediction
- Noun-compound Paraphrasing
- Noun-compound Classification



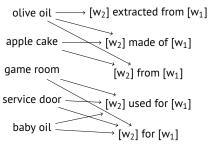
To multiple prepositional and verbal paraphrases [Nakov and Hearst, 2006]



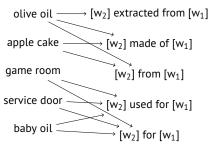
SemEval 2013 task 4 [Hendrickx et al., 2013]:



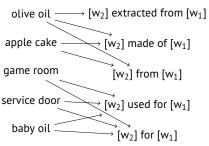
- SemEval 2013 task 4 [Hendrickx et al., 2013]:
 - Systems get a list of noun compounds



- SemEval 2013 task 4 [Hendrickx et al., 2013]:
 - Systems get a list of noun compounds
 - Extract paraphrases from free text



- SemEval 2013 task 4 [Hendrickx et al., 2013]:
 - Systems get a list of noun compounds
 - Extract paraphrases from free text
 - Rank them



- SemEval 2013 task 4 [Hendrickx et al., 2013]:
 - Systems get a list of noun compounds
 - Extract paraphrases from free text
 - Rank them
 - Evaluated for correlation with human judgments

Prior Work

- Based on corpus occurrences of the constituents:
 - "cake made of apples"

- Based on corpus occurrences of the constituents: "cake made of apples"
- SemEval task participants extracted them from Google N-grams

- Based on corpus occurrences of the constituents: "cake made of apples"
- SemEval task participants extracted them from Google N-grams

■ Problems:

1. Many unseen NCs, no paraphrases in the corpus

- Based on corpus occurrences of the constituents: "cake made of apples"
- SemEval task participants extracted them from Google N-grams

■ Problems:

- 1. Many unseen NCs, no paraphrases in the corpus
- 2. Many NCs with just a few paraphrases

- Based on corpus occurrences of the constituents: "cake made of apples"
- SemEval task participants extracted them from Google N-grams

■ Problems:

- 1. Many unseen NCs, no paraphrases in the corpus
- 2. Many NCs with just a few paraphrases

Partial solutions:

1. [Van de Cruys et al., 2013]: generalize for unseen NCs with similar NCs, e.g. *pear tart* is similar to *apple cake*

- Based on corpus occurrences of the constituents: "cake made of apples"
- SemEval task participants extracted them from Google N-grams

■ Problems:

- 1. Many unseen NCs, no paraphrases in the corpus
- 2. Many NCs with just a few paraphrases

Partial solutions:

- 1. [Van de Cruys et al., 2013]: generalize for unseen NCs with similar NCs, e.g. *pear tart* is similar to *apple cake*
- 2. [Surtani et al., 2013]: learn "is-a" relations between paraphrases: e.g. "[w₂] extracted from [w₁]" \subset "[w₂] made of [w₁]"

- Based on corpus occurrences of the constituents: "cake made of apples"
- SemEval task participants extracted them from Google N-grams

■ Problems:

- 1. Many unseen NCs, no paraphrases in the corpus
- Many NCs with just a few paraphrases

Partial solutions:

- 1. [Van de Cruys et al., 2013]: generalize for unseen NCs with similar NCs, e.g. *pear tart* is similar to *apple cake*
- 2. [Surtani et al., 2013]: learn "is-a" relations between paraphrases: e.g. " $[w_2]$ extracted from $[w_1]$ " \subset " $[w_2]$ made of $[w_1]$ "
- Our solution: multi-task learning to address both problems

Model

Previous approaches: predict a paraphrase for a given NC

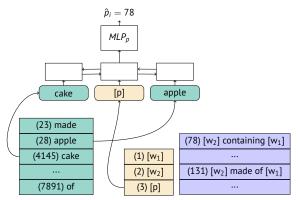
- Previous approaches: predict a paraphrase for a given NC
- Our model: multi-task learning problem

- Previous approaches: predict a paraphrase for a given NC
- Our model: multi-task learning problem
- Training example $\{w_1 = \text{apple}, w_2 = \text{cake}, p = \text{``[w_2] made of [w_1]''}\}$

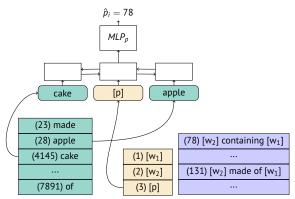
- Previous approaches: predict a paraphrase for a given NC
- Our model: multi-task learning problem
- Training example $\{w_1 = \text{apple}, w_2 = \text{cake}, p = \text{``[w_2] made of [w_1]''}\}$
 - 1. Predict a paraphrase p for a given NC w_1w_2 : What is the relation between *apple* and *cake*?

- Previous approaches: predict a paraphrase for a given NC
- Our model: multi-task learning problem
- Training example $\{w_1 = \text{apple}, w_2 = \text{cake}, p = \text{``[w_2] made of [w_1]''}\}$
 - 1. Predict a paraphrase p for a given NC w_1w_2 : What is the relation between *apple* and *cake*?
 - 2. Predict w_1 given a paraphrase p and w_2 : What can *cake* be made of?

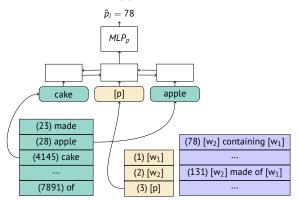
- Previous approaches: predict a paraphrase for a given NC
- Our model: multi-task learning problem
- Training example $\{w_1 = \text{apple}, w_2 = \text{cake}, p = \text{``[}w_2 \text{]} \text{ made of } [w_1]\text{''}\}$
 - **1.** Predict a paraphrase p for a given NC w_1w_2 : What is the relation between *apple* and *cake*?
 - 2. Predict w_1 given a paraphrase p and w_2 : What can *cake* be made of?
 - 3. Predict w_2 given a paraphrase p and w_1 : What can be made of *apple*?



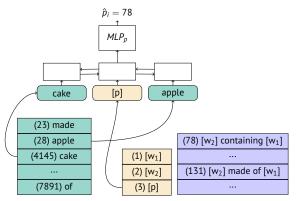
■ Encode placeholder [p] in "cake [p] apple" using biLSTM



- Encode placeholder [p] in "cake [p] apple" using biLSTM
- Predict an index in the paraphrase vocabulary

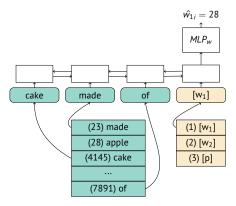


- Encode placeholder [p] in "cake [p] apple" using biLSTM
- Predict an index in the paraphrase vocabulary
- Fixed word embeddings, learned placeholder embeddings



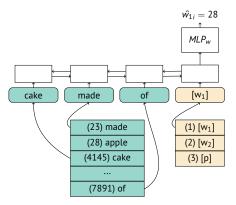
- Encode placeholder [p] in "cake [p] apple" using biLSTM
- Predict an index in the paraphrase vocabulary
- Fixed word embeddings, learned placeholder embeddings
- (1) Generalizes NCs: pear tart expected to yield similar results

Helper Task (2): Predicting Missing Constituents What can *cake* be made of?



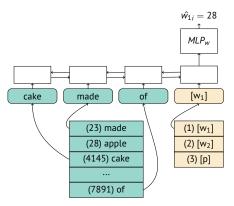
■ Encode placeholder in "cake made of [w₁]" using biLSTM

Helper Task (2): Predicting Missing Constituents What can *cake* be made of?



- Encode placeholder in "cake made of [w₁]" using biLSTM
- Predict an index in the word vocabulary

Helper Task (2): Predicting Missing Constituents What can *cake* be made of?



- Encode placeholder in "cake made of [w₁]" using biLSTM
- Predict an index in the word vocabulary
- (2) Generalizes paraphrases:
 - "[w₂] containing [w₁]" expected to yield similar results

■ Collected from Google N-grams

- Collected from Google N-grams
- Input:
 - Set of NCs
 - Templates of POS tags (e.g. " $[w_2]$ verb prep $[w_1]$ ")

- Collected from Google N-grams
- Input:
 - Set of NCs
 - Templates of POS tags (e.g. " $[w_2]$ verb prep $[w_1]$ ")
- Weighting by frequency and length

- Collected from Google N-grams
- Input:
 - Set of NCs
 - Templates of POS tags (e.g. " $[w_2]$ verb prep $[w_1]$ ")
- Weighting by frequency and length
- 136,609 instances

Evaluation: Paraphrasing

Model

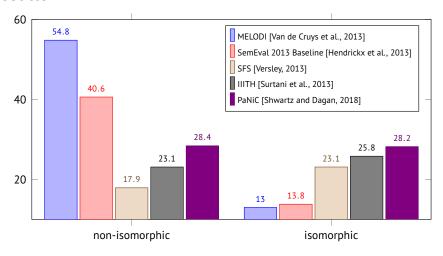
■ Predict top *k* paraphrases for each noun compound

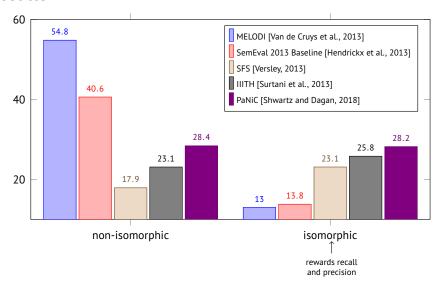
Model

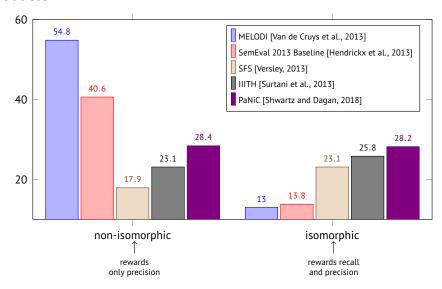
- Predict top *k* paraphrases for each noun compound
- Learn to re-rank the paraphrases
 - to better correlate with human judgments

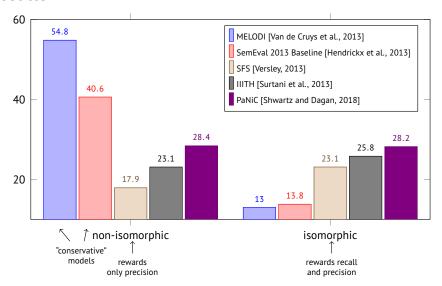
Model

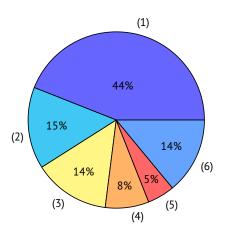
- Predict top *k* paraphrases for each noun compound
- Learn to re-rank the paraphrases
 - to better correlate with human judgments
- SVM pair-wise ranking with the following features:
 - POS tags in the paraphrase
 - Prepositions in the paraphrase
 - Length
 - Special symbols
 - Similarity to predicted paraphrase



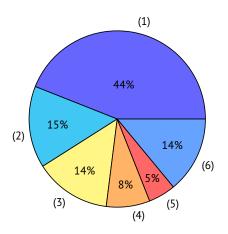




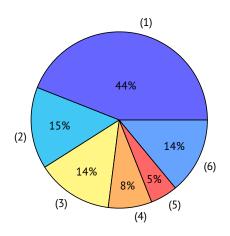




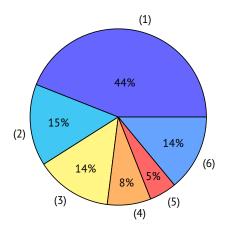
1. Valid, missing from gold-standard ("discussion by group")



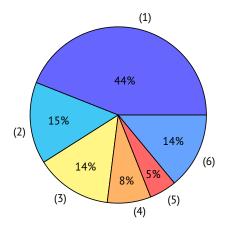
- Valid, missing from gold-standard ("discussion by group")
- Too specific ("life of women in community")



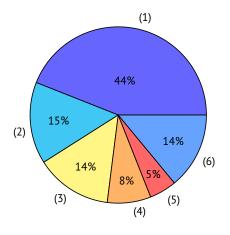
- Valid, missing from gold-standard ("discussion by group")
- Too specific ("life of women in community")
- Incorrect prepositions
 E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" ⇒ "oil from baby"



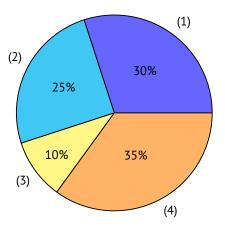
- Valid, missing from gold-standard ("discussion by group")
- Too specific ("life of women in community")
- Incorrect prepositions
 E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" ⇒ "oil from baby"
- 4. Syntactic errors



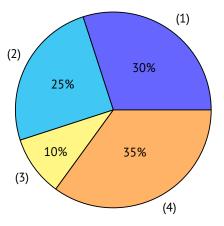
- Valid, missing from gold-standard ("discussion by group")
- Too specific ("life of women in community")
- Incorrect prepositions
 E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" ⇒ "oil from baby"
- 4. Syntactic errors
- Borderline grammatical ("force of coalition forces")



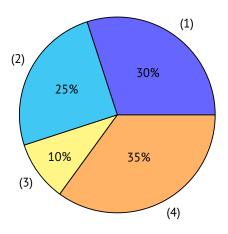
- Valid, missing from gold-standard ("discussion by group")
- Too specific ("life of women in community")
- Incorrect prepositions
 E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" ⇒ "oil from baby"
- 4. Syntactic errors
- Borderline grammatical ("force of coalition forces")
- 6. Other errors



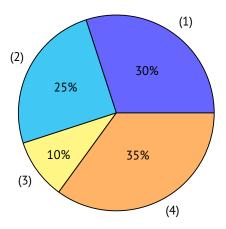
1. Long paraphrase (n > 5)



- **1.** Long paraphrase (n > 5)
- 2. Determiners ("mutation of a gene")



- **1.** Long paraphrase (n > 5)
- 2. Determiners ("mutation of a gene")
- 3. Inflected constituents ("holding of shares")



- **1.** Long paraphrase (n > 5)
- Determiners ("mutation of a gene")
- 3. Inflected constituents ("holding of shares")
- 4. Other errors

■ Two tasks of recognizing semantic relations between nouns:

- Two tasks of recognizing semantic relations between nouns:
 - Between arbitrary nouns / constituents of a noun-compound

- Two tasks of recognizing semantic relations between nouns:
 - Between arbitrary nouns / constituents of a noun-compound
 - Classification to ontological relations / free text paraphrasing

- Two tasks of recognizing semantic relations between nouns:
 - Between arbitrary nouns / constituents of a noun-compound
 - Classification to ontological relations / free text paraphrasing
- In both tasks, integrating features from joint corpus occurrences improved performance

- Two tasks of recognizing semantic relations between nouns:
 - Between arbitrary nouns / constituents of a noun-compound
 - Classification to ontological relations / free text paraphrasing
- In both tasks, integrating features from joint corpus occurrences improved performance
- Word embeddings are a useful tool, but not the only tool!

- Two tasks of recognizing semantic relations between nouns:
 - Between arbitrary nouns / constituents of a noun-compound
 - Classification to ontological relations / free text paraphrasing
- In both tasks, integrating features from joint corpus occurrences improved performance
- Word embeddings are a useful tool, but not the only tool!

Thanks Kudos for forthe attending participating!*

^{*} Replaced with the most similar words using word2vec

References I

- [Baroni et al., 2012] Baroni, M., Bernardi, R., Do, N-Q., and Shan, C-c. (2012). Entailment above the word level in distributional semantics. In *EACL*, pages 23–32.
- [Dima, 2016] Dima, C. (2016). Proceedings of the 1st Workshop on Representation Learning for NLP, chapter On the Compositionality and Semantic Interpretation of English Noun Compounds, pages 27–39. Association for Computational Linquistics.
- [Dinu et al., 2013] Dinu, G., Pham, N. T., and Baroni, M. (2013). General estimation and evaluation of compositional distributional semantic models. In *Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality*, pages 50–58, Sofia, Bulgaria. Association for Computational Linguistics.
- [Hearst, 1992] Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text corpora. In ACL, pages 539-545.
- [Hendrickx et al., 2013] Hendrickx, I., Kozareva, Z., Nakov, P., Ó Séaghdha, D., Szpakowicz, S., and Veale, T. (2013). Semeval-2013 task 4: Free paraphrases of noun compounds. In Second Joint Conference on Lexical and Computational Semantics ("SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 138–143. Association for Computational Linguistics.
- [Levy et al., 2015a] Levy, O., Remus, S., Biemann, C., and Dagan, I. (2015a). Do supervised distributional methods really learn lexical inference relations. NAACL.
- [Levy et al., 2015b] Levy, O., Remus, S., Biemann, C., and Dagan, I. (2015b). Do supervised distributional methods really learn lexical inference relations? In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 970–976, Denver, Colorado. Association for Computational Linguistics.
- [Mitchell and Lapata, 2010] Mitchell, J. and Lapata, M. (2010). Composition in distributional models of semantics. Cognitive science, 34(8):1388-1429.
- [Nakashole et al., 2012] Nakashole, N., Weikum, G., and Suchanek, F. (2012). Patty: a taxonomy of relational patterns with semantic types. In *EMNLP and CoNLL*, pages 1135–1145.

References II

- [Nakov, 2013] Nakov, P. (2013). On the interpretation of noun compounds: Syntax, semantics, and entailment. Natural Language Engineering, 19(03):291–330.
- [Nakov and Hearst, 2006] Nakov, P. and Hearst, M. (2006). Using verbs to characterize noun-noun relations. In *International Conference on Artificial Intelligence: Methodology, Systems, and Applications*, pages 233–244. Springer.
- [Pantel et al., 2007] Pantel, P., Bhagat, R., Coppola, B., Chklovski, T., and Hovy, E. (2007). ISP: Learning inferential selectional preferences. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, pages 564–571, Rochester, New York. Association for Computational Linguistics.
- [Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word representation. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 1532–1543, Doha, Qatar. Association for Computational Linguistics.
- [Roller et al., 2014] Roller, S., Erk, K., and Boleda, G. (2014). Inclusive yet selective: Supervised distributional hypernymy detection. In COLING, pages 1025–1036.
- [Shwartz and Dagan, 2016a] Shwartz, V. and Dagan, I. (2016a). path-based vs. distributional information in recognizing lexical semantic relations. In Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V), in COLING, Osaka, Japan.
- [Shwartz and Dagan, 2016b] Shwartz, V. and Dagan, I. (2016b). cogalex-v shared task: Lexnet integrated path-based and distributional method for the identification of semantic relations. In Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V), in COLING, Osaka, Japan.
- [Shwartz and Dagan, 2018] Shwartz, V. and Dagan, I. (2018). Paraphrase to explicate: Revealing implicit noun-compound relations. In The 56th Annual Meeting of the Association for Computational Linguistics (ACL), Melbourne, Australia.
- [Shwartz et al., 2016] Shwartz, V., Goldberg, Y., and Dagan, I. (2016). Improving hypernymy detection with an integrated path-based and distributional method. In ACL, pages 2389–2398.

References III

- [Shwartz and Waterson, 2018] Shwartz, V. and Waterson, C. (2018). Olive oil is made of olives, baby oil is made for babies: Interpreting noun compounds using paraphrases in a neural model. In The 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), New Orleans, Louisiana.
- [Snow et al., 2004] Snow, R., Jurafsky, D., and Ng, A. Y. (2004). Learning syntactic patterns for automatic hypernym discovery. In NIPS.
- [Socher et al., 2012] Socher, R., Huval, B., Manning, D. C., and Ng, Y. A. (2012). Semantic compositionality through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 1201–1211. Association for Computational Linguistics.
- [Surtani et al., 2013] Surtani, N., Batra, A., Ghosh, U., and Paul, S. (2013). liit-h: A corpus-driven co-occurrence based probabilistic model for noun compound paraphrasing. In Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), volume 2, pages 153–157.
- [Tratz, 2011] Tratz, S. (2011). Semantically-enriched parsing for natural language understanding. University of Southern California
- [Van de Cruys et al., 2013] Van de Cruys, T., Afantenos, S., and Muller, P. (2013). Melodi: A supervised distributional approach for free paraphrasing of noun compounds. In Second Joint Conference on Lexical and Computational Semantics ("SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 144–147, Atlanta, Georgia, USA. Association for Computational Linguistics.
- [Versley, 2013] Versley, Y. (2013). Sfs-tue: Compound paraphrasing with a language model and discriminative reranking. In Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), volume 2, pages 148–152.
- [Weeds et al., 2014] Weeds, J., Clarke, D., Reffin, J., Weir, D., and Keller, B. (2014). Learning to distinguish hypernyms and co-hyponyms. In COLING, pages 2249–2259.

References IV

[Zanzotto et al., 2010] Zanzotto, F. M., Korkontzelos, I., Fallucchi, F., and Manandhar, S. (2010). Estimating linear models for compositional distributional semantics. In Proceedings of the 23rd International Conference on Computational Linguistics, pages 1263–1271. Association for Computational Linguistics.

Noun-Compound Classification

Noun-Compound Classification

Given a noun-compound w_1w_2 , classify the relation between the head w_2 and the modifier w_1 to one of a set of pre-defined relations

source

ground attack

olive oil

part of

sea bass boat whistle rotor head apple cake

purpose

baby oil game room service door non-compositional

horse radish baby sitting hot dog

Current SOTA in NC Classification

- Compute a vector for w_1w_2 as a function of w_1 and w_2 's vectors
 - \blacksquare $vec(olive\ oil) = f(vec(olive), vec(oil))$

Current SOTA in NC Classification

- Compute a vector for w_1w_2 as a function of w_1 and w_2 's vectors
 - \blacksquare $vec(olive\ oil) = f(vec(olive), vec(oil))$
 - Many ways to learn f [Mitchell and Lapata, 2010, Zanzotto et al., 2010, Dinu et al., 2013, Socher et al., 2012]

Current SOTA in NC Classification

- Compute a vector for w_1w_2 as a function of w_1 and w_2 's vectors
 - \blacksquare $vec(olive\ oil) = f(vec(olive), vec(oil))$
 - Many ways to learn *f* [Mitchell and Lapata, 2010, Zanzotto et al., 2010, Dinu et al., 2013, Socher et al., 2012]
- Use the noun-compound representation as a feature vector for classification [Dima, 2016]

Current SOTA in NC Classification

- Compute a vector for w_1w_2 as a function of w_1 and w_2 's vectors
 - \blacksquare $vec(olive\ oil) = f(vec(olive), vec(oil))$
 - Many ways to learn f [Mitchell and Lapata, 2010, Zanzotto et al., 2010, Dinu et al., 2013, Socher et al., 2012]
- Use the noun-compound representation as a feature vector for classification [Dima, 2016]
 - Best performance is achieved when $f(w_1, w_2) = [w_1; w_2]$

Current SOTA in NC Classification

- Compute a vector for w_1w_2 as a function of w_1 and w_2 's vectors
 - \blacksquare $vec(olive\ oil) = f(vec(olive), vec(oil))$
 - Many ways to learn *f* [Mitchell and Lapata, 2010, Zanzotto et al., 2010, Dinu et al., 2013, Socher et al., 2012]
- Use the noun-compound representation as a feature vector for classification [Dima, 2016]
 - Best performance is achieved when $f(w_1, w_2) = [w_1; w_2]$
 - [Dima, 2016]: There is a lexical memorization issue

The task is similar to semantic relation classification

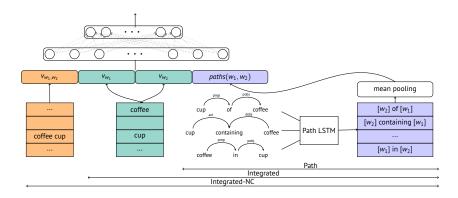
- The task is similar to semantic relation classification
- Difference: we are interested in the relation between *olive* and oil in the context of the noun-compound, not in general

- The task is similar to semantic relation classification
- Difference: we are interested in the relation between olive and oil in the context of the noun-compound, not in general
- We apply lessons learned from semantic relation classification to noun-compound interpretation:

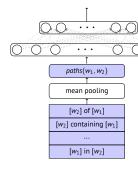
- The task is similar to semantic relation classification
- Difference: we are interested in the relation between olive and oil in the context of the noun-compound, not in general
- We apply lessons learned from semantic relation classification to noun-compound interpretation:
 - Use paraphrases as features, using LexNET

- The task is similar to semantic relation classification
- Difference: we are interested in the relation between olive and oil in the context of the noun-compound, not in general
- We apply lessons learned from semantic relation classification to noun-compound interpretation:
 - Use paraphrases as features, using LexNET
 - Use lexical splits to disable lexical memorization

Overall Architecture

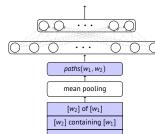


Path-based



■ Each dependency path connecting w_1 and w_2 in the corpus is encoded as in HypeNET [Shwartz et al., 2016]

Path-based

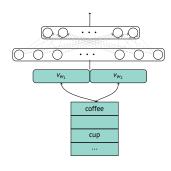


 $[w_1]$ in $[w_2]$

Each dependency path connecting w₁ and w₂ in the corpus is encoded as in HypeNET
 [Shwartz et al., 2016]

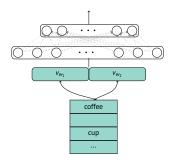
- Motivation: semantic generalization of paths
 - \blacksquare [w_2] obtained from [w_1]
 - \blacksquare [w_2] extracted from [w_1]

Distributional



Learn "prior probability" of relations for each individual word

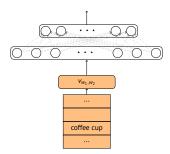
Distributional



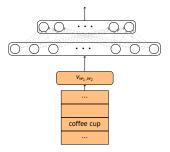
- Learn "prior probability" of relations for each individual word
- e.g. Substance-Material-Ingredient for edible w₁s:
 - vanilla pudding
 - apple cake

Distributional - Noun Compound

■ Each NC has an *observed* vector

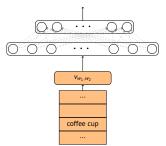


Distributional - Noun Compound



- Each NC has an observed vector
- Learned with GloVe [Pennington et al., 2014] by replacing NCs with a single token (e.g. vanilla pudding).

Distributional - Noun Compound



- Each NC has an observed vector.
- Learned with GloVe [Pennington et al., 2014] by replacing NCs with a single token (e.g. *vanilla_pudding*).
- Motivation: cluster NCs that appear in similar contexts
 - e.g. gun violence and abortion rights appear in news, both are Topic

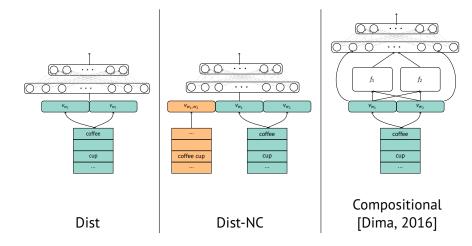
Evaluation - Datasets

- Dataset: [Tratz, 2011]
 - 19,158 instances
 - 37 relations (fine-grained) / 12 relations (coarse-grained)

Evaluation - Datasets

- Dataset: [Tratz, 2011]
 - 19,158 instances
 - 37 relations (fine-grained) / 12 relations (coarse-grained)
- Datatset splits:
 - Random 75:20:5 (like previous work)
 - Lexical-full [Levy et al., 2015b]
 - Lexical-head
 - Lexical-mod

Evaluation - Baselines



Dataset	Split	Best Baseline	Path	Int	Int-NC
Tratz-fine	Rand	0.725	0.538	0.714	0.692
	Lex _{head}	0.458	0.448	0.510	0.478
	Lex _{mod}	0.607	0.472	0.613	0.600
	Lex _{full}	0.363	0.423	0.421	0.429
Tratz-coarse	Rand	0.775	0.586	0.736	0.712
	Lex _{head}	0.538	0.518	0.569	0.548
	Lex _{mod}	0.645	0.548	0.646	0.632
	Lex _{full}	0.409	0.472	0.475	0.478

Random split: distributional/compositional baselines outperform all other methods, by memorizing words.

Dataset	Split	Best Baseline	Path	Int	Int-NC
	Rand	0.725	0.538	0.714	0.692
Tratz-fine	Lex _{head}	0.458	0.448	0.510	0.478
	Lex _{mod}	0.607	0.472	0.613	0.600
	Lex _{full}	0.363	0.423	0.421	0.429
Tratz-coarse	Rand	0.775	0.586	0.736	0.712
	Lex _{head}	0.538	0.518	0.569	0.548
	Lex _{mod}	0.645	0.548	0.646	0.632
	Lex _{full}	0.409	0.472	0.475	0.478

Lexical split: our methods perform better.

Dataset	Split	Best Baseline	Path	Int	Int-NC
Tratz-fine	Rand	0.725	0.538	0.714	0.692
	Lex _{head}	0.458	0.448	0.510	0.478
	Lex _{mod}	0.607	0.472	0.613	0.600
	Lex _{full}	0.363	0.423	0.421	0.429
Tratz-coarse	Rand	0.775	0.586	0.736	0.712
	Lex _{head}	0.538	0.518	0.569	0.548
	Lex _{mod}	0.645	0.548	0.646	0.632
	Lex _{full}	0.409	0.472	0.475	0.478

■ The performance gap is larger in lexical-full.

Dataset	Split	Best Baseline	Path	Int	Int-NC
Tratz-fine	Rand	0.725	0.538	0.714	0.692
	Lex _{head}	0.458	0.448	0.510	0.478
	Lex _{mod}	0.607	0.472	0.613	0.600
	Lex _{full}	0.363	0.423	0.421	0.429
Tratz-coarse	Rand	0.775	0.586	0.736	0.712
	Lex _{head}	0.538	0.518	0.569	0.548
	Lex _{mod}	0.645	0.548	0.646	0.632
	Lex _{full}	0.409	0.472	0.475	0.478

■ There is usually no gain from adding the NC embeddings.

Analysis Which relations can the path-based model learn?

relation	path	examples
measure	$[w_2]$ varies by $[w_1]$	state limit
illeasure	2,560 [w_1] portion of [w_2]	acre estate
personal	$[w_2]$ Anderson $[w_1]$ /title	Mrs. Brown
title	$[w_2]$ Sheridan $[w_1]$ /title	Gen. Johnson
create-provide-	$[w_2]$ produce $[w_1]$	food producer
generate-sell	rate-sell $[w_2]$ manufacture $[w_1]$	
time-of1	$[w_2]$ begin $[w_1]$	morning program
tille-011	$[w_2]$ held Saturday $[w_1]$	afternoon meeting
substance-material -	$[w_2]$ made of wood and $[w_1]$	marble table
ingredient	$[w_2]$ material includes type of $[w_1]$	steel pipe

Analysis Which relations CAN'T the path-based model learn?

lexicalized has no indicative paths! (e.g. soap opera)

Analysis Which relations CAN'T the path-based model learn?

- lexicalized has no indicative paths! (e.g. soap opera)
- partial_attribute_transfer (e.g. bullet train) has few indicative paths (e.g. "train as fast as a bullet")

Analysis Which relations CAN'T the path-based model learn?

- lexicalized has no indicative paths! (e.g. soap opera)
- partial_attribute_transfer (e.g. bullet train) has few indicative paths (e.g. "train as fast as a bullet")
- Confusion between relations with subtle difference (e.g. various topic relations)

AnalysisWhy didn't the NC embeddings help?

	Test NC	Most Similar NC		
NC	Label	NC	Label	
majority party enforcement director fire investigator stabilization plan investor sentiment alliance member	equative objective objective objective experiencer-of-experience whole+part_or_member_of	minority party enforcement chief fire marshal stabilization program market sentiment alliance leader	whole+part_or_member_of perform&engage_in organize&supervise&authority perform&engage_in topic_of_cognition&emotion objective	

■ 81% of the noun-compounds in the test set have embeddings

AnalysisWhy didn't the NC embeddings help?

,	Test NC	Most Similar NC		
NC	Label	NC	Label	
majority party enforcement director fire investigator stabilization plan investor sentiment alliance member	equative objective objective objective experiencer-of-experience whole+part_or_member_of	minority party enforcement chief fire marshal stabilization program market sentiment alliance leader	whole+part_or_member_of perform&engage_in organize&supervise&authority perform&engage_in topic_of_cognition&emotion objective	

- 81% of the noun-compounds in the test set have embeddings
- Most similar compounds demonstrate high quality embeddings

Analysis Why didn't the NC embeddings help?

,	Test NC	Most Similar NC		
NC	Label	NC	Label	
majority party enforcement director fire investigator stabilization plan investor sentiment alliance member	equative objective objective objective experiencer-of-experience whole+part_or_member_of	minority party enforcement chief fire marshal stabilization program market sentiment alliance leader	whole+part_or_member_of perform&engage_in organize&supervise&authority perform&engage_in topic_of_cognition&emotion objective	

- 81% of the noun-compounds in the test set have embeddings
- Most similar compounds demonstrate high quality embeddings
- There are inconsistencies in the annotation