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What is “lexical knowledge”?

Knowledge about lexical items
(words, MWEs)
How do they relate to each other?
Helpful for dealing with lexical
variability in NLP applications
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Example Application - Question Answering

Question
“When did Donald Trump visit in Alabama?”

Candidate Passages
1. Trump visited Huntsville on September 23.
2. Trump visited Mississippi on June 21.

Knowledge
Huntsville is a meronym of Alabama, Mississippi is not.
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Word Embeddings
(are not the solution for all problems)

Provide semantic representations of words

Commonly used across NLP applications with great success
Pre-trained / learned / fine-tuned for a specific application
Common claim:

Word embeddings are all you need for lexical semantics
Reality:

They are great in capturing general semantic relatedness
...but they mix all semantic relations together!
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Word Embeddings
To illustrate, take famous texts and replace nouns with their
word2vec neighbours:1

1More examples here: https://goo.gl/LJHzbi
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What’s in this talk?

Recognizing Lexical Semantic Relations

Interpreting Noun Compounds
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Recognizing Lexical Semantic Relations



Recognizing Lexical Semantic Relations

The Hypernymy Detection Task

Hypernymy
The hyponym is a subclass of / instance of the hypernym
(cat, animal), (Google, company)

Given two terms, x and y, decide whether y is a hypernym of x
in some senses of x and y, e.g. (apple, fruit), (apple, company)
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Recognizing Lexical Semantic Relations

Corpus-based Hypernymy Detection

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work
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Recognizing Lexical Semantic Relations

Prior Methods

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work
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Recognizing Lexical Semantic Relations

Distributional Approach

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work
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Recognizing Lexical Semantic Relations

Supervised Distributional Methods

Recognize the relation between words based on their separate
occurrences in the corpus

Train a classifier to predict hypernymy using the terms’
embeddings:

Concatenation ~x ⊕~y [Baroni et al., 2012]
Difference ~y − ~x [Roller et al., 2014, Weeds et al., 2014]

Achieved very good results on common hypernymy detection /
semantic relation classification datasets
[Levy et al., 2015a]: “lexical memorization”: overfitting to the
most common relation of a specific word

Training: (cat, animal), (dog, animal), (cow, animal), .. . all labeled as
hypernymy
Model: (x, animal) is a hypernym pair, regardless of x
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Recognizing Lexical Semantic Relations

Path-based Approach

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work
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Recognizing Lexical Semantic Relations

Path-based Approach
Recognize the relation between x and y based on their joint
occurrences in the corpus

Hearst Patterns [Hearst, 1992] - patterns connecting x and y may
indicate that y is a hypernym of x

e.g. X or other Y, X is a Y, Y, including X
Patterns can be represented using dependency paths:

apple is a fruit
NOUN VERB DET NOUN

NSUBJ

ATTR

DET

[Snow et al., 2004]: logistic regression classifier, dependency
paths as sparse features

0 0 ... 58 0 ... 97 0 ... 0
↑ ↑

X and other Y such Y as X
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Recognizing Lexical Semantic Relations

Path-based Approach Issues
The feature space is too sparse:

Similar paths share no information:
X inc. is a Y
X group is a Y
X organization is a Y

PATTY [Nakashole et al., 2012] generalized paths, by replacing a
word by:

Some of these generalizations are too general:
X is defined as Y ≈ X is described as Y via X is VERB as Y
X is defined as Y 6= X is rejected as Y
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Recognizing Lexical Semantic Relations

HypeNET: Integrated Path-based and Distributional Method
[Shwartz et al., 2016]

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work
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Recognizing Lexical Semantic Relations

First Step: Improving Path Representation

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work
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Recognizing Lexical Semantic Relations

Path Representation

X is a Y
NOUN VERB DET NOUN

NSUBJ

ATTR

DET

1. Split each path to edges, each edge consists of 4 components:
X / NOUN / nsubj / > be / VERB / ROOT / - Y / NOUN / attr / <

We learn embedding vectors for each component
Lemma: initialized with pre-trained word embeddings

The edge’s vector is the concatenation of its components’ vectors:
[ dependent lemma ; dependent POS ; dependency label ; direction ]

2. Feed the edges sequentially to an LSTM, use the last output
vector as the path embedding:

X/NOUN/dobj/> define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<
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Recognizing Lexical Semantic Relations

Term-pair Classification

The LSTM encodes a single path
Each term-pair has multiple paths

Represent a term-pair as its averaged path embedding

Classify for hypernymy (path-based network):

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

~op

. . .

X/NOUN/dobj/> define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

(x, y) paths in Path LSTM Term-pair Classifier

average
pooling (x, y)

classification
(softmax)

~vxy

Embeddings:
lemma
POS
dependency label
direction

Vered Shwartz · Acquiring Lexical Semantic Knowledge · June 2018 19 / 50



Recognizing Lexical Semantic Relations

Second Step: Integrating Distributional Information

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work
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Recognizing Lexical Semantic Relations

Second Step: Integrating Distributional Information

Integrated network: add distributional information
Concatenate x and y’s word embeddings to the averaged path

Classify for hypernymy (integrated network):

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

~op

. . .

X/NOUN/dobj/> define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

(x, y) paths in Path LSTM Term-pair Classifier

average
pooling

~vwx

(x, y)
classification
(softmax)

~vwy

~vxy

Embeddings:
lemma
POS
dependency label
direction
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Recognizing Lexical Semantic Relations

Results

On a new dataset, built from knowledge resources

method precision recall F1

Path-based
Snow 0.843 0.452 0.589
Snow + GEN 0.852 0.561 0.676
HypeNET Path-based 0.811 0.716 0.761

Distributional Best Supervised 0.901 0.637 0.746
Integrated HypeNET Integrated 0.913 0.890 0.901

Path-based:
Compared to Snow + Snow with PATTY style generalizations
HypeNET outperforms path-based baselines with improved recall
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Results

On a new dataset, built from knowledge resources

method precision recall F1

Path-based
Snow 0.843 0.452 0.589
Snow + GEN 0.852 0.561 0.676
HypeNET Path-based 0.811 0.716 0.761

Distributional Best Supervised 0.901 0.637 0.746
Integrated HypeNET Integrated 0.913 0.890 0.901

The integrated method substantially outperforms both
path-based and distributional methods
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Recognizing Lexical Semantic Relations

Analysis - Path Representation (1/2)

Identify hypernymy-indicating paths:
Baselines: according to logistic regression feature weights

HypeNET: measure path contribution to positive classification:

X/NOUN/nsubj/>be/VERB/ROOT/-Y/NOUN/attr/<

~op ~op

Term-pair Classifier

Path LSTM

~0

(x, y)
classification
(softmax)

~0

Take the top scoring paths according to softmax(W · [~0, ~op,~0])[1]
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Recognizing Lexical Semantic Relations

Analysis - Path Representation (2/2)

Snow’s method finds certain common paths:
X company is a Y
X ltd is a Y

PATTY-style generalizations find very general, possibly noisy
paths:

X NOUN is a Y
HypeNET makes fine-grained generalizations:

X association is a Y
X co. is a Y
X company is a Y
X corporation is a Y
X foundation is a Y
X group is a Y
...
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Recognizing Lexical Semantic Relations

LexNET - Multiple Semantic Relation Classification
[Shwartz and Dagan, 2016a, Shwartz and Dagan, 2016b]

Application of HypeNET for multiple relations

LexNET outperforms individual path-based and distributional
methods
Path-based contribution over distributional info is prominent
when:

Lexical memorization is disabled (lexical split)
x or y are polysemous, e.g. mero:(piano, key).
the relation is not prototypical, e.g. event:(cherry, pick).
x or y are rare, e.g. hyper:(mastodon, proboscidean).
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Interpreting Noun Compounds

Noun Compounds

Noun-compounds hold an implicit semantic relation between
the head and its modifier(s).

apple cake: cake made of apples
birthday cake: cake eaten on a birthday

They are like “text compression devices” [Nakov, 2013]
We’re pretty good in decompressing them!
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Interpreting Noun Compounds

We are good at Interpreting Noun-Compounds

What goes well
with a kid
in a sandwich?
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Interpreting Noun Compounds

Interpreting new Noun Compounds

Noun-compounds are prevalent in English, but most are rare

We easily interpret noun-compounds we’ve never seen before
What is a “parsley cake”?

1. 2.

cake with/from parsley cake for parsley

(from http://www.bazekalim.com)
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Interpreting Noun Compounds

Interpreting new Noun Compounds
What can cake be made of?

Parsley (sort of) fits into this distribution
Similar to “selectional preferences” [Pantel et al., 2007]
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Interpreting Noun Compounds

We need Computers to Interpret Noun-Compounds

Vered Shwartz · Acquiring Lexical Semantic Knowledge · June 2018 31 / 50



Interpreting Noun Compounds

Noun-Compound Interpretation Tasks

Compositionality Prediction
Noun-compound Paraphrasing
Noun-compound Classification
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Interpreting Noun Compounds

Noun-Compound Paraphrasing
To multiple prepositional and verbal paraphrases
[Nakov and Hearst, 2006]

olive oil

apple cake

[w2] extracted from [w1]

[w2] made of [w1]

[w2] from [w1]game room

service door

baby oil

[w2] used for [w1]

[w2] for [w1]

SemEval 2013 task 4 [Hendrickx et al., 2013]:
Systems get a list of noun compounds
Extract paraphrases from free text
Rank them
Evaluated for correlation with human judgments
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Interpreting Noun Compounds

Prior Work
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Interpreting Noun Compounds

Prior Methods
Based on corpus occurrences of the constituents:
“cake made of apples”

SemEval task participants extracted them from Google N-grams

Problems:
1. Many unseen NCs, no paraphrases in the corpus
2. Many NCs with just a few paraphrases

Partial solutions:
1. [Van de Cruys et al., 2013]: generalize for unseen NCs with
similar NCs, e.g. pear tart is similar to apple cake

2. [Surtani et al., 2013]: learn “is-a” relations between paraphrases:
e.g. “[w2] extracted from [w1]” ⊂ “[w2] made of [w1]”

Our solution: multi-task learning to address both problems
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Interpreting Noun Compounds

Model
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Interpreting Noun Compounds

Multi-task Reformulation

Previous approaches: predict a paraphrase for a given NC

Our model: multi-task learning problem
Training example {w1 = apple, w2 = cake, p = “[w2] made of [w1]”}
1. Predict a paraphrase p for a given NC w1w2:
What is the relation between apple and cake?

2. Predict w1 given a paraphrase p and w2:
What can cake be made of?

3. Predict w2 given a paraphrase p and w1:
What can be made of apple?
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Interpreting Noun Compounds

Main Task (1): Predicting Paraphrases
What is the relation between apple and cake?

(23) made

(28) apple

(4145) cake
...

(7891) of

(1) [w1]

(2) [w2]

(3) [p]

(78) [w2] containing [w1]
...

(131) [w2] made of [w1]
...

[p]cake apple

MLPp

p̂i = 78

Encode placeholder [p] in “cake [p] apple” using biLSTM

Predict an index in the paraphrase vocabulary
Fixed word embeddings, learned placeholder embeddings
(1) Generalizes NCs: pear tart expected to yield similar results
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Interpreting Noun Compounds

Helper Task (2): Predicting Missing Constituents
What can cake be made of?

(23) made

(28) apple

(4145) cake
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(3) [p]

ofcake made [w1]
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ŵ1i = 28

Encode placeholder in “cake made of [w1]” using biLSTM

Predict an index in the word vocabulary
(2) Generalizes paraphrases:

“[w2] containing [w1]” expected to yield similar results

Vered Shwartz · Acquiring Lexical Semantic Knowledge · June 2018 39 / 50



Interpreting Noun Compounds

Helper Task (2): Predicting Missing Constituents
What can cake be made of?

(23) made

(28) apple

(4145) cake
...

(7891) of

(1) [w1]

(2) [w2]

(3) [p]

ofcake made [w1]

MLPw

ŵ1i = 28

Encode placeholder in “cake made of [w1]” using biLSTM
Predict an index in the word vocabulary

(2) Generalizes paraphrases:
“[w2] containing [w1]” expected to yield similar results

Vered Shwartz · Acquiring Lexical Semantic Knowledge · June 2018 39 / 50



Interpreting Noun Compounds

Helper Task (2): Predicting Missing Constituents
What can cake be made of?

(23) made

(28) apple

(4145) cake
...

(7891) of

(1) [w1]

(2) [w2]

(3) [p]

ofcake made [w1]

MLPw
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Interpreting Noun Compounds

Training Data

Collected from Google N-grams

Input:
Set of NCs
Templates of POS tags (e.g. “[w2] verb prep [w1]”)

Weighting by frequency and length
136,609 instances
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Interpreting Noun Compounds

Evaluation: Paraphrasing
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Interpreting Noun Compounds

Model

Predict top k paraphrases for each noun compound

Learn to re-rank the paraphrases
to better correlate with human judgments

SVM pair-wise ranking with the following features:
POS tags in the paraphrase
Prepositions in the paraphrase
Length
Special symbols
Similarity to predicted paraphrase
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Interpreting Noun Compounds

Results

non-isomorphic isomorphic

20
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54.8

13

40.6

13.8

17.9

23.123.1
25.8

28.4 28.2

MELODI [Van de Cruys et al., 2013]
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Interpreting Noun Compounds

Error Analysis
False Positive

(1)

44%

(2)
15%

(3)

14%

(4)

8%

(5)

5%
(6)

14%

1. Valid, missing from gold-standard
(“discussion by group”)

2. Too specific
(“life of women in community”)

3. Incorrect prepositions
E.g., n-grams don’t respect syntactic
structure: “rinse away the oil from
baby ’s head”⇒ “oil from baby”

4. Syntactic errors
5. Borderline grammatical
(“force of coalition forces”)

6. Other errors
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Interpreting Noun Compounds

Error Analysis
False Negative

(1)

30%
(2)

25%

(3)

10%

(4)

35%

1. Long paraphrase (n > 5)

2. Determiners
(“mutation of a gene”)

3. Inflected constituents
(“holding of shares”)

4. Other errors
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Recap
Two tasks of recognizing semantic relations between nouns:

Between arbitrary nouns / constituents of a noun-compound
Classification to ontological relations / free text paraphrasing

In both tasks, integrating features from joint corpus occurrences
improved performance

Word embeddings are a useful tool, but not the only tool!

Thanks Kudos for forthe attending participating!∗

∗ Replaced with the most similar words using word2vec
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Noun-Compound Classification



Additional Material

Noun-Compound Classification
Given a noun-compound w1w2, classify the relation between the
head w2 and the modifier w1 to one of a set of pre-defined relations

source

olive oil
apple cake

ground attack

part of

boat whistle
rotor head

sea bass

purpose

game room
service door

baby oil

non-compositional

baby sitting
hot dog

horse radish
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Additional Material

Current SOTA in NC Classification
Compute a vector for w1w2 as a function of w1 and w2’s vectors

vec(olive oil) = f (vec(olive), vec(oil))

Many ways to learn f [Mitchell and Lapata, 2010,
Zanzotto et al., 2010, Dinu et al., 2013, Socher et al., 2012]

Use the noun-compound representation as a feature vector for
classification [Dima, 2016]

Best performance is achieved when f (w1,w2) = [w1;w2]
[Dima, 2016]: There is a lexical memorization issue

Vered Shwartz · Acquiring Lexical Semantic Knowledge · June 2018 53 / 50



Additional Material

Current SOTA in NC Classification
Compute a vector for w1w2 as a function of w1 and w2’s vectors

vec(olive oil) = f (vec(olive), vec(oil))
Many ways to learn f [Mitchell and Lapata, 2010,
Zanzotto et al., 2010, Dinu et al., 2013, Socher et al., 2012]

Use the noun-compound representation as a feature vector for
classification [Dima, 2016]

Best performance is achieved when f (w1,w2) = [w1;w2]
[Dima, 2016]: There is a lexical memorization issue

Vered Shwartz · Acquiring Lexical Semantic Knowledge · June 2018 53 / 50



Additional Material

Current SOTA in NC Classification
Compute a vector for w1w2 as a function of w1 and w2’s vectors

vec(olive oil) = f (vec(olive), vec(oil))
Many ways to learn f [Mitchell and Lapata, 2010,
Zanzotto et al., 2010, Dinu et al., 2013, Socher et al., 2012]

Use the noun-compound representation as a feature vector for
classification [Dima, 2016]

Best performance is achieved when f (w1,w2) = [w1;w2]
[Dima, 2016]: There is a lexical memorization issue

Vered Shwartz · Acquiring Lexical Semantic Knowledge · June 2018 53 / 50



Additional Material

Current SOTA in NC Classification
Compute a vector for w1w2 as a function of w1 and w2’s vectors

vec(olive oil) = f (vec(olive), vec(oil))
Many ways to learn f [Mitchell and Lapata, 2010,
Zanzotto et al., 2010, Dinu et al., 2013, Socher et al., 2012]

Use the noun-compound representation as a feature vector for
classification [Dima, 2016]

Best performance is achieved when f (w1,w2) = [w1;w2]

[Dima, 2016]: There is a lexical memorization issue

Vered Shwartz · Acquiring Lexical Semantic Knowledge · June 2018 53 / 50



Additional Material

Current SOTA in NC Classification
Compute a vector for w1w2 as a function of w1 and w2’s vectors

vec(olive oil) = f (vec(olive), vec(oil))
Many ways to learn f [Mitchell and Lapata, 2010,
Zanzotto et al., 2010, Dinu et al., 2013, Socher et al., 2012]

Use the noun-compound representation as a feature vector for
classification [Dima, 2016]

Best performance is achieved when f (w1,w2) = [w1;w2]
[Dima, 2016]: There is a lexical memorization issue

Vered Shwartz · Acquiring Lexical Semantic Knowledge · June 2018 53 / 50



Additional Material

Olive Oil is Made of Olives, Baby Oil is Made for Babies:
Interpreting Noun Compounds using Paraphrases in a Neural Model
[Shwartz and Waterson, 2018]

The task is similar to semantic relation classification

Difference: we are interested in the relation between olive and
oil in the context of the noun-compound, not in general
We apply lessons learned from semantic relation classification to
noun-compound interpretation:

Use paraphrases as features, using LexNET
Use lexical splits to disable lexical memorization
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Additional Material

Overall Architecture

. . .

coffee cup

...

coffee

cup

...

[w2] of [w1]

[w2] containing [w1]

...

[w1] in [w2]

vw2vw1vw1,w2 paths(w1,w2)

mean pooling

· · ·
· · ·

Path LSTM

cup of coffee

prep pobj

cup containing coffee

acl dobj

coffee in cup

prep pobj

Path
Integrated

Integrated-NC
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Additional Material

Path-based

[w2] of [w1]

[w2] containing [w1]

...

[w1] in [w2]

mean pooling

paths(w1,w2)

· · ·
· · ·

Each dependency path connecting w1 and w2
in the corpus is encoded as in HypeNET
[Shwartz et al., 2016]

Motivation: semantic generalization of paths
[w2] obtained from [w1]
[w2] extracted from [w1]
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Additional Material

Distributional

coffee

cup

...

vw2vw1

· · ·
· · ·

Learn “prior probability” of relations for
each individual word

e.g. Substance-Material-Ingredient for
edible w1s:

vanilla pudding
apple cake
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Additional Material

Distributional - Noun Compound

. . .

coffee cup

...

vw1,w2

· · ·
· · ·

Each NC has an observed vector

Learned with GloVe
[Pennington et al., 2014] by replacing NCs
with a single token (e.g. vanilla_pudding).

Motivation: cluster NCs that appear in
similar contexts

e.g. gun violence and abortion rights appear
in news, both are Topic
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Additional Material

Evaluation - Datasets

Dataset: [Tratz, 2011]
19,158 instances
37 relations (fine-grained) / 12 relations (coarse-grained)

Datatset splits:
Random 75:20:5 (like previous work)
Lexical-full [Levy et al., 2015b]
Lexical-head
Lexical-mod
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Additional Material

Evaluation - Baselines

coffee

cup

...

vw2vw1

· · ·
· · ·

. . .

coffee cup

...

coffee

cup

...

vw2vw1vw1,w2

· · ·
· · ·

coffee

cup

...

vw2vw1

f1 f2

· · ·
· · ·

Compositional
Dist Dist-NC [Dima, 2016]
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Additional Material

Evaluation - Results

Dataset Split Best
Baseline Path Int Int-NC

Tratz-fine

Rand 0.725 0.538 0.714 0.692
Lexhead 0.458 0.448 0.510 0.478
Lexmod 0.607 0.472 0.613 0.600
Lexfull 0.363 0.423 0.421 0.429

Tratz-coarse

Rand 0.775 0.586 0.736 0.712
Lexhead 0.538 0.518 0.569 0.548
Lexmod 0.645 0.548 0.646 0.632
Lexfull 0.409 0.472 0.475 0.478

Random split: distributional/compositional baselines outperform
all other methods, by memorizing words.
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Rand 0.775 0.586 0.736 0.712
Lexhead 0.538 0.518 0.569 0.548
Lexmod 0.645 0.548 0.646 0.632
Lexfull 0.409 0.472 0.475 0.478

Lexical split: our methods perform better.
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Dataset Split Best
Baseline Path Int Int-NC
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Rand 0.725 0.538 0.714 0.692
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Rand 0.775 0.586 0.736 0.712
Lexhead 0.538 0.518 0.569 0.548
Lexmod 0.645 0.548 0.646 0.632
Lexfull 0.409 0.472 0.475 0.478

The performance gap is larger in lexical-full.
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Evaluation - Results

Dataset Split Best
Baseline Path Int Int-NC

Tratz-fine

Rand 0.725 0.538 0.714 0.692
Lexhead 0.458 0.448 0.510 0.478
Lexmod 0.607 0.472 0.613 0.600
Lexfull 0.363 0.423 0.421 0.429

Tratz-coarse

Rand 0.775 0.586 0.736 0.712
Lexhead 0.538 0.518 0.569 0.548
Lexmod 0.645 0.548 0.646 0.632
Lexfull 0.409 0.472 0.475 0.478

There is usually no gain from adding the NC embeddings.
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Additional Material

Analysis
Which relations can the path-based model learn?

relation path examples

measure
[w2] varies by [w1] state limit

2,560 [w1] portion of [w2] acre estate
personal
title

[w2] Anderson [w1]/title Mrs. Brown
[w2] Sheridan [w1]/title Gen. Johnson

create-provide-
generate-sell

[w2] produce [w1] food producer
[w2] manufacture [w1] engine plant

time-of1
[w2] begin [w1] morning program

[w2] held Saturday [w1] afternoon meeting
substance-material -
ingredient

[w2] made of wood and [w1] marble table
[w2] material includes type of [w1] steel pipe
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Additional Material

Analysis
Which relations CAN’T the path-based model learn?

lexicalized has no indicative paths! (e.g. soap opera)

partial_attribute_transfer (e.g. bullet train) has few indicative
paths (e.g. “train as fast as a bullet”)
Confusion between relations with subtle difference (e.g. various
topic relations)
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Additional Material

Analysis
Why didn’t the NC embeddings help?

Test NC Most Similar NC

NC Label NC Label

majority party equative minority party whole+part_or_member_of
enforcement director objective enforcement chief perform&engage_in
fire investigator objective fire marshal organize&supervise&authority
stabilization plan objective stabilization program perform&engage_in
investor sentiment experiencer-of-experience market sentiment topic_of_cognition&emotion
alliance member whole+part_or_member_of alliance leader objective

81% of the noun-compounds in the test set have embeddings

Most similar compounds demonstrate high quality embeddings
There are inconsistencies in the annotation
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