Not a piece of cake: Lexical Composition and Implicit Information

Vered Shwartz

December 2019

W
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

How to obtain meaningful phrase representations?

Distributional Representations

Distributional embeddings of rare terms are of low quality

syndicate representative geloios t.franse adopter(s ahchie anquish

Similar observations for adjective-noun compositions [Boleda et al., 2013].

OOMPOS3

In this talk

1. How well do contextualized embeddings represent phrases?

In this talk

1. How well do contextualized embeddings represent phrases?
2. What is the best noun compound representation?

In this talk

1. How well do contextualized embeddings represent phrases?
2. What is the best noun compound representation?
3. How to reveal implicit noun compound relations?
4. How well do contextualized embeddings represent phrases?
5. What is the best noun compound representation?
6. How to reveal implicit noun compound relations?

Still a Pain in the Neck: Evaluating Text Representations on Lexical Composition. Vered Shwartz and Ido Dagan. TACL 2019

Issues with compositional representations

Issues with compositional representations

"The whole is greater than the sum of its parts"

Issues with compositional representations

"The whole is greater than the sum of its parts"

1. Meaning shift
2. Implicit meaning

Meaning Shift

A constituent word may be used in a non-literal way

Meaning Shift

A constituent word may be used in a non-literal way

VPC meanings differ from their verbs' meanings

Implicit Meaning

Noun compounds

Implicit Meaning

Adjective-noun compositions

Noun compounds

Can existing representations address these phenomena?

Probing Tasks

Simple tasks designed to test a single linguistic property [Adi et al., 2017, Conneau et al., 2018]

Minimal Model
Prediction

Probing Tasks

Representations

Standard / Contextualized

Probing Tasks

Classifiers

Representation
Minimal Model
Prediction

1. Embed
2. Encode
3. Predict

Classifiers

1. Embed: each representation
2. Encode: none / biLSTM / self-attention
3. Predict:

$$
\begin{aligned}
& \vec{x}=\text { vector of target span, additional inputs } \\
& \vec{o}=\operatorname{softmax}(W \cdot \operatorname{ReLU}(\operatorname{dropout}(h(\vec{x}))))
\end{aligned}
$$

Probing Tasks

Tasks

Meaning shift / Implicit meaning

Tasks and Results

Noun Compound Literality

Noun Compound Relations

Adjective-Noun Attributes

(1) Meaning shift - human-like performance for contextualized
(2) Implicit meaning - far from humans

Meaning Shift Tasks

Verb-Particle Classification

Task Definition

Results

Results

Results

Verb-Particle Classification

Analysis

Noun Compound Literality Task Definition

Non-Literal Literal
The crash course in litigation made me a better lawyer

Noun Compound Literality

Results

Non-Literal Literal
The crash course in litigation made me a better lawyer

Noun Compound Literality

Results

Non-Literal Literal
The crash course in litigation made me a better lawyer

Noun Compound Literality

Results

Non-Literal Literal
The crash course in litigation made me a better lawyer

Noun Compound Literality
 Detecting meaning shift \rightarrow modeling meaning?

ELMo	OpenAI GPT	BERT
The Queen and her husband were on a train trip from Sydney to Orange.		
ride	to	travelling
carriage	headed	running
journey	heading	journey
heading	that	going
carrying	and	headed

Noun Compound Literality
 Detecting meaning shift \rightarrow modeling meaning?

ELMo	OpenAI GPT	BERT
The Queen and her husband were on a train trip from Sydney to Orange.		
ride	to	travelling
carriage	headed	running
journey	heading	journey
heading	that	going
carrying	and	headed

Creating a guilt trip in another person may be considered to be psychological manipulation...

tolerance	that	reaction
fest	so	feeling
avoidance	trip	attachment
onus	he	sensation
association	she	note

Noun Compound Literality
 Non Decomposable Compounds

ELMo	OpenAI GPT	BERT
\ldots believe you are a snake oil salesman, a narcissist...		
auto	in	oil
egg	and	pit
hunter	that	bite
rogue	charmer	jar

Substitutes for the entire phrase.

Implicit Meaning Tasks

Adjective-Noun Attributes

Task Definition

Adjective-Noun Attributes

Results

Adjective-Noun Attributes

Results

Adjective-Noun Attributes

Results

Noun Compound Relations
 Task Definition

Road forecasted for access season
Road that makes access possible
access roads

Noun Compound Relations

Results

Road forecasted for access season

Road that makes access possible

Noun Compound Relations

Results

Road forecasted for access season

Road that makes access possible

Noun Compound Relations

Results

Road forecasted for access season
Road that makes access possible

Still a pain in the neck Recap

- Detecting meaning shift is a piece of cake

Still a pain in the neck Recap

- Detecting meaning shift is a piece of cake for contextualized word embeddings

Still a pain in the neck Recap

- Detecting meaning shift is a piece of cake for contextualized word embeddings
- Modeling the shifted, rare sense is not a walk in the park

Still a pain in the neck Recap

- Detecting meaning shift is a piece of cake for contextualized word embeddings
- Modeling the shifted, rare sense is not a walk in the park

■ Modeling implicit information is a real pain in the neck

Still a pain in the neck Recap

■ Context matters: trivially for meaning shift but also for revealing implicit meaning

Still a pain in the neck Recap

■ Context matters: trivially for meaning shift but also for revealing implicit meaning

- Noun Compounds [Netzer and Elhadad, 1998]: context can override frequent interpretations ("the market bench").

Still a pain in the neck
 Recap

■ Context matters: trivially for meaning shift but also for revealing implicit meaning

- Noun Compounds [Netzer and Elhadad, 1998]: context can override frequent interpretations ("the market bench").
- Adjective Noun Compositions [Pavlick and Callison-Burch, 2016]: depending on the context some adjectives are trivially inferred ("little baby") or contradicting ("Bush travelled to Michigan to talk about the Japanese economy").

1. How well do contextualized embeddings represent phrases?

2. What is the best noun compound representation?
3. How to reveal implicit noun compound relations?

A Systematic Comparison of English Noun Compound Representations. Vered Shwartz. MWE-WN 2019

Approaches

Compositional Representations

- $f\left(w_{1} w_{2}\right)=\alpha \cdot v_{w_{1}}+\beta \cdot v_{w_{2}}$ [Mitchell and Lapata, 2010]
$\square f\left(w_{1} w_{2}\right)=A v_{w_{1}}+B v_{w_{2}}$ [Zanzotto et al., 2010, Dinu et al., 2013]
$\square f\left(w_{1} w_{2}\right)=\tanh \left(W \cdot\left[v_{w_{1}} ; v_{w_{2}}\right]\right)$ [Socher et al., 2012]

Compositional Representations

- $f\left(w_{1} w_{2}\right)=\alpha \cdot v_{w_{1}}+\beta \cdot v_{w_{2}}$ [Mitchell and Lapata, 2010]
$\square f\left(w_{1} w_{2}\right)=A v_{w_{1}}+B v_{w_{2}}$ [Zanzotto et al., 2010, Dinu et al., 2013]
$\square f\left(w_{1} w_{2}\right)=\tanh \left(W \cdot\left[v_{w_{1}} ; v_{w_{2}}\right]\right)$ [Socher et al., 2012]

Generalization at the constituent level, e.g.:
syndicate representative
f(worker, representative)
f(player, representative)
f(crack, dealer)
f(company, spokesman)
f(industry, commissioner)

Paraphrase-based Representations

$f\left(w_{1} w_{2}\right) \approx f$ (paraphrase)

- Backtranslation: [Wieting et al., 2015] baby oil \rightarrow huile pour bébé \rightarrow oil for baby
- Co-occurrence of the constituents, e.g. cake made of apples

Paraphrase-based Representations

$f\left(w_{1} w_{2}\right) \approx f$ (paraphrase)

- Backtranslation: [Wieting et al., 2015] baby oil \rightarrow huile pour bébé \rightarrow oil for baby
- Co-occurrence of the constituents, e.g. cake made of apples

Generalization at the constituent level, e.g.:

```
syndicate representative
f(worker, representative)
f(union, representative)
f(group, manager)
f(employee, representative)
f(student, representative)
```


What is the best representation?

[Dima, 2016]
\square FullAdd $\left(A v_{w_{1}}+B v_{w_{2}}\right)$ vs. Matrix $\left(\tanh \left(W \cdot\left[v_{w_{1}} ; v_{w_{2}}\right]\right)\right)$

What is the best representation?

[Dima, 2016]

- FullAdd $\left(A v_{w_{1}}+B v_{w_{2}}\right)$ vs. Matrix $\left(\tanh \left(W \cdot\left[v_{w_{1}} ; v_{w_{2}}\right]\right)\right)$
- Good performance is achieved even with $f\left(w_{1}, w_{2}\right)=\left[w_{1} ; w_{2}\right]$
- No substantial gain from compositional representations due to lexical memorization

IF OLVEOULS WADE FROM @uls.

UEDUHITMUSTMTMN BABYOLISWIDEFROM.

Our work

Nearest Neighbours Attribute Prediction Relation Classification
types of neighbours for rare/frequent compounds is cheese wheel round?
what is the relationship in baby oil?

Main Takeouts

No superior representation

- Many neighbours are either incorrect or trivial:

Matrix (rare)

Backtranslation (rare)

- Rare words
- Other noun compounds
- Share constituents with the target compound
- Other words

Main Takeouts
 No superior representation

- Attributes: paraphrase-based
but with bad generalization capacity: tomato soup is round

Main Takeouts

No superior representation

- Attributes: paraphrase-based
but with bad generalization capacity: tomato soup is round
- Relations: compositional + small window
but with bad absolute performance in strict evaluation setups

Main Takeouts

No superior representation

- Attributes: paraphrase-based
but with bad generalization capacity: tomato soup is round

■ Relations: compositional + small window
but with bad absolute performance in strict evaluation setups

■ [Dima et al., 2019]: more composition functions!

1. How well do contextualized embeddings represent phrases?
2. What is the best noun compound representation?
3. How to reveal implicit noun compound relations?

Olive Oil Is Made of Olives, Baby Oil Is Made for Babies: Interpreting Noun Compounds Using Paraphrases in a Neural Model. Vered Shwartz and Chris Waterson. NAACL 2018

Paraphrase to Explicate: Revealing Implicit Noun-Compound Relations. Vered Shwartz and Ido Dagan. ACL 2018

Noun Compounds

- Express implicit relationship between the constituent nouns:

Noun Compounds

- Express implicit relationship between the constituent nouns:
- apple cake: cake made of apples

Noun Compounds

- Express implicit relationship between the constituent nouns:
- apple cake: cake made of apples
- birthday cake: cake eaten on a birthday

Noun Compounds

- Express implicit relationship between the constituent nouns:
- apple cake: cake made of apples
- birthday cake: cake eaten on a birthday
- They are like "text compression devices" [Nakov, 2013]

Noun Compounds

- Express implicit relationship between the constituent nouns:
- apple cake: cake made of apples
- birthday cake: cake eaten on a birthday
- They are like "text compression devices" [Nakov, 2013]
- We're pretty good at decompressing them!

Noun-Compound Interpretation Tasks

Noun-Compound Interpretation Tasks

Noun-Compound Interpretation Tasks

Noun-Compound Interpretation Tasks

Noun Compound Relation Classification

The task is similar to semantic relation classification

Noun Compound Relation Classification

■ The task is similar to semantic relation classification

- Difference: we are interested in the relation between olive and oil in the context of the noun-compound, not in general

Noun Compound Relation Classification

■ The task is similar to semantic relation classification

- Difference: we are interested in the relation between olive and oil in the context of the noun-compound, not in general
- We apply lessons learned from semantic relation classification to noun-compound interpretation:

Noun Compound Relation Classification

■ The task is similar to semantic relation classification

- Difference: we are interested in the relation between olive and oil in the context of the noun-compound, not in general
- We apply lessons learned from semantic relation classification to noun-compound interpretation:
- Represent NCs using their joint non-NC corpus occurrences features [Shwartz et al., 2016]

Noun Compound Relation Classification

■ The task is similar to semantic relation classification
■ Difference: we are interested in the relation between olive and oil in the context of the noun-compound, not in general

- We apply lessons learned from semantic relation classification to noun-compound interpretation:
- Represent NCs using their joint non-NC corpus occurrences features [Shwartz et al., 2016]
- Split the dataset lexically

Overall Architecture

Evaluation - Datasets

■ Dataset: [Tratz, 2011]
Purpose/Activity Group
PERFORM\&ENGAGE-IN 11.5%
CREATE-PROVIDE-GENERATE-SELL 4.8%
OBTAIN\&ACCESS\&SEEK 0.9%
MITIGATE\&OPPOSE 0.8%
ORGANIZE\&SUPERVISE\&AUTHORITY 1.6%
PURPOSE
Ownership, Experience, Employment, Use OWNER-USER
1.9%

EXPERIENCER-OF-EXPERIENCE 0.5%
EMPLOYER
USER_RECIPIENT
Temporal Group
TIME-OF1
TIME-OF2
.5\%
Location and Whole + Part/Member of
LOCATION
.7\%
cooking pot nicotine patch shrimp boat flak jacket ethics authority chicken spit
family estate family greed team doctor voter pamphlet
night work
birth date
hillside home robot arm

Evaluation - Datasets

■ Dataset: [Tratz, 2011]
Purpose/Activity Group
PERFORM\&ENGAGE-IN 11.5%
CREATE-PROVIDE-GENERATE-SELL 4.8%
OBTAIN\&ACCESS\&SEEK 0.9%
MITIGATE\&OPPOSE 0.8%
ORGANIZE\&SUPERVISE\&AUTHORITY 1.6%
PURPOSE
Ownership, Experience, Employment, Use
1.9%

OWNER-USER
EXPERIENCER-OF-EXPERIENCE
EMPLOYER
2.1%
0.5%
2.3\%
1.0%
USER_RECIPIENT
2.2%
0.5%
5.2\%
1.7\%
cooking pot nicotine patch shrimp boat flak jacket ethics authority chicken spit
family estate family greed team doctor voter pamphlet
night work
birth date
hillside home robot arm

- Datatset splits:
- Random 75:20:5 (like previous work)
- Lexical-full [Levy et al., 2015]
- Lexical-head
- Lexical-mod

Evaluation - Baselines

Compositional
[Dima, 2016]

Evaluation - Results

Dataset	Split	Best Baseline	Path	Int	Int-NC
Tratz-fine	Rand	$\mathbf{0 . 7 2 5}$	0.538	0.714	0.692
	Lex $_{\text {head }}$	0.458	0.448	$\mathbf{0 . 5 1 0}$	0.478
	Lex $_{\text {mod }}$	0.607	0.472	$\mathbf{0 . 6 1 3}$	0.600
	Lex $_{\text {full }}$	0.363	0.423	0.421	$\mathbf{0 . 4 2 9}$
	Rand 2	$\mathbf{0 . 7 7 5}$	0.586	0.736	0.712
	Lex $_{\text {head }}$	0.538	0.518	$\mathbf{0 . 5 6 9}$	0.548
	Lex $_{\text {mod }}$	0.645	0.548	$\mathbf{0 . 6 4 6}$	0.632
	Lex $_{\text {full }}$	0.409	0.472	$\mathbf{0 . 4 7 5}$	0.478

■ Random split: distributional/compositional baselines outperform all other methods, by memorizing words.

Evaluation - Results

Dataset	Split	Best Baseline	Path	Int	Int-NC
Tratz-fine	Rand	$\mathbf{0 . 7 2 5}$	0.538	0.714	0.692
	Lex $_{\text {head }}$	0.458	0.448	$\mathbf{0 . 5 1 0}$	0.478
	Lex $_{\text {mod }}$	0.607	0.472	$\mathbf{0 . 6 1 3}$	0.600
	Lex $_{\text {full }}$	0.363	0.423	0.421	$\mathbf{0 . 4 2 9}$
	Rand 0	$\mathbf{0 . 7 7 5}$	0.586	0.736	0.712
	Lex $_{\text {head }}$	0.538	0.518	$\mathbf{0 . 5 6 9}$	0.548
	Lex $_{\text {mod }}$	0.645	0.548	$\mathbf{0 . 6 4 6}$	0.632
	Lex $_{\text {full }}$	0.409	0.472	$\mathbf{0 . 4 7 5}$	0.478

- Lexical split: our methods perform better.

Evaluation - Results

Dataset	Split	Best Baseline	Path	Int	Int-NC
Tratz-fine	Rand	$\mathbf{0 . 7 2 5}$	0.538	0.714	0.692
	Lex $_{\text {head }}$	0.458	0.448	$\mathbf{0 . 5 1 0}$	0.478
	Lex $_{\text {mod }}$	0.607	0.472	$\mathbf{0 . 6 1 3}$	0.600
	Lex $_{\text {full }}$	0.363	0.423	0.421	$\mathbf{0 . 4 2 9}$
	Rand 0	$\mathbf{0 . 7 7 5}$	0.586	0.736	0.712
	Lex $_{\text {head }}$	0.538	0.518	$\mathbf{0 . 5 6 9}$	0.548
	Lex $_{\text {mod }}$	0.645	0.548	$\mathbf{0 . 6 4 6}$	0.632
	Lex $_{\text {full }}$	0.409	0.472	$\mathbf{0 . 4 7 5}$	0.478

- The performance gap is larger in lexical-full.

Analysis

Which relations can the path-based model learn?

relation	path	examples
measure	$\left[w_{2}\right]$ varies by $\left[w_{1}\right]$	state limit
	$2,560\left[w_{1}\right]$ portion of $\left[w_{2}\right]$	acre estate
personal title	$\left[w_{2}\right]$ Anderson $\left[w_{1}\right] /$ title	Mrs. Brown
	$\left[w_{2}\right]$ Sheridan $\left[w_{1}\right] /$ title	Gen. Johnson
time-of1	$\left[w_{2}\right]$ produce $\left[w_{1}\right]$	food producer
	$\left[w_{2}\right]$ manufacture $\left[w_{1}\right]$	engine plant
	$\left[w_{2}\right]$ begin $\left[w_{1}\right]$	morning program
substance-material - ingredient	$\left[w_{2}\right]$ made of wood and $\left[w_{1}\right]$	afternoon meeting
	$\left[w_{2}\right]$ material includes type of $\left[w_{1}\right]$	steel pipe

Analysis
 Which relations CAN'T the path-based model learn?

- lexicalized has no indicative paths! (e.g. soap opera)

Analysis
 Which relations CAN'T the path-based model learn?

- lexicalized has no indicative paths! (e.g. soap opera)

■ partial_attribute_transfer (e.g. bullet train) has few indicative paths (e.g. "train as fast as a bullet")

Noun Compound Relation Classification Recap

- Joint corpus occurrences improve the performance in strict evaluation setups \vee

Noun Compound Relation Classification Recap

\square Joint corpus occurrences improve the performance in strict evaluation setups \vee

- Assumes compositionality \times

Noun Compound Relation Classification Recap

- Joint corpus occurrences improve the performance in strict evaluation setups \vee
- Assumes compositionality \times

■ Lexical splits help prevent lexical memorization \vee

Noun Compound Relation Classification

 Recap- Joint corpus occurrences improve the performance in strict evaluation setups
- Assumes compositionality \times
- Lexical splits help prevent lexical memorization \vee
- The dataset is noisy, it's difficult to label each NC to a single relationship \times

Noun-Compound Interpretation Tasks

We are good at Interpreting Noun-Compounds

- We easily interpret noun-compounds

■ Even when we see them for the first time

We are good at Interpreting Noun-Compounds

■ We easily interpret noun-compounds

- Even when we see them for the first time

■ What is a "parsley cake"?

We are good at Interpreting Noun-Compounds

- We easily interpret noun-compounds

■ Even when we see them for the first time

■ What is a "parsley cake"?

- cake eaten on a parsley?
- cake with parsley?
- cake for parsley?

We are good at Interpreting Noun-Compounds

■ We easily interpret noun-compounds
■ Even when we see them for the first time

■ What is a "parsley cake"?

- cake eaten on a parsley?
- cake with parsley?

- cake for parsley?

Generalizing Existing Knowledge

■ What can cake be made of？

SEE CONIEXT：CLCK ON WORD OR SELECT WORDS＋［CONTEXT］［HELP．．．］
compare

	－	CONTEXT ALL PORMS EAMPIE：100 2000 560	Fried	TOTAL 237 ｜UNGUE 119
1	日	CAKE WITH CHOCOLATE	31	
2	－	CAKE WITH LEMON	13	
3	－	CAKE WITH STRAWEERRIES	10	
4	\square	CAKE WITH CANDLES	7	\square
5	\square	CakE WITH CARAMEL	7	\square
6	\square	CAKE WITH Ffosting	6	\square
7	\square	CAKE WITH VANILLA	6	\square
8	■	CAKE WITH EERRIES	5	\square
9	\square	CAKE WITH EGGS	4	\square
10	\square	CAKE WITH TOWEL	4	\square
11	■	CAKE WITH AASPBERRY	3	－
12	■	CAKE WITH ICE	3	－
13	■	CAKE WITH MAFSHMALLOW	3	－
14	目	CAKE WITH HONEY	3	E
15	日	CAKE WITH CINNAMON	3	E
16	－	CAKE WITH COFFEE	3	■
17	－	CAKE WITH BUTTER	3	■
18	－	CAKE WITH YOGURT	3	■
19	－	CAKE WITH ALMOND	2	■
20	－	CAKE WITH BLLUEEERRIES	2	■
21	－	CAKE WITH COCONUT	2	m
22	－	CAKE WITH CITRUS	2	m
23	－	CAKE WITH BUTTERCREAM	2	■
24	E	CAKE WITH CREME	2	－
25	E	CAKE WITH CREAM	2	－
26	\square	CAKE WITH DULCE	2	－
27	\square	CAKE WITH CUSTARD	2	－
28	\square	Cake with fruit	2	－
29	■	CAKE WITH CONFECTIONERS	2	－
30	－	CAKE WITH ORANGE	2	\square

Generalizing Existing Knowledge

－What can cake be made of？
E－Corpus of Contemporary American English © BREQUENCY

SEE CONIEXT：CLICK ON WORD OR SELECT WORDS＋［CONTEXT］［HELP．．．I
COMPARE

	－	CONTEXT ALL PORMS EAMMIE：100 2000 560	Freq	TOTAL 237 ｜UNIQUE 119 ．
1	－	CAKE WITH CHOCOLATE	31	－
2	\square	CAKE WITH LEMON	13	\square
3	\square	CAKE WITH STRAWBERRIES	10	\square
4	\square	CAKE WITH CANDLES	7	\square
5	0	CakE WITH CARAMEL	7	\square
6	\square	CAKE WITH FROSTING	6	\square
7	\square	CAKE WITH VANILLA	6	\square
8	\square	CAKE WITH EERRIES	5	\square
9	\square	CakE WITH EGGS	4	\square
10	\square	CAKE WITH TOWEL	4	\square
11	\square	Cake with masp berry	3	－
12	\square	CAKE WITH ICE	3	－
13	■	CAKE WITH MARSHMALLOW	3	－
14	目	CAKE WITH HONEY	3	－
15	日	CAKE WITH CINNAMON	3	－
16	－	CAKE WITH COFFEE	3	E
17	－	CAKE WITH BUTTER	3	E
18	－	CAKE WITH YOGURT	3	－
19	－	CAKE WITH ALMOND	2	－
20	日	Cake with blueberails	2	－
21	－	CAKE WITH COCONUT	2	－
22	－	CAKE WITH CTRUS	2	－
23	－	CAKE WITH SUTTERCREAM	2	－
24	\square	CAKE WITH CREME	2	\square
25	E	CAKE WITH CREAM	2	－
26	\square	CAKE WITH DULCE	2	－
27	\square	CAKE WITH CUSTARD	2	－
28	\square	CakE WITH fruit	2	－
29	\square	CAKE WITH CONFECTIONERS	2	\square
30	\square	CAKE WITH ORANGE	2	－

－Parsley（sort of）fits into this distribution

Generalizing Existing Knowledge

■ What can cake be made of？
E－Corpus of Contemporary American English © BREQUENCY

	－	CONTEX ALL FOMMS［EAMPIE： 100 200 500	mitel	TOTAL 237 ｜UNIQUE 119
1.	－	CAKE WITH CHOCOLATE	37	
2	\square	CAKE WITH LEMON	13	
3	\square	CAKE WITH STRAWEERRIES	10	\cdots
4	\square	CAKE WITH CANDLES	7	\square
5	\square	CAKE WITH CARAMEL	7	\square
6	\square	CAKE WITH frosting	6	\square
7	\square	CAKE WITH VANILLA	6	\square
8	\square	CAKE WITH EERRIES	5	\square
9	\square	CAKE WITH EGOS	4	\square
10	\square	CAKE WITH TOWEL	4	\square
11	\square	Cake with raspberry	3	－
12	\square	CAKE WITH ICE	3	－
13	\square	CAKE WITH MARSHMALLOW	3	－
14	日	CAKE WITH HONEY	3	\square
15	日	CAKE WITH CINNAMON	3	－
16	0	CAKE WITH COFFEE	3	－
17	－	CAKE WITH BUTTER	3	－
18	－	CAKE WITH YOGURT	3	■
19	－	CAKE WITH ALMOND	2	－
20	日	Cake with blueberails	2	－
21	－	CAKE WITH COCONUT	2	－
22	\square	CAKE WITH CITRUS	2	－
23	－	CAKE WITH BUTTERCREAM	2	$\underline{\square}$
24	\square	CAKE WITH CREME	2	－
25	E	CAKE WITH CREAM	2	－
26	\square	CAKE WITH DULCE	2	\square
27	\square	CAKE WITH CUSTARD	2	－
28	\square	CAKE WITH Fruit	2	\square
29	\square	CAKE WITH CONFECTIONERS	2	－
30	\square	CAKE WITH ORANGE	2	\square

－Parsley（sort of）fits into this distribution
■ Similar to＂selectional preferences＂［Pantel et al．，2007］

Noun-Compound Paraphrasing

Motivation

Given a noun-compound $w_{1} w_{2}$, express the relation between the head w_{2} and the modifier w_{1} with multiple prepositional and verbal paraphrases [Nakov and Hearst, 2006]

Evaluation Setting

■ Available dataset: SemEval 2013 task 4 [Hendrickx et al., 2013]

Evaluation Setting

■ Available dataset: SemEval 2013 task 4 [Hendrickx et al., 2013]

- A ranking rather than a retrieval task
- Systems get a list of noun compounds

Evaluation Setting

■ Available dataset: SemEval 2013 task 4 [Hendrickx et al., 2013]

- A ranking rather than a retrieval task
- Systems get a list of noun compounds
- Extract paraphrases from free text

Evaluation Setting

■ Available dataset: SemEval 2013 task 4 [Hendrickx et al., 2013]

- A ranking rather than a retrieval task
- Systems get a list of noun compounds
- Extract paraphrases from free text
- Rank them

Evaluation Setting

■ Available dataset: SemEval 2013 task 4 [Hendrickx et al., 2013]

- A ranking rather than a retrieval task
- Systems get a list of noun compounds
- Extract paraphrases from free text
- Rank them
- Evaluated for correlation with human judgments

■ Gold paraphrase score: how many annotators suggested it?

Prior Methods

- Based on constituent co-occurrences: "cake made of apple"

Prior Methods

■ Based on constituent co-occurrences: "cake made of apple"

- Problems:

1. Many unseen compounds, no paraphrases in the corpus

- rare: parsley cake or highly lexicalized: ice cream

Prior Methods

■ Based on constituent co-occurrences: "cake made of apple"

- Problems:

1. Many unseen compounds, no paraphrases in the corpus

- rare: parsley cake or highly lexicalized: ice cream

2. Many compounds with just a few paraphrases

■ Can we infer "cake containing apple" given "cake made of apple"?

Prior Methods

■ Based on constituent co-occurrences: "cake made of apple"

- Problems:

1. Many unseen compounds, no paraphrases in the corpus

- rare: parsley cake or highly lexicalized: ice cream

2. Many compounds with just a few paraphrases

■ Can we infer "cake containing apple" given "cake made of apple"?

- Prior work provides partial solutions to either (1) or (2)

Model

Multi-task Reformulation

- Training example $\left\{w_{1}=\right.$ apple, $w_{2}=$ cake, $p=$ " $\left[w_{2}\right]$ made of $\left.\left[w_{1}\right] "\right\}$

Multi-task Reformulation

■ Training example $\left\{w_{1}=\right.$ apple, $w_{2}=$ cake, $p=$ " $\left[w_{2}\right]$ made of $\left.\left[w_{1}\right] "\right\}$

1. Predict a paraphrase p for a given $\mathrm{NC} w_{1} w_{2}$:

What is the relation between apple and cake?

Multi-task Reformulation

■ Training example $\left\{w_{1}=\right.$ apple, $w_{2}=$ cake, $p=$ " $\left[w_{2}\right]$ made of $\left.\left[w_{1}\right] "\right\}$

1. Predict a paraphrase p for a given $\mathrm{NC} w_{1} w_{2}$:

What is the relation between apple and cake?
2. Predict w_{1} given a paraphrase p and w_{2} :

What can cake be made of?

Multi-task Reformulation

- Training example $\left\{w_{1}=\right.$ apple, $w_{2}=$ cake, $p=$ " $\left[w_{2}\right]$ made of $\left.\left[w_{1}\right] "\right\}$

1. Predict a paraphrase p for a given $\mathrm{NC} w_{1} w_{2}$:

What is the relation between apple and cake?
2. Predict w_{1} given a paraphrase p and w_{2} :

What can cake be made of?
3. Predict w_{2} given a paraphrase p and w_{1} :

What can be made of apple?

Main Task (1): Predicting Paraphrases

What is the relation between apple and cake?

■ Encode placeholder [p] in "cake [p] apple" using biLSTM

Main Task (1): Predicting Paraphrases

What is the relation between apple and cake?

■ Encode placeholder [p] in "cake [p] apple" using biLSTM

- Predict an index in the paraphrase vocabulary

Main Task (1): Predicting Paraphrases

What is the relation between apple and cake?

■ Encode placeholder [p] in "cake [p] apple" using biLSTM

- Predict an index in the paraphrase vocabulary

■ Fixed word embeddings, learned placeholder embeddings

Main Task (1): Predicting Paraphrases

What is the relation between apple and cake?

■ Encode placeholder [p] in "cake [p] apple" using biLSTM

- Predict an index in the paraphrase vocabulary
- Fixed word embeddings, learned placeholder embeddings
- (1) Generalizes NCs: pear tart expected to yield similar results

Helper Task (2): Predicting Missing Constituents

 What can cake be made of?

- Encode placeholder in "cake made of [w_{1}]" using biLSTM

Helper Task (2): Predicting Missing Constituents

 What can cake be made of?

- Encode placeholder in "cake made of [w_{1}]" using biLSTM
- Predict an index in the word vocabulary

Helper Task (2): Predicting Missing Constituents

What can cake be made of?

- Encode placeholder in "cake made of [w_{1}]" using biLSTM
- Predict an index in the word vocabulary
- (2) Generalizes paraphrases:
" $\left[w_{2}\right]$ containing $\left[w_{1}\right]$ " expected to yield similar results

Evaluation

Ranking Model

- Predict top k paraphrases for each noun compound

Ranking Model

■ Predict top k paraphrases for each noun compound

■ Learn to re-rank the paraphrases

- to better correlate with human judgments

Ranking Model

■ Predict top k paraphrases for each noun compound

- Learn to re-rank the paraphrases
- to better correlate with human judgments
- SVM pair-wise ranking with the following features:
- POS tags in the paraphrase
- Prepositions in the paraphrase
- Length
- Special symbols
- Similarity to predicted paraphrase

Results

Results

Results

Results

Error Analysis

False Positive

1. Valid, missing from gold-standard ("discussion by group")

Error Analysis

False Positive

1. Valid, missing from gold-standard ("discussion by group")
2. Too specific
("life of women in community")

Error Analysis

False Positive

1. Valid, missing from gold-standard ("discussion by group")
2. Too specific
("life of women in community")
3. Incorrect prepositions

Error Analysis

False Positive

1. Valid, missing from gold-standard ("discussion by group")
2. Too specific
("life of women in community")
3. Incorrect prepositions
E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" \Rightarrow "oil from baby"

Error Analysis

False Positive

1. Valid, missing from gold-standard ("discussion by group")
2. Too specific
("life of women in community")
3. Incorrect prepositions
E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" \Rightarrow "oil from baby"
4. Syntactic errors

Error Analysis

False Positive

1. Valid, missing from gold-standard ("discussion by group")
2. Too specific
("life of women in community")
3. Incorrect prepositions
E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" \Rightarrow "oil from baby"
4. Syntactic errors
5. Borderline grammatical ("force of coalition forces")

Error Analysis

False Positive

1. Valid, missing from gold-standard ("discussion by group")
2. Too specific
("life of women in community")
3. Incorrect prepositions
E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" \Rightarrow "oil from baby"
4. Syntactic errors
5. Borderline grammatical ("force of coalition forces")
6. Other errors

Error Analysis

False Negative

Noun Compound Paraphrasing

 Recap- A model for generating paraphrases for given noun-compounds

Noun Compound Paraphrasing Recap

- A model for generating paraphrases for given noun-compounds

■ Better generalization abilities:

- Generalize for unseen noun-compounds
- Embed semantically-similar paraphrases in proximity

Noun Compound Paraphrasing
 Recap

- A model for generating paraphrases for given noun-compounds

■ Better generalization abilities:

- Generalize for unseen noun-compounds
- Embed semantically-similar paraphrases in proximity

■ Improved performance in challenging evaluation settings

Future Directions in phrase representations

Can we learn phrase meanings like humans do?

- [Cooper, 1999]: how do L2 learners process idioms?
- Infer from context: 28\% (57\% success rate)
- Rely on literal meaning: 19\% (22\% success rate)
- ...

Inferring from context

Furious Meghan Markle says she won't fall for dad's 'crocodile tears' after he claimed 'she'd be better off if he were dead'

FURIOUS Meghan Markle has said she won't fall for her dad's "crocodile tears" after he claimed "she'd be better off if he were dead".
The Duchess of Sussex reportedly told pals Thomas Markle is using "emotional blackmail" to try and manipulate her but she's had "enough already".

We need "extended" contexts
[Asl, 2013]: more successful idiom interpretation with extended contexts (stories)

Inferring from context

Furious Meghan Markle says she won't fall for dad's 'crocodile tears' after he claimed 'she'd be better off if he were dead'

FURIOUS Meghan Markle has said she won't fall for her dad's "crocodile tears" after he claimed "she'd be better off if he were dead".

The Duchess of Sussex reportedly told pals Thomas Markle is using "emotional blackmail" to try and manipulate her but she's had "enough already".

We need "extended" contexts [Asl, 2013]: more successful idiom interpretation with extended contexts (stories)

We need richer context modeling
■ Characters in the story

- Relationships between them

■ Dialogues

- ...

Relying on literal meaning

"Robert knew he was robbing the cradle by dating a sixteen-year-old girl"

We need world knowledge "Cradle is something you put the baby in"

Relying on literal meaning

"Robert knew he was robbing the cradle by dating a sixteen-year-old girl"

We need world knowledge
"Cradle is something you put the baby in"

We need to be able to reason
"You're stealing a child from a mother"
"So robbing the cradle is like dating a really young person"
[Cooper, 1999]

Thank you! Questions?

References I

[Adi et al., 2017] Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., and Goldberg, Y. (2017). Fine-grained analysis of sentence embeddings using auxiliary prediction tasks. In Proceedings of ICLR Conference Track.
[Asl, 2013] Asl, F. M. (2013). The impact of context on learning idioms in efl classes. TESOL Journal, 37(1):2.
[Boleda et al., 2013] Boleda, G., Baroni, M., Pham, T. N., and McNally, L. (2013). Intensionality was only alleged: On adjective-noun composition in distributional semantics. In Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013) - Long Papers, pages 35-46, Potsdam, Germany. Association for Computational Linguistics.
[Conneau et al., 2018] Conneau, A., Kruszewski, G., Lample, G., Barrault, L., and Baroni, M. (2018). What you can cram into a single vector: Probing sentence embeddings for linguistic properties. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2126-2136. Association for Computational Linguistics.
[Cooper, 1999] Cooper, T. C. (1999). Processing of idioms by l2 learners of english. TESOL quarterly, 33(2):233-262.
[Dima, 2016] Dima, C. (2016). On the compositionality and semantic interpretation of english noun compounds. In Proceedings of the 1st Workshop on Representation Learning for NLP.

References II

[Dima et al., 2019] Dima, C., de Kok, D., Witte, N., and Hinrichs, E. (2019). No word is an island-a transformation weighting model for semantic composition. Transactions of the Association for Computational Linguistics, 7:437-451.
[Dinu et al., 2013] Dinu, G., Pham, N. T., and Baroni, M. (2013). General estimation and evaluation of compositional distributional semantic models. In Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality, pages 50-58, Sofia, Bulgaria. Association for Computational Linguistics.
[Hendrickx et al., 2013] Hendrickx, I., Kozareva, Z., Nakov, P., Ó Séaghdha, D., Szpakowicz, S., and Veale, T. (2013). Semeval-2013 task 4: Free paraphrases of noun compounds. In SemEval, pages 138-143.
[Levy et al., 2015] Levy, O., Remus, S., Biemann, C., and Dagan, I. (2015). Do supervised distributional methods really learn lexical inference relations? In NAACL, pages 970-976.
[Mitchell and Lapata, 2010] Mitchell, J. and Lapata, M. (2010). Composition in distributional models of semantics. Cognitive science, 34(8):1388-1429.
[Nakov, 2013] Nakov, P. (2013). On the interpretation of noun compounds: Syntax, semantics, and entailment. Natural Language Engineering, 19(03):291-330.

References III

[Nakov and Hearst, 2006] Nakov, P. and Hearst, M. (2006). Using verbs to characterize noun-noun relations. In International Conference on Artificial Intelligence: Methodology, Systems, and Applications, pages 233-244. Springer.
[Netzer and Elhadad, 1998] Netzer, Y. D. and Elhadad, M. (1998). Generation of noun compounds in hebrew: Can syntactic knowledge be fully encapsulated? In Natural Language Generation.
[Pantel et al., 2007] Pantel, P., Bhagat, R., Coppola, B., Chklovski, T., and Hovy, E. (2007). ISP: Learning inferential selectional preferences. In ACL, pages 564-571.
[Pavlick and Callison-Burch, 2016] Pavlick, E. and Callison-Burch, C. (2016). Most "babies" are "little" and most "problems" are "huge": Compositional entailment in adjective-nouns. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2164-2173, Berlin, Germany. Association for Computational Linguistics.
[Shwartz and Dagan, 2018] Shwartz, V. and Dagan, I. (2018). Paraphrase to explicate: Revealing implicit noun-compound relations. In ACL, Melbourne, Australia.
[Shwartz et al., 2016] Shwartz, V., Goldberg, Y., and Dagan, I. (2016). Improving hypernymy detection with an integrated path-based and distributional method. In ACL, pages 2389-2398.

References IV

[Socher et al., 2012] Socher, R., Huval, B., Manning, D. C., and Ng, Y. A. (2012). Semantic compositionality through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 1201-1211. Association for Computational Linguistics.
[Surtani et al., 2013] Surtani, N., Batra, A., Ghosh, U., and Paul, S. (2013). liit-h: A corpus-driven co-occurrence based probabilistic model for noun compound paraphrasing. In SemEval, pages 153-157.
[Tratz, 2011] Tratz, S. (2011). Semantically-enriched parsing for natural language understanding. University of Southern California.
[Van de Cruys et al., 2013] Van de Cruys, T., Afantenos, S., and Muller, P. (2013). Melodi: A supervised distributional approach for free paraphrasing of noun compounds. In SemEval, pages 144-147.
[Versley, 2013] Versley, Y. (2013). Sfs-tue: Compound paraphrasing with a language model and discriminative reranking. In SemEval, pages 148-152.
[Wieting et al., 2015] Wieting, J., Bansal, M., Gimpel, K., and Livescu, K. (2015). Towards universal paraphrastic sentence embeddings. CoRR, abs/1511.08198.

References V

[Zanzotto et al., 2010] Zanzotto, F. M., Korkontzelos, I., Fallucchi, F., and Manandhar, S. (2010). Estimating linear models for compositional distributional semantics. In Proceedings of the 23rd International Conference on Computational Linguistics, pages 1263-1271. Association for Computational Linguistics.

