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[1] IBM, March 2012 (!)
[2] The Telegraph, March 2016
[3] Slate, March 2016
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Natural Language Processing to the rescue
We are working on automatic methods to...

» Summarize multiple long texts

v

Answer questions based on texts

v

Identify the sentiment of texts (e.g.
reviews)

» More...



What is Natural Language Processing (NLP)?

» Goal: for computers to “understand” and be able to
communicate with people in natural languages (e.g. English)



NLP Applications are Everywhere

Spell Check

| don't make typos. | create new g}nrls_

Did you mean:

words

Always correct to "words"
Add to personal dictionary

Ignore



NLP Applications are Everywhere

Grammar Correction

WINg). BUT oUtsice Of those professions, there are rew cases where USINg an expression that your
readers may not understand would be better than writing it in plain English.

Review this sentence for vague words te,
The word plain is generic and can be overused. Consider using one of the following suggested ==
replacements instead. Review the definitions of suggested words and select the replacement that
fits the context.
Suggested replacements:
plain — clear @

basic @

comprehensible &

intelligible &
understandable @

Save time and ensure accuracy! Have Grammarly correct all 8 issues for you.

Was this card helpful? £hYes &)No Next —+

Vocabulary

‘Word usage issues, £
overuse of certain w

=- Synonym



NLP Applications are Everywhere

Autocomplete

OF ull 2% 8 11:54

I'm going to make him an offer
he can'tre




NLP Applications are Everywhere
Autocomplete

GO gle ‘ how do | convert to
how do | convert to judaism
how do | convert to islam
how do | convert to catholicism
how do | convert to pdf

Press Enter to search.



NLP Applications are Everywhere

Spam Detection

RMQ

Remote Home Monitor (2)
Personal Cloud Service (2)
Bathroom Designs (2)
Career Upgrades (2)
Asbestos exposure
Newest electric cars (2)
Train in nursing (2)

Detect prostate troub. (2)

Advancement With an M. (2)

Delete all spam messages now

Records Indicate You Now Qualify for a Reverse-Mortgage - Images b
Monitor your home from your phone, from anywhere in the world. -\
Secure access to your photos, music and files anytime, anywhere, a1
Fall back in love with your home by remodeling your bathroom. - Fal
Openings in the medical coding and billing field. - Upgrade to a Medi

C ion for asb - Mesothelioma Resources How

Help the environment while saving money. - Save thousands on gas e\
Consider a highly paid and flexible nursing career. - Have you been ¢
Detect discrete signs of prostate cancer. - We all get signs from our boi

Twelve month MBA finished on the weekend - Vered going back to get



NLP Applications are Everywhere

Machine Translation

Google
Translate

Arabic Hebrew English talian - detected |~

% Hobrow | Engisn | spanisn | -

Ciao, come stai?

Lo

*| Hello how are you?

s | W DO <

# Suggestan edit



NLP Applications are Everywhere

Search Queries

“Actors engaged in Scientology”

must ditch the vile cult of Scientology NOW befere
.co.uK/.../PIERS-MORGAN-Tom-Cruise-ditch-vile-cult- Scie
| wanted to be Tom Cruise. As a fresh-faced, 21-year-

ingtonpost.com/.._/john-travolta-scientology-target_n_710268... ~
During an interview with "Good Moming America” Monday, John

Travolta was asked why there

so much intrigue and interest surrounding the




NLP Applications are Everywhere
Question Answering
what is the weather tomorrow 4 Q

Al Images  News  Maps  Videos  More Setings  Tools

About 15,600,000 results (0.50 seconds)

Bar-llan University, Ramat Gan
Tuesday
Mostly Sunny

°C|°F Precipitation: 20%
3 3 Humidity: 31%

Wind: 18 km/h

Temperature  Precipitation  Wind

More on weather.com Feedback



NLP Applications are Everywhere
Targeted Ads

a Vered Shwartz - gmeil
1 -
Hi

Il be in Seattle on May 29-30 (befor

Thanks.
Vered

Vered, Seattle has some last-minute deals! Trash x & 2

g booking com> Unsubsi Tue, Apr 24,5:10 AM (6 days

Booking.com <email campai

This message has been deleted. Restore message

Booking.com EEEP -
Search

Your Genius status qualifies you for exclusive discounts on thousands of top
properties.



NLP Applications are Everywhere

Personal Assistants

15:14 W2 O o a CE57%

[ I ©

wi.. Ball & 2:12 PM
What can | help you with? Hi, how can I help?
€ Remind me to pick up when is my flight to New York
the kids from school
tomorrow at 3 PM #2 PY
@  This flight reservation is from your
OK, I'll remind you. Gmail
Your Flights

r—_:-‘ Tuesday
U January 2012

New Orleans to Newark
Pick up the kids from Fri, 8 Jun - 6:00
school

United Flight 2007

MSY »)- EWR

New Orleans - Fri, 8 Jun




NLP Applications are Everywhere
Chatbots

Got Questions? Chat With Us.

F
'

live chatto your website. Create Account -

Nathan:

Ifyou wantto get expert advice, we are here to
answer your questions - simply write your email
address so we can get back to you ...

me:
What is the meaning of life?

Nathan:
| don't see what you mean __ are you looking for a
specific product or do you justwant to talk ...

M

B4 Message @ Linkedin mowersd by VirtualSpirits
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Text Analysis Tasks

Tokenization

» Split text into a sequence of tokens (& words)
» Naive approach: split sentences by period, words by spaces
» How to tokenize this text?
‘Whose frisbee is this?’ John asked, rather self-consciously.
‘Oh, it's one of the boys’ said the Sen.

» (Optional) answer:
Whose frisbee is this ?
John asked ] rather self-consciously.

Oh - it 's one of the boys ' said the Sen.
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Morphological analysis:
» input: “am”, output: “be” 4+ 1 PERSON + PRESENT



Text Analysis Tasks
Morphological Analysis

» Words are made from morphemes, smaller meaningful units
» Normally: base form + affixes
» Nouns - plural form: dogs, suffixes, baby — babies
» Verbs - tense: worked, working, person: works
> Many irregularities... “women and children begun running
away as the wolves showed their teeth”
» Morphological analysis:
» input: “am”, output: “be” 4+ 1 PERSON + PRESENT
» Lemmatizer: reduce inflectional forms of a word to a common

base form
e.g. children — child, running — run
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Text Analysis Tasks
Part of Speech Tagging

» Tags each word with its part of speech (POS): noun, verb,
adjective, adverb, preposition, etc.

Part-of-Speech:

(BT [ (BN veD) BN BR)[) [cC| Re) [PRR)VBZ] [VBG) O] [VBI

1| The brown dog ate dog food, and now he is going to sleep



Text Analysis Tasks
Part of Speech Tagging

» Tags each word with its part of speech (POS): noun, verb,
adjective, adverb, preposition, etc.

Part-of-Speech:

BO m{@ [BN] MR)(] [cd] Re| [PRP)VBZ] VBG] o] (VB
The brown dog ate dog food, and now he is going to sleep

» Surrounding words help deciding on the correct POS tag for
ambiguous words:
I'm reading an interesting book = book = NOUN
| would like to book a flight = book = VERB



Text Analysis Tasks
Syntactic Parsing

» Analyzes the syntactic structure of a sentence

det dobj
amaod nsubj compound
T \@‘ Wﬁ/@‘*_ F’%

The brown dog ate dog food



Text Analysis Tasks
Syntactic Parsing

> Analyzes the syntactic structure of a sentence
det dobj

b1 Jjud-a%knsubj—\l—compuund 0

The brown dog ate dog food

> Let's look at some syntactic ambiguities!



Text Analysis Tasks
Syntactic Parsing

» “They ate pizza with anchovies”
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Text Analysis Tasks
Syntactic Parsing

» “They ate pizza with anchovies”

» (1) They ate pizza, the pizza had anchovies on it
» (2) They ate pizza using anchovies instead of utensils

» (3) The anchovies also ate pizza

» Each of the interpretations yields a different syntactic analysis



Text Analysis Tasks
Syntactic Parsing

jamas I'll never know.




Text Analysis Tasks

tokenization
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Text Analysis Tasks

Coreference Resolution

» Identify mentions referring to the same entity

Coreference:
1| The brown dog ate dog food, and now he is going to sleep




Text Analysis Tasks

Coreference Resolution

» Identify mentions referring to the same entity

Coreference:

T R |

1| The brown donj ate dog food, and now he is going to sleep

» Considered a difficult task!



Text Analysis Tasks

Coreference Resolution

i » I gave the monkeys the
bananas because they were
hungry” =

they = the monkeys




Text Analysis Tasks

Coreference Resolution

- > "l gave the monkeys the
bananas because they were

hungry” =
they = the monkeys

> ‘I gave the monkeys the
bananas because they were
ripe”’ =
they = the bananas




Text Analysis Tasks
Word Sense Disambiguation

» What's the correct sense of a word in a given context?


http://naviglinlp.blogspot.co.il/

Text Analysis Tasks
Word Sense Disambiguation

» What's the correct sense of a word in a given context?
kiwi “we are fond of fruit such as kiwi and banana”

(target word) (context)

WSD
system

% outputl sense

from http://naviglinlp.blogspot.co.il/



http://naviglinlp.blogspot.co.il/

Text Analysis Tasks
Named Entities

» Named Entity Recognition: recognize entities and their type

fPerson) Date)

John Doe worked in The Ministry of Foreign Affairs last year.



http://www.ibm.com/blogs/research

Text Analysis Tasks
Named Entities

» Named Entity Recognition: recognize entities and their type

IPer_;un Org r_|i§aﬁon Date

John Doe worked in The Kdinistry of Foreign Affairs last year.

» Entity Linking: linking entities to their Wikipedia pages
EEE] e JCARDINALIORGANIZATIONE ST el ON
DATE] ____JDURATION|ORDINAL]

@ © @ [ENSISIEHE [ - There was no rational reason to expect ISl
Biiith to be in Bl current position.
© O @ it was just SIIPTETEERE that [ was a bust, a f-round pick of

from http://www.ibm.com/blogs/research


http://www.ibm.com/blogs/research

NLP is hard!

» Tokenization and POS tagging are almost 100% accurate
today, but semantic tasks are far from that
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NLP is hard!

» Tokenization and POS tagging are almost 100% accurate
today, but semantic tasks are far from that

» Two major difficulties:

» Ambiguity: one text can have multiple meanings

» Lexical variability: the same meaning can be expressed with

different words

2141

O 2O al - 75%

Hi, how can | help? 9

is it going to rain tomorrow

No, it won't rain tomorrow in Hod
HaSharon. Itll be sunny, with a
high of 34 and a low of 22.

Sunny on Wednesday o
Hod Hasharon « Precip: 20% 34°
High: 34° Low: 22°

Send daily What about this weekend?

s

21:41 .02 O R il C®75%

is rain expected tomorrow

You might want suncream

Sunny on Wednesday o
Hod Hasharon - Precip: 20% 34C
High: 34° Low: 22°

23 257 27 29"

Send daily What about this weekend?

s
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Example Application: Spam Detection

45% of All

Email is Spam

(used to be much worse... > 90%!)
» Automatically determine whether an email is spam or not
» (and move spam messages to “spam” folder)
» Special case of Text Classification: given a text, automatically
determine its topic

» How does it work?
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Spam Detection

Let's think of characteristics of spam emails

Unknown sender

v

v

Spam triggering words:
» FEarn extra cash

Earn §

Free

Lose weight

Instant

Bonus

vV vy vy VY VvYYy

v

Naive idea: mark any email that contains these words as spam

v

Problem: inaccurate (will mark non-spam as spam and vice
versa)
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Spam Detection
Rule-based Approach

> Better idea: define rules, e.g. “mark as spam if unknown
sender and contains at least 2 spam triggering words”
» More accurate: e.g. will not mark an email from your mother,
with the word “instant” as spam :)
> Problems:
» Finding the optimal rules is difficult
> Not all triggering words were created equal

» Solution: Let the computer “learn” these rules alone!



Spam Detection
Supervised Learning

I have sent you this message earlier, but your failure to respond has prompted me to re-sending
it once again. It is about my late client who lost his life in an automobile accident along with his
wife and enly child.

I assisted him in making a deposit worth $10.5M. The Bank has therefore threatened to seize
his account if an heir is not directly specified. You and my late client both share the same last
name. With great respect, i want you to stand as an heir to the account so that his deposited
funds can be released and transferred to you directly.

Kindly get back to my private email address for more update on this transaction
(richrdbernard65@gmail.com)

Best Regards

Barrister Richard Bernard.

> Let the computer learn a scoring function:

score = ... + tpave - c(have) + aent - c(sent) + ... + Apernard - c(bernard)
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Spam Detection
Supervised Learning

I have sent you this message earlier, but your failure to respond has prompted me to re-sending
it once again. It is about my late client who lost his life in an automobile accident along with his
wife and enly child.

I assisted him in making a deposit worth $10.5M. The Bank has therefore threatened to seize
his account if an heir is not directly specified. You and my late client both share the same last
name. With great respect, i want you to stand as an heir to the account so that his deposited
funds can be released and transferred to you directly.

Kindly get back to my private email address for more update on this transaction
(richrdbernard65@gmail.com)

Best Regards

Barrister Richard Bernard.

> Let the computer learn a scoring function:

score = ... + tpave - c(have) + aent - c(sent) + ... + Apernard - c(bernard)
» Different weight «; for each word, e.g. aicash > Qdocument

» Classify as spam if score > threshold (learn threshold too!)
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Spam Detection

Supervised Learning

» How does the computer learn the o weights?

» Supervised learning: estimate a function (learn weights)
using labeled examples

» Take a lot of emails, manually mark them as spam/not spam

» The computer learns a function (weights) that best predicts
spam/not spam for the known emails

> If we have enough examples, it would also work well on new
emails
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Spam Detection
Features

v

We used bag-of-words as features for classification :
{ I, have, sent, you, ... }

v

If we have enough spam examples that contain the word
“urgent”, ayrgent Will be high

What about similar words like “immediate” or “instant”?

v

v

We need to find a way to let the computer know about
semantically-similar words
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Word Representation
One-hot Vectors

» How do we represent all the words in the computer?
» Simplest: we have a dictionary, and each word has an index,
e.g. index(urgent) = 316, index(instant) = 12418

» You can think of the word with index i as a vector (array of
numbers) with zeros and one entry with 1 in the jth index -

“one-hot vector”:

urgent [0[O[..[1]0]..]0]0]..]0]
T
316

instant [0 [0 [ ..[0]0]..[1]0]..]0]

12418



Spam Detection
Bag-of-words with One-hot Vectors

> A vector representing the entire email: sum of one-hot vectors
of the words in the email:

| ofof..]t]Jo]..]oJo]..]oO
have 0O|j1{..]0(0|..{0f0}|..]0
sent 0|0|..]0J0|..(1(0}|..]0
+ ..
bernard  [0]O0]..]0[1]..]0]0]..[0]

featurevector]0|4|...|2|1|...|1|0|...|0‘




Spam Detection

Bag-of-words with One-hot Vectors

> A vector representing the entire email: sum of one-hot vectors
of the words in the email:

I 0|0 1]0 0|0 0
have 01 00 00 0
sent 0]0 00 110 0
+ ..

bernard [0 [O0[..[0[1]..]0]0]..[0]
featurevector]0|4|...|2|1|...|1|0|...|0‘

» Problem: Emails with similar words (e.g. deliver instead of

send, urgent instead of instant) have very different feature

vectors!
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(John Rupert Firth, 1957)
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Word Representation
Distributional Word Vectors

» Can we have similar vectors for semantically-similar words?

> “You shall know a word by the company it keeps”
(John Rupert Firth, 1957)

elevator |0 |0 |..[016|0|...|049|0|...|0
lift 0/0(...]015|0|..|051(0]..|O0
) )
up stairs

» Now semantically-similar words have similar word vectors!



Spam Detection

Bag-of-words with Distributional Word Vectors

I
have
sent
+

FV

> Again, we sum up all the vectors:

0 0 0.12 | 0.03 0.04 |0 0

01 0.22 0 0 0 0 0

0043 0 0.1 0250 0
[0 [067] [~ ].[-] 0 J0[.]0]

bern;;d (0] 0 ..

[0Jo65]..[012]071] .. |..[..[..[]029]0]...]0]




Spam Detection
Bag-of-words with Distributional Word Vectors

I
have
sent
+

FV

> Again, we sum up all the vectors:

0 0 0.12 | 0.03 0.04 |0 0

01 0.22 0 0 0 0 0

0043 0 0.1 0250 0
bernard [0] 0 [~ ] 0 [067] . ~[~]~] 0 [0]..][0]
[0Jo65]..[012]071] .. |..[..[..[]029]0]...]0]

» We can now replace a word (e.g. sent) with a similar word
(e.g. delivered) and get a similar feature vector = same
classification for similar emails!



Word Embeddings

> [ A more recent type of distributional vectors |

» Find most similar words:

Nearest words

Given a word, this demo shows a list of other words that are similar to i, i.e. nearby in the vector space.

Manhattan

NY

Brooklyn
Long_Island

NYe

upstate
midtown_Manhattan
New_Jersey
Greenwich_village
Bronx

See more here: http://bionlp-www.utu.fi/wv_demo/


http://bionlp-www.utu.fi/wv_demo/




Additional Resources

> Books:
» Chris Manning and Hinrich Schiitze, Foundations of Statistical
Natural Language Processing, MIT Press. Cambridge, MA:
May 1999.
» Dan Jurafsky and James H. Martin, Speech and Language
Processing. Second Edition. Pearson Education, 2014.
» Resources from NACLO - North American Computational
Linguistics Olympiad
http://nacloweb.org/resources.php

» My blog: http://veredshwartz.blogspot.co.il


http://nacloweb.org/resources.php
http://veredshwartz.blogspot.co.il
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