How are you two related?

Corpus-based Learning of Lexical Semantic Relations

Vered Shwartz

Workshop on WordNets and Word Embeddings 9th Global Wordnet Conference

11 January 2018

WordNet

- WordNet
 - Applications in NLP
 - What's missing?

- WordNet
 - Applications in NLP
 - What's missing?
- Word Embeddings
 - Do they obviate the usage of lexicons like WordNet?

- WordNet
 - Applications in NLP
 - What's missing?
- Word Embeddings
 - Do they obviate the usage of lexicons like WordNet?

Using Word Embeddings to Enhance WordNet

Corpus-based learning of lexical-semantic relations

- WordNet
 - Applications in NLP
 - What's missing?
- Word Embeddings
 - Do they obviate the usage of lexicons like WordNet?

Using Word Embeddings to Enhance WordNet

Corpus-based learning of lexical-semantic relations

Encoding WordNet into Word Embeddings

How can we keep leveraging WordNet in DL-based applications?

Usage of WordNet

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 4/54

Usage of WordNet

Extensively used in applications that make inferences

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 5 / 54

- Extensively used in applications that make inferences
- Various relations help dealing with lexical variability, e.g.:
 "pets are allowed" ⇒ *"dogs are allowed"* (hypernym)

- Extensively used in applications that make inferences
- Various relations help dealing with lexical variability, e.g.:
 - *"pets are allowed"* ⇒ *"dogs are allowed"* (hypernym)
 - *"restaurant in Japan"* ⇒ *"restaurant in Asia"* (holonym)

- Extensively used in applications that make inferences
- Various relations help dealing with lexical variability, e.g.:
 - *"pets are allowed"* ⇒ *"dogs are allowed"* (hypernym)
 - *"restaurant in Japan"* ⇒ *"restaurant in Asia"* (holonym)
 - *"restaurant in Japan"* \neq *"restaurant in China"* (co-hyponym)

- Extensively used in applications that make inferences
- Various relations help dealing with lexical variability, e.g.:
 - *"pets are allowed"* ⇒ *"dogs are allowed"* (hypernym)
 - *"restaurant in Japan"* ⇒ *"restaurant in Asia"* (holonym)
 - *"restaurant in Japan"* \neq *"restaurant in China"* (co-hyponym)
 - *"good restaurant"* ≠ *"bad restaurant"* (antonym)

Example Application 1 - Question Answering

Question

"When did Donald Trump visit in Alabama?"

Example Application 1 - Question Answering

Question

"When did Donald Trump visit in Alabama?"

Candidate Passages

- **1.** Trump visited Huntsville on September 23.
- 2. Trump visited Mississippi on June 21.

Example Application 1 - Question Answering

Question

"When did Donald Trump visit in Alabama?"

Candidate Passages

- 1. Trump visited Huntsville on September 23.
- 2. Trump visited Mississippi on June 21.

Knowledge

holonym:(Huntsville, Alabama), co-hyponym:(Mississippi, Alabama).

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 6 / 54

Example Application 2 - Recognizing Textual Entailment

Premise

A boy is hitting a baseball

Hypotheses

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 7 / 54

Example Application 2 - Recognizing Textual Entailment

Premise

A boy is hitting a baseball

Hypotheses

1. A **child** is hitting a baseball ⇒ **ENTAILMENT**: *hypernym:(boy, child)*

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 7 / 54

Example Application 2 - Recognizing Textual Entailment

Premise

A boy is hitting a baseball

Hypotheses

- **1.** A **child** is hitting a baseball ⇒ **ENTAILMENT**: *hypernym:(boy, child)*
- 2. A boy is **missing** a baseball ⇒ **CONTRADICTION**: *antonym:(hitting, missing)*

Example Application 2 - Recognizing Textual Entailment

Premise

A boy is hitting a baseball

Hypotheses

- **1.** A **child** is hitting a baseball ⇒ **ENTAILMENT**: *hypernym:(boy, child)*
- 2. A boy is **missing** a baseball ⇒ **CONTRADICTION**: *antonym:(hitting, missing)*
- **3.** A **girl** is hitting a baseball \Rightarrow **NEUTRAL**: *co-hyponym:(boy, girl)*

What's Missing from WordNet?

What's Missing from WordNet?

Many named entities Donald Trump

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 8 / 54

What's Missing from WordNet?

Many named entities Donald Trump

Recent terminology social network, selfie

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 8 / 54

What's Missing from WordNet?

- Many named entities Donald Trump
- Recent terminology social network, selfie
- Relations between existing synsets hyper:(Louisa May Alcott, woman)

What's Missing from WordNet?

- Many named entities Donald Trump
- Recent terminology social network, selfie
- Relations between existing synsets hyper:(Louisa May Alcott, woman)

This information can be completed using corpus statistics.

Usage of Word Embeddings

Using Word Embeddings

First, let's get this off the table: "why not just use word embeddings?"

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings10 / 54

Using Word Embeddings

First, let's get this off the table: "why not just use word embeddings?"

Word embeddings are great in capturing semantic relatedness!

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings10 / 54

Using Word Embeddings

First, let's get this off the table: "why not just use word embeddings?"

- Word embeddings are great in capturing semantic relatedness!
- ...but they mix all semantic relations together.

Using Word Embeddings

■ To illustrate, take famous texts and replace nouns with their word2vec neighbours:¹

¹More examples here: https://goo.gl/LJHzbi

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings11 / 54

Using Word Embeddings

To illustrate, take famous texts and replace nouns with their word2vec neighbours:¹

¹More examples here: https://goo.gl/LJHzbi

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings11 / 54

Word Embeddings to Enhance WordNet: Corpus-based Learning of Semantic Relations

Word Embeddings for WordNet

Lexical Semantic Relation Classification

- Given two words, *x* and *y*, decide what is the semantic relation that holds between them (if any)
 - usually works at the word-level, not the synset-level
 - e.g. both *fruit* and *company* are hypernyms of *apple*

Corpus-based Semantic Relation Classification

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings14 / 54

Distributional Approach

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings15 / 54

Distributional Approach

Recognize the relation between words based on their separate occurrences in the corpus
Distributional Approach

- Recognize the relation between words based on their separate occurrences in the corpus
- Distributional Hypothesis [Harris, 1954]: Words that occur in similar contexts tend to have similar meanings

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings16 / 54

Distributional Approach

- Recognize the relation between words based on their separate occurrences in the corpus
- Distributional Hypothesis [Harris, 1954]: Words that occur in similar contexts tend to have similar meanings
 - e.g. *elevator* and *lift* will both appear next to *up*, *floor* and *stairs*

Distributional Approach

- Recognize the relation between words based on their separate occurrences in the corpus
- Distributional Hypothesis [Harris, 1954]: Words that occur in similar contexts tend to have similar meanings
 - e.g. *elevator* and *lift* will both appear next to *up*, *floor* and *stairs*
- Word embeddings [Mikolov et al., 2013, Pennington et al., 2014] are low-dimensional vector representations of words
 - Learned from distributional information
 - Similar words have similar vectors

- Represent (x, y) as a feature vector, based of the word embeddings:
 - Concatenation $\vec{x} \oplus \vec{y}$ [Baroni et al., 2012]
 - Difference $\vec{y} \vec{x}$ [Roller et al., 2014, Weeds et al., 2014]

- Represent (x, y) as a feature vector, based of the word embeddings:
 - Concatenation $\vec{x} \oplus \vec{y}$ [Baroni et al., 2012]
 - Difference $\vec{y} \vec{x}$ [Roller et al., 2014, Weeds et al., 2014]
- Train a classifier to predict the semantic relation between x and y

- Represent (x, y) as a feature vector, based of the word embeddings:
 - Concatenation $\vec{x} \oplus \vec{y}$ [Baroni et al., 2012]
 - Difference $\vec{y} \vec{x}$ [Roller et al., 2014, Weeds et al., 2014]
- Train a classifier to predict the semantic relation between x and y
- Achieved very good results on various common datasets

- Represent (x, y) as a feature vector, based of the word embeddings:
 - Concatenation $\vec{x} \oplus \vec{y}$ [Baroni et al., 2012]
 - Difference $\vec{y} \vec{x}$ [Roller et al., 2014, Weeds et al., 2014]
- Train a classifier to predict the semantic relation between x and y
- Achieved very good results on various common datasets
- Is it a solved task?

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings17 / 54

Semantic Relation Classification is not solved.

- Semantic Relation Classification is not solved.
- Supervised distributional methods learn separate properties of either x or y

- Semantic Relation Classification is not solved.
- Supervised distributional methods learn separate properties of either x or y
- [Levy et al., 2015]: "lexical memorization": overfitting to the most common relation of a specific word
 - Training: (*cat, animal*), (*dog, animal*), (*cow, animal*), ... all labeled as hypernymy
 - Model: (x, animal) is a hypernym pair, regardless of x

- Semantic Relation Classification is not solved.
- Supervised distributional methods learn separate properties of either x or y
- [Levy et al., 2015]: "lexical memorization": overfitting to the most common relation of a specific word
 - Training: (*cat, animal*), (*dog, animal*), (*cow, animal*), ... all labeled as hypernymy
 - Model: (x, animal) is a hypernym pair, regardless of x
- [Roller and Erk, 2016]: methods do more than memorize, learn about x and y's roles

- Semantic Relation Classification is not solved.
- Supervised distributional methods learn separate properties of either x or y
- [Levy et al., 2015]: "lexical memorization": overfitting to the most common relation of a specific word
 - Training: (*cat, animal*), (*dog, animal*), (*cow, animal*), ... all labeled as hypernymy
 - Model: (x, animal) is a hypernym pair, regardless of x
- [Roller and Erk, 2016]: methods do more than memorize, learn about x and y's roles
- [Shwartz et al., 2016]: methods provide only the **prior** of x or y to fit each relation

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings19 / 54

Recognize the relation between x and y based on their joint occurrences in the corpus

- Recognize the relation between x and y based on their joint occurrences in the corpus
- Hearst Patterns [Hearst, 1992] patterns connecting x and y may indicate that y is a hypernym of x
 - e.g. X or other Y, X is a Y, Y, including X

- Recognize the relation between x and y based on their joint occurrences in the corpus
- Hearst Patterns [Hearst, 1992] patterns connecting x and y may indicate that y is a hypernym of x
 - e.g. X or other Y, X is a Y, Y, including X
- Patterns can be represented using dependency paths:

Supervised method to recognize hypernymy [Snow et al., 2004]:

- Supervised method to recognize hypernymy [Snow et al., 2004]:
 - Features: all dependency paths connecting *x* and *y* in a corpus:

- Supervised method to recognize hypernymy [Snow et al., 2004]:
 - Features: all dependency paths connecting *x* and *y* in a corpus:

Trained a logistic regression classifier to predict hypernymy

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings21 / 54

- Supervised method to recognize hypernymy [Snow et al., 2004]:
 - Features: all dependency paths connecting *x* and *y* in a corpus:

- Trained a logistic regression classifier to predict hypernymy
- Learns Hearst patterns and other paths, improved performance

Similar paths share no information:

Similar paths share no information:

X inc. is a Y X group is a Y X organization is a Y

Similar paths share no information:

```
X inc. is a Y
X group is a Y
X organization is a Y
```

PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:

Similar paths share no information:

```
X inc. is a Y
X group is a Y
X organization is a Y
```

PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:

its POS tag

Similar paths share no information:

```
X inc. is a Y
X group is a Y
X organization is a Y
```

PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:

Similar paths share no information:

```
X inc. is a Y
X group is a Y
X organization is a Y
```

PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:

Some of these generalizations are too general:
 X is defined as Y ≈ X is described as Y via X is VERB as Y

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 22 / 54

Similar paths share no information:

```
X inc. is a Y
X group is a Y
X organization is a Y
```

PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:

- Some of these generalizations are too general:
 - X is defined as $Y \approx X$ is described as Y via X is VERB as Y
 - **X** is defined as $Y \neq X$ is rejected as Y

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 22 / 54

Integrated Path-based and Distributional Method [Shwartz et al., 2016]

Integrating Path-based and Distributional Information

Path-based and distributional sources are considered complementary

Integrating Path-based and Distributional Information

- Path-based and distributional sources are considered complementary
- Recently, distributional methods outpeformed path-based ones
 No performance gain from adding path-based information

Integrating Path-based and Distributional Information

- Path-based and distributional sources are considered complementary
- Recently, distributional methods outpeformed path-based ones
 No performance gain from adding path-based information
- Is path-based information redundant given distributional information?

The Hypernymy Detection Task

We first focused on hypernymy

- The hyponym is a subclass of / instance of the hypernym
- (cat, animal), (Google, company)

The Hypernymy Detection Task

We first focused on hypernymy

- The hyponym is a subclass of / instance of the hypernym
- (cat, animal), (Google, company)
- Given two words, *x* and *y*, decide whether *y* is a hypernym of *x*
 - works at the word-level, not the synset-level

First Step: Improving Path Representation

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 26 / 54

Path Representation (1/2)

1. Split each path to edges

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 27 / 54

Path Representation (1/2)

1. Split each path to edges

- We learn embedding vectors for each component
 - Lemma: initialized with pre-trained word embeddings
Path Representation (1/2)

1. Split each path to edges

- We learn embedding vectors for each component
 - Lemma: initialized with pre-trained word embeddings
- The edge's vector is the concatenation of its components' vectors:

HypeNET

Path Representation (2/2)

Feed the edges sequentially to an LSTM

- Use the last output vector as the path embedding
- The LSTM may focus on edges that are more informative for the classification task, while ignoring others

Path-based Word-pair Classification

- The LSTM encodes a single path
- Each word-pair has multiple paths
 - Represent a word-pair as its averaged path embedding
- Classify for hypernymy (path-based network):

Second Step: Integrating Distributional Information

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 30 / 54

Second Step: Integrating Distributional Information

Integrated network: add distributional information

- Concatenate *x* and *y*'s word embeddings to the averaged path
- Classify for hypernymy (integrated network):

Results

On a new dataset

built from WordNet, Wikidata, DBPedia, and Yago

method		precision	recall	F ₁
Path-based	Snow	0.843	0.452	0.589
	Snow + GEN	0.852	0.561	0.676
	HypeNET Path-based	0.811	0.716	0.761
Distributional	Best Supervised	0.901	0.637	0.746
Integrated	HypeNET Integrated	0.913	0.890	0.901

Path-based:

- Compared to Snow + Snow with PATTY style generalizations
- HypeNET outperforms path-based baselines with improved recall

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings32 / 54

Results

On a new dataset

built from WordNet, Wikidata, DBPedia, and Yago

method		precision	recall	<i>F</i> ₁
Path-based	Snow	0.843	0.452	0.589
	Snow + GEN	0.852	0.561	0.676
	HypeNET Path-based	0.811	0.716	0.761
Distributional	Best Supervised	0.901	0.637	0.746
Integrated	HypeNET Integrated	0.913	0.890	0.901

The integrated method substantially outperforms both path-based and distributional methods

Analysis - Path Representation (1/2)

Identify hypernymy-indicating paths:

<u>Baselines</u>: according to logistic regression feature weights

Analysis - Path Representation (1/2)

Identify hypernymy-indicating paths:

- <u>Baselines</u>: according to logistic regression feature weights
- HypeNET: measure path contribution to positive classification:

Take the top scoring paths according to $softmax(W \cdot [\vec{0}, \vec{o_p}, \vec{0}])[1]$

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings 33 / 54

Analysis - Path Representation (2/2)

Snow's method finds certain common paths:

X company is a Y X ltd is a Y

Analysis - Path Representation (2/2)

Snow's method finds certain common paths:

X company is a Y X ltd is a Y

PATTY-style generalizations find general, possibly noisy paths: X NOUN is a Y

Analysis - Path Representation (2/2)

Snow's method finds certain common paths:

```
X company is a Y
X ltd is a Y
```

PATTY-style generalizations find general, possibly noisy paths: X NOUN is a Y

HypeNET makes fine-grained generalizations:

```
X association is a Y
X co. is a Y
X company is a Y
X corporation is a Y
X foundation is a Y
X group is a Y
```

•••

Other Semantic Relations

LexNET - Multiple Semantic Relation Classification [Shwartz and Dagan, 2016a, Shwartz and Dagan, 2016b]

Application of HypeNET for multiple relations:

hypernymy, meroynymy, co-hyponymy, event, attribute, synonymy, antonymy, random

LexNET outperforms individual path-based and distributional methods on all datasets

- LexNET outperforms individual path-based and distributional methods on all datasets
- Path-based contribution over distributional info is small when lexical memorization is enabled

- LexNET outperforms individual path-based and distributional methods on all datasets
- Path-based contribution over distributional info is small when lexical memorization is enabled
- It is prominent in the following scenarios:
 - *x* or *y* are polysemous, e.g. *mero:(piano, key)*.

- LexNET outperforms individual path-based and distributional methods on all datasets
- Path-based contribution over distributional info is small when lexical memorization is enabled
- It is prominent in the following scenarios:
 - *x* or *y* are polysemous, e.g. *mero:(piano, key)*.
 - the relation is not prototypical, e.g. *event:(cherry, pick)*.

- LexNET outperforms individual path-based and distributional methods on all datasets
- Path-based contribution over distributional info is small when lexical memorization is enabled
- It is prominent in the following scenarios:
 - *x* or *y* are polysemous, e.g. *mero:(piano, key)*.
 - the relation is not prototypical, e.g. event:(cherry, pick).
 - *x* or *y* are rare, e.g. *hyper:(mastodon, proboscidean)*.

- LexNET outperforms individual path-based and distributional methods on all datasets
- Path-based contribution over distributional info is small when lexical memorization is enabled
- It is prominent in the following scenarios:
 - *x* or *y* are polysemous, e.g. *mero:(piano, key)*.
 - the relation is not prototypical, e.g. *event:(cherry, pick)*.
 - *x* or *y* are rare, e.g. *hyper:(mastodon, proboscidean)*.
- Thanks to the path representation, such relations are captured even with a single meaningful co-occurrence of x and y

- Path-based:
 - Synonyms do not tend to occur together

- Path-based:
 - Synonyms do not tend to occur together
 - Antonyms occur in similar paths as co-hyponyms: hot and cold, cats and dogs

- Path-based:
 - Synonyms do not tend to occur together
 - Antonyms occur in similar paths as co-hyponyms: hot and cold, cats and dogs
- Distributional:
 - Synonyms and antonyms occur in similar contexts: "go down in the elevator/lift", "it is hot/cold today"

- Path-based:
 - Synonyms do not tend to occur together
 - Antonyms occur in similar paths as co-hyponyms: hot and cold, cats and dogs
- Distributional:
 - Synonyms and antonyms occur in similar contexts: "go down in the elevator/lift", "it is hot/cold today"
- [Nguyen et al., 2017] used the method successfully to distinguish only between synonyms and antonyms.

[Rajana et al., 2017] integrated morphological cues to distinguish antonymy from other relations:

Added a "negated" feature

- [Rajana et al., 2017] integrated morphological cues to distinguish antonymy from other relations:
 - Added a "negated" feature
 - List of negated prefixes: de, un, in, anti, il, non, dis

- [Rajana et al., 2017] integrated morphological cues to distinguish antonymy from other relations:
 - Added a "negated" feature
 - List of negated prefixes: de, un, in, anti, il, non, dis
 - A word with a negated prefix is replaced with the non-negated form, and the "negated" feature is turned on

- [Rajana et al., 2017] integrated morphological cues to distinguish antonymy from other relations:
 - Added a "negated" feature
 - List of negated prefixes: de, un, in, anti, il, non, dis
 - A word with a negated prefix is replaced with the non-negated form, and the "negated" feature is turned on
 - e.g. $unhappy \rightarrow neg + happy$

- [Rajana et al., 2017] integrated morphological cues to distinguish antonymy from other relations:
 - Added a "negated" feature
 - List of negated prefixes: de, un, in, anti, il, non, dis
 - A word with a negated prefix is replaced with the non-negated form, and the "negated" feature is turned on
 - e.g. $unhappy \rightarrow neg + happy$

Improved performance on both binary and multiclass tasks

Learning Synonyms

Leverage the fact that synonyms do not occur together!

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings40 / 54

Learning Synonyms

- Leverage the fact that synonyms do not occur together!
- In the CogALex shared task [Shwartz and Dagan, 2016b], we added a heuristic to LexNET:
- If the classification score is similar for synonym and another relation, and x and y occur together less than 3 times in the corpus, classify as synonym

WordNet in Word Embeddings: Encoding WordNet into Word Embeddings

WordNet in Word Embeddings

Using WordNet in the World of Deep Learning

So, word embeddings alone don't obviate the usage of WordNet

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings42 / 54

WordNet in Word Embeddings

Using WordNet in the World of Deep Learning

- So, word embeddings alone don't obviate the usage of WordNet
- But what about DL-based applications?

Vered Shwartz • Corpus-based Learning of Lexical Semantic Relations • Workshop on WordNets and Word Embeddings42 / 54

Using WordNet in the World of Deep Learning

- So, word embeddings alone don't obviate the usage of WordNet
- But what about DL-based applications?
- Let's look at RTE as an example
Recognizing Textual Entailment (RTE)

■ Given two sentences, a *premise* and a *hypothesis*, does the *premise* entail, contradict or is neutral to the *hypothesis*?

Recognizing Textual Entailment (RTE)

■ Given two sentences, a *premise* and a *hypothesis*, does the *premise* entail, contradict or is neutral to the *hypothesis*?

Premise

A boy is hitting a baseball

Hypotheses

- 1. A **child** is hitting a baseball \Rightarrow **ENTAILMENT**
- 2. A boy is **missing** a baseball \Rightarrow **CONTRADICTION**
- 3. A **girl** is hitting a baseball \Rightarrow **NEUTRAL**

Recognizing Textual Entailment (RTE)

Lexical semantic relations play an important role in the decision

Premise

A boy is hitting a baseball

Hypotheses

- 1. A **child** is hitting a baseball ⇒ **ENTAILMENT**: hypernym:(boy, child)
- **2.** A boy is **missing** a baseball \Rightarrow **CONTRADICTION**: *antonym:(hitting, missing)*
- **3.** A **girl** is hitting a baseball \Rightarrow **NEUTRAL**: *co-hyponym:(boy, girl)*

Traditional RTE systems: lexical entailment step

- *child-boy, missing-hitting,* etc.
- Often aided by WordNet

²https://explosion.ai/blog/deep-learning-formula-nlp

Traditional RTE systems: lexical entailment step

- *child-boy, missing-hitting,* etc.
- Often aided by WordNet
- Today's end-to-end neural models:
 - Four steps: embed, encode, attend, predict²

²https://explosion.ai/blog/deep-learning-formula-nlp

Traditional RTE systems: lexical entailment step

- *child-boy, missing-hitting,* etc.
- Often aided by WordNet
- Today's end-to-end neural models:
 - Four steps: embed, encode, attend, predict²
 - Embed: external lexical knowledge through pre-trained word embeddings

²https://explosion.ai/blog/deep-learning-formula-nlp

Traditional RTE systems: lexical entailment step

- *child-boy, missing-hitting,* etc.
- Often aided by WordNet
- Today's end-to-end neural models:
 - Four steps: embed, encode, attend, predict²
 - Embed: external lexical knowledge through pre-trained word embeddings
 - Attend/predict: may implicitly learn semantic relations between words

²https://explosion.ai/blog/deep-learning-formula-nlp

Lexical Entailment in Neural RTE

…Easily confused by similarity:

Premise	
The president visited Alabama	
Hypothesis	
The president visited <u>Mississipp</u> i	
Judgement	Probability
Entailment	94.8%
Contradiction	1.3%

from http://demo.allennlp.org/textual-entailment

Injecting Lexical Knowledge to Neural Inference Models

Explicit information from WordNet can improve performance and/or training time

- Explicit information from WordNet can improve performance and/or training time
- How can this knowledge be injected to neural models?

WordNet Embeddings

We already have WordNet, why do we need to put into vectors?

We already have WordNet, why do we need to put into vectors?

Suitable as a plug & play component for DL models

We already have WordNet, why do we need to put into vectors?

- Suitable as a plug & play component for DL models
- Generic solution for lexical knowledge across systems

We already have WordNet, why do we need to put into vectors?

- Suitable as a plug & play component for DL models
- Generic solution for lexical knowledge across systems
- Just replace pre-trained word embeddings with WordNet embeddings

Many methods to encode WordNet into vectors:

Many methods to encode WordNet into vectors:

- Retrofitting [Faruqui et al., 2015]
- Order Embeddings [Vendrov et al., 2015]
- Poincaré Embeddings [Nickel and Kiela, 2017]
- LEAR [Vulić and Mrkšić, 2017]
- and more...

Many methods to encode WordNet into vectors:

- Retrofitting [Faruqui et al., 2015]
- Order Embeddings [Vendrov et al., 2015]
- Poincaré Embeddings [Nickel and Kiela, 2017]
- LEAR [Vulić and Mrkšić, 2017]
- and more...

Can these embeddings just be plugged into neural models?

Using WordNet Embeddings in Neural Inference Models

Not so easily.

Using WordNet Embeddings in Neural Inference Models

- Not so easily.
- No extrinsic evaluation
 - Evaluated on their ability to complete missing edges from WordNet

Using WordNet Embeddings in Neural Inference Models

- Not so easily.
- No extrinsic evaluation
 - Evaluated on their ability to complete missing edges from WordNet
- Typically define a new hypernymy/entailment measure
 - E.g. based on vector norms

Using WordNet Embeddings in Neural Inference Models

- Not so easily.
- No extrinsic evaluation
 - Evaluated on their ability to complete missing edges from WordNet
- Typically define a new hypernymy/entailment measure
 - E.g. based on vector norms
- Either don't preserve distance/ don't preserve directionality

- Research question: what is the best way to encode WordNet knowledge?
 - Easily pluggable

- Research question: what is the best way to encode WordNet knowledge?
 - Easily pluggable
 - Generic solution for various models

- Research question: what is the best way to encode WordNet knowledge?
 - Easily pluggable
 - Generic solution for various models
 - Show actual improvement in end-tasks

Recap

Discussed the complementary nature of WordNet & word embeddings:

- Discussed the complementary nature of WordNet & word embeddings:
 - WordNet: specific semantic relations, limited coverage

- Discussed the complementary nature of WordNet & word embeddings:
 - WordNet: specific semantic relations, limited coverage
 - Word embeddings: general relatedness, broad coverage

- Discussed the complementary nature of WordNet & word embeddings:
 - WordNet: specific semantic relations, limited coverage
 - Word embeddings: general relatedness, broad coverage
- Showed a method for corpus-based learning of semantic relations:
 - $\blacksquare \ {\sf Word} \ {\sf embeddings} \to {\sf WordNet}$

- Discussed the complementary nature of WordNet & word embeddings:
 - WordNet: specific semantic relations, limited coverage
 - Word embeddings: general relatedness, broad coverage
- Showed a method for corpus-based learning of semantic relations:
 - $\blacksquare \ {\sf Word} \ {\sf embeddings} \to {\sf WordNet}$
- Next step:
 - WordNet \rightarrow Word embeddings (\rightarrow applications)

- Discussed the complementary nature of WordNet & word embeddings:
 - WordNet: specific semantic relations, limited coverage
 - Word embeddings: general relatedness, broad coverage
- Showed a method for corpus-based learning of semantic relations:
 - $\blacksquare \ {\sf Word} \ {\sf embeddings} \to {\sf WordNet}$
- Next step:
 - WordNet \rightarrow Word embeddings (\rightarrow applications)

Thank you!

References I

- [Baroni et al., 2012] Baroni, M., Bernardi, R., Do, N-Q., and Shan, C-c. (2012). Entailment above the word level in distributional semantics. In EACL, pages 23–32.
- [Faruqui et al., 2015] Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., and Smith, N. A. (2015). Retrofitting word vectors to semantic lexicons. NAACL.
- [Harris, 1954] Harris, Z. S. (1954). Distributional structure. Word, 10(2-3):146–162.
- [Hearst, 1992] Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text corpora. In ACL, pages 539–545.
- [Levy et al., 2015] Levy, O., Remus, S., Biemann, C., and Dagan, I. (2015). Do supervised distributional methods really learn lexical inference relations. NAACL.
- [Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111–3119.
- [Nakashole et al., 2012] Nakashole, N., Weikum, G., and Suchanek, F. (2012). Patty: a taxonomy of relational patterns with semantic types. In *EMNLP and CoNLL*, pages 1135–1145.
- [Nguyen et al., 2017] Nguyen, K. A., Schulte im Walde, S., and Vu, N. T. (2017). Distinguishing antonyms and synonyms in a pattern-based neural network. In EACL.
- [Nickel and Kiela, 2017] Nickel, M. and Kiela, D. (2017). Poincaré embeddings for learning hierarchical representations. Automated Knowledge Base Completion workshop.
- [Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. In *EMNLP*, pages 1532–1543.
- [Rajana et al., 2017] Rajana, S., Callison-Burch, C., Apidianaki, M., and Shwartz, V. (2017). Learning antonyms with paraphrases and a morphology-aware neural network. In *SEM, pages 12–21.
- [Roller and Erk, 2016] Roller, S. and Erk, K. (2016). Relations such as hypernymy: Identifying and exploiting hearst patterns in distributional vectors for lexical entailment. In Proceedings of EMNLP 2016.

References II

- [Roller et al., 2014] Roller, S., Erk, K., and Boleda, G. (2014). Inclusive yet selective: Supervised distributional hypernymy detection. In COLING, pages 1025–1036.
- [Shwartz and Dagan, 2016a] Shwartz, V. and Dagan, I. (2016a). path-based vs. distributional information in recognizing lexical semantic relations. In Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V), in COLING, Osaka, Japan.
- [Shwartz and Dagan, 2016b] Shwartz, V. and Dagan, I. (2016b). cogalex-v shared task: Lexnet integrated path-based and distributional method for the identification of semantic relations. In Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V), in COLING, Osaka, Japan.
- [Shwartz et al., 2016] Shwartz, V., Goldberg, Y., and Dagan, I. (2016). Improving hypernymy detection with an integrated path-based and distributional method. In ACL, pages 2389–2398.
- [Snow et al., 2004] Snow, R., Jurafsky, D., and Ng, A. Y. (2004). Learning syntactic patterns for automatic hypernym discovery. In *NIPS*.
- [Vendrov et al., 2015] Vendrov, I., Kiros, R., Fidler, S., and Urtasun, R. (2015). Order-embeddings of images and language. ICLR.
- [Vulić and Mrkšić, 2017] Vulić, I. and Mrkšić, N. (2017). Specialising word vectors for lexical entailment. arXiv preprint arXiv:1710.06371.
- [Weeds et al., 2014] Weeds, J., Clarke, D., Reffin, J., Weir, D., and Keller, B. (2014). Learning to distinguish hypernyms and co-hyponyms. In COLING, pages 2249–2259.