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Introduction and Motivation

What is “lexical knowledge”?

Knowledge about how words relate to each other.

Valuable for making inferences:
“pets are allowed” ⇒ “dogs are allowed”
“dogs are allowed” ?? “pets are allowed”
“restaurant in Tel Aviv” ⇒ “restaurant in Israel”
“restaurant in Israel” ?? “restaurant in Tel Aviv”
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Introduction and Motivation

Word Embeddings

First, let’s get this off the table: “why not just use word embeddings?”

Word embeddings are great in capturing semantic relatedness!
...but they mix all semantic relations together.
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Introduction and Motivation

Word Embeddings
To illustrate, take famous texts and replace nouns with their
word2vec neighbours:1

1More examples here: https://goo.gl/LJHzbi
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Acquiring Lexical Knowledge



Recognizing Semantic Relations
between Nouns



Acquiring Lexical Knowledge Semantic Relations between Nouns

The Hypernymy Detection Task

We first focused on hypernymy
The hyponym is a subclass of / instance of the hypernym
(cat, animal), (Google, company)

Given two terms, x and y, decide whether y is a hypernym of x
in some senses of x and y, e.g. (apple, fruit), (apple, company)
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Corpus-based Hypernymy Detection

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Prior Methods

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Distributional Approach

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Supervised Distributional Methods
Recognize the relation between x and y based on their separate
occurrences in the corpus

Represent (x, y) as a feature vector, based of the terms’
embeddings:

Concatenation ~x ⊕~y [Baroni et al., 2012]
Difference ~y − ~x [Roller et al., 2014, Weeds et al., 2014]

Train a classifier to predict whether y is a hypernym of x

Achieved very good results on common hypernymy detection
datasets
Is it a solved task?
Probably not. They don’t learn the relation between x and y, but
mostly that y is a prototypical hypernym [Levy et al., 2015].

e.g. that (x, fruit) or (x, animal) are always hypernyms
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Path-based Approach

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work
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work
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Path-based Approach

Recognize the relation between x and y based on their joint
occurrences in the corpus

Hearst Patterns [Hearst, 1992] - patterns connecting x and y may
indicate that y is a hypernym of x

e.g. X or other Y, X is a Y, Y, including X
Patterns can be represented using dependency paths:

apple is a fruit
NOUN VERB DET NOUN

NSUBJ

ATTR

DET
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Supervised Path-based Approach

Supervised method to recognize hypernymy [Snow et al., 2004]:

Features: all dependency paths that connected x and y in a
corpus:

0 0 ... 58 0 ... 97 0 ... 0
↑ ↑

X and other Y such Y as X

Trained a logistic regression classifier to predict hypernymy
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Path-based Approach Issues
The feature space is too sparse:

Similar paths share no information:
X inc. is a Y
X group is a Y
X organization is a Y

PATTY [Nakashole et al., 2012] generalized paths, by replacing a
word by:

Some of these generalizations are too general:
X is defined as Y ≈ X is described as Y via X is VERB as Y
X is defined as Y 6= X is rejected as Y
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Acquiring Lexical Knowledge Semantic Relations between Nouns

HypeNET: Integrated Path-based and Distributional Method
[Shwartz et al., 2016]

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work
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Acquiring Lexical Knowledge Semantic Relations between Nouns

First Step: Improving Path Representation

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”
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work
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work
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Path Representation (1/2)

1. Split each path to edges

X is a Y ⇒
‘X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<’ ⇒

‘X/NOUN/nsubj/>’ ‘be/VERB/ROOT/-’ ‘Y/NOUN/attr/<’

Each edge consists of 4 components:
dependent lemma / dependent POS / dependency label / direction

We learn embedding vectors for each component
Lemma embeddings are initialized with pre-trained word
embeddings

The edge’s vector is the concatenation of its components’ vectors:

be/VERB/ROOT/-

Generalization: similar edges should have similar vectors!
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Path Representation (2/2)

2. Feed the edges sequentially to an LSTM

X/NOUN/dobj/> define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

Use the last output vector as the path embedding
The LSTM may focus on edges that are more informative for the
classification task, while ignoring others
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Term-pair Classification

The LSTM encodes a single path
Each term-pair has multiple paths

Represent a term-pair as its averaged path embedding

Classify for hypernymy (path-based network):

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

~op

. . .

X/NOUN/dobj/> define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

(x, y) paths in Path LSTM Term-pair Classifier

average
pooling (x, y)

classification
(softmax)

~vxy

Embeddings:
lemma
POS
dependency label
direction
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Second Step: Integrating Distributional Information

Hypernymy Detection

path-based

neural
path-based

distributional

Integrated Model
“HypeNET”

prior
work

our
work
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Second Step: Integrating Distributional Information
Integrated network: add distributional information

Simply concatenate x and y’s word embeddings to the averaged
path

Classify for hypernymy (integrated network):

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

~op

. . .

X/NOUN/dobj/> define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

(x, y) paths in Path LSTM Term-pair Classifier

average
pooling

~vwx

(x, y)
classification
(softmax)

~vwy

~vxy

Embeddings:
lemma
POS
dependency label
direction
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Results

On a new dataset, built from knowledge resources

method precision recall F1

Path-based
Snow 0.843 0.452 0.589
Snow + GEN 0.852 0.561 0.676
HypeNET Path-based 0.811 0.716 0.761

Distributional Best Supervised 0.901 0.637 0.746
Combined HypeNET Integrated 0.913 0.890 0.901

Path-based:
Compared to Snow + Snow with PATTY style generalizations
Our method outperforms path-based baselines with improved
recall
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method precision recall F1
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Snow + GEN 0.852 0.561 0.676
HypeNET Path-based 0.811 0.716 0.761

Distributional Best Supervised 0.901 0.637 0.746
Combined HypeNET Integrated 0.913 0.890 0.901

The integrated method substantially outperforms both
path-based and distributional methods
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Analysis - Path Representation (1/2)

Identify hypernymy-indicating paths:
Baselines: according to logistic regression feature weights

HypeNET: measure path contribution to positive classification:

X/NOUN/nsubj/>be/VERB/ROOT/-Y/NOUN/attr/<

~op ~op

Term-pair Classifier

Path LSTM

~0

(x, y)
classification
(softmax)

~0

Take the top scoring paths according to softmax(W · [~0, ~op,~0])[1]

Vered Shwartz · Acquiring Lexical Semantic Knowledge · Talk at Google Research IL, November 9, 2017 25 / 51



Acquiring Lexical Knowledge Semantic Relations between Nouns

Analysis - Path Representation (1/2)

Identify hypernymy-indicating paths:
Baselines: according to logistic regression feature weights
HypeNET: measure path contribution to positive classification:

X/NOUN/nsubj/>be/VERB/ROOT/-Y/NOUN/attr/<

~op ~op

Term-pair Classifier

Path LSTM

~0

(x, y)
classification
(softmax)

~0

Take the top scoring paths according to softmax(W · [~0, ~op,~0])[1]

Vered Shwartz · Acquiring Lexical Semantic Knowledge · Talk at Google Research IL, November 9, 2017 25 / 51



Acquiring Lexical Knowledge Semantic Relations between Nouns

Analysis - Path Representation (2/2)

Snow’s method finds certain common paths:
X company is a Y
X ltd is a Y

PATTY-style generalizations find very general, possibly noisy
paths:

X NOUN is a Y
HypeNET makes fine-grained generalizations:

X association is a Y
X co. is a Y
X company is a Y
X corporation is a Y
X foundation is a Y
X group is a Y
...
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HypeNET makes fine-grained generalizations:
X association is a Y
X co. is a Y
X company is a Y
X corporation is a Y
X foundation is a Y
X group is a Y
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Recognizing Lexical Semantic Relations

Given two terms, x and y, decide what is the semantic relation
that holds between them (if any)

in some senses of x and y
e.g. both fruit and company are hypernyms of apple
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Acquiring Lexical Knowledge Semantic Relations between Nouns

LexNET - Multiple Semantic Relation Classification
[Shwartz and Dagan, 2016a, Shwartz and Dagan, 2016b]

Application of HypeNET for multiple relations:
hypernymy, meroynymy, co-hyponymy, event, attribute, synonymy,
antonymy, random

~vwx

...

(x, y)
classification
(softmax)

~vwy

~vxy

~vpaths(x,y)
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Results and Analysis

LexNET outperforms individual path-based and distributional
methods

Path-based contribution over distributional info is small when
lexical memorization is enabled
It is prominent in the following scenarios:

x or y are polysemous, e.g. mero:(piano, key).
the relation is not prototypical, e.g. event:(cherry, pick).
x or y are rare, e.g. hyper:(mastodon, proboscidean).

Thanks to the path representation, such relations are captured
even with a single meaningful co-occurrence of x and y
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Limitations

All methods and baselines are bad in recognizing synonyms and
antonyms.

Path-based:
Synonyms do not tend to occur together
Antonyms occur in similar paths as co-hyponyms:
hot and cold, cats and dogs

Distributional:
Synonyms and antonyms occur in similar contexts:
“go down in the elevator/lift”, “it is hot/cold today”

[Nguyen et al., 2017] used the method successfully to
distinguish only between synonyms and antonyms.
[Rajana et al., 2017] integrated morphological cues (negated
prefixes) to distinguish antonymy from other relations.
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Interpreting Noun-Compounds

Given a noun-compound w1w2, classify the relation between the
head w2 and the modifier w1

to one of a set of pre-defined relations
e.g. olive oil→ source, baby oil→ purpose

Similar yet different from semantic relation classification:
We are interested in the relation between olive and oil in the
context of the noun-compound, not in general
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Interpreting Noun-Compounds
Previous Approaches

Paraphrasing: Find joint corpus occurrences of w1 and w2, use
paraphrases as features

e.g.: [w2] obtained from [w1] (oil obtained from olives)

Problem: too sparse. e.g. [w2] extracted from [w1]

Distributional: Noun-compound representation as a function of
w1 and w2 distributional representations

Problem: memorizes common relations of w1 and w2 separately

(lexical memorization)
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Acquiring Lexical Knowledge Semantic Relations between Nouns

Interpreting Noun-Compounds
[Shwartz and Waterson, in preparation]

We applied LexNET to this task

LexNET improves performance:
On a lexical split dataset (i.e. not allowing lexical memorization)
On a new, challenging dataset we created

Performs worse than the baseline when lexical memorization is
possible
In general, the task is very difficult:

Lots of relations
Some relations have no indicative paths (e.g. non-compositional)
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Acquiring Lexical Knowledge Acquiring Predicate Paraphrases

Acquiring Predicate Paraphrases from News Tweets
[Shwartz et al., 2017]2

[a]0 introduce [a]1 [a]0 welcome [a]1
[a]0 appoint [a]1 [a]0 to become [a]1
[a]0 die at [a]1 [a]0 pass away at [a]1
[a]0 hit [a]1 [a]0 sink to [a]1

[a]0 be investigate [a]1 [a]0 be probe [a]1
[a]0 eliminate [a]1 [a]0 slash [a]1
[a]0 announce [a]1 [a]0 unveil [a]1
[a]0 quit after [a]1 [a]0 resign after [a]1
[a]0 announce as [a]1 [a]0 to become [a]1
[a]0 threaten [a]1 [a]0 warn [a]1
[a]0 die at [a]1 [a]0 live until [a]1

[a]0 double down on [a]1 [a]0 stand by [a]1
[a]0 kill [a]1 [a]0 shoot [a]1

[a]0 approve [a]1 [a]0 pass [a]1
seize [a]0 at [a]1 to grab [a]0 at [a]1

Binary verbal predicate
paraphrases

Extracted from Twitter
Ever-growing resource:
currently around 1.5M
paraphrases

2Available at https://github.com/vered1986/Chirps
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Acquiring Lexical Knowledge Acquiring Predicate Paraphrases

Assumptions
Main assumption: redundant news headlines of the same event
are likely to describe it with different words
[Shinyama et al., 2002, Barzilay and Lee, 2003].

This work: propositions extracted from tweets discussing news
events, published on the same day, that agree on their
arguments, are predicate paraphrases.
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Acquiring Lexical Knowledge Acquiring Predicate Paraphrases

Resource Collection

Collect
News
Tweets

Extract
Propositions

Generate
Paraphrase
Instances

Generate
Types

Resource
Release
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Acquiring Lexical Knowledge Acquiring Predicate Paraphrases

Resource Collection

Collect
News
Tweets

Extract
Propositions

Generate
Paraphrase
Instances

Generate
Types

Resource
Release

Query the Twitter Search API for news tweets in English

Amazon is buying Whole Foods in $13.7B

Amazon to acquire Whole Foods Market in deal valued at nearly $14 billion

· · ·
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Acquiring Lexical Knowledge Acquiring Predicate Paraphrases

Resource Collection

Collect
News
Tweets

Extract
Propositions

Generate
Paraphrase
Instances

Generate
Types

Resource
Release

Extract propositions from tweets using PropS
[Stanovsky et al., 2016]
Get binary verbal predicate templates, and apply argument
reduction [Stanovsky and Dagan, 2016]

[Amazon] buy [Whole Foods]
[Amazon] acquire [Whole Foods Market]

· · ·
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Acquiring Lexical Knowledge Acquiring Predicate Paraphrases

Resource Collection

Collect
News
Tweets

Extract
Propositions

Generate
Paraphrase
Instances

Generate
Types

Resource
Release

We consider two predicates as paraphrases if:
1. They appear on the same day.
2. Each of their arguments aligns with a unique argument in the
other predicate.

Two levels of argument matching: strict (exact match / short edit
distance) and loose (partial token matching / WordNet synonyms)

[a]0 buy [a]1 [a]0 acquire [a]1 Amazon Whole Foods
[a]0 buy [a]1 [a]0 acquire [a]1 Intel Mobileye

· · ·
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Acquiring Lexical Knowledge Acquiring Predicate Paraphrases

Resource Collection

Collect
News
Tweets

Extract
Propositions

Generate
Paraphrase
Instances

Generate
Types

Resource
Release

Heuristic score for a predicate paraphrase type:
p1 = [a]0 buy [a]1, p2 = [a]0 acquire [a]1

s(p1, p2) = count(p1, p2) ·
(
1+ days(p1,p2)

N

)
count(p1, p2) assigns high scores for frequent paraphrases
N - number of days since the resource collection begun
days(p1,p2)

N eliminates noise from two arguments participating in
different events on the same day

1) Last year when Chuck Berry turned 90; 2) Chuck Berry dies at 90
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Acquiring Lexical Knowledge Acquiring Predicate Paraphrases

Resource Collection

Collect
News
Tweets

Extract
Propositions

Generate
Paraphrase
Instances

Generate
Types

Resource
Release

We release our resource daily, with two files:
Instances: predicates, arguments and tweet IDs.
Types: predicate paraphrase pair types ranked in a descending
order according to the heuristic accuracy score.
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Using Lexical Knowledge
in Sentence-level Applications



Using Lexical Knowledge in Sentence-level Applications The Holy Grail: Recognizing Textual Entailment

Sentence-level Inference

RTE: given a premise p and a hypothesis h, can a reader reading
p infer that h is likely true? [Dagan et al., 2013].

Very small datasets, unsuitable for today’s neural models

NLI: natural language inference - 3-way classification for
entailment, neutral, and contradiction:

SNLI [Bowman et al., 2015]
MultiNLI [Williams et al., 2017]
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Using Lexical Knowledge in Sentence-level Applications The Holy Grail: Recognizing Textual Entailment

Knowledge Required for Sentence-level Inference

Lexical
Overlap

Lexical
Semantic
Relations

Context-
sensitive
Lexical
Inference

World
Knowledge Reasoning
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Knowledge Required for Sentence-level Inference

Lexical
Overlap

Lexical
Semantic
Relations

Context-
sensitive
Lexical
Inference

World
Knowledge Reasoning

Premise:
Three young women embrace while displaying baked goods in
kitchen.

Hypothesis:
Three young women embrace while they show off their baked goods
to potential buyers.
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Using Lexical Knowledge in Sentence-level Applications The Holy Grail: Recognizing Textual Entailment

Knowledge Required for Sentence-level Inference

Lexical
Overlap

Lexical
Semantic
Relations

Context-
sensitive
Lexical
Inference

World
Knowledge Reasoning

Premise:
Elderly bald man with a beard playing the guitar in a band.

Hypothesis:
There are people making music together.
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Using Lexical Knowledge in Sentence-level Applications The Holy Grail: Recognizing Textual Entailment

Knowledge Required for Sentence-level Inference

Lexical
Overlap

Lexical
Semantic
Relations

Context-
sensitive
Lexical
Inference

World
Knowledge Reasoning

Premise:
A performer standing on a platform in Times Square.

Hypothesis:
The performer is in New York.
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Using Lexical Knowledge in Sentence-level Applications The Holy Grail: Recognizing Textual Entailment

Knowledge Required for Sentence-level Inference

Lexical
Overlap

Lexical
Semantic
Relations

Context-
sensitive
Lexical
Inference

World
Knowledge Reasoning

Premise:
In a train station, an attractive woman in a blue skirt and jacket,
surrounded by her luggage, passes time with a crossword.

Hypothesis:
A woman is doing a crossword puzzle while waiting for a train.

Vered Shwartz · Acquiring Lexical Semantic Knowledge · Talk at Google Research IL, November 9, 2017 41 / 51



Using Lexical Knowledge in Sentence-level Applications The Holy Grail: Recognizing Textual Entailment

Existing Solutions

Recent neural models are good with lexical overlap and
reasonable with semantic relations.

Many papers claim to solve “reasoning”, but their success stems
from the dataset being too easy.

e.g. high correlation between lexical overlap and entailment
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reasonable with semantic relations.
Many papers claim to solve “reasoning”, but their success stems
from the dataset being too easy.

e.g. high correlation between lexical overlap and entailment

Vered Shwartz · Acquiring Lexical Semantic Knowledge · Talk at Google Research IL, November 9, 2017 42 / 51



Using Lexical Knowledge in Sentence-level Applications The Holy Grail: Recognizing Textual Entailment

Our Vision

Goal: improve sentence-level inference with lexical knowledge

Means: inject knowledge into neural models to combine the best
of both worlds
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Our Vision

P: An elderly man is drinking orange juice at a cafe.
H: An old man is sipping a beverage.

1. Extract propositions:

[man] drink [orange juice]

[man] be at [cafe]

[man] be [elderly]

Premise

[man] sip [beverage]

[man] be [old]

Hypothesis
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Our Vision

P: An elderly man is drinking orange juice at a cafe.
H: An old man is sipping a beverage.

2. Align arguments based on lexical semantic relations:

[man]1 drink [orange juice]2

[man]1 be at [cafe]4

[man]1 be [elderly]3

Premise

[man]1 sip [beverage]2

[man]1 be [old]3

Hypothesis
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Our Vision

P: An elderly man is drinking orange juice at a cafe.
H: An old man is sipping a beverage.

3. Align propositions based on argument and predicate entailment:

[man]1 drink [orange juice]2

[man]1 be at [cafe]4

[man]1 be [elderly]3

Premise

[man]1 sip [beverage]2

[man]1 be [old]3

Hypothesis
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Our Vision

P: An elderly man is drinking orange juice at a cafe.
H: An old man is sipping a beverage.

4. Make a sentence-level decision based on proposition alignment:

[man]1 drink [orange juice]2

[man]1 be at [cafe]4

[man]1 be [elderly]3

Premise

[man]1 sip [beverage]2

[man]1 be [old]3

Hypothesis

Entailment
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Limitations and Drawbacks

Difficult to show improvement on existing datasets
Current SOTA: SNLI - 90% accuracy, MultiNLI - 80% accuracy
Most models work on surface level, no external knowledge

Tools and knowledge introduce new errors:
Parsing
Proposition extraction
Automatically-extracted lexical knowledge
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