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Representing Phrases

Word representations are pretty much sorted out

Sentence with some [w1]

distributional 
hypothesis

neural 
magic

vw1
best

embeddings
ever

How to represent a phrase p = w1...wk?
Most straightforward:

Sentence with some [w1]

distributional 
hypothesis

neural 
magic

vw1
best

embeddings
ever

vw1 vw2 vwk, … ,, 𝑓 ( )
“The whole is greater than the sum of its parts”
1. Meaning shift
2. Implicit meaning
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Meaning Shift

A constituent word may be
used in a non-literal way

VPC meanings differ from
their verbs’ meanings
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Implicit Meaning

In noun compounds

In adjective-noun compositions
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In this talk

1. Testing Existing Text Representations
Can they handle the complexity of phrases?

2. Paraphrasing Noun-Compounds
A model for explicating noun compounds through paraphrases

3. Future Directions
Thoughts about the future of phrase representations
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Still a Pain in the Neck:
Evaluating Text Representations on Lexical Composition

Vered Shwartz and Ido Dagan

(in submission)



Can existing representations address these phenomena?
Probing Tasks

Simple tasks designed to test a single linguistic property
[Adi et al., 2017, Conneau et al., 2018]

Representation Minimal Model Prediction

SkipThoughts(s) What is s’s length?
InferSent(s) Is w in s?
... ...

We follow the same for phrases, with various representations
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Representations
Word Embeddings Sentence Embeddings Contextualized

Word Embeddings
word2vec SkipThoughts ELMo
GloVe InferSent∗ OpenAI GPT
fastText GenSen∗ BERT

- vector per word - vector per sentence - vector per word
- context-agnostic - context-sensitive

- named after characters
from Sesame Street

∗ supervised
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Tasks and Results

Phrase Type Noun Compound Literality Noun Compound Relations
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1. Phrase Type
Authorities meted out summary justice in cases as this
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2. Noun Compound Literality

The crash course in litigation made me a better lawyer

Non-Literal Literal
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(1) word embeddings < sentence embeddings < contextualized; (2) Far from humans
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2. Noun Compound Literality
Analysis

ELMo OpenAI GPT BERT

A search team located the [crash]L site and found small amounts of human remains.

landfill body archaeological
wreckage place burial
Web man wreck
crash missing excavation
burial location grave

After a [crash]N course in tactics and maneuvers, the squadron was off to the war...

crash few short
changing while successful
collision moment rigorous
training long brief
reversed couple training

(1) Literal: fewer errors
(2) BERT > ELMo, both reasonable
(3) OpenAI GPT errs due to uni-directionality
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2. Noun Compound Literality
Analysis

ELMo OpenAI GPT BERT

Growing up with a [silver]N spoon in his mouth, he was always cheerful...

silver mother wooden
rubber father greasy
iron lot big
tin big silver
wooden man little

Things get tougher when both constituent nouns are non-literal!
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3. Noun Compound Relations

The township is served by three access roads .

Road that makes access possible

Road forecasted for access season
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(1) word embeddings < sentence embeddings < contextualized; (2) Far from humans;
(3) Open AI GPT fails
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3. Noun Compound Relations
Analysis

stage area

No clear signal from BERT. Capturing implicit information is challenging!
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4. Adjective-Noun Relations

. . . he receives warm support from his students ...

emotionality

temperature
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Best model performs only slightly better than majority
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5. Adjective-Noun Entailment
Most people die in the class to which they were born→

Most people die in the social class to which they were born
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(1) Bad performance for all models
(2) Best: sentence embeddings trained on RTE
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6. Verb-Particle Classification

We did get on together Which response did you get on that?
VPC Non-VPC

0

50

100

M
aj
or
ity

72.3

w
or
d2
ve
c

68.6

Gl
oV
e

67.9

fa
st
Te
xt

70

Sk
ip
Th
ou
gh
ts

68.6

In
fe
rS
en
t

67.9

Ge
nS
en

65.7

EL
M
o

76.4

O
pe
nA
IG
PT

71.4

BE
RT

75

H
um
an

82

Ac
cu
ra
cy

Word Embeddings Sentence Embeddings Contextualized

Similar performance for all models.
Is the good performance merely due to label imbalance?
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6. Verb-Particle Classification
Analysis

Weak signal from ELMo. Mostly performs well due to label imbalance.
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Revealing Implicit Noun-Compound Relations
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Interpreting Noun-Compounds

Noun compounds are “text compression devices” [Nakov, 2013]

We’re pretty good at decompressing them, even when we see
them for the first time

What is a “parsley cake”?

cake eaten on a parsley?

cake with parsley?

cake for parsley?

... from http://www.bazekalim.com
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Generalizing Existing Knowledge

What can cake be made of?

Parsley (sort of) fits into this distribution
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Noun-Compound Paraphrasing
Given a noun-compound w1w2, express the relation between the
head w2 and the modifier w1 with multiple prepositional and verbal
paraphrases [Nakov and Hearst, 2006]

olive oil

apple cake

ground attack

[w2] extracted from [w1]

[w2] made of [w1]

[w2] from [w1]

boat whistle

sea bass

[w2] located in [w1]

[w2] live in [w1]

game room

service door

baby oil

[w2] used for [w1]

[w2] for [w1]
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Prior Methods (1/2)

Based on constituent co-occurrences: “cake made of apple”

Problems:
1. Many unseen compounds, no paraphrases in the corpus

rare: parsley cake or highly lexicalized: ice cream

2. Many compounds with just a few paraphrases
Can we infer “cake containing apple” given “cake made of apple”?

Prior work provides partial solutions to either (1) or (2)
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Prior Methods (2/2)

1. MELODI [Van de Cruys et al., 2013]:
Represent NC using compositional distributional representations

Predict paraphrase templates given NC vector
Generalizes for similar unseen NCs, e.g. pear tart

2. IIITH [Surtani et al., 2013]:
Learn “is-a” relations between paraphrases:
e.g. “[w2] extracted from [w1]” ⊂ “[w2] made of [w1]”

Our solution: multi-task learning to address both problems
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Multi-task Reformulation

Training example {w1 = apple, w2 = cake, p = “[w2] made of [w1]”}

1. Predict a paraphrase p for a given NC w1w2:
What is the relation between apple and cake?

2. Predict w1 given a paraphrase p and w2:
What can cake be made of?

3. Predict w2 given a paraphrase p and w1:
What can be made of apple?
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Main Task (1): Predicting Paraphrases
What is the relation between apple and cake?

(23) made

(28) apple

(4145) cake
...

(7891) of

(1) [w1]

(2) [w2]

(3) [p]

(78) [w2] containing [w1]
...

(131) [w2] made of [w1]
...

[p]cake apple

MLPp

p̂i = 78

Encode placeholder [p] in “cake [p] apple” using biLSTM

Predict an index in the paraphrase vocabulary
Fixed word embeddings, learned placeholder embeddings
(1) Generalizes NCs: pear tart expected to yield similar results
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Helper Task (2): Predicting Missing Constituents
What can cake be made of?

(23) made

(28) apple

(4145) cake
...

(7891) of

(1) [w1]

(2) [w2]

(3) [p]

ofcake made [w1]

MLPw

ŵ1i = 28

Encode placeholder in “cake made of [w1]” using biLSTM

Predict an index in the word vocabulary
(2) Generalizes paraphrases:

“[w2] containing [w1]” expected to yield similar results
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Evaluation
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Evaluation Setting

Available dataset: SemEval 2013 task 4 [Hendrickx et al., 2013]
Semi-supervised: infer templates of POS tags (e.g. “[w2] verb
prep [w1]”) from training data, use Google N-grams to generate
training data

A ranking rather than a retrieval task
Systems expected to return a ranked list of paraphrases for each
noun compound
We implemented a ranking model that re-ranks the top k
paraphrases retrieved by the model

Evaluation: based on n-gram overlap, provided evaluation script
Gold paraphrase score: how many annotators suggested it?
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Results
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Error Analysis
False Positive

(1)

44%

(2)
15%

(3)

14%

(4)

8%

(5)

5%
(6)

14%

1. Valid, missing from gold-standard
(“discussion by group”)

2. Too specific
(“life of women in community”)

3. Incorrect prepositions
E.g., n-grams don’t respect syntactic
structure: “rinse away the oil from
baby ’s head”⇒ “oil from baby”

4. Syntactic errors
5. Borderline grammatical
(“force of coalition forces”)

6. Other errors
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4. Syntactic errors
5. Borderline grammatical
(“force of coalition forces”)

6. Other errors
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Error Analysis
False Negative

(1)

30%
(2)

25%

(3)

10%

(4)

35%

1. Long paraphrase (n > 5)

2. Determiners
(“mutation of a gene”)

3. Inflected constituents
(“holding of shares”)

4. Other errors
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Future Directions



Can we learn phrase meanings like humans do?

[Cooper, 1999]: how do L2 learners process idioms?
Infer from context: 28% (57% success rate)
Rely on literal meaning: 19% (22% success rate)
...
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Inferring from context

We need “extended” contexts
[Asl, 2013]: more successful idiom
interpretation with extended
contexts (stories)

We need richer context modeling
Characters in the story
Relationships between them
Dialogues
...
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Relying on literal meaning

“Robert knew he was robbing the cradle by dating a sixteen-year-old girl”

We need world knowledge
“Cradle is something you put the
baby in”

We need to be able to reason
“You’re stealing a child from a
mother”

“So robbing the cradle is like dating
a really young person”

[Cooper, 1999]
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Recap

1. Testing Existing Pre-trained Representations
Contextualized word embeddings provide better phrase
representations, but there is still a long way to go

2. Paraphrasing Noun-Compounds
Representations of compositional phrases can rely upon and
generalize existing knowledge about similar concepts

3. Future Directions
To represent phrases like humans do, we need better context and
world knowledge modeling

Thank you!
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