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Motivation

* Question answering:

Question: “When was Friends first aired?”
Text: “Friends was first broadcast in 1994”

Answer: 1994




Motivation (cont.)
* Query Expansion:

Query: “Actors engaged in scientology”

Results:

www_dailymail.co uk/.. /PIERS-MORGAN-Tom-Cruise-ditch-vile-cult-Scie_ .
Apr 2, 2015 - PIERS MORGAMN: | wanted to be Tom Cruise. As a fresh-faced, 21-year-
old, | watched Top Gun a dozen times at my local movie theater in ..

iJohn Travolta Says Scientology Is A Target Because It ...
www_huffingtonpost.com/___/john-travolta-scientology-target n_ 710268 . ~
Apr 20, 2015 - During an interview with "Good Moming America” Monday, John
Travolta was asked why there is so much intrigue and interest surrounding the ..
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Lexical Inference

* Adirectional semantic relation from one term (x) to another (y)

* Encapsulates various relations, for example:
* Synonymy: (elevator, lift)
* Isa/hypernymy: (apple, fruit), (Barack Obama, president)
Hyponymy: (fruit, apple)
Meronymy: (London, England), (chest, body)
Holonymy: (England, London), (body, chest)
Causality: (flu, fever)



Lexical Inference

* Adirectional semantic relation from one term (x) to another (y)

* Encapsulates various relations, for example:
* Synonymy: (elevator, lift)
* Isa/hypernymy: (apple, fruit), (Barack Obama, president)
Hyponymy: (fruit, apple)
Meronymy: (London, England), (chest, body)
Holonymy: (England, London), (body, chest)
Causality: (flu, fever)

Each relation is used to infer y from x (x — y) in certain contexts:
 |ateanapple — latea fruit
e | hate fruit — | hate apples
* |visited London — lvisited England
e |left London -+ |left England (What if | left to Manchester?)



Outline

* Learning to Exploit Structured Resources for Lexical Inference

* Improving Hypernymy Detection with an Integrated Path-based and
Distributional Methods

e Future Work
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Resource-based methods for lexical inference

* Based on knowledge from hand-crafted resources T
* Dictionaries wcarnwore \%&\
e Taxonomies (e.g. WordNet) w o
caninu? feline,

>
B

&
ﬁﬁ?/‘ ¥ il
* Resources specify the lexical-semantic ® =)
relation between terms )

The decision is based on the paths between x and y
* Need to predefine which relations are relevant for the task
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Resource-based methods for lexical inference

e High precision

e Limited recall:
* WordNet is small
* Not up-to-date
Recent terminology is missing:
e Contains mostly common nouns
For example, it can’t tell us that IS a



Community-built Resources

partner_of

* Huge ; oo
* Frequently updated :

» Contain proper-names

U

6,000,000 entities in English 4,500,000 entities 10,000,000 entities in English
1,200 different properties 1,367 different properties 70 different properties

Lenovo
Yoga

Y
1\ Ia Y

o
| |
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Utilizing Community-built Resources

* |[dea: extend WordNet-based method using these resources

* Problem: utilizing these resources manually is infeasible
* thousands of relations to select from!

e Solution: learn to exploit these resources
* Using genetic search



Our Method

* Training: learn which properties are indicative
of given lexical inference relation (e.g. “is a”)

Radio performero instance_ofv rock
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Our Method

* Training: learn which properties are indicative
of given lexical inference relation (e.g. “is a”)

Radio performer® instance_ofv rock
Gaga U band

* Inference: x — y if there is a path of indicative edges from x to y




Results

* We replicate WordNet-based methods for common nouns
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Results

* We replicate WordNet-based methods for common nouns
* We extract high-precision inferences including proper-names:
Lady Gaga — person

Q

band
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Results

e Non-trivial resource relations are learned:

occupation Daniel Radclif fe — actor

gender Louisa May Alcott - woman

position in sports team Jason Collins — center




Results

e Non-trivial resource relations are learned:

occupation Daniel Radclif fe — actor
gender Louisa May Alcott - woman
position in sports team Jason Collins — center

* We complement corpus-based methods in high-precision scenarios
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Hypernymy Detection

* We focus on detecting hypernymy relations, which are common in
inference:



Outline — Hypernymy Detection

e Prior Methods
e Qur Method

e Evaluation



Outline — Hypernymy Detection

e Our Method

e Evaluation



Corpus-based methods for hypernymy detection

e Consider the statistics of term occurrences in a large corpus



Corpus-based methods for hypernymy detection

e Consider the statistics of term occurrences in a large corpus

* Roughly divided to two sub-approaches:
 Distributional approach
* Path-based approach



Distributional approach

* Distributional Hypothesis (Harris, 1954):
Words that occur in similar contexts tend to have similar meanings

* e.g. and will both appear next to down, up, building, floor, and stairs
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* Distributional Hypothesis (Harris, 1954):
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* Measuring word similarity:
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Distributional approach

* Distributional Hypothesis (Harris, 1954):
Words that occur in similar contexts tend to have similar meanings

* e.g. and will both appear next to down, up, building, floor, and stairs

* Measuring word similarity:
e Represent words as distributional vectors

0 0 12 0 43 0 0
! !
down up

* Measure the distance between the vectors (e.g. cosine similarity)
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Unsupervised Distributional Methods

 But...

* Word similarity !=lexical inference
* Antonyms are similar
* Mutually exclusive terms are also similar

* Directional similarity

* Inclusion: If x — y, then the contexts of x are expected to be possible
contexts for y (Weeds and Weir, 2003; Kotlerman et. al, 2010)

* Generality: the most typical linguistic contexts of a hypernym are less
informative than those of its hyponyms (Santus et al., 2014; Rimell, 2014).



Supervised Distributional Methods

* Based on Word Embeddings

e Distributional vectors are
high-dimensional and sparse
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Supervised Distributional Methods

* Based on Word Embeddings

e Distributional vectors are
high-dimensional and sparse

* Word embeddings are dense
and low-dimensional - more efficient
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Supervised Distributional Methods

15
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Supervised Distributional Methods

* Represent (X, y) as a combination of each term embeddings vector:

 Concatenation x @y (Baroni et al., 2012)
« Difference y — x (Roller et al., 2014; Fu et al.,2014; Weeds et al., 2014)
e Similarity X - y

* Train a classifier over these vectors to predict entailment / hypernymy
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Supervised Distributional Methods

* Represent (X, y) as a combination of each term embeddings vector:

 Concatenation X @y (Baroni et al., 2012)
« Difference y — x (Roller et al., 2014; Fu et al.,2014; Weeds et al., 2014)
e Similarity X - y

* Train a classifier over these vectors to predict entailment / hypernymy
* Achieved high performance

 However, these methods don’t learn anything about the relation
between x and y — they only learn characteristics of each term (Levy
et al., 2015).
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Path-based approach

* Based on joint occurrences of x and y

* |exico-syntactic paths = dependency paths or textual patterns,
with POS tags and lemma

e Some patterns indicate semantic relations between terms:
* e.g. indicates that X is of type Y

* If x and y hold a certain semantic relation, they are expected to occur
in the corpus as the arguments of such patterns

* e.g.

other fruit
ADT NOUN



Hearst Patterns

e Hearst (1992) - automatic acquisition of hypernyms



Hearst Patterns

e Hearst (1992) - automatic acquisition of hypernyms

* Found a few indicative patterns based on occurrences of known
hypernyms in the corpus:

Y suchas X
suchY as X

X or otherY

X and otherY

Y including X

Y, especially X



Snow et al. (2004)
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* Predict whether y is a hypernym of x
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Snow et al. (2004)

e Supervised method to recognize hypernymy
* Predict whether y is a hypernym of x
e Supervision: set of known hyponym/hypernym pairs
* Features: all dependency paths between x and y in a corpus

0 0 12 0 43 0
“x and other y” “suchyas x”

Successfully restores Hearst patterns (and adds many more)
* Used for analogy identification, taxonomy creation, etc.
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* The feature space is too sparse:
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Problem with lexico-syntactic paths

* The feature space is too sparse:

X city 18 a
NOUN iS ].Elfld VERB DET
company
village

band
NOUN

 Some words along the path don’t change the meaning



PATTY

e Ataxonomy created from free text (Nakashole et al., 2012)
* The relation between terms is based on the dependency paths between them
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PATTY

e Ataxonomy created from free text (Nakashole et al., 2012)
* The relation between terms is based on the dependency paths between them

e Paths are generalized —a word might be replaced by:
* its POS tag
* a wild card
* its ontological type

place




Needed: better path representation

e |dea: learn semantic generalizations of paths
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Needed: better path representation

e |dea: learn semantic generalizations of paths
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e Prior Methods
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LSTM-based hypernymy detection

Embeddings:
() lemma
@ POS
@ dependency label
@ direction
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* Process each path edge-by-edge, using an LSTM




LSTM-based hypernymy detection

Embeddings:
lemma
@ POS
@ dependency label
@ direction

A

A

A

/

[ 000 |
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000
N/attr g
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[ 000 |

000 |

000 |

000

Path LSTM

X/NOUN/dob] > define/VERB/ROOT < as/ADP/prep < Y/NOUN/pobj

—————

average ' |
pooling

—————

Term-pair classifier

(x,y)
classification

(softmax)

* Process each path edge-by-edge, using an LSTM
* The encoder may focus on edges that are more informative for
the classification task, while ignoring others




LSTM-based hypernymy detection

Embeddings:
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Lemma vector
Part-of-speech vector

Dependency label vector

Direction vector




LSTM-based hypernymy detection

Embeddings:
o |
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¥X/NOUN/dobj > define/VERB/ROOT < as/ADP/prep < Y/NOUN/pobj INO ?Fu;y:
Path LSTM Term-pair classifier

Represent each edge as a concatenation of:

* Lemma vector
* Part-of-speech vector

 Dependency label vector

* Direction vector

Learn embeddings of each component




LSTM-based hypernymy detection

Embeddings: il
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e Use the LSTM output as the path vector



LSTM-based hypernymy detection

Embeddings: (=3
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e Use the LSTM output as the path vector
e Each term-pair has multiple paths




LSTM-based hypernymy detection

Embeddings: il
lemma I O I"‘u-‘.r:
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Path LSTM Term-pair classifier

e Use the LSTM output as the path vector
e Each term-pair has multiple paths
 Compute the averaged path embedding



LSTM-based hypernymy detection

Embeddings:
lemma
@ POs
@ dependency label S >
@ direction \
O
[ 000 | 000 | 000 O
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Term-pair classifier

(x,y)
classification

(softmax)

e Each pair (x, y) is represented using the concatenation of:
* x's embedding vector

* the averaged path vector

* v'sembedding vector




LSTM-based hypernymy detection

Embeddings:
() lemma
@ POS
@ dependency label S >
@ direction \ (x, )
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* This vector is used as the input of a network that predicts whethery
is @ hypernym of x
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e Prior Methods
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Experimental Settings

* Dataset:
e Positive instances - hypernymy relations from resources:

resource relations

WordNet | instance hypernym, hypernym

DBPedia type

Wikidata subclass of, instance of
Yago subclass of

* Negative instances — other relations from these resources
* Filtering: pairs must occur in the corpus in at least 2 different paths
e Similar to Snow et al. (2004)



Experimental Settings

* Train / Test / Validation split:
 Random (70% - 25% - 5%)
e Lexical:

» Avoiding lexical memorization (Levy et al., 2015)
 Distinct vocabulary in each set



Results

random split

lexical split

method precision | recall F precision | recall Fy
Snow 0.843 0.452 | 0.589 0.760 0.438 | 0.556
Path-based Snow + Gen 0.852 0.561 | 0.676 0.759 0.530 | 0.624
LSTM (this paper) 0.811 0.716 | 0.761 0.691 0.632 | 0.660
Distributional SLQS (Santus et al., 2014) 0.246 0.213 | 0.228 0.270 0.222 | 0.243
Best supervised (concatenation) 0.901 0.637 | 0.746 0.754 0.551 | 0.637
Combined LSTM-Integrated (this paper) 0.913 0.890 | 0.901 0.809 0.617 | 0.700
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Results

random split

lexical split

method precision | recall F precision | recall Fy
Snow 0.843 0.452 | 0.589 0.760 0.438 | 0.556
Path-based Snow + Gen 0.852 0.561 | 0.676 0.759 0.530 | 0.624
LSTM (this paper) 0.811 0.716 | 0.761 0.691 0.632 | 0.660
Distributional SLQS (Santus et al., 2014) 0.246 0.213 | 0.228 0.270 0.222 | 0.243
Best supervised (concatenation) 0.901 0.637 | 0.746 0.754 0.551 | 0.637
Combined LSTM-Integrated (this paper) 0.913 0.890 | 0.901 0.809 0.617 | 0.700

e Path-based:

* Our method outperforms the baselines

* The generalizations yield improved recall

* The combined method outperforms both path-based and distributional methods
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Analysis — Path Representation

* Snow’s method finds certain common paths:

X companyisayY
XltdisayY

* PATTY-style generalizations find very general, possibly noisy paths:
XNOUNisaY

* Our method makes fine-grained generalizations:
X (association|co.|company|corporation| foundation|group|inc. |international |limited|ltd.)isa Y



Future Work
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The Next Challenge

* Recognizing lexical inferences within context:

| hate apple so much.

Like - Comment - Share

: =1 ‘=the food or the computer?
o Like Reply 51

» Detecting the correct sense of the term (e.g. apple) within the given context

* Basing the entailment decision on the sentence and the semantic relation:
e |ateanapple=>1atea fruit
* | hate fruit => | hate apples
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First step: fine-grained semantic relations

* |dea: extend our hypernymy-detection method to support multi-class
classification
* e.g. WordNet relations: hypernym, meronym, antonym, synonym, ...
* Natural logic relations (MacCartney and Manning, 2007):

= Equivalence is the same as

C | Forward Entailment is more specific than

7 | Reverse Entailment is more general than

) Negation is the exact opposite of

| Alternation is mutually exclusive with

~ Other-Related is related in some other way to
# Independence is not related to

* BLESS relations: coord, mero, hyper, attr, event, random



Thanks!
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