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Representing Phrases

Word representations are pretty much sorted out

Sentence with some [w1]

distributional 
hypothesis

neural 
magic

vw1
best

embeddings
ever

How to represent a phrase p = w1...wk?
Most straightforward:

Sentence with some [w1]

distributional 
hypothesis

neural 
magic

vw1
best

embeddings
ever

vw1 vw2 vwk, … ,, 𝑓 ( )
“The whole is greater than the sum of its parts”
1. Meaning shift
2. Implicit meaning
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Meaning Shift

A constituent word may be
used in a non-literal way

VPC meanings differ from
their verbs’ meanings
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Implicit Meaning

In noun compounds

In adjective-noun compositions
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Can existing representations address these phenomena?
Probing Tasks

Simple tasks designed to test a single linguistic property
[Adi et al., 2017, Conneau et al., 2018]

Representation Minimal Model Prediction

SkipThoughts(s) What is s’s length?
InferSent(s) Is w in s?
... ...

We follow the same for phrases, with various representations
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Representations
Word Embeddings Sentence Embeddings Contextualized

Word Embeddings
word2vec SkipThoughts ELMo
GloVe InferSent∗ OpenAI GPT
fastText GenSen∗ BERT

- vector per word - vector per sentence - vector per word
- context-agnostic - context-sensitive

- named after characters
from Sesame Street

∗ supervised
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Tasks and Results

Phrase Type Noun Compound Literality Noun Compound Relations
FM1 FN1
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Adjective-Noun Relations Adjective-Noun Entailment Verb-particle Classification
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Noun Compound Literality

The crash course in litigation made me a better lawyer

Non-Literal Literal
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(1) word embeddings < sentence embeddings < contextualized; (2) Far from humans
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Noun Compound Literality
Analysis

ELMo OpenAI GPT BERT

A search team located the [crash]L site and found small amounts of human remains.

landfill body archaeological
wreckage place burial
Web man wreck
crash missing excavation
burial location grave

After a [crash]N course in tactics and maneuvers, the squadron was off to the war...

crash few short
changing while successful
collision moment rigorous
training long brief
reversed couple training

(1) Literal: fewer errors
(2) BERT > ELMo, both reasonable
(3) OpenAI GPT errs due to uni-directionality
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Noun Compound Literality
Analysis

ELMo OpenAI GPT BERT

Growing up with a [silver]N spoon in his mouth, he was always cheerful...

silver mother wooden
rubber father greasy
iron lot big
tin big silver
wooden man little

Things get tougher when both constituent nouns are non-literal!
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Noun Compound Relations

The township is served by three access roads .

Road that makes access possible

Road forecasted for access season
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(1) word embeddings < sentence embeddings < contextualized; (2) Far from humans;
(3) Open AI GPT fails
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Noun Compound Relations
Analysis

stage area

No clear signal from BERT. Capturing implicit information is challenging!

Vered Shwartz · How well can neural text representations address multi-word units? · January 2019 13 / 21



Verb-Particle Classification

We did get on together Which response did you get on that?
VPC Non-VPC
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Similar performance for all models.
Is the good performance merely due to label imbalance?
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Verb-Particle Classification
Analysis

Weak signal from ELMo. Mostly performs well due to label imbalance.
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Future Directions



Can we learn phrase meanings like humans do?

[Cooper, 1999]: how do L2 learners process idioms?
Infer from context: 28% (57% success rate)
Rely on literal meaning: 19% (22% success rate)
...
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Inferring from context

We need “extended” contexts
[Asl, 2013]: more successful idiom
interpretation with extended
contexts (stories)

We need richer context modeling
Characters in the story
Relationships between them
Dialogues
...
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Relying on literal meaning

“Robert knew he was robbing the cradle by dating a sixteen-year-old girl”

We need world knowledge
“Cradle is something you put the
baby in”

We need to be able to reason
“You’re stealing a child from a
mother”

“So robbing the cradle is like dating
a really young person”

[Cooper, 1999]
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