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1. Meaning shift
2. Implicit meaning
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Meaning Shift

m A constituent word may be
used in a non-literal way
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Meaning Shift

= A constituent word may be m VPC meanings differ from
used in a non-literal way their verbs’ meanings
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Implicit Meaning

= In noun compounds

i
@_you_had_onetjobds

Vered Shwartz - How well can neural text representations address multi-word units? « January 2019 5/21



Implicit Meaning

= In noun compounds = In adjective-noun compositions

A simple substance is any sample of one of the known elements found in the
Periodic Table of the Elements. Elements are made up of atoms of the same kind,
and cannot be decomposed by any chemical means into any other simpler
elements.

@_you_had_onetjob,
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Can existing representations address these phenomena?
Probing Tasks

m Simple tasks designed to test a single linguistic property
[Adi et al., 2017, Conneau et al., 2018]

[ Representation ] [ Minimal Model ]- [ Prediction ]
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Can existing representations address these phenomena?
Probing Tasks

m Simple tasks designed to test a single linguistic property
[Adi et al., 2017, Conneau et al., 2018]

[ Representation ] [ Minimal Model ]- [ Prediction ]

SkipThoughts(s) What is s’s length?
InferSent(s) Iswins?
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Can existing representations address these phenomena?
Probing Tasks

Simple tasks designed to test a single linguistic property
[Adi et al., 2017, Conneau et al., 2018]

[ Representation ] [ Minimal Model ]- [ Prediction J

SkipThoughts(s) What is s’s length?
InferSent(s) Iswins?

We follow the same for phrases, with various representations
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Representations
Word Embeddings

Sentence Embeddings

Contextualized
Word Embeddings

word2vec
GloVe
fastText

SkipThoughts
InferSent*
GenSen*

ELMo
OpenAl GPT
BERT

- vector per word
- context-agnostic

* supervised

- vector per sentence

- vector per word

- context-sensitive

- named after characters
from Sesame Street




Tasks and Results

Phrase Type Noun Compound Literality Noun Compound Relations
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Noun Compound Literality

The crash course in litigation made me a better lawyer
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Noun Compound Literality
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SkipThoughts

Word Embeddings ~ Sentence Embeddings Contextualized

(1) word embeddings < sentence embeddings < contextualized; (2) Far from humans
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Noun Compound Literality

Analysis
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A search team located the [crash]; site and found small amounts of human remains.
landfill body archaeological
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Web man wreck
crash missing excavation
burial location grave

After a [crash]y course in tactics and maneuvers, the squadron was off to the war...

crash few short
changing while successful
collision moment rigorous
training long brief

reversed couple training
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Noun Compound Literality

Analysis
ELMo OpenAl GPT BERT
A search team located the [crash]; site and found small amounts of human remains.
landfill body archaeological
wreckage place burial
Web man wreck
crash missing excavation
burial location grave

After a [crash]y course in tactics and maneuvers, the squadron was off to the war...

crash few short
changing while successful
collision moment rigorous
training long brief
reversed couple training

(1) Literal: fewer errors
(2) BERT > ELMo, both reasonable
(3) OpenAl GPT errs due to uni-directionality



Noun Compound Literality
Analysis

ELMo OpenAl GPT BERT

Growing up with a [silver]y spoon in his mouth, he was always cheerful...

silver

silver

Things get tougher when both constituent nouns are non-literal!



Noun Compound Relations

[Road forecasted for access season]

[Road that makes access possible]

The township is served by three access roads
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Word Embeddings ~ Sentence Embeddings Contextualized

(1) word embeddings < sentence embeddings < contextualized; (2) Far from humans;

(3) Open Al GPT fails
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Noun Compound Relations
Analysis
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No clear signal from BERT. Capturing implicit information is challenging!
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Verb-Particle Classification

We did get on together Which response did you get on that?
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Verb-Particle Classification

VPC Non-VPC

We did get on together Which response did you get on that?
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Similar performance for all models.
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Verb-Particle Classification

VPC Non-VPC

We did get on together Which response did you get on that?
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Similar performance for all models.
Is the good performance merely due to label imbalance?
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Verb-Particle Classification
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Weak signal from ELMo. Mostly performs well due to label imbalance.
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Future Directions



Can we learn phrase meanings like humans do?

[Cooper, 1999]: how do L2 Llearners process idioms?

Infer from context: 28% (57 % success rate)
Rely on literal meaning: 19% (22% success rate)



Inferring from context

Furious Meghan Markle says she won't fall for
dad'’s ‘crocodile tears’ after he claimed ‘she’d be
better off if he were dead’

FURIOUS Meghan Markle has sald she won't fall for her dad's “crocodile tears" after he claimed "she'd
be better off If he were dead".

The Duchess of Sussex reportedly told pals Thomas Markle is using "emotional blackmail” to try and
manipulate her but she's had "enough already".

We need “extended” contexts
[Asl, 2013]: more successful idiom
interpretation with extended
contexts (stories)
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Inferring from context

Furious Meghan Markle says she won't fall for “
dad's ‘crocodile tears: aftal he claimed ‘she'd be We need "extended” contexts

:nexotutsi[g:ff Ife'n:sesa:vs::j‘:?:nde:aad‘s “crocodile tears" after he claimed "she'd [AS I” 2 O 1 3] m O re S u cceSSfu l id I O m
interpretation with extended
contexts (stories)

The Duchess of
manipulate her

eportedly told pals Thomas Markle is

s had "enough already".

We need richer context modeling
m Characters in the story
m Relationships between them
m Dialogues
m ...
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Relying on literal meaning

“Robert knew he was robbing the cradle by dating a sixteen-year-old girl”

We need world knowledge
“Cradle is something you put the
baby in”




Relying on literal meaning

“Robert knew he was robbing the cradle by dating a sixteen-year-old girl”

We need world knowledge
“Cradle is something you put the
baby in”

We need to be able to reason
“You're stealing a child from a
mother”

“So robbing the cradle is like dating
a really young person”

[Cooper, 1999]
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