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I baked a chocolate cake but accidentally 
used regular instead of self-rising flour.

The cake was soft and tasty.

The cake turned out flat.

The cake was difficult to cut.

I baked a bad chocolate cake.
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I baked a chocolate cake but accidentally 
used regular instead of self-rising flour.

The cake was soft and tasty.

The cake turned out flat.

The cake was difficult to cut.

I baked a bad chocolate cake.
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Limitations of neural NLI Models
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#1 Learning Paradigm

Annotation artifacts, hypothesis-only baseline  
(Gururangan, Swayamdipta, et al.,  2018;  Poliak et al., 2018; Tsuchiya, 2018)

🤖: contradiction (98.2%)

p: I only had a soup but it was very filling.
h: I didn't eat a salad.

NLI models rely on syntactic heuristics 
(McCoy et al., 2019)
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Prediction: Entailment (94.1%)
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Breaking NLI Systems with Sentences that Require Simple Lexical Inferences. Max Glockner, Vered Shwartz, and Yoav Goldberg. ACL 2018
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Prediction: Entailment (94.1%)

(ELMo-based Decomposable Attention)

2018

•Errors: similar but mutually-exclusive words 
•Accuracy increases with frequency in training set  
Limited generalization ability!  

•Similar findings in “NLI stress tests” (Naik et al., 2018) 

→
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Prediction: Contradiction (73.2%)
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#2 Representations 

2021
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P: Charlie will visit his mother in London on Wednesday evening.
H: Charlie will visit his mother in London on Thursday evening.

Prediction: Contradiction (73.2%)
P: Charlie said on Wednesday that he is busy on Thursday so 
he will visit his mother next week.

H: Charlie said on Thursday that he is busy on Wednesday so 
he will visit his mother next week.

Prediction: Entailment (92%)

(RoBERTa)
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#3 World Knowledge

The�definition�of�the�textual�entailment�recognition�task,�like�that�of�any�
other�text�understanding�task,�refers�to�human�understanding�of�language.�
Such�definition�necessarily�assumes�common�background�knowledge,�on�
which�the�(human)�entailment�judgment�relies.�[…]�this�knowledge�should�
cover�both�extra-linguistic�world�knowledge�[…]�as�well�as�knowledge�of�the�
language�itself.

  
Recognizing Textual Entailment. Ido Dagan, Dan Roth, Mark Sammons, and Fabio Zanzotto. Morgan & Claypool Publishers, 2013.
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Reporting bias

  
Do Neural Language Models Overcome Reporting Bias? Vered Shwartz and Yejin Choi. COLING 2020.
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Reporting bias The man turned on the faucet. As a result, 

GPT-2the man’s blood was sprayed everywhere.

  
Do Neural Language Models Overcome Reporting Bias? Vered Shwartz and Yejin Choi. COLING 2020.
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Learning Semantic Phenomena

The office is located in Baytown [SEP]  
The office is located in Texas  

NLI Modellabel: entailment

Model expected to learn:

Fact: LocatedIn(Baytown, Texas)

Rule: Entailment between a city and its state in  
upward monotone sentences
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The office is located in Texas  

Does the model know the location of cities?

Probing and Inoculation

Contradiction

  
Inoculation by Fine-Tuning: A Method for Analyzing Challenge Datasets. Nelson F. Liu, Roy Schwartz, and Noah A. Smith. NAACL 2019. 

Blindspot in 
the original 
NLI dataset

Inherent 
model 

limitation

?



Probing and Inoculation

NLI Model

The office is located in Baytown [SEP]  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He lives in Texas  
label: entailment

He moved to Chicago [SEP]  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The office is located in England  
label: entailment

She lives in Dallas [SEP]  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He lives in Texas  
label: entailment

He moved to Chicago [SEP]  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Does the model know the location of cities?

LocatedIn
The office is located in London [SEP]  
The office is located in England  
label: entailment

She lives in Dallas [SEP]  
He lives in Texas  
label: entailment

He moved to Chicago [SEP]  
He lives in Illinois  
label: entailment

ContradictionEntailment

  
Inoculation by Fine-Tuning: A Method for Analyzing Challenge Datasets. Nelson F. Liu, Roy Schwartz, and Noah A. Smith. NAACL 2019. 

Possible Outcomes

 Failure

Inherent 
model 

limitation

 Success

Blindspot in 
the original 
NLI dataset

Probing and Inoculation

Has the NLI model learned a general 
notion of the target relation? 
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Diversify Your Datasets: Analyzing Generalization via Controlled Variance in Adversarial Datasets Ohad Rozen, Vered Shwartz, Roee Aharoni, and Ido Dagan. CoNLL 2019. 

1.Train/dev/test split across the dimension in focus
2. Fine-tune on one set and test on another

Analyzing Generalization via Controlled Variance
1.Train/dev/test split across the dimension in focus

P: I see 260 coins in the bucket.

H: I see more than 232 coins in the bucket.  

Label: Entailment

Numerical Reasoning

Axis: lexical variability

Axis: syntactic complexity
P: I baked my mom a cake.

H: I baked a cake for my mom.

Label: Entailment

Dative Alternation

May decrease performance on the main task 
(Richardson et al., 2020) 
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NLI Modellabel: entailment

Model learns:
Fact: LocatedIn(Baytown, Texas)  
 
Rule: Entailment between a city and its state in  
upward monotone sentences

Impossible (and inefficient) to teach 
an NLI model every fact it might need. 

May be learned given enough data.
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Incorporating Knowledge into NLI Models

The office is located in Baytown [SEP]  
The office is located in Texas  

Knowledge-
Informed 
NLI Modellabel: entailment

Model learns:

 
Rule: Entailment between a city and its state in  
upward monotone sentences

Fact: LocatedIn(Baytown, Texas)  

How to incorporate relational knowledge?
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Knowledge Enhanced Contextual Word Representations. Matthew E. Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer Singh, and Noah A. Smith. 
EMNLP 2019.

Entity-Centric Knowledge

KnowBERT

😃 performance improvement on relation extraction, entity typing, WSD 😐 computationally expensive to re-train

😢 can’t learn new facts after training

The office is located in Nanhui [SEP]  
The office is located in China  

Baytown is a city in the U.S. state of Texas

Baytown, Texas 
Baytown culture 
Operation Baytown

State of Texas 
Republic of Texas 
Texas, Alabama



Incorporating Factual Knowledge into LMs

Teach the Rules, Provide the Facts: Targeted Relational-knowledge Enhancement for Textual Inference. Ohad Rozen, Shmuel Amar, Vered Shwartz and Ido Dagan. *SEM 2021

Relation-Centric Knowledge

The office is located in Baytown . [SEP]  
The office is located in Texas . 

InferBERTlabel: entailment

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

LocatedIn tail

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

LocatedIn head

Premise: Hypothesis:

Fact: LocatedIn(Baytown, Texas)  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Teach the Rules, Provide the Facts: Targeted Relational-knowledge Enhancement for Textual Inference. Ohad Rozen, Shmuel Amar, Vered Shwartz and Ido Dagan. *SEM 2021

Relation-Centric Knowledge

The office is located in Baytown . [SEP]  
The office is located in Texas . 

InferBERTlabel: entailment

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

LocatedIn tail

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

LocatedIn head

Premise: Hypothesis:

Fact: LocatedIn(Baytown, Texas)  

Model learns: 
Rule: Entailment between a city and its state in  
upward monotone sentences

Relation Embeddings
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Fact: LocatedIn(Baytown, Texas)  

Teach the Rules, Provide the Facts: Targeted Relational-knowledge Enhancement for Textual Inference. Ohad Rozen, Shmuel Amar, Vered Shwartz and Ido Dagan. *SEM 2021
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Incorporating Factual Knowledge into LMs
Relation-Centric Knowledge

😃 performance improvement on NLI challenge sets

😃 computationally efficient

😃 can retrieve and use facts about unseen entities

😐 task-specific knowledge incorporation 

The office is located in Baytown . [SEP]  
The office is located in Texas . 

InferBERTlabel: entailment

< 700 training examples

Fact: LocatedIn(Baytown, Texas)  

The office is located in Nanhui [SEP]  
The office is located in China  

Teach the Rules, Provide the Facts: Targeted Relational-knowledge Enhancement for Textual Inference. Ohad Rozen, Shmuel Amar, Vered Shwartz and Ido Dagan. *SEM 2021



Incorporating symbolic knowledge into neural NLI models

Limitations of neural NLI Models

NLI is too easy? What’s next?
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Partial Entailment
Real-World NLI #1

: Amazon to acquire Whole Foods Market for $13.7 Billion.S1

: Amazon is buying Whole Foods Market for almost $14 Billion in cash.S2

Subjectivity and inherent disagreements (Pavlick and Kwiatkowski, 2019)
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Defeasible Natural Language Inference
Real-World NLI #2

P: Tweety is a bird.

H: Tweety flies.

NLI model: Entailment

Skeptical NLI model: given the information I currently have, I 
suppose so, but I can think of cases in which this is false. 



Defeasible Inference (Reiter, 1980)

Given premise P, a hypothesis H is defeasible 
if there exists an update U (consistent with P) 
such that a human would find H less likely to 
be true after learning U.



Defeasible Inference (Reiter, 1980)

Given premise P, a hypothesis H is defeasible 
if there exists an update U (consistent with P) 
such that a human would find H less likely to 
be true after learning U.



Defeasible Inference (Reiter, 1980)

Given premise P, a hypothesis H is defeasible 
if there exists an update U (consistent with P) 
such that a human would find H less likely to 
be true after learning U.

P: Tweety is a bird.



Defeasible Inference (Reiter, 1980)

Given premise P, a hypothesis H is defeasible 
if there exists an update U (consistent with P) 
such that a human would find H less likely to 
be true after learning U.

P: Tweety is a bird.

H: Tweety flies.



Defeasible Inference (Reiter, 1980)

Given premise P, a hypothesis H is defeasible 
if there exists an update U (consistent with P) 
such that a human would find H less likely to 
be true after learning U.

P: Tweety is a bird.

H: Tweety flies.

U: Tweety is a penguin.



Defeasible Inference (Reiter, 1980)

Given premise P, a hypothesis H is defeasible 
if there exists an update U (consistent with P) 
such that a human would find H less likely to 
be true after learning U.

P: Tweety is a bird.

H: Tweety flies.

U: Tweety is a penguin.

Useful for Real-time Summarization: 
Facts change as the story unfolds. 



Defeasible Inference in Natural Language

An update U is called a weakener if, given a 
premise P and hypothesis H, a human would 
most likely find H less likely to be true after 
learning U; if they would find H more likely to 
be true, then we call U a strengthener.

P: Tweety is a bird.

H: Tweety flies.

Weakener: Tweety is a penguin.

Thinking Like a Skeptic: Defeasible Inference in Natural Language.  

Rachel Rudinger, Vered Shwartz, Jena Hwang, Chandra Bhagavatula, Maxwell Forbes, Ronan Le Bras, Noah Smith, and Yejin Choi. Findings of EMNLP 2020.



Defeasible Inference in Natural Language

An update U is called a weakener if, given a 
premise P and hypothesis H, a human would 
most likely find H less likely to be true after 
learning U; if they would find H more likely to 
be true, then we call U a strengthener.

P: Tweety is a bird.

H: Tweety flies.

Weakener: Tweety is a penguin.

Strengthener: Tweety is on a tree.

Thinking Like a Skeptic: Defeasible Inference in Natural Language.  

Rachel Rudinger, Vered Shwartz, Jena Hwang, Chandra Bhagavatula, Maxwell Forbes, Ronan Le Bras, Noah Smith, and Yejin Choi. Findings of EMNLP 2020.
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A group of people sitting around a rectangular table 
having either pieces of paper or laptops in front of them.

Determine whether an update weakens or strengthens the hypothesis.



Defeasible Inference in Natural Language
Discriminative Task

They have a work meeting.

They are in a 
conference room. + Strengthener

They are in a 
library. - Weakener

A group of people sitting around a rectangular table 
having either pieces of paper or laptops in front of them.

Determine whether an update weakens or strengthens the hypothesis.

Generative Task

They have a work meeting.

A group of people sitting around a rectangular table 
having either pieces of paper or laptops in front of them.

They are in a conference room.+

They are in a library.-

Generate a weakening or strengthening update for a given premise-hypothesis pair.



Defeasible Inference in Natural Language

Language models leave plenty of room for improvement on the generative task!

Discriminative Task

They have a work meeting.

They are in a 
conference room. + Strengthener

They are in a 
library. - Weakener

A group of people sitting around a rectangular table 
having either pieces of paper or laptops in front of them.

Determine whether an update weakens or strengthens the hypothesis.

Generative Task

They have a work meeting.

A group of people sitting around a rectangular table 
having either pieces of paper or laptops in front of them.

They are in a conference room.+

They are in a library.-

Generate a weakening or strengthening update for a given premise-hypothesis pair.



Rationale Generation for Defeasible Inference

Learning to Rationalize for Nonmonotonic Reasoning with Distant Supervision. Faeze Brahman, Vered Shwartz, Rachel Rudinger, and Yejin Choi. AAAI 2021.
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They have a work meeting.

+ They are in a conference room. A conference room is where people 
have meetings at work.

- They are in a library.

A group of people sitting around a 
rectangular table having either pieces 
of paper or laptops in front of them.

You must be quiet in the library, while 
work meetings involve talking.

e-SNLI 

Distant supervision:

LM

The definition of a library is…

Learning to Rationalize for Nonmonotonic Reasoning with Distant Supervision. Faeze Brahman, Vered Shwartz, Rachel Rudinger, and Yejin Choi. AAAI 2021.
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Trivially rephrasing the label! (“[+] implies that [H]”)

Post hoc Rationalization

They have a work meeting.

+ They are in a conference room. A conference room is where people 
have meetings at work.

- They are in a library.

A group of people sitting around a 
rectangular table having either pieces 
of paper or laptops in front of them.

You must be quiet in the library, while 
work meetings involve talking.

Generates a rationale for a given decision (label).

Joint Prediction & Rationalization
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They are in a conference room. + A conference room is where people 
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They are in a library.

A group of people sitting around a 
rectangular table having either pieces 
of paper or laptops in front of them.

- You must be quiet in the library, 
while work meetings involve talking.

Predict the label (strengthener / weakener) and rationalize it.



Rationale Generation for Defeasible Inference

More realistic but very challenging task!

Trivially rephrasing the label! (“[+] implies that [H]”)

Post hoc Rationalization

They have a work meeting.

+ They are in a conference room. A conference room is where people 
have meetings at work.

- They are in a library.

A group of people sitting around a 
rectangular table having either pieces 
of paper or laptops in front of them.

You must be quiet in the library, while 
work meetings involve talking.

Generates a rationale for a given decision (label).

Joint Prediction & Rationalization

They have a work meeting.

They are in a conference room. + A conference room is where people 
have meetings at work.

They are in a library.

A group of people sitting around a 
rectangular table having either pieces 
of paper or laptops in front of them.

- You must be quiet in the library, 
while work meetings involve talking.

Predict the label (strengthener / weakener) and rationalize it.
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Recap

🤖Symbolic knowledge is useful 
• Accurate 
• More efficient than “learning all the facts”  
• Combination is not trivial

vereds@allenai.org@VeredShwartz

🤖Neural models achieve impressive gains on NLI  
• But make stupid unhuman like errors 
• “Human performance” is debatable

🤖Time to work on more real-world NLI tasks  
• Partial and defeasible inferences

mailto:vereds@allenai.org
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