
EUROGRAPHICS 2005 / M. Alexa and J. Marks
(Guest Editors)

Volume 24 (2005), Number 3

D-Charts: Quasi-Developable Mesh Segmentation

Dan Julius† Vladislav Kraevoy ‡ Alla Sheffer §

University of British Columbia, Vancouver, B.C., Canada

Abstract
Quasi-developable mesh segmentation is required for many applications in graphics and CAD, including texture
atlas generation and the design of patterns for model fabrication from sheets of material. In this work we intro-
duce D-Charts, a simple and robust algorithm for mesh segmentation into (nearly) developable charts. As part of
our method we introduce a new metric of developability for mesh surfaces. Thanks to this metric, using our seg-
mentation for texture atlas generation, we can bound the distortion of the atlas directly during the segmentation
stage. We demonstrate that by using this bound, we generate more isometric atlases for the same number of charts
compared to existing state-of-the-art techniques. Using our segmentation algorithm we also develop a technique
for automatic pattern design. To demonstrate the practicality of this technique, we use the patterns produced by
our algorithm to make fabric and paper copies of popular computer graphics models.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computing Methodologies / Computer Graph-
ics]: Surface representations, J.5. [Computer Applications / Arts and Humanities]: Fine arts

1. Introduction

Mesh segmentation has numerous applications in computer
graphics. One of its oldest applications is texture atlas gen-
eration. For atlas generation, the mesh is first segmented
into charts and then each chart is parameterized onto the
plane. The parameter space is covered with an image, which
is then mapped onto the model using the parameteriza-
tion. With the introduction of programmable GPUs, more
general attributes can be mapped onto the model in real
time (e.g., BRDFs, bump maps, displacement maps, etc.).
It is even possible to represent the geometry of the model
in parameter space, leading to the geometry images repre-
sentation [GGH02]. To preserve the texture and other at-
tributes during mapping, the parameterization has to be
quasi-isometric. This is possible only if the charts are nearly
developable. Boundaries between charts lead to undesirable
discontinuities in the mapped texture; hence a good seg-
mentation method must segment the mesh into nearly de-
velopable charts while minimizing the number of charts and
their boundary lengths. Since finding an optimal set of charts
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Figure 1: Texture atlases and stuffed toys generated using
D-Charts.
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is NP-Hard in nature, existing methods typically search for
a local minimum.

The need for developable segmentation is not unique to
atlas generation. Such segmentation is also required for the
design of sewing patterns, for metal forming and forging,
and for other fabrication applications where 3D objects are
constructed from sheets of material.

In this work we introduce a novel, simple, and intuitive
metric of surface developability. Based on this metric we
describe an efficient and robust algorithm, which we name
D-Charts, for segmenting meshes into (nearly) developable
charts. The algorithm combines geometry processing tech-
niques with tools traditionally used by pattern designers. As
a result, compared to recent mesh segmentation methods, for
a given number of charts the D-Charts method segments the
mesh into more developable charts, leading to less distortion
in the generated texture atlases. Our algorithm successfully
segments mechanical models into their developable compo-
nents, producing isometric texture atlases. For other models
for which a compact developable segmentation does not ex-
ist, the segmentation is based on a user-prescribed developa-
bility tolerance.

Based on our segmentation algorithm we introduce an au-
tomatic method for pattern design, focusing on the design
of soft, stuffed toys. To demonstrate the practicality of our
technique we design patterns for several popular computer
graphics models and then use them to construct physical
copies of the models out of fabric or paper.

The rest of this paper is organized as follows: Section
1.1 reviews previous work on texture atlas generation and
computer-aided pattern design. Sections 2 and 3 describe
our D-Charts segmentation algorithm. Section 4 introduces a
novel pattern design technique, based on the D-Charts algo-
rithm. Section 5 demonstrates the use of the D-Charts algo-
rithm for texture atlas construction and compares the results
with those of previous methods. It also presents the patterns
and actual soft toys designed using our pattern design tech-
nique. Finally, Section 6 summarizes our work.

1.1. Previous work

Texture atlas generation: Over the last decade, many meth-
ods have used mesh segmentation to generate texture at-
lases [IC01, KL96, MYV93, LPRM02, ZSGS04]. Most ex-
isting segmentation algorithms focus on the construction of
nearly planar charts [MYV93, GVSS00, SSGH01, GWH01,
SWG∗03]. While planar charts are obviously developable,
most developable surfaces are not planar. Thus planar seg-
mentation is too restrictive and results in more charts than
are necessary.

Other segmentation methods, such as [KT03], focus on
feature-based segmentation. They segment the mesh into
charts corresponding to protrusions and other meaningful

model components. Typically these charts are very far from
being developable and are thus unsuitable for our needs.
Methods such as that of Gelfand and Guibas [GG04] are
well suited for segmenting CAD point-sets into kinematic
surfaces. However, these surfaces form only a small subset
of the developable surfaces, and the method is not appropri-
ate for irregular meshes.

Levy et al. [LPRM02] introduce a segmentation method
that detects crease lines and generates charts using these
lines as boundaries. Charts are then further segmented if the
stretch after the parameterization is too high. The method
fails to segment models properly if there are no clear crease
lines.

Sorkine et al. [SCOGL02] simultaneously generate both
the parameterization and the cuts. Thus this method can
successfully discover developable regions and parameterize
them using a single chart. Since this method depends on the
order of the triangle insertions it tends to form charts with
long and complex boundaries.

Gu et al. [GGH02] construct a single chart out of the input
model. They first generate cuts that convert the surface into
a disk and then iterate between parameterization and cutting,
continuing to add cuts from the current boundary to points of
maximal distortion, as long as the distortion is deemed to be
too high. Sheffer and Hart [SH02] also cut the entire surface
into a single chart. They detect points of high curvature and
connect these by a Steiner tree of cuts, taking visibility into
account, so that the cuts go through less visible parts of the
model. While both methods result in the minimal number of
charts (i.e., one), the chart boundaries tend to be quite long
and complex.

The Iso-charts method [ZSGS04] interleaves parameter-
ization and segmentation. Starting with an initial segmen-
tation it repeatedly parameterizes the charts and then seg-
ments them if the parametric distortion is high. The authors
use a variation of the fuzzy-region cutting approach [KT03]
to generate straight boundaries between the charts. In Sec-
tion 5, we present a comparison of atlases generated by our
method with those generated by Iso-charts.

Guthe and Klein [GK03] introduce a method for atlas
generation for NURBS surfaces, which is particularly suit-
able for pattern design. The charts are formed by stitching
NURBS patches together based on distortion considerations.
The authors employ a cutting approach similar to that used
by [GGH02,SH02] using the distortion in the current param-
eterization as an indicator of where to place cuts. Further
cuts are added when the resulting charts overlap in the pa-
rameter domain. It is not clear how well these methods will
work for irregular meshes.

Pattern design: Much of the research on pattern gener-
ation focuses on unfolding, or parameterization, of given
charts. McCartney et al. [MHS99] introduce an automatic
unfolding method and demonstrate the impact of darts and
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gussets on the quality of the unfolding. Darts are stitched
tapering folds, generated by cutting a sharp corner out of a
pattern. Gussets are triangular inserts added into seams to
widen the corresponding regions. Wang [WTY05] proposes
another method for the unfolding of free-form surface charts
for pattern design by fitting a woven mesh model.

Some of the mesh parameterization techniques developed
in recent years can be directly applied to the unfolding of
patterns. For a survey of recent techniques see [FH05]. The
only parameterizations useful for pattern design are those
that compute the boundary of the planar domain as part of
the solution. For any sewing task the fabric cannot stretch
beyond a certain limit based on the properties of the fab-
ric. Shearing, on the other hand, is acceptable in some ap-
plications but not in others. For instance, when fabric is
wrapped around a hard object, the shearing of the mate-
rial causes no visible artifacts; thus for these applications
stretch minimizing parameterization [SGSH02] would be a
natural choice. In contrast, when wrapping the fabric around
soft stuffing, such as the soft toys in our examples, shearing
leads to visible wrinkles and is therefore extremely unde-
sirable. Thus, for this particular application, conformal pa-
rameterization methods that minimize shearing are prefer-
able (e.g., [HG00, LPRM02, DMA02, SdS01]).

Several methods address segmentation for fabrication
applications. To generate patterns for metal-work, Elber
[Elb95] approximates NURBS surfaces by cross-section
aligned developable strips. This method requires a very large
number of strips to approximate accurately the input mod-
els, since only rectangular, ruled surface strips were allowed.
Kolmanic and Guid [KG03] use cross section curves pro-
vided as part of the data to segment models into developable
strips bounded by these curves in order to generate shoe pat-
terns.

Mitani et al. [MS04] introduce a method for pattern gen-
eration for making papercraft toys from meshes using strip-
based approximate unfolding. Since basic triangle strips can
be extremely long, they first segment the mesh as suggested
in [LPRM02] and then compute strips within each chart.
This method results in quite a large number of charts with
complex boundaries, and so the actual cutting and gluing to-
gether of charts is quite challenging. The technique is spe-
cific to papercraft; here the core constraint is that paper is in-
compressible, requiring charts to be truly developable. Since
fabric can stretch, the "stripification" approach is too restric-
tive for fabric pattern design.

Developable surfaces: The research on developable sur-
faces in the modeling and graphics communities focuses pre-
dominantly on modeling with such surfaces [PW99, LP98]
and on the approximation of point clouds [CLL∗99, PS04,
Pet04]. The proposed approximation and modeling tech-
niques require complex manipulation of spline curves and
surfaces.

2. D-Charts algorithm overview

Our mesh segmentation algorithm uses a region-growing ap-
proach. Like [SWG∗03,CSAD04] we use an iterative Lloyd
scheme [Llo57], avoiding random initialization issues com-
mon to older methods, such as [SSGH01, SCOGL02]. We
use a similar notation of proxies and seeds to characterize
each chart. The general Lloyd algorithm framework is:

• Grow charts, covering the entire model, based on the cur-
rent proxies and seeds.

• Compute new proxies and seeds.
• Repeat until the process converges.

As pointed out in [CSAD04] the segmentations, computed
using this framework, depend on the initial positioning of
the seeds. To improve the segmentation the authors propose
the use of manual intervention techniques to increase or de-
crease the number of charts, or to "teleport" them.

We avoid the need for manual intervention and develop
an automatic procedure, based on an initial estimate of the
number of charts and a fitting error threshold value Fmax. The
fitting error measures how well a triangle fits into a chart,
and is defined in Section 2.1.1. Our method increases or de-
creases the number of charts as necessary based on the actual
fitting error computed during segmentation.

The steps of our algorithm are as follows:

• Modified Lloyd Iterations: Charts are grown using
Lloyd iterations while bounding the fitting error by Fmax.
Using this fitting error threshold ensures that charts re-
main nearly developable (Section 3.1).

• Hole filling: As the fitting error is bounded during the
growing process, some triangles are not assigned to any
chart. During hole filling these triangles are assigned to
charts, extra charts are added when necessary (Section
3.2).

• Post-processing: During post-processing the resulting
charts are further improved. First, the boundaries between
charts are straightened, without increasing the fitting er-
ror. Then, adjacent charts are merged if the combined
chart is developable. Finally, seams are cut toward regions
of high error, forming darts and gussets (Section 3.3).

The algorithm stages are explained in detail in Section 3.

2.1. Proxies and cost function

Our main motivation is to segment the mesh into (nearly) de-
velopable charts. However, in contrast to segmentation into
planar regions, the developability condition alone is typi-
cally not sufficient for a meaningful segmentation. We ob-
serve that any triangle strip is by definition developable.
Meshes can be "stripified" using a very small number of tri-
angle strips. Obviously this segmentation is not particularly
useful, as it leads to charts with extremely long boundaries.
Hence the challenge we face is to segment the mesh into rea-
sonably compact, developable charts. Below, we introduce a

c© The Eurographics Association and Blackwell Publishing 2005.



D. Julius V. Kraevoy A. Sheffer / D-Charts: Quasi-Developable Mesh Segmentation

cost function that combines developability and compactness
criteria.

2.1.1. Developability and proxies

The standard definition of a developable surface is one with
zero Gaussian curvature at all points. In our experience, this
definition does not provide a viable tool for detecting de-
velopable regions in a mesh, resulting in undesirable charts
with very long and complex boundaries. Therefore, we nar-
row our detection mechanism to a subset of developable sur-
faces — unions of uni-axial conics. We base our procedure
on a simple observation:

A surface is a union of conics with aligned axes and the
same cone angle if and only if the angle between the normal
to the surface at every point and a common axis is constant.

The proof of this observation is trivial. This definition of
conics includes both cylinders and planes. In the case of
a cylinder, the normal is perpendicular to the axis. In the
case of a plane, the normal is aligned with the axis. We use
this simple condition to measure developability. The merg-
ing procedure (Section 3.3) further broadens the set of de-
velopable surfaces that we capture, without increasing the
boundary complexity.

This angle-based condition is the basis of our segmenta-
tion procedure. We define the proxy for each chart C as the
pair < NC,θC > where NC is a unit vector representing the
axis of the union of cones and θC is the constant angle be-
tween the normals to the mesh surface and the axis. To mea-
sure how well a given triangle t with a normal nt fits into a
given chart C, we define the fitting error as:

F(C, t) = (NC ·nt − cosθC)2. (1)

This error metric is significantly simpler than previous met-
rics used for computing developable regions, such as that
of [ZSGS04] where spectral analysis was needed to achieve
a similar goal.

2.1.2. Compactness

To test for compactness when adding a triangle to a chart, we
introduce two additional metrics, the first aiming at the gen-
eration of relatively "round" charts, the second at the genera-
tion of charts with straight boundaries. Both metrics measure
the suitability of adding a triangle to a chart when the trian-
gle shares one or more edges with this chart. To measure
compactness we define

C(C, t) = π
D(SC, t)2

AC

where SC is the seed triangle of the given chart, D(SC, t) is
the length of the shortest path (inside the chart) between the
two triangles, and AC is the area of chart C. For triangles
on the boundary of a circle (which is ideally compact) this
metric evaluates to one; otherwise, distant triangles are pe-
nalized, while close triangles are promoted.

To promote straight boundaries we use the ratio between
the length of the triangle’s edges that are shared with the
chart and those that are not. We define

P(C, t) =
louter(C, t)
linner(C, t)

.

2.1.3. Combined cost function

The cost function measures the cost of adding a triangle to a
chart, where the triangle shares one or more boundary edges
with triangles inside the chart. The complete cost metric for
the triangle is thus:

Cost(C, t) = F(C, t)αC(C, t)βP(C, t)γ. (2)

The weights α, β, and γ control the importance we give
to each metric. For all our examples we used α = 1, β =
0.7, and γ = 0.5. These numbers were found empirically to
provide an appropriate balance between developability and
compactness. Using lower values of β and γ sometimes re-
sulted in elongated strips or jagged boundaries. Figure 3
demonstrates the effect of β when segmenting the sphere.

3. Algorithm stages

Given the above definitions of a proxy, a fitting error, and a
cost function we now describe the stages of the algorithm in
more detail (Figure 2).

3.1. Modified Lloyd Iterations

Initialization: Given the initial number of charts, we first se-
lect a seed for each chart. Although in theory any random set
of triangles should be adequate (since the iterations that fol-
low will eventually move the charts into place), we find that
when extremities exist in the mesh a more refined choice of
seeds usually leads to faster convergence with better results.
Thus, we try to maximize the distance between seeds, using
the standard farthest point algorithm.

Next, a proxy is calculated for each of the seeds. For each
seed we examine three potential charts — the sets of trian-
gles around each of the three seed-triangle vertices. We cal-
culate a proxy for each chart as explained below (Equation
3) and select the proxy that minimizes the fitting error (Equa-
tion 1) for the seed triangle.

Growing Charts: Initially each chart contains only a sin-
gle triangle — the seed. For each seed, we insert each of its
adjacent triangles into a priority queue. For each triangle we
specify both its adjacent chart and the cost of assigning it to
that chart (Equation 2). As long as the queue is not empty,
the triangle with minimal cost is extracted from it and as-
signed to its specified chart if the following conditions hold:

1. The triangle has not yet been assigned to any other chart
(this can occur, since each triangle may have more than
one entry in the queue).

c© The Eurographics Association and Blackwell Publishing 2005.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Stages of D-Charts on a bull model with a bottom view of the back feet: (a) Charts after one growth iteration. (b)
Final charts. (c) Hole filling. (d) Boundary straightening. (e) Merged charts. (f) Adding cuts.

2. The fitting error for the triangle and specified chart is be-
low the threshold P(C, t) < Fmax. The fitting threshold
ensures that charts remain nearly developable.

Otherwise, the triangle is skipped and the next triangle in
order is processed. After assigning the triangle to the chart,
its adjacent triangles, which have not yet been assigned to
any chart, are inserted into the queue (specifying the current
chart and the cost with respect to it). After the process termi-
nates, proxies are recomputed and the growth procedure is
repeated. Figure 2(a) shows the bull after a single iteration.

Note that both P(C, t) and C(C, t) (Section 2.1.2) change
as chart C is grown, thus changing the Cost(C, t) for each
triangle. To avoid re-sorting the entire priority queue after
every step, we maintain a queue per chart. At each step the
triangle with minimal cost is found by comparing the first
triangle from each queue. This method requires only local
updates to each queue after each step. Global sorting is not
needed as the order of triangles in each in terms of cost is
not altered.

Finding new proxies and seeds: The optimal proxy
< NC,θC > for a given chart contains the normalized axis
vector and the angle that minimize the weighted fitting er-
ror between the conic surface and the chart triangles. The
new proxy is computed by solving the following constrained
optimization problem:

min
NC ,θC

1
AC

∑
t∈C

AtF(C, t) s.t. ‖NC‖2 = 1 (3)

where At is the area of the triangle t. We use a standard New-
ton solver to obtain the solution. Since only four variables
are involved, the solution takes only milliseconds.

After calculating the new proxies, we select a new seed

SC for each chart. The seed must fit the proxy well (i.e., with
only a small fitting error), and to the extent that is possible,
it should be near the center of the chart. To find such seeds
we examine the first k triangles in the chart with minimal
fitting error (k = 10 in all our examples), and then select the
one closest to the center of the chart. This approach improves
the method suggested in [CSAD04] since nearly developable
surfaces will have a large number of triangles with very low
fitting error, resulting in an almost random selection of new
seeds.

Termination: The process is terminated when we detect
that only a small percentage of triangles (below 5%) have
been reassigned from one chart to another between two con-
secutive iterations. While the convergence of Lloyd itera-
tions is guaranteed in the continuous case, this guarantee
does not extend to 3D meshes [CSAD04]. In practice the
algorithm converges in a small number of iterations (fewer
than 100) given a reasonable initial estimate of the number
of charts alongside a small Fmax. To guarantee termination
we specify a bound on the number of iterations. Figure 2(b)
shows the bull after the iterations have converged.

3.2. Filling holes

After the Lloyd iterations converge, most of the triangles are
classified as belonging to one chart or another. However, due
to the use of the error bound Fmax, some triangles may not
belong to any chart (Figure 2(b)). We collect all such trian-
gles into connected components and categorize each compo-
nent as either a large or a small hole, depending on the area
of the component. Small holes are then filled by removing
the bound on the fitting error and growing the surrounding
charts into the holes (the introduced error is later reduced by
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adding partial cuts, Section 3.3). Large holes are dealt with
by adding additional charts inside the holes. First, all the tri-
angles in the hole are assigned to a new chart; next, an opti-
mal proxy and seed are computed, and finally the chart is "re-
grown" inside the hole as described above. This may result
in additional holes; and these are dealt with recursively. This
approach leads to better results than spawning new proxies
during the iteration phase. Regions of high Gaussian curva-
ture, such as the tip of the nose on the Horse model (Figure
4), repel the growing charts. Even newly spawned charts are
pushed away after a few iterations, resulting in additional
ones being spawned and an excessive number of charts in to-
tal. Figure 2(c) shows that the small holes on the top side of
each of the bull’s feet are filled by adjacent charts, while the
larger holes on the bottom are filled by creating additional
charts.

3.3. Post-processing

The post-processing performs three major operations: it
straightens chart boundaries, merges adjacent charts when
developability conditions allow, and finally introduces par-
tial cuts into the mesh.

Straightening boundaries: After convergence, bound-
aries between charts often tend to be jagged, especially in
areas where fitting errors between the triangles and each of
the two adjacent charts are similar. To improve the segmen-
tation we define fuzzy areas between each pair of adjacent
charts. Fuzzy areas are the regions along the boundaries in
which the triangle fitting error is low with respect to both
charts. To find these regions, both charts are grown virtually
into one another. Since the fitting error is bounded by Fmax,
only triangles with low fitting errors are reached and marked
as belonging to the fuzzy area. Next, each boundary seg-
ment between the charts is adjusted. For each segment, first
we find its two end-points; then we find the shortest path,
within the fuzzy area, between these points, and define this
path as the new boundary segment. Figure 2(d) shows the
straightened boundaries on the bull.

While our notion of fuzzy regions is somewhat similar to
that used in [KT03], the boundary straightening algorithm
itself is much simpler. We use the min-cut approach [KT03]
only when the boundary is circular, namely when the two
charts share an entire boundary loop.

Merging charts: Our developability metric (Equation 1),
captures uni-axial unions of cones. To capture more general
developable surfaces, we now merge adjacent charts if to-
gether they still represent a nearly developable surface. Ad-
jacent charts can be merged if the Gaussian curvature along
their shared boundary is zero. To avoid noisy curvature com-
putations we use the same framework as above. For a pair of
adjacent charts we test to see if the boundary region between
them (formed by triangles near the common boundary) can
be approximated by a cylindrical surface. This is a sufficient

Figure 3: Segmentation of the sphere. Left — using α =
1,β = 0,γ = 0. Right — using α = 1,β = 0.7,γ = 0.

(but not necessary) condition for the combined chart to be
developable.

Given the boundary region B, we compute a proxy
< NB,θB = π/2 > (Equation 3). The charts are merged if
the average fitting error is below a given threshold η:

1
AB

∑
t∈B

AtF(B, t) < η.

In the mechanical examples (Figure 5) η = 1e−5 was used
to keep the charts strictly developable; in all the other ex-
amples we used η = 1e− 2. Figure 2(e) shows the merged
charts.

Darts and gussets: Due to hole filling, charts can contain
small regions of triangles with large fitting errors. These re-
gions can cause high distortion or "strain" in the surrounding
region during parameterization. To reduce the strain, we in-
corporate the pattern design technique of darts and gussets
into our algorithm, introducing partial cuts into the charts.
These partial cuts are inserted from the boundaries toward
the regions with high fitting error. Each seam relaxes the
strain in a circular area centered at the tip of the cut, with a
radius equal to the length of the seam; thus, elongated high-
error regions may require a number of seams.

During parameterization, cuts corresponding to darts will
naturally open up in 2D, while cuts corresponding to gussets
will result in overlaps in the 2D parameterization. There-
fore, after the parameterization, the overlaps need to be lo-
cated, the overlapping regions cut off and, when possible,
reattached to an adjacent chart (Section 4).

Lastly, to parameterize surfaces such as cylinders isomet-
rically onto the plane, we introduce cuts connecting the chart
boundary loops. At the end of this process we have pro-
duced a mesh segmentation into quasi-developable charts,
which can be used both for texture atlas generation and for
model fabrication. Figure 2(f) shows the added seems be-
tween charts, as well as darts on the ears and each of the
feet.

4. Pattern design

We now describe the use of our segmentation algorithm in
the design of patterns for stuffed toys and paper models. We
begin by segmenting the model as described in Sections 2
and 3.
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D. Julius V. Kraevoy A. Sheffer / D-Charts: Quasi-Developable Mesh Segmentation

When wrapping the fabric around soft stuffing, such as
in soft toys, shearing leads to visible wrinkles. Therefore
we use free-boundary, conformal (low-shear) parameteriza-
tion to unfold the charts in 2D. In all our examples we used
[SLMB05].

After the parameterization the algorithm optimizes the
charts for sewing needs. First, it tests for overlaps, removes
those, and generates gussets. It then shortens excessively
long darts and simplifies chart boundaries. Finally, it packs
the charts into a square domain using the method of Levy et
al. [LPRM02] and prints them using standard sewing nota-
tions.

We now describe the chart optimization steps in more de-
tail.

Fixing gussets and overlaps: The parameterization we
obtain may contain two types of overlaps: gussets (i.e., local
overlaps) and regular, global overlaps. The algorithm detects
both and cuts the charts to remove them using the method
of [LPRM02]. The resulting small charts are merged with
neighbors if the merging criterion (Section 3.3) is satisfied
and the merge itself does not create new overlaps.

Shortening darts: Since dart creation is based on a local
fitting metric, at times more darts are created than are neces-
sary. The parameterization in practice eliminates such darts,
stitching boundary vertices where the sum of angles around
the vertex is close to 2π. Such darts are easily identified and
then shortened by "gluing" the edges together.

Simplifying boundaries: When creating sewing patterns
we need planar boundaries that are very simple. Hence we
simplify the boundaries between pairs of charts in 2D using
a vertex collapse method. The cost of collapsing a vertex is
defined as the sum of the areas of the two triangles formed
by the vertex and its neighbors on the boundary (a single
triangle is formed on each side of the boundary). The costs
are accumulated by adding half the cost of each collapsed
vertex to each of its neighbors.

Sewing notations: To ease the sewing, we add refer-
ence points to each chart. These help identify corresponding
boundary points on adjacent charts and greatly simplify the
alignment of the sewing patterns.

5. Results

To evaluate the segmentation we used it to generate texture
atlases for several models (Figures 4 and 5). For the parame-
terization stage we used the free-boundary stretch minimiz-
ing parameterization [SGSH02]. To evaluate the parameteri-
zation distortion we measured the LStretch

2 and LStretch
∞ of the

parameterization, as defined in [SSGH01], and the LShear
2 as

defined in [SLMB05].

The parameters used to generate each model and the re-
sults obtained are summarized in Table 1. All the results

Figure 5: Segmentation of mechanical models. First and last
rows — mesh segmentation. Second row — texture atlases.
Third row - parameterization (iso-lines). The LStretch

2 error
for all the textured models is less than 1.00075 (it is not 1 as
some models contain small blends or fillets).

were generated on a P4 3GHz machine using the Graphite
software package [Gra03]. The runtime is a function of both
model size and complexity. For mechanical models such as
the fandisk (10K faces) the time is less than 10 seconds. For
free-form models the algorithm takes from 100 seconds to
segment a medium-sized 20K faces model (gargoyle) and up
to 500 seconds to segment the larger and more complex ones
(bunny or feline). Most of the time is spent performing the
Lloyd iterations; the hole-filling takes a negligible amount
of time and the post-processing takes about 10% of the total
time. Our times are comparable to those of the MCGIM al-
gorithm [SWG∗03]. We note that our method performs well
on models of high genus such as the feline, as well as models
with boundaries, such as the bunny. The D-Charts algorithm
is particularly suitable for segmenting mechanical models
(Figure 5) for which it accurately captures the planar, cylin-
drical, and conic parts.

We show a comparison between our results and those pro-
vided to us by the authors of Iso-charts [ZSGS04] and by
the authors of MCGIM [SWG∗03]. Our segmentation sig-
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Figure 4: Model segmentation and atlas generation. Top row — mesh segmentation. Middle row — texture atlases. Bottom row
— parameterization (iso-lines). The statistics for most of the models are given in Table 1.

nificantly improves all three error metrics for all the models,
using the same or a smaller number of charts. The improve-
ment is most significant on mechanical models such as the
fandisk, where our method achieves the minimal LStretch

2 er-
ror of 1. This indicates that the charts we generate are much
closer to being developable than those generated using pre-
vious methods. Since there is a tradeoff between developa-
bility and compactness, as expected, our algorithm gener-
ates charts with slightly longer boundaries. The difference
in length is on average about 10% to 15%.

5.1. Soft toys

Figures 1 and 6 show examples of physical models we have
created together with images of the original virtual models.
For mechanical models, such as the fandisk and the bishop,
the segmentation results in developable charts. Thus it is
possible to reproduce accurately those models from paper
(Figure 6) or from any other sheet material. For the toy mod-
els, distortion must inevitably be introduced. Nevertheless,
the generated stuffed toy models capture the shape of the ob-
jects. Predictably, minor details are lost, mostly due to fabric
resilience.

6. Conclusions and future work

Our work provides a simple and robust algorithm for quasi-
developable mesh segmentation. As demonstrated by the ex-
amples, it segments meshes into compact developable charts.
It is more suitable for texture atlas generation than previous
segmentation techniques. As part of our work we introduced
a new, simple to calculate, developability metric for mesh
surfaces. We also presented an automatic method for fab-
ric pattern design, an important problem which previous re-
search did not seriously address.

An important consideration, particularly for machine
based fabric cutting or stamping, is the symmetry of pat-
terns. If several charts have the same shape (up to mirroring),
this will make the cutting simpler. We plan to address this
consideration in future research, using some of the available
knowledge on shape similarity and symmetry detection.
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Bunny Horse Feline Gargoyle Fandisk
#faces 69450 19996 41262 20000 9926
D-Charts
Input #charts 12 15 25 12 6
Total time (sec.) 468 130 482 91 9
Lloyd (sec.) 417 115 446 73 3
Post (sec.) 51 15 36 17 6
Final #charts 10 12 25 10 4
LStretch

2 1.004 1.01 1.01 1.006 1
LStretch
∞ 1.429 2.315 3.488 1.645 1.017

Lshear
2 0.006 0.001 0.012 0.008 0

Iso-charts
#charts 16 13 26 11 4
LStretch

2 1.023 1.035 1.052 1.019 1.021
LStretch
∞ 2.831 2.766 3.401 2.153 2.272

Lshear
2 0.021 0.038 0.056 0.022 0.018

MCGIM
#charts 15 25 10 5
LStretch

2 1.014 1.018 1.009 1.008
LStretch
∞ 2.803 3.563 2.221 2.092

Lshear
2 0.014 0.019 0.011 0.012

Table 1: Segmentation statistics. For all the models we used
Fmax = 0.2. When available we provided the statistics for
models segmented with MCGIM and Iso-charts.
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