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1 Introduction

Mesh decomposition into meaningful components has many
applications in modeling and CG and has received a lot of attention
in the last few years. The accepted notion of meaningful parts
relies on human perception, and is based on the observation that
human vision defines part boundaries along negative minima of
principal curvatures. This definition implies that the meaningful
parts are, in some sense, convex. Many existing decomposition
methods, e.g. Katz et al. [2005], define meaningful components
by locating farthest points using geodesic distances. Due to the
reliance on surface distances, such methods do not perform well
on models with no clear extremities, or models with high genus
such as the fishing reel or David in Fig 1. Similar to Lien and
Amato [2006] we avoid those problems by basing our algorithm on
convexity criteria rather than surface distances. We develop a new
quantifiable convexity metric, leading to a robust decomposition
algorithm that does not require model-specific fine-tuning and
outperforms Lien and Amato [2006] as discussed below. Using a
single threshold parameter, our algorithm successfully segments
models into meaningful parts. The method operates on models
with arbitrary genus and with multiple boundaries.

2 Algorithm

The goal of our decomposition algorithm is to segment the model
into a small number of nearly convex, compact patches. Given a
3D model, the sole input required from the user is a threshold value
specifying the convexity of each generated part. In contrast to pre-
vious methods we do not expect the user to provide an estimated
number of patches for the decomposition.

Metrics: We base our algorithm on a convexity metric that mea-
sures the distance between a mesh patchP and its convex hullC(P).
The distance is defined as an area weighted average of the distances
from the patch trianglest to the convex hull:

dist(P,C(P)) = ∑t∈Pdist(t,C(P)) ·area(t)
∑t∈Parea(t)

(1)

wherearea(t) is the area of the trianglet, anddist(t,C(P)) is the
distance from the trianglet to the convex hullC(P) along the direc-
tion of the triangle’s normal. To achieve a useful decomposition, it
is not enough for the patches to be nearly convex, they must also
be compact. We calculate the compactness as an area to volume
ratio of the convex hullC: comp(C) = area(C)/volume(C)2/3. We
combine the convexity metric with a volumetric measure of com-
pactness to define a cost function for a potential patch as

cost(P) = (1+dist(P,C(P))) · (1+comp(C(P)))α , (2)

whereα controls the tradeoff between the two and is a constant for
all our examples.

Patch Formation: To generate the patches we use a modified
Lloyd iteration scheme. In contrast to Cohen-Steiner et al. [2004]
we start from zero patches and use the convexity threshold to auto-
matically establish the necessary number of patches. Our algorithm
generates patches using the following four stage procedure.
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Figure 1: Mesh decomposition into meaningful components.

1. Potential patch generation: The method collects the unas-
signed triangles, which do not belong to any patch, into connected
components classifying each as a potential new patchP and
computingC(P).
2. Seed generation:This stage finds seeds for re-growing existing
and potential patches. A seed consists of a seed triangle and a seed
convex hull. We define the seed convex hull as the tetrahedron
formed by the seed triangle and the center point of the current
convex hull. This selection reduces the difference between the
proxies obtained at consecutive iterations. To further minimize
the difference we select a seed triangle which fits well the current
proxy, namely one that is close to the current convex hull. After
the seeds have been selected, we reset the patches by marking the
rest of the triangles as unassigned.
3. Patch growing: For each vertexv that shares an edge with a
current patch, the algorithm computes the insertion cost to be the
cost of the updated patch formed by addingv to P, cost(P+ v).
At each growth step, the algorithm uses the cost function to
find the best adjacent vertex to add to one of the patches. If the
convexity errordist(P+v,C(P+v)) of the updated patch is below
the threshold, the vertex is added to the patch. If no such vertex
is found growth is terminated and the algorithm proceeds to Stage 4.
4. Termination: The algorithm now tests for termination condi-
tions. If the new patches differ from the ones grown in the previ-
ous iteration, the algorithm repeats the reseeding and growing loop,
Stages 2 and 3. Once the patches no longer change, we check if
the patches cover the entire model. If not, the algorithm returns to
Stage 1, otherwise the algorithm terminates.

Figure 1 shows a number of decompositions generated using our
method. The algorithm correctly detects the perceptually meaning-
ful parts of the models, identifying even small features like fingers
and toes. Our method correctly segments high genus models such
as the David, and the fishing reel which cause problems to many
previous methods. Unlike Lien and Amato [2006], our algorithm
correctly identifies the tail of the dinopet and correctly separates
David’s right leg from the base (Figure 1).
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