
Finding and Using Design Information in
Discussions

Giovanni Viviani
Department of Computer Science
University of British Columbia

Vancouver BC, Canada
vivianig@cs.ubc.ca

Abstract—A software system’s design determines many of its
properties. An understanding of design is needed to maintain
system properties as changes to the system are made. When
developers lose track of the overall design, the system may not
conform to its intended properties. I hypothesize that it is possible
to solve the problems of design evaporation and erosion by
recovering design information from written developer discussions
and by leveraging the recovered information to help developers
make better decisions. As part of investigating this hypothesis,
I have built an automated classifier that is able to locate design
information in discussions, at the paragraph level, by learning
from manual annotations of discussions extracted from open
source pull requests. I next plan to extract and represent the
design information from the identified paragraphs and to show
the usefulness of the information by creating tools to help notify
developers of design information relevant to a task at hand.

Index Terms—Design Discussions, Latent Design, Conversa-
tions, Prediction Model

I. INTRODUCTION

A software system’s design is an important component
of any project that defines how the system should be built.
The design defines certain characteristics of the system that
developers need to uphold to guarantee the final product will
be what is intended. Unfortunately, it is not always easy to
maintain design information or to make sure that developers
are aware of the overall design, potentially causing severe
repercussions on the project [6].

During the development process, developers continuously
update project artifacts, mostly in the form of source code.
Design information is created as part of this process and

Fig. 1: Depiction of the development process. Developers update
project artifacts, stored in a repository. At the same time, developers
can also modify the design. Design can also be created or updated
during conversation between developers.

becomes embedded in these artifacts. Design can also be
created during other activities than coding, such as through
discussions. This process is depicted in Figure 1.

Software projects often contain multiple development teams,
each composed of multiple developers. The involvement of
many developers, combined with the process described above,
causes the system design knowledge to become fragmented
amongst multiple developers, leading to a situation in which
developers do not know who holds the knowledge about the
design of a particular part of the system. This can become
a major problem since developers might not know how to
access the design of an aspect of a system: over the long term
this can cause the software to drift away from the original
intended product due to the developers lacking access to the
information [5].

If we could recover design from project artifacts and provide
this information to developers, we could help them make better
decisions, preventing the system from drifting away from the
intended result. Existing techniques of design recovery have
attempted to recover the lost information from code artifacts
[2]–[4]. These approaches tend to focus on understanding how
the software works and help a software developer change the
system, but they do not provide information on the reasoning
behind the design. My research focuses on recovering design
information from discussions between developers to under-
stand not only how the software works, but also why certain
choices were made.

I hypothesize that it is possible to recover information
regarding the design of a software system, and the motivation
behind the design, by mining written discussions between
developers that have occurred as part of their workflow.
Having recovered this information, it is possible to provide
developers with tools that bring forward design information
appropriate to a task, enabling developers to make better
decisions based on up-to-date information about the system’s
design.

To validate this hypothesis, I pose the following research
questions:



RQ1 Can we localize which parts of a written dis-
cussion between developers contain design in-
formation?

RQ2 Can we extract and represent design informa-
tion contained in discussions?

RQ3 Can we help developers make better choices
and avoid errors by providing them access to
recovered design information?

The following sections will explore the motivation for
each of these research questions, together with the plans for
investigating and evaluating them.

II. RQ1: LOCALIZING DESIGN INFORMATION

To begin extracting design information from discussions, we
first need to be able to locate the design information within a
discussion. The goal of RQ1 is to localize where the design
information is in discussion between developers. We opted
to focus on discussions from pull requests because they have
been shown to often contain design information [1] [7].

We created a dataset of discussion fragments containing
design information. We extracted and annotated 10,790 para-
graphs whereter they are, or are not, a design points. These
paragraphs came from 34 pull requests chosen from 3 major
oepn source projects: Node.js, Rails and Rust. Of these para-
graphs, 2,378 turned out to contain a design point. To make
this approach more scalable, we buit a classifer that, once
trained, is able to automatically localize design points.

III. RQ2: EXTRACTING DESIGN FROM DISCUSSIONS

The goal of RQ2 is to be able to recovert the pertinent
design information from the discussion segments. To repre-
sent the design information, I intend to determine important
attributes about design that I can then represent for particular
design points, such as the kind of structure intended by the
design point or the presence of code elements in the paragraph.

The combination of these attributes creates an abstract
representation of the design information that we can recover.
Design points can then be processed and represented. The re-
lationships between the design points can then be investigated
to understand the motivations behind the changes.

IV. RQ3: MAKE DESIGN INFORMATION EASILY
AVAILABLE

The goal of RQ3 is to use the abstract representation of
design information proposed in the previous section to develop
tools to help developers in maintaining their awareness of the
design and make design that conform to the design of the the
system.

As an example, consider a tool which monitors a develop-
ers’ work and infers an abstract structure of the modifications
that he is making. This can then be used to notify of informa-
tion which he may not be aware of. Another approach consist
of storing the representation of design information and allow
developers to navigate and search it.

V. EXPECTED CONTRIBUTION

The goal of my PhD thesis is to both enhance design
recovery techniques and to develop new ways to present it
back to developers. The expected contributions of this project
can be summarized as follows:

1) Introduce the concept of a Design Point, as a way to
facilitate the capture of design information appearing in
written developers discussion.

2) Provide a curated database of paragraphs containing
design information on which a supervised learner can be
trained.

3) Build a classifier able to localize the presence of design
information in piece of discussion.

4) Develop a process to automatically extract and represent
design information from discussions.

5) Develop a tool to provide developers with feedback
regarding the design of the system and show that it helps
them make better decision.

ACKNOWLEDGMENT

I wish to acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] João Brunet, Gail C. Murphy, Ricardo Terra, Jorge Figueiredo, and Dalton
Serey. Do developers discuss design? In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 340–343,
New York, NY, USA, 2014. ACM.

[2] E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery:
a taxonomy. IEEE Software, 7(1):13–17, 1990.

[3] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach,
Corina S. Pasareanu, Hongjun Zheng, et al. Bandera: Extracting finite-
state models from java source code. In Proceedings of the 2000
International Conference on Software Engineering, pages 439–448. ACM,
2000.

[4] H. A. Müller and K. Klashinsky. Rigi-a system for programming-in-the-
large. In Proceedings of the 10th International Conference on Software
Engineering, ICSE ’88, pages 80–86. ACM, 1988.

[5] David Lorge Parnas. Software aging. In Proceedings of the 16th
International Conference on Software Engineering, ICSE ’94, pages 279–
287, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[6] Martin P. Robillard. Sustainable software design. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, pages 920–923. ACM, 2016.

[7] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about it:
evaluating contributions through discussion in github. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 144–154. ACM, 2014.


