
Online Convex Optimization:
Algorithms, Learning, and Duality

Victor Sanches Portella

Thesis presented
to the

Institute of Mathematics and Statistics
of the

University of São Paulo
in fulfillment

of the requirements of the degree
of

Master of Science

Program: Computer Science
Advisor: Prof. Dr. Marcel Kenji de Carli Silva

During the course of this project the author was partially supported by CNPq

Online Convex Optimization:
Algorithms, Learning, and Duality

This version of the thesis was revised based on the
suggestions and corrections made by the Thesis Committee
during the original thesis’ defense, held on the 3rd of May of

2019. A copy of the original version is available at the
Institute of Mathematics and Statistics of the University of

São Paulo.

Thesis Committee:

• Prof. Dr. Carlos Eduardo Ferreira - IME - USP

• Prof. Dr. Aritanan Borges Garcia Gruber - UFABC

• Prof. Dr. Carlos Henrique Cardonha - IBM Research

Abstract

Online Convex Optimization (OCO) is a field in the intersection of game theory, optimization, and
machine learning which has been receiving increasing attention due to its recent applications to a
wide range of topics such as complexity theory and graph sparsification. Besides the usually simple
description and implementation of OCO algorithms, a lot of this recent success is due to a deepening
of our understanding of the OCO setting and their algorithms by using cornerstone ideas from convex
analysis and optimization such as the powerful results from convex duality theory.

In this text we present a mostly self-contained introduction to the field of online convex optimiza-
tion. We first describe the online learning and online convex optimization settings, proposing an
alternative way to formalize both of them so we can make formal claims in a clear and unambiguous
fashion while not cluttering the readers understanding. We then present an overview of the main
concepts of convex analysis we use, with a focus on building intuition. With respect to algorithms for
OCO, we first present and analyze the Adaptive Follow the Regularized Leader (AdaFTRL) together
with an analysis which relies mainly on the duality between strongly convex and strongly smooth
functions. We then describe the Adaptive Online Mirror Descent (AdaOMD) and the Adaptive
Dual Averaging (AdaDA) algorithms and analyze both by writing them as special cases of the
AdaFTRL algorithm. Additionally, we show simple sufficient conditions for Eager and Lazy Online
Mirror Descent (the non-adaptive counter-parts of AdaOMD and AdaDA) to be equivalent. We also
present the well-known AdaGrad and Online Newton Step algorithms as special cases of the AdaReg
algorithm, proposed by Gupta, Koren, and Singer, which is itself a special case of the AdaOMD
algorithm. We conclude by taking a bird’s-eyes view of the connections shown throughout the text,
forming a “genealogy” of OCO algorithms, and discuss some possible path for future research.

Resumo

Otimização Convexa Online (OCO) é uma área na intersecção de teoria dos jogos, otimização
e aprendizado de máquina que tem recebido maior atenção recentemente devido a suas recentes
aplicações em uma grande gama de áreas como complexidade computacional e esparsificação de grafos.
Além dos algoritmos de OCO usualmente terem descrições diretas e poderem ser implementados
de forma relativamente simples, muito do recente sucesso da área foi possível graças a um melhor
entendimento do cenário e dos algoritmos de OCO que se deu com uso de conhecidas ideias de análise
e otimização convexa como a poderosa teoria de dualidade convexa.

Nesse texto nós apresentamos uma introdução (em sua maioria auto-contida) à área de otimização
convexa online. Primeiro, descrevemos os cenários de aprendizado online e de otimização convexa
online, propondo uma forma alternativa de formalizar ambos os modelos de forma que conseguimos
enunciar afirmações claras e formais de forma que não atrapalha o entendimento do leitor. Nós
então apresentamos um resumo dos principais conceitos e resultados de análise convexa que usamos
no texto com um foco em criar intuição sobre os mesmos. Com relação a algoritmos para OCO,
nós começamos apresentando o algoritmo Adaptive Follow the Regularized Leader (AdaFTRL) e
analisamos sua eficácia com um resultado sobre a dualidade de funções strongly convex e strongly
smooth. Na sequência, descrevemos os algoritmos Adaptive Online Mirror Descent (AdaOMD) e
Adaptive Dual Averaging (AdaDA), analisando a eficácia de cada um escrevendo eles como instâncias
do algoritmo AdaFTRL. Além disso, nós mostramos condições simples para que as versões Eager
e Lazy do Online Mirror Descent (que são as versões não adaptativas do AdaOMD e do AdaDA,
respectivamente) sejam equivalentes. Também apresentamos os algoritmos AdaGrad e Online Newton
Step, bem conhecidos na literatura sobre OCO, como casos especiais do algoritmo AdaReg, esse
último um algoritmo proposto por Gupta, Koren, and Singer, que, por sua vez, é um caso especial do
algoritmo AdaOMD. Nós concluímos o texto com uma visão global das conexões entre os algoritmos
que mostramos durante o texto, formando uma “genealogia” de algoritmos para OCO, além de
discutirmos possíveis direções futuras de pesquisa.

Acknowledgements

Although it is impossible to fully express how grateful I am for the people that helped me during my
master’s, I cannot say this text is complete without thanking them.

First and foremost, thanks to my family for their unconditional support even in the darkest and
most difficult moments: my mother Solange Sanches, my father José Alexandre Portella, my brother
Daniel Sanches Portella, and my sister Bianca Sanches Portella. I hold you all dearly in my heart. I
would like to thank my mom specially for hearing me unreservedly and lovingly every time that I
needed.

I cannot fully express in anyway how grateful I am for having as my advisor Professor Marcel
Kenji de Carli Silva. I was able to fully undestand the meaning of the expression “drinking from
a firehose” under his supervision. Looking back I can appreciate how much I have learned about
computer science and mathematics due to him. However, and maybe more importantly, I am thankful
for the many things he did that transcended his duties as an advisor. If I ever become an advisor to
any student, I hope I can do for them at least a fraction of what Professor Marcel has done for me.

Another person which I owe a lot is Professor Aritanan Gruber. I will be eternally grateful for
his willingness to help me, in academic matters and otherwise. His passion for mathematics and
computer science is intoxicating and he certainly helped me make many of the decisions I have made
up to this point.

I was also fortunate to have met Professors Marco Molinaro and Carlos Cardonha, who helped
me a lot in my PhD applications, even though they had met me only on my qualification exam.
Without their help I would not have been able to enjoy the many opportunities that were presented
to me and, for that and much more, I shall be eternally grateful.

My friends offered me incredible support and affection, filling my life with moments of joy and
playfulness. Thank Mateus Barros for being one of the best friends I could wish for, for helping me
have many moments of joy, and for cutting by half the number of typos in this text. Thanks Renato
Cordeiro for your truthfully gold friendship and for all our deep conversations about life, the universe
and everything else. Thanks Karina Awoki for being a short friend with an enormous heart who helps
me with many of my personal dilemmas. Thanks Ruan Costa and Gervásio Santos for being with me
and for being supportive even after I almost killed us back in Australia. Thanks Vinicius Vendramini
for being extremely supportive and for always being there for your friends. Thanks Ludmila Ferreira
for always being a freehearted, spontaneous, and extremely joyful friendship. Thanks Leonardo
Contador for being with me since my childhood and for, even after so many years, being such a close
and good friend who I see as a brother of mine.

Finally, I would like to thank Ana Caroline de França. Writing your name made me smile in the
same way I do when I see you smile. Thanks for this and much more.

Contents

1 Introduction and Preliminaries 3
1.1 Notation and Preliminaries . 4

1.1.1 Sequences . 5
1.1.2 Probability . 6
1.1.3 Linear Algebra Results . 8

2 Online Learning and Online Convex Optimization 10
2.1 The Online Learning Setting . 11
2.2 Examples of Online Learning Problems . 15

2.2.1 Online Classification . 15
2.2.2 Prediction with Expert Advice . 16
2.2.3 Online Regression . 18
2.2.4 Sequential Investment . 18

2.3 Loss Minimization Impossibility and Regret . 19
2.4 Relation of Online Learning with Statistical Learning 22
2.5 Online Convex Optimization . 27
2.6 From Online Learning to Online Convex Optimization 31

2.6.1 Surrogate Loss Functions . 32
2.6.2 Randomization . 34

2.7 A Closer Look at Regret . 38

3 Convex Analysis, Optimization, and Duality Theory 41
3.1 Convex Sets and Functions . 41
3.2 Topological Properties of Convex Sets and Functions 44
3.3 Hyperplane Separation and Duality . 47
3.4 Fenchel Conjugate . 49
3.5 Subgradients . 53
3.6 Optimality Conditions . 56
3.7 Convex Spectral Functions . 57
3.8 Norms . 59
3.9 Strong Convexity . 63
3.10 Strong Convexity and Smoothness Duality . 72
3.11 Bregman Divergence and Projection . 73

4 The Follow The Regularized Leader Algorithm 78
4.1 The Follow the Leader and Follow the Regularized Leader Algorithms 78
4.2 The Adaptive FTRL Algorithm . 81

1

4.3 Fundamental Lemmas for Regret Bounds . 84
4.4 Regret Bounds for the Adaptive FTRL Algorithm . 88
4.5 The Classical FTRL Algorithm . 93
4.6 Regularization Regardless of the Number of Rounds 98
4.7 An Adaptive Proximal Example . 102
4.8 Logarithmic Regret Against Strongly Convex Functions 105
4.9 Follow the Leader–Be the Leader Lemma . 106

5 The Online Mirror Descent Algorithm 108
5.1 Adaptive Online Mirror Descent . 109
5.2 Non-Adaptive Online Mirror Descent and Examples 112
5.3 OMD Connection to Proximal Operators . 115
5.4 OMD Connection with FTRL and Regret Bounds . 118
5.5 Dual Averaging or Lazy Online Mirror Descent . 125
5.6 When Lazy and Eager OMD are Equivalent . 131

6 Adaptive Regularization 134
6.1 A First Example: Adaptive Online Gradient Descent 135
6.2 The AdaReg Algorithm . 139
6.3 The AdaGrad Algorithm . 148
6.4 Diagonal AdaGrad Algorithm . 153
6.5 The Online Newton Step Algorithm . 159
6.6 Online Gradient Descent for Strongly Convex Functions 166

7 A Genealogy of Algorithms 171
7.1 Online Gradient Descent . 171
7.2 Exponentiated Online Gradient Descent and Hedge 174
7.3 Matrix Multiplicative Weights Update Method . 177
7.4 Offline Algorithms . 183
7.5 A Genealogy . 185

References 187

2

Chapter 1

Introduction and Preliminaries

Consider the following scenario: a spam filter receives emails one at a time and needs to classify
each of them as spam or not as soon as they arrive. After that, a user checks whether the filter’s
classification is right or wrong, penalizing it in the latter case. This problem can be modeled into
the online learning setting [67, 68].

An online learning problem is roughly a game made of multiple rounds in which three entities
participate: nature, player, and adversary/enemy. At the beginning of each round, nature reveals a
query to both the player and the adversary. Then, the player tries to predict the correct answer to
nature’s query, while the adversary simultaneously picks the correct answer. At the end of the round,
the enemy’s and player’s choices are revealed to each other. The player then suffers a loss based
on the quality of her prediction compared to the enemy’s answer. In the spam filtering problem
described earlier, for example, nature simply reveals, at each round, one email. The player (the
spam filter) classifies the email. The adversary (the user assessing the email’s classification) then
picks the correct classification for the email of the current round, and the filter is penalized at the
end of the round if it misclassified the email.

In online learning problems we are usually interested in devising strategies for the player which
minimize, in some sense, the player’s cumulative loss throughout the game. Different from the field
of statistical learning [50, 71], in which we assume that the pairing of nature’s queries and enemy’s
answers are governed by a fixed probability distribution which is unknown to the player, in online
learning problems the enemy may be adversarial to the player. That is, the adversary may have
the clear intention of maximizing the player’s cumulative loss. As expected, it is impossible for
the player to minimize her cumulative loss against adversarial enemies. This holds since an enemy
who knows the player’s strategy can, at each round, assign a loss of 1 to the player’s prediction
while associating a loss of 0 to all other possible choices the player could have picked. Instead, we
measure the quality of the player’s strategy through the notion of regret borrowed from game theory.
Given a set H of functions from queries to possible player predictions, the regret measures how sorry
the player is for not using the best function in H in hindsight. When looking at the regret, we are
usually interested in strategies for the player which have worst-case regret which grows sub-linearly
in the number of rounds of the game. That is, the “average regret” of the player goes to zero as the
number of rounds goes to infinity.

Even though the notion of regret seems easier to handle and minimize, it is impossible for the
player to attain sub-linear regret already in simple online learning problems [26]. There is, however,
a special case of online learning problems in which it is usually possible to attain sub-linear regret:
online convex optimization [19, 36, 67]. This framework models multi-round games with two entities:
a player and an enemy. At each round, the player has to pick a point x ∈ X from a convex set X in

3

an euclidean space while the enemy simultaneously picks a convex function f : X → R and, at the
end of the round, the player suffers a loss of f(x). It turns out that the convexity assumption is not
very restrictive, making the framework still able to model a wide range of problems. Maybe more
importantly, the design and analysis of strategies for the player benefits greatly from the classical
field of convex analysis and optimization, while still using ideas from game theory and statistical
learning. Recently, the powerful duality theory from convex analysis has driven rapid and sustained
progress in the field of online convex optimization. Looking at the algorithms from online convex
optimization through the lens of convex duality theory is helping to better understand their inner
workings, unifying analyses of previously unrelated algorithms, and aiding in the design of brand
new algorithms [33, 48, 69].

As already mentioned, we may still model many problems from the online learning setting as
online convex optimization problems, even if sometimes we may need to allow the player to randomize
her choices (see, for example, [67, Section 1.2.2]). Online convex optimization has been drawing
the attention of the theoretical computer science community recently since its algorithms have
been finding applications in areas unrelated to learning such as graph sparsification [3, 20], almost
linear-time algorithms for the approximate maximum flow problem [25], a efficient method for some
semidefinite programs [7], and computational complexity theory [12, 40]. One of the driving forces
behind many of these application is the recent Big Data phenomenon. It refers to the growing
need of devising algorithms that handle huge amounts of data that make even quadratic algorithms
impractical. In such applications, it is usually acceptable to compute only approximate solutions if
they can be obtained very efficiently. A deep understanding of the inner workings of algorithms for
online convex optimization may reveal more interesting applications or even allow us to improve
existing results.

In this text we present a mostly self-contained introduction to the field of online convex opti-
mization, mainly based on the works of Shalev-Shwartz [67], Hazan [36], McMahan [48], Bubeck [18,
19], and Gupta, Koren, and Singer [33], with a focus on looking at and analyzing algorithms through
the lens of convex duality. To do so, after introducing and discussing the online learning and online
convex optimization frameworks, we give a brief overview of the convex analysis concepts we use,
with a focus on building intuition instead of proving the stated results. We then start to present
algorithms for online convex optimization, with a focus on the perspective of convex analysis duality.
This allows us to present unified analyses of many algorithms and to show interesting connections
among them. Moreover, in our presentation we propose an alternative way of formalizing the online
learning and online convex optimization frameworks, which allows us to make formal claims in a
clear, unambiguous, and hopefully transparent way. At the same time, we have tried to make our
presentation familiar to anyone acquainted with the basics of online convex optimization so that
the formalization does not clutter one’s understanding of the content of the text. In particular, our
formalization aids us in stating and proving equivalence between many algorithms, which culminates
in a kind of “genealogy” among online convex optimization algorithms, which we present and discuss
on Chapter 7.

1.1 Notation and Preliminaries

In this section we collect basic (and usually standard) notation and results (without proofs) which
will be used throughout the text. One may skip most of this section, using it only as reference when
needed.

Throughout the text, we use bold words for formal definitions, and italic words for loose and
usually non-formal definitions, or sometimes simply for emphasis. For example, let us define the

4

Iverson bracket : if P is a predicate, we set

[P] :=

{
1 if P is true,
0 otherwise.

Moreover, if P is false, then [P] is strongly zero, that is, any expression multiplied by [P] is 0, even
in the case where the expression is invalid or undefined. For example, if we set f(α) := [α 6= 0]α−1

for every α ∈ R, we have f(0) = 0 even though x−1 is not defined for x = 0.
Most of our notation is collected on Tables 1.1 to 1.3. Still, similarly to the case of the Iverson

bracket, some of the notation on these tables will be more carefully defined on the remainder of this
section.

Table 1.1: Basic Notation
[P] := 1 if the predicate P is true, and (strongly) zero otherwise
XY := the set of functions from the set Y to the set X
Xn := X [n] for every n ∈ N; note that X0 = {∅}

X + Y := {x+ y : x ∈ X, y ∈ Y } for any subsets X,Y of an Euclidean space
αX := {αx : x ∈ X} for every α ∈ R and every subset X of an Euclidean space
⊕ := the direct sum of two vectors or two sets of vectors
1 := properly sized real vector with all entries equal to 1

ei := characteristic vector of i on the implicit from the context set RE (i.e., ei(j) :=
[j = i] for each j ∈ E)

Diag(x) := diagonal matrix with Diag(x)i,i := xi for each possible index i
diag(X) := vector with diag(X)i = Xi,i for each possible index i

Table 1.2: Frequently Used Sets

[n] := {1, . . . , n} for each n ∈ N
E := fixed euclidean space with inner product 〈·, ·〉

R+ := {α ∈ R : α ≥ 0}
R++ := {α ∈ R \ {0} : α ≥ 0}
∆E := {x ∈ [0, 1]E : 1Tx = 1}, the simplex in RE , where E is a finite set

Rn×m := R[n]×[m], that is, the set of real n×m matrices
Sd := set of symmetric d× d matrices
Sd+ := set of positive semidefinite d× d matrices

Sd++ := set of positive definite d× d matrices
Sd := {X ∈ Sd+ : Tr(X) = 1}, the spectraplex on Sd

1.1.1 Sequences

For any nonempty set X, define Seq(X) :=
⋃∞
n=0X

n and define by sequences the elements
of Seq(X). Let T ∈ N and let X be a nonempty set. Throughout the text, we will stick to the

5

Table 1.3: Sequence Notation

Seq(X) :=
⋃∞
n=0X

n

〈〉 := the empty sequence
〈x1, . . . , xt〉 := sequence of length t whose k-th element is xk for each k ∈ [t]

〈xi, . . . , xj〉 := 〈〉 if i > j, the sequence whose k-th element is xi+k−1 for each k ∈ [j − i+ 1]
otherwise

xi:j := 〈xi, . . . , xj〉

convention of using bold letters for sequences, even though we use the un-bolded letter with an
index to denote the sequence elements. Formally, for any x ∈ XT ⊆ Seq(X) (that is, a sequence of
elements from X of size T), we set xi := xi for each i ∈ [T]. Moreover, we use angle brackets to
write sequences in full, that is, for every x ∈ XT and i, j ∈ [T] with i ≤ j, we have that 〈xi, . . . , xj〉
denotes the sequence whose j − i + 1 elements are, in order1, xi, xi+1, . . . , xj . Finally, 〈〉 denotes
the empty sequence, and for any x ∈ XT and i, j ∈ Z with j < i or such that j < 0, define
〈xi, . . . , xj〉 := 〈〉. We also denote by xi:j the sequence 〈xi, . . . , xj〉 for any x ∈ Seq(X) and i, j ∈ Z.
Most of the notation for sequences is listed on Table 1.3.

1.1.2 Probability

In some parts of the text, we will use a bit of probability theory. Thus, let us define the basic
concepts and objects of probability theory to ensure the reader follows our notation. We assume the
reader is acquainted with basic probability theory.

Let Ω be a set, and let Σ ⊆ 2Ω, where 2Ω denotes the power set of Ω. The set Σ is a σ-algebra
on Ω if

(i) Ω ∈ Σ,

(ii) for every E ∈ Σ we have Ω \ E ∈ Σ,

(iii) If {Ei}∞i=0 is countable and such that Ei ∈ Σ for every i ∈ N, then
⋃∞
i=0Ei ∈ Σ.

Moreover, if Σ is a σ-algebra, we say that (Ω,Σ) is a measurable space. We may refer simply to
Ω as a measurable space when Σ is made clear by the context. Finally, for any set O ⊆ 2Ω, define
the σ-algebra generated by O (on Ω) by

σ(O) :=
⋂
{M ⊆ 2Ω : O ⊆M andM is a σ algebra on Ω}.

For any set O ⊆ 2Ω, the above set is indeed a σ-algebra with Ocal ⊆ σ(O) (see [65, Theorem 1.10]).
Many of the spaces which we have to handle are topological spaces2, which have natural σ-algebras

which are usually associated to them, the Borel σ-algebras. Formally, let (X,O) be a topological
space. Then the Borel σ-algebra on (X,O) is the σ-algebra σ(O). The Borel σ-algebra on
(X,O) may be denoted by B(X) is the topology O is clear from the context. For example, the

1Note that, by the definition of sequence, the indexes of the elements of 〈xi, . . . , xj〉 range from 1 to i − j + 1.
Therefore, for any k ∈ {1, . . . , j − i+ 1}, the k-th element of 〈xi, . . . , xj〉 is xi+k−1.

2that is, are sets X equipped with a topology O ⊆ 2X on X (also know as the open sets of the topological space
(X,O)). To say that O is a topology on X means that O contains both ∅ and X, is closed under arbitrary unions,
and closed under finite intersections. We do not expand on this subject since it is not the focus of this section and
neither of the text, but the interested reader may see [65, Definitions 2.3] and the discussion and results that follow it.

6

Borel σ-algebra on R (equipped with the usual topology) is the σ-algebra generated by the set
OR := { (a, b) ⊆ R : a, b ∈ R, a ≤ b} of open intervals on R, where (a, b) := {x ∈ R : a < x < b} for
any a, b ∈ R. More generally, the Borel σ-algebra on Rd (equipped with the usual topology) is the
σ-algebra generated by the set of open rectangles on Rd, that is,

{ l1 × l2 × · · · × ld ⊆ Rd : li ∈ OR for each i ∈ [d]}.

Throughout the text we assume that R and Rd are each equipped with their respective Borel
σ-algebras.

Before jumping to probability spaces, it is worth talking about unions and Cartesian products
of measurable spaces since we shall face some of these cases when talking about probability on
sequences as defined on the previous section. Let (B1,B1), . . . , (Bk,Bk) be measurable spaces. Then,
unless stated otherwise, we equip the set B1×· · ·×Bk with the σ-algebra generated σ(B1×· · ·×Bk).
Measurable spaces of the latter kind are called product spaces (see [35, Section 37] and [8,
Section 2.6] for details and discussion on product spaces). Thus, if (B,B) is a measurable space,
then the product space (Bn, σ(Bn)) is also a measurable space. Finally, if (B,B) is a measurable
space, then

σ
(∞⋃
n=0

σ(Bn)
)

(1.1)

is a σ-algebra on Seq(B). Thus, unless stated otherwise, we equip the above σ-algebra to Seq(B).
Let us now define probability spaces. A probability space is a triple (Ω,Σ,P), where

(i) Ω is a set, called sample space,

(ii) Σ ⊆ 2Ω is a σ-algebra on Ω whose elements are called events,

(iii) P : Σ→ [0, 1] is a function, called probability measure or probability distribution, such
that P(Ω) = 1, P(∅) = 0, and such that it is countably additive, that is, if {Ei}∞i=0 is a
countable family of pairwise disjoint events from Σ, then

P
(∞⋃
i=0

Ei

)
=
∞∑
i=1

P(Ei).

If (Ω,Σ) is a measurable space, then a probability distribution on (Ω,Σ) is a function P : Ω→ R+

such that (Ω,Σ,P) is a probability space. Let (Ω,Σ,P) be a probability space and let (B,B) be a
measurable space. We say that a function X : Ω→ B is a random variable if X is a measurable
function (w.r.t. the measurable spaces (Ω,Σ) and (B,B)), that is, if for every F ∈ B we have
X−1(F) := {ω ∈ Ω : X(ω) ∈ F} ∈ Σ. In particular, for a function from a measurable space (Ω,Σ)
to R to be a random variable it needs to be measurable w.r.t. (Ω,Σ) and (R,B(R)). If (B,B) is a
measurable space and X : Ω→ B is a random variable, for every b ∈ B and F ∈ B we set

P(X = b) := P(X−1({b})) and P(X ∈ F) := P(X−1(F)).

One fact that is tirelessly used in probability theory is that, if D is a probability distribution on
a measurable space (B,B), then there are3 a probability space (Ω′,Σ′,P′) and a random variable
X : Ω′ → B such that P′(X ∈ F) = D(F) for every F ∈ F . In this case, we write X ∼ D or we
say that X follows the probability distribution D. We say that a function L : Ω → R is Borel-
measurable if it is measurable w.r.t. the Borel σ-algebra on R. We say that events A,B ∈ Σ are

3Namely, the probability space (B,B,D) and the random variable given by X(b) := b for every b ∈ B.

7

independent events if P(A ∩ B) = P(A)P(B). Moreover, two random variables X : Ω → A and
Y : Ω→ B, where (A,A) and (B,B) are measurable spaces, are independent if, for every E ∈ A
and F ∈ B we have

P(X ∈ E, Y ∈ F) := P(X−1(E) ∩ Y −1(F)) = P(X ∈ E)P(Y ∈ F).

Let (Ω,Σ,P) be a probability space, let (B1,B1), . . . , (Bk,Bk) be measurable spaces, and let
X1, . . . , Xk be random variables on (Ω,Σ,P) with Xi : Ω → Bi for each i ∈ [k]. If (U,U) is a
measurable space and f : B1 × . . .×Bk → U is measurable w.r.t. σ(B1 × . . .× Bk) and U , then we
abuse notation and define the random variable

[f(X1, . . . , Xk)](ω) := f(X1(ω), . . . , Xk(ω)), ∀ω ∈ Ω.

We will avoid this notation when it may cause confusion.
Moreover, the expectation of a random variable X : Ω→ R is the Lebesgue integral4

E[X] :=

∫
X(ω)dP(ω)

when it exists. If the above integral is well-defined for the random variable X, then we say that X is
Lesbegue integrable (w.r.t. P). Interestingly (and more easily understandable), if X : Ω→ R is a
random variable and there is a finite set I ⊆ R such that

∑
x∈I P(X = x) = 1, then

E[X] =
∑
x∈I

xP(X = x).

1.1.3 Linear Algebra Results

Let us now define some of the notation and state some basic results we use about concepts from
linear algebra. We still suppose the reader is reasonably acquainted with linear algebra. Thus, we
do not aim to be thorough in our exposition, and we only define the most used concepts and we
state (and sometimes prove) only some results we use on the text.

For any a, b ∈ Rd and ◦ ∈ {≤,≥,=, <,>}, we shall write a ◦ b when ai ◦ bi for each i ∈ [d]. Let
A ∈ Rm×d. If m = d, then A is square, and if A = AT, then A is symmetric. We denote the set
of all symmetric d × d matrices by Sd. If A is square and Ai,j is zero for every distinct i, j ∈ [d],
then A is diagonal. Finally, the following notation will be useful:

• for any vector x ∈ Rd, Diag(x) ∈ Sd is a diagonal matrix with diagonal entries given by
Diag(x)i,i := xi for each i ∈ [d], and

• for any matrix X ∈ Rd×d, diag(X) ∈ Rd is defined by diag(X)i := Xi,i for each i ∈ [d] and it
is called the diagonal of X.

Throughout the text, we denote by I the identity matrix, a properly sized diagonal matrix
with Ii,j = [i = j] for any i, j in the set of possible indices, that is, the identity matrix has one in
each diagonal entry and zeroes everywhere else. The trace of A ∈ Rd×d is Tr(A) :=

∑d
i=1Ai,i, and

one may verify that

• Tr(AB) = Tr(BA) for real matrices A,B such that the products AB and BA are defined,
4We skip the definition of Lesbegue integral for the sake of brevity, but one can find the definition and in-depth

discussions in

8

• (A,B) ∈ Sd × Sd 7→ Tr(AB) is an inner product on Sd, and

• Sd equipped with the above inner product is an euclidean space.

We denote by det(A) the determinant of A (see [39, Section 0.3] for a proper definition and
discussion). We will use, without giving a proof, the following properties of the determinant:

• det(AB) = det(A) det(B) for matrices A,B ∈ Rd×d,

• det(A) = det(AT) for A ∈ Rd×d, and

• det(Diag(x)) =
∏d
i=1 xi for any x ∈ Rd.

Let A ∈ Sd. If xTAx ≥ 0 for every x ∈ Rd, denoted by A � 0, then A is positive semidefinite,
and if xTAx > 0 for every x ∈ Rd \ {0}, denoted by A � 0, then A is positive definite. Moreover,
for any B ∈ Sd we write A � B if A−B � 0 and we write A � B if A−B � 0. Define

Sd+ := {X ∈ Sd : X � 0} and Sd++ := {X ∈ Sd : X � 0}.

The eigenvalues of A are the d roots of the polynomial λ ∈ R 7→ det(λI − A) (which are all real
since A is symmetric and real, see [39, Theorem 4.1.3]). If λ ∈ R is an eigenvalue of A, then any
v ∈ Rd \ {0} such that Av = λv is said to be an eigenvector of A (associated with λ). The function
λ↑ : Sd → Rd extracts the eigenvalues of a matrix in non-decreasing order. We say that a matrix
Q ∈ Rd×d is orthogonal if Q−1 = QT. Note that, if Q ∈ Rd×d is an orthogonal matrix, then

1 = det(I) = det(QQT) = det(Q) det(QT) = det(Q)2.

That is, the determinant of any orthogonal matrix is either 1 or −1. To conclude, let us state some
results we use in future chapters.

Theorem 1.1.1 (Spectral Decomposition Theorem, see [39, Theorem 4.1.5]). If A ∈ Sd, then there
exists an orthogonal matrix Q ∈ Rd×d such that A = QDiag(λ↑(A))QT.

Corollary 1.1.2. If A ∈ Sd, then Tr(A) = 1
Tλ↑(A) and det(A) =

∏d
i=1 λ

↑
i (A).

Proof. Define Λ := Diag(λ↑(A)). By Theorem 1.1.1, there is an orthogonal matrix Q ∈ Rd×d such
that A = QΛQT. Then

Tr(A) = Tr(QΛQT) = Tr(QTQΛ) = Tr(Λ) = 1
Tλ↑(A)

and

det(QΛQT) = det(Q) det(Λ) det(QT) = det(Λ) =

d∏
i=1

λ↑i (A).

Theorem 1.1.3 ([39, Theorem 4.1.10]). Let A ∈ Sd. Then A � 0 if and only if λ↑(A) ≥ 0 and
A � 0 if and only if λ↑(A) > 0.

Let A ∈ Sd+. A matrix A1/2 ∈ Sd+ is a square root of A if (A1/2)2 = A. The next proposition
shows that such a matrix is unique, and it shows how to construct it from the spectral decomposition
of the matrix.

Proposition 1.1.4 ([39, Theorem 7.2.6]). Let A ∈ Sd+. Then A has a unique square root ma-
trix A1/2 ∈ Sd+. Moreover, if A = QDiag(λ↑(A))QT , where Q ∈ Rd×d is an orthogonal matrix,
then A1/2 = QDiag(µ)QT , where µ ∈ Rd is defined by µi := λ↑i (A)1/2 for each i ∈ [d].

Lemma 1.1.5 ([39, Corollary 7.7.4]). Let A,B ∈ Sd+ be such that A � B. Then A1/2 � B1/2.

9

Chapter 2

Online Learning and Online Convex
Optimization

Roughly, online learning is a setting where three entities, which we call nature, player, and enemy,
play a multi-round game. At each round, nature begins by revealing a query. Then, simultaneously,
the player picks her guess of the answer and the enemy picks the “true answer” of the query. At the
end of the round, the player suffers a loss based on how bad her prediction was when compared to
the true answer given by the enemy. This seemingly simple setting has many applications in fields
such as machine learning [68], optimization [19], and game theory [24]. One of the main aspects of
this setting which makes it so useful and which distinguishes it from the classical statistical learning
setting [71] is the lack of any statistical assumptions on the entities playing the game. In particular,
the enemy in the online learning setting can be adversarial to the player, trying to maximize her
cumulative loss. As expected, this setting in its full generality is too hard for the player. For that
reason we look at the special case of online convex optimization, where two entities, player and enemy,
play a multi-round game. At each round of this game the player picks a point x from a convex set X
in an euclidean space E, and the enemy simultaneously picks a convex function f : E→ (−∞,+∞]
from a fixed set F ⊆ (−∞,+∞]E. At the end of the round, the player suffers a loss given by f(x).
In later chapters we will see that there are plenty of interesting algorithms for the player which,
under mild assumptions, guarantee low regret, where the latter is a performance measure borrowed
from game theory which we define later. In this chapter we will see that many interesting problems
from the online learning setting can be solved either by directly modeling it as an online convex
optimization instance, or by using algorithms from the latter as subroutines.

It is worth noting that our presentation of the online learning and online optimization settings is
slightly unusual if compared to the current literature, such as of the surveys [19, 36, 67]. Our goal
with our presentation is to leave no room for doubt about the information which each entity has
access to at any moment, and to be able to make precise and formal statements about these settings.
At the same time, we try to make the presentation familiar enough for the existing community and
for those familiar with optimization so that the formalism does not clutter one’s understanding.

On Section 2.1, we define the online learning setting, and look at the simpler realizable case with
a finite hypothesis set. On Section 2.2 we define and motivate many classic problems which fit the
online learning setting. On Section 2.3 we argue that it is uninformative to look at the raw loss of
the player on the online learning setting. We introduce the notion of regret as an alternative measure
of player quality, and we show that it is impossible to attain low regret already in simple online
learning problems. On Section 2.4 we compare the online learning to the statistical learning settings,
and show how to use the former to solve tasks of the latter. On Section 2.5 we define the online

10

(convex) optimization setting, we show that it is a special case of online learning, and we look at
some problems from the online learning setting which can be modeled as online convex optimization
problems. On Section 2.6 we look at techniques to devise player strategies for the online learning
setting given that we have good algorithms for some online convex optimization problems. Finally,
on Section 2.7 we further discuss the notion of regret, its intuition, and we present the idea of policy
regret.

2.1 The Online Learning Setting

Online Learning is a setting which models problems where a forecaster/player has to sequentially
predict a competitor’s answers to a sequence of queries by an entity called nature (not yet mentioned
here). We will usually call such a competitor as an enemy since it will often be adversarial to the
player. Immediately after each of her choices, the player suffers some kind of loss which depends
on the accuracy of her prediction. As expected, the goal of the player is to attain the lowest
possible, in some sense, cumulative loss throughout the game. A classic example is the spam filtering
problem, where the a spam filter receives, sequentially, emails which need to be classified as spam
or non-spam. Immediately after each email classification, a penalty is charged on the filter in case
of misclassification. This example is illustrative because it helps to intuitively justify one of the
main peculiarities of this setting: there are no statistical assumptions over the sequence of answers
picked by the adversary. Actually, we will usually be interested in the performance of the player
against adversarial enemies, that is, competitors which pick answers/points1 with the clear goal of
maximizing the players cumulative loss. This makes sense in the spam filtering example, since spam
creators evolve with time, actively trying to bypass detection by the spam filter. Let us formally
define this setting before continuing our discussion. The following definitions use the notation of
sequences extensively, which are formally defined in Section 1.1.

Definition 2.1.1 (Online learning instance). An online learning (OL) instance is a quadruple
(X,D, Y, L), where X, D, and Y are arbitrary sets which we call the query, decision, and label
sets of the instance, respectively, and L : D× Y → R is a function, which we call the loss function
of the instance.

Let P := (X,D, Y, L) be an online learning instance. We associate with P the function OLP ,
which receives the following parameters:

• NATURE: N→ X, which we call nature oracle;

• PLAYER: Seq(X)× Seq(Y)→ D, which we call player oracle;

• ENEMY: Seq(X)× Seq(D)→ Y , which we call enemy oracle;

• T ∈ N, which we call the number of rounds or iterations.

It is worth warning that player and enemy oracles will usually not be defined for pairs of sequences
of arbitrary size. Instead, they will be defined only for pairs of sequences with size which may appear
on the online learning setting that we define later on. Still, we say that a player (or enemy) oracle is
a function from Seq(X)× Seq(Y) (or Seq(X)× Seq(D)) to D (or Y) for convenience.

Define OLP in an iterative way as in Algorithm 2.1. It is worth noting that, for t ∈ N \ {0}, we
consider to be the t-th round the iteration of Algorithm 2.1 in which are defined the t-th elements of

1The choices of nature, player, and enemy in our setting will be represented by points from certain sets. Thus, we
may refer to their choices by “points” throughout the remainder of the text.

11

Algorithm 2.1 Definition of OLP(NATURE,PLAYER,ENEMY, T)

Input: NATURE, PLAYER, and ENEMY which are a nature, player, and enemy oracles for P,
respectively, and T ∈ N.

Output: (x,d,y) ∈ XT ×DT × Y T .
for t = 1 to T do

xt ← NATURE(t)
dt ← PLAYER

(
〈x1, . . . , xt〉, 〈y1, . . . , yt−1〉

)
yt ← ENEMY

(
〈x1, . . . , xt〉, 〈d1, . . . , dt−1〉

)
return (x,d,y)

the sequence of points picked by the oracles. Even though this is intuitive in Algorithm 2.1, one may
get confused later in the text when we define more complex algorithms and start talking about its
actions on round t.

Let us look at what is happening on Algorithm 2.1 for an online learning P := (X,D, Y L). In
this setting, a player is participating in a game made of a sequence of rounds with a competitor, who
we call enemy since it can, and will in the analysis of the algorithms we describe in later chapters,
be adversarial to the player. At round t, nature presents a query xt ∈ X. The player then picks a
prediction dt ∈ D, and the enemy simultaneously picks the “true label” yt ∈ Y . Although this is not
formally defined in the algorithm, one may imagine that at the end of the round the player suffers
a loss of L(dt, yt), where L is the loss function from P, which is fixed throughout the game. One
important aspect of this game is that, in round t, the player and the enemy know all the queries
from nature until round t, besides knowing the points played by each other until the round t− 1.
That is, at round t both the player and the enemy know x1, . . . , xt, the player knows y1, . . . , yt−1,
and the enemy knows d1, . . . , dt−1, so they may adapt to each others’ previous choices.

At this point, it is worth mentioning that the terminology on the literature is not uniform. Online
learning is a loosely used term for many related settings and problems. For example, online learning
in [19] is a setting quite similar to the one given by Algorithm 2.1, but without the nature oracle,
a difference which does not affect the capabilities of the framework by much. Moreover, one may
find works with “online learning” in its title which mainly talk about online (convex) optimization, a
special case of online learning which we define in Section 2.5. Our definition of online learning is
based mainly on [67] and on [50], and it fits the definition of classic papers of the field such as the
ones introducing the Perceptron [62, 63] and Winnow algorithms [47]. Nonetheless, our presentation
of online learning draws from other sources as well [19, 36, 38].

Before continuing, one may be puzzled by these functions which we call oracles used in the
definition of online learning. We realize that this is a unusual way of defining the OL setting, and
may not be ideal in all situations, but there are some reasons to define the setting in this way. One
aspect of online learning (and of other settings we look at later) that we want to make crystal clear
is which kind of information each of the “participants” has access to at each moment. For example,
the idea that at round t ∈ N both player and enemy make their choices “simultaneously” is formally
described in Algorithm 2.1 by the fact that dt is computed without knowledge of yt, and vice-versa.
Still, both participants make these choices with knowledge of the queries from nature up to round
t, that is, 〈x1, . . . , xt〉 as in Algorithm 2.1, as well as each other’s choices on rounds 1 to t − 1.
Knowing which information each oracle has access to may start to get complicated when we look at
worst-case scenario or probabilistic players and enemies. As we will see, oracles give us the ability to
formalize claims in sometimes insightful ways, leaving no room for doubt about the information each
participant has access to at each round of the game.

12

Although this is not our main focus in the text, it is interesting to first look at strategies for the
player in the realizable case. Let P := (X,D, Y, L) be an online learning instance and let ENEMY
be an enemy oracle for P. Then ENEMY is represented by h∗ : X → D if, for any T ∈ N, any
player oracle PLAYER for P, and any nature oracle NATURE for P, we have that if

(x,d,y) = OLP(NATURE,PLAYER,ENEMY, T),

then L(h∗(xt), yt) = 0 for every t ∈ [T]. That is, there is some function h∗ : X → D governing the
pairing of nature’s queries and the “correct” (zero-loss) prediction to it. Taking inspiration from the
statistical learning setting, we name each function from H a hypothesis . In the realizable case,
the goal is to build a player oracle PLAYERH for P, which can depend on the hypothesis set H,
that attains small loss against enemy oracles represented by a hypothesis in H.

As an example, consider the online learning instance
(2.1)P := (X, {0, 1}, {0, 1}, L), where L(d, y) := [d 6= y] for every d, y ∈ {0, 1}.

In this instance, at each round nature picks a point x ∈ X. The player then has to give a label 0
or 1 to it, trying to match the enemy’s classification, suffering a loss of 1 in the case of a mistake.
Instances of this form are known as online binary classification problems, and we will define this
class of instances more carefully in the next section. For an example of an online binary classification
instance, consider X as a set of pictures, and suppose we want to devise a player oracle which can
predict if there is a visible dog in a given picture of X or not. The ideal scenario is the one in which
there is a set H ⊆ {0, 1}X and a function h∗ ∈ H such that, for every x ∈ X, we have h∗(x) = 1 if
and only if there is a visible dog in x. That is, h∗ is a function which assigns the correct answer to
each one of the images. In this case, we want to build a player oracle which, with knowledge of H,
can make a small number of mistakes against an enemy represented by h∗. More generally, in the
realizable case of an OL instance P := (X,D, Y, L) with a hypothesis set we want to devise a player
oracle PLAYERH which performs well against any enemy represented by some hypothesis in H. We
index the player by the hypothesis set H since its behavior may (and usually will) depend on H.

For the sake of simplicity, let us look at the case of the realizable online binary classification with
a finite hypothesis set. That is, let P be as in (2.1) and let H ⊆ {0, 1}X be a nonempty and finite
hypothesis set. Intuitively, since in the realizable case we want strategies for a player which has
knowledge of H, we can guess that the smaller the size of H, the smaller the upper bounds we devise
on the number of player mistakes will be. Indeed, suppose we have a player oracle which, at round
t ∈ N, has a set Ht ⊆ H of candidates for the “true hypotheses” which represents the enemy oracle.
Moreover, at round t ∈ N this player picks a hypothesis ht ∈ H and makes its prediction according
to ht. At the end of the round, this player builds Ht+1, the set of candidate hypotheses for the next
round, by discarding the current hypothesis ht in case of a mistake. It is easy to see that such a
player does not make more than |H|− 1 mistakes in the realizable case, independently of the number
of rounds of the game. An easy and quite natural improvement of this idea can be made: at each
round, predict in the same way as the majority of the hypotheses, and after each mistake discard all
of the hypotheses which made a mistake. This strategy is known as halving (see [50, Section 7.2.1]
and [67, Section 1.2.1]), and an oracle which formally implements it is defined on Algorithm 2.2.

Fortunately, such a simple2 strategy already yields an upper bound in the number of mistakes of
the player which grows logarithmically with the size of the hypothesis set.

Theorem 2.1.2 ([67, Theorem 2.1]). Let P := (X, {0, 1}, {0, 1}, L) be an online learning instance
as in (2.1). Moreover, let H ⊆ {0, 1}X be nonempty and let ENEMY be an enemy oracle for P

2It is worth noting that such a simple algorithm has its subtleties. If the hypotheses are not given explicitly, it may
be computationally expensive to explicitly compute the value of every hypothesis at the query picked by the nature
oracle for each round.

13

Algorithm 2.2 Definition of HALVINGH(〈x1, . . . , xT 〉, 〈y1, . . . , yT−1〉)
Input:

(i) A nonempty set H ⊆ {0, 1}X for some set X and

(ii) sequences x ∈ XT and y ∈ {0, 1}T−1 for some T ∈ N \ {0}.
Output: dT ∈ {0, 1}.
H1 ← H
for t = 1 to T do
H(0)
t ← {h ∈ Ht : h(xt) = 0}
H(1)
t ← {h ∈ Ht : h(xt) = 1}

dt ←
[
|H(1)

t | ≥ |H
(0)
t |
]

if t < T then . Compute candidates for next round if needed
if dt 6= yt then
Ht+1 ← H(1−dt)

t

else
Ht+1 ← Ht

return dT

which is represented by a function in H. Finally, let T ∈ N and NATURE be a nature oracle for P ,
and set (x,d,y) := OLP(NATURE,HALVINGH,ENEMY, T). Then

T∑
t=1

L(dt, yt) ≤ lg|H|.

Proof. For each t ∈ [T], let Ht be defined as in HALVINGH(x,y1:T−1) and define

HT+1 :=

{
HT if dT = yT ,

{h ∈ HT : h(xT) = yT } otherwise,

that is, HT+1 is defined as it would have been had the halving algorithm played T + 1 rounds.
Moreover, let M = {i(1), i(2), . . . , i(m)} ⊆ [T] be the set of indices i(k) such that Hi(k) 6= Hi(k)+1.
By the definition of the halving algorithm, one can see that M is the set of rounds in which the
player has made a mistake, that is, the rounds t ∈ [T] such that dt 6= yt. By assumption, there is
h∗ ∈ H such thatENEMY is represented by h∗, that is, h∗ ∈ H is such that h∗(xt) = yt for each
t ∈ [T]. Moreover, by the definition of HALVING, for each h ∈ H we have that h 6∈ HT+1 if and
only if there is t ∈M such that h(xt) = dt 6= yt, that is, if and only if h has made a mistake on one
of the rounds in M . Since h∗(xt) = yt for every t ∈ N, we have h∗ ∈ HT+1. Thus, |HT+1| ≥ 1.

Moreover, let t ∈M and let both H(0)
t and H(1)

t be as in the definition of HALVINGH(x,y1:T−1).
By the definition of the HALVING oracle, we have |H(dt)

t | ≥ |H
1−dt
t |. Since {H(dt)

t ,H(1−dt)
t } is a

partition of Ht and Ht+1 = H(1−dt)
t , we conclude that

|Ht+1| = |H1−dt
t | ≤ |Ht|

2
, ∀t ∈M.

Thus, by a simple induction,

1 ≤ |HT+1| ≤
|Hi(m)|

2
≤
|Hi(m−1)|

22
≤ · · · ≤ |H1|

2m
=
|H|
2|M |

.

14

That is,
T∑
t=1

L(dt, yt) =
T∑
t=1

[dt 6= yt] = |M | ≤ lg|H|.

The above result holds for the case with a finite hypothesis set. Thus, one may be wondering if it
is possible to say something about hypothesis sets of infinite size. We can, but in this case we need
some kind of measure of the complexity of such hypothesis classes. A discussion from this point of
view is not the focus of this text, but a great discussion on online learnability of general hypothesis
classes on the classification case can be found on [67, Section 3].

2.2 Examples of Online Learning Problems

In this section we describe a series of classic and interesting classes of online learning problems, that
is, instances with some specific form. Looking at these known problems will make the concepts
shown in the last section more concrete and will help familiarize the reader with most of the online
learning notation introduced so far. Additionally, some of these problems already encompass many
other interesting and more specific online learning tasks. In some cases, as for the prediction with
expert advice problem, the capability of the problem of modeling other online learning problems can
single-handedly motivate this problem. Throughout the remainder of the text, when an OL instance
fits into one of the problems we shall see, we may refer to it simply as a problem or as an instance
of a problem. We shall use the latter when simply saying that it is a “problem” does not make it
clear if we are talking about a specific instance or if we are talking about all instances which fit the
description of the problem.

2.2.1 Online Classification

Let us look now at the online classification problem. In this kind of instance the player oracle
receives, at each round, a point x from an arbitrary set X. It then has to assign a class (or label)
from a finite set Y , and then the enemy reveals the correct class where x belongs. The goal of the
player oracle is to assign classes to the points of X presented during the game in a way to match as
accurately as possible the enemy oracle’s classification. Formally, an online learning instance is said
to be an online classification problem when it has the form (X,Y, Y, L), where X is an arbitrary
set, Y is some finite set, and L : Y ×Y → R is a function, although we usually have L(d, y) := [d 6= y]
for every d, y ∈ Y .

A concrete example is the spam filtering problem, where at each round the player receives an
email, represented by a point x in some set X. The player has to classify it as spam or not, and
the user then reveals the true classification of the email. Note that the user is not adversarial to
the player in this case. Rather, the user is the one that wants the most for the predictions to be
accurate. Instead the spammers, which in this case play the role of nature, are the ones that are
adaptive and adversarial3 to the player, the spam detector. For the sake of concreteness, let us
suppose that each email is represented in a format known as bag-of-words: we have a fixed set of
words Σ, our dictionary, and each email is represented by a vector x ∈ NΣ, where xw is the number
of times the word w ∈ Σ appears in the email. Thus, the spam filtering problem can be modeled,

3In our framework nature cannot be adaptive to the players’ choices since it is not aware of such decisions. However,
spammers usually tend to modify the emails they send in a way that it looks less like spam. Thus, as the OL game
goes on, spammers will progressively send emails which do not look like spam for the filter, while the user is able
to identify such emails as spam. That is, from the point of view of the spam filter, the user is the one who is being
adversarial by marking seemingly inoffensive emails as spam, not the spammers/nature.

15

given a dictionary Σ, as the online learning instance (NΣ, {0, 1}, {0, 1}, L), where L(d, y) := [d 6= y]
for every d, y ∈ Y . This problem fits a type of online classification instances that deserves special
attention, which is when there are only two distinct labels, a case which we call online binary
classification.

2.2.2 Prediction with Expert Advice

An online learning instance is a prediction with expert advice problem or simply an experts’
problem if it is of the form (AE , A, Y, L), where A is some arbitrary set of possible “actions”, E is a
finite set of “experts”, Y is nonempty, and |L(a, y)| ≤ 1 for every a ∈ A and y ∈ Y (i.e., losses are
bounded). The intuitive idea of this problem is that there is a finite set E of experts and at each
round each expert suggests an action from a set A. With this information, the player has to pick an
action from A and the enemy oracle then reveals the costs of the actions4. In this problem we are
usually interested in devising player oracles that perform as well, in some sense, as the cost of the
actions of the best expert in hindsight, even for adversarial enemy oracles. This is certainly one of
the most studied and classic online learning problems, probably because many other problems can
be modeled as a prediction with expert advice instance (for a plethora of examples, see [6, 24]). To
motivate this problem, let us look at some examples of problems which can be modeled as prediction
with expert advice problems.

A good example is the online routing problem: every day a driver has to pick one of many routes
to go to work, wishing to minimize her total travel time5. A good measure of effectiveness of the
driver’s strategy is to compare the time she has spent driving in T days with the time she would
have spent had she chosen the best fixed route in hindsight. Even though it may not be clear at first,
we can fit this problem into the prediction with expert advice problem. If the set of routes is P , the
key idea is to think of one expert for each route p ∈ P whose advice is p at every round. Moreover,
the enemy plays the role of assigning costs to the routes every round/day. That is, an instance of
online routing can be modeled as the instance (PP , P, [−1, 1]P , L) of the experts’ problem, where P
is the set of possible routes, and L(p, y) := yp for every p ∈ P and y ∈ [−1, 1]P . It is worth noting
that the crux of modeling problems as an experts’ problem is usually the choice of the set of experts
and which are their advice at each round. Thus, we can fit online routing in the prediction with
expert advice problem: each route is an expert’s advice, the player suffers the loss of the expert she
has chosen to follow, and the cost of every route is revealed after the player makes her choice.

One interesting example of a problem which can be modeled as an experts’ problem is the task
from the machine learning field of meta-learning, which we only describe loosely for the sake of
building intuition. Suppose we have a task where we have to predict, given a point in a set X, the
“correct” label from a set Y . However, instead of learning from scratch, the player has a set E ⊆ Y X

of predictors. The player’s task is, given a sequence of points from X, to make not much more
prediction mistakes than the best predictor from E. This problem fits seamlessly into the experts
framework. At each round t, we have a point xt ∈ X for which we have to assign a label from Y .
For that we receive the advice e(xt) of each predictor e ∈ E. With this information in hands, the
player makes its prediction dt ∈ Y , and the true label yt ∈ Y is then revealed, incurring a loss of
[dt 6= yt] to the player (or a loss given by some other loss function). This is useful when, for example,
one has different predictors which work well in different scenarios, and one wants to select which
predictor to use dynamically.

As we are going to see later on Section 2.6, the true power of the prediction with expert advice
4Note that, for any y ∈ Y , the function L(·, y) associates to each action a cost.
5We suppose that, at the end of the day the driver gets to see the travel time of that day for each route, even

though it is more realistic to suppose the player has no information about the routes except for the one she picked.

16

problem shines when the player is randomized: at round t the player maintains weights pt ∈ ∆E

over the set E of experts which represents a probability distribution over the experts. Then, instead
of deterministically picking an action at each round, the player samples at round t an expert6 to
follow according to the distribution represented by pt, that is, each expert e ∈ E is sampled with
probability pt(e). Later we show that the expected cost at round t of such strategy is given by pTt ct,
where c ∈ RE is given by ct(e) := L(e, yt) for each e ∈ E where yt is the point picked by the enemy
at round t. We save the details of this randomization for Section 2.6.2.

One interesting application of randomized strategies for the experts’ problem is boosting [66] which,
again, we describe loosely since our goal is only to motivate the experts’ problem. Besides, for the sake
of simplicity we focus on the task of boosting an algorithm for (statistical) classification, a problem
from statistical learning theory which we define slightly more formally on Section 2.4. In the statistical
classification problem, the player has to build a predictor which assigns to points from a set X the
correct labels from a set Y . The correct pairing of points fromX to labels Y is assumed to be governed
by a function c : X → Y that is unknown to the player, which we call a concept. In order to build such
a predictor, we have access to a training set T := {(x1, c(x1)), (x2, c(x2)), . . . , (xm, c(xm))} ⊆ X ×Y .
In the task of boosting for statistical classification, the player still has to build a good predictor
from X to Y based on a training set T ⊆ X × Y for the concept c : X → Y , but in this case the
player also has access to a function A : ∆T → Y X , a weak learner, which can be thought as an
“almost worthless” predictor. Loosely speaking, a weak learner receives a probability distribution
over the training set, and outputs a function from X to Y which predicts only slightly better than an
uniformly random assignment from X to Y . This probability distribution given to the weak learner
is a way to tweak the predictor which A generates so that it focuses more on certain points of the
training set. The idea in a problem of boosting is to iteratively build predictors from A and update
the probability distribution over the training set at each iteration so that, at a given iteration, the
weak learner focuses on the points from T which all the previously generated predictors together7

miss-classify. As it is shown in [66], the final predictor built from a combination of all the predictors
generated by A during this process is a good one (given that the training set and the number of
rounds are big enough, besides other conditions).

The boosting task is modeled as an experts problem as follows. Each entry from the training set
T is modeled as an expert. At round t, the player picks weights (or probabilities) pt ∈ ∆T for the
points in T , which yield a predictor rt := A(pt). Then, the enemy simply outputs T , and the loss
of the player is given by the function L(r, T) :=

∑
(x,y)∈T [r(x) 6= y] for each r ∈ Y X . Interestingly,

even though each one of the functions rt := A(pt) induced by the weights pt picked by the player are
bad predictors, if the player in this experts’ problem suffers a low amount of cumulative loss (in
some sense), then the average predictions given by all the functions r1, . . . , rT happens to be a good
predictor (given that some conditions on the training set and the number of rounds are satisfied).

6One may find it odd that we sample an expert, and not an action. This is a choice of strategy for the player,
that is, following this strategy the player always picks an action suggested by some expert. This guarantees a good
performance in expectation if compared to the loss of the best expert in hindsight. Still, one may come up with cases
where the player would benefit from choosing actions none of the experts suggested.

7Maybe by taking the average prediction, the majority prediction or simply the prediction given by a predictor
sampled uniformly at random.

17

2.2.3 Online Regression

Formally, the online regression problem encompasses the online learning instances of the form8

(Rd,R,R, L), where L : R×R→ R is some arbitrary function. Some common loss functions used for
this type of problems are (d, y) ∈ R× R 7→ |d− y| and (d, y) ∈ R× R 7→ (d− y)2. The format of
online regression problems may seem too broad, and indeed it is. The structure of these problems
is usually contained in the hypothesis set H ⊆ (Rd → R) of functions the player has to compete
with. For example, if we were in the realizable case, there would be, for each enemy, a “true function”
which maps the entries given by nature to the correct labels of the enemy. Moreover, if H had
no structure whatsoever (or if the player were not aware of any structure), e.g. if H is the set of
all functions from Rd to R, it would be impossible for a player to do much. More frequently, one
wants to compete against a more restricted class of functions. Some examples of common hypothesis
sets are {x ∈ X 7→ wTx : w ∈ Rd} and {x ∈ X 7→ xTWx+ bTx : W ∈ Rd×d, b ∈ Rd}, cases which
we call online linear regression and online quadratic regression, respectively.

As an example, let us look at the dynamic pricing problem (inspired from [19, Section 1.2]).
In this problem, a vendor sequentially receives customers in a way such that the characteristics of
the customer from round t is represented by a vector xt ∈ Rd. After receiving the customer, the
vendor sets a price dt ∈ R to charge, while the customer picks a maximum price yt ∈ R he is willing
to pay. Finally, an intuitive-looking loss function for this problem is L(d, y) := −d[d ≤ y] for every
d, y ∈ R. In this case, the vendor may try do model the relation between customer characteristics
and their respective maximal prices with a linear function x ∈ Rd 7→ wTx, for example. In this
case, it makes sense to compare the performance of the vendor only against the performance of
other linear functions. One may notice that the type of functions the vendor chooses to model this
customer-price relationship depends on her prior knowledge about such a relation. Additionally, this
choice affects the complexity of the strategy of the player: strategies for online linear regression
are usually more efficiently computable than ones for online quadratic regression or for even more
complex regression models.

2.2.4 Sequential Investment

Let us look at the problem of sequential investment or constantly rebalanced portfolio. In this problem
an investor has a set A of assets over which she has to distribute her wealth at the beginning of
every day. After choosing a distribution, which may be represented by a point d ∈ ∆A, the market
reveals the ratio of returns of each one of the assets for the day. Namely, it reveals a non-zero vector
r ∈ RA+ such that, if the investor’s wealth at the beginning of the day was ρ0 ∈ R+, then her wealth
at the end of the day is

∑
a∈A ρ0rada = ρ0r

Td.
Let us look at the case where the investor has ρ0 ∈ R+ of initial wealth, and makes investments

for T days, where at day t ∈ [T] her wealth distribution is given by dt ∈ ∆A and the market return
ratios for day t is given by rt ∈ RA+ \ {0}. Then, the investor’s total wealth at the end of day T is

ρT := ρ0

T∏
t=1

dTt rt.

Thus, to maximize her total wealth at the end of day T the investor has to, in an online fashion,
8Even though we define this problem using Rd as the query set, one can consider the more general case where the

query space for the regression is a more general Euclidean space such as the space of matrices with the trace inner
product.

18

maximize her final wealth ratio
ρT
ρ0

=

T∏
t=1

dTt rt.

This problem still does not quite fit the online learning setting. However, note that maximizing
the above quantity is equivalent to maximizing its logarithm or, instead, minimizing the negative
logarithm of the wealth ratio. That is, the investor wants to minimize

−
T∑
t=1

ln dTt rt,

and the above better fits the online learning setting.
Formally, an online learning instance is a sequential investment instance if it is of the form

P({0},∆A,RA+, L), where L(a, r) := − ln aTr for every a ∈ ∆A and every r ∈ RA+. This setting
is more naturally cast in the online optimization setting, which we are going to see later. Still,
this problem has interesting properties, and modeling it as an online learning instance leaves some
room for tweaking the model (for example, one could make nature give “hints” about which assets
will be more valuable that day). This problem in the worst-case scenario was first investigated by
Cover [27], who called universal portfolio selection strategies which could perform well in this setting
even against an adversarial market. One of the special features of this problem is its loss function L,
which is convex and exp-concave with respect to its first argument. Roughly, the latter means that
L is curved in the direction of its gradients. We will see in Chapter 6 that exp-concavity can be
exploited by player oracles, obtaining in this way very good bounds on cumulative loss.

2.3 Loss Minimization Impossibility and Regret

On Section 2.1, we have quickly looked at online learning problems P := (X,D, Y, L) in the realizable
case. Recall that, in this case, we want to perform well against enemies whose behavior can be
predicted with 0 loss by a function/hypothesis from a known set H ⊆ DX . As expected, this
assumption is too strong for most of the problems in online learning. Take as an example the spam
filtering problem. It is unrealistic to suppose that there is a function which correctly classifies any
possible email for a user as spam or not-spam, since spammers change their attacks over time for
example. In this way, emails which were considered spam at some point in time may be considered
not spam later on, and vice-versa. The following simple proposition shows what is almost obvious: in
the general setting against adaptive and adversarial enemies, there is no hope in trying to minimize
cumulative loss. Indeed, if the cost of all possible predictions of the player is 1, for example, there is
nothing to do. Even in slightly more interesting cases, looking at the raw cumulative loss seems
uninformative.

Proposition 2.3.1. Define the prediction with expert advice instance P := ({1, 2}2, {1, 2}, [−1, 1]2, L),
where L(d, y) := yd for every d ∈ {1, 2} and y ∈ [−1, 1]2. Moreover, let NATURE and PLAYER be
nature and player oracles for P, respectively. Finally, define the enemy oracle ENEMY∗PLAYER for
every t ∈ N, every x ∈ ({1, 2}2)t+1, and every d ∈ ({1, 2}2)t by

ENEMY∗PLAYER(x,d) := edt+1 with dt+1 := PLAYER(x,y′), where
(x1:t,d

′,y′) := OLP(NATURE,PLAYER,ENEMY∗PLAYER, t).

Then, by setting (x,d,y) := OLP(NATURE,PLAYER,ENEMY∗PLAYER, T) we have
T∑
t=1

L(dt, yt) = T.

19

Proof. Let NATURE be a nature oracle for P, let T ∈ N, and define

(x,d,y) := OLP(NATURE,PLAYER,ENEMY∗PLAYER, T).

By the definition of ENEMY∗PLAYER, we have that yt = edt for every t ∈ [T], that is, L(dt, yt) = 1 for
every t ∈ [T].

Note that the enemy oracle used in the above simple proposition is special: it knows the strategy
of the player. Thus, even though the enemy does not have access to the t-th choice of the player
during round t in the usual rules of the game, this special enemy knows exactly which point the
player picks on the current round. This is the most extreme case of adversarial enemy one can think
off: one that makes the player suffer the maximal amount of loss possible no matter what the player
does.

Thus, the worst-case cumulative loss of a player may not give us much information about her
performance: both sophisticated and simple-minded player oracles are usually indistinguishable if
we look only at the cumulative loss. Intuitively, the problem is that we are posing, in some sense, an
unrealistic goal: to obtain low cumulative loss when even a player with hindsight could perform no
better. A more informative metric of performance originated from game theory [24] is the notion
of regret, which measures how better or worse the player oracle performs when compared to some
function of queries to predictions. The name “regret” comes from the idea that the regret with
respect to some function measures how “sorry” the player oracle is for not using this function as its
strategy throughout the whole game. Let us define regret formally.

Definition 2.3.2 (Regret for Online Learning). Let P := (X,D, Y, L) be an OL instance, let
h : X → D, and let T ∈ N. Moreover, let x ∈ XT , d ∈ DT , and y ∈ Y T . The regret of d with
respect to the sequence y and the function h (and w.r.t. the sequence x and the loss function L) is

Regret(x,d,y, h, L) :=

T∑
t=1

(
L(dt, yt)− L(h(xt), yt)

)
.

If PLAYER is a player oracle for P, define

Regret(x,PLAYER,y, h, L) := Regret(x,d′,y, h, L),

where
d′t = PLAYER(〈x1, . . . , xt〉, 〈y1, . . . , yt−1〉), ∀t ∈ [T]. (2.2)

Additionally, for every H ⊆ DX , the regret of d with respect to the sequence y and the set H (and
w.r.t. the sequence x and the loss function L) is

Regret(x,d,y,H, L) := sup
h∈H

Regret(x,d,y, h, L) =

T∑
t=1

L(dt, yt)− inf
h∈H

T∑
t=1

L
(
h(xt), yt

)
.

Moreover, If PLAYER is a player oracle for P, define

Regret(x,PLAYER,y,H, L) := Regret(x,d′,y,H, L),

where d′ is defined as in (2.2). Finally, for every nature, player, and enemy oracles PLAYER,
ENEMY, and NATURE for P, respectively, for every function h : X → D and every set H ⊆ DX

define
RegretPT (NATURE,PLAYER,ENEMY, h) := Regret(x′,d′,y′, h, L)

20

and
RegretPT (NATURE,PLAYER,ENEMY,H) := Regret(x′,d′,y′,H, L),

where (x′,d′,y′) := OLP(NATURE,PLAYER,ENEMY, T), omitting P from the notation when it
is clear from the context.

As in the realizable case, the function h and the set H in the above definitions are usually called
hypothesis and hypothesis set, respectively.

Let us take a step back and look at the intuitive meaning of these regret functions. The regret
of a player oracle with respect to a function h measures how much better the player would have
performed had she used as her strategy throughout the game the function h. Similarly, the regret
with respect to a hypothesis set H measures how much better the player would have performed
had she used as her strategy throughout the game the hypothesis from H best suited for this game,
that is, the one which performs best.

Let us look at some hypothesis classes for some of the problems we have seen on Section 2.2.
Let P := (AE , A, Y, L) be an instance of prediction with expert advice. Intuitively, the player
should not be expected to magically perform better than any of the experts. Thus, if no expert
in E performs well in the game (with certain nature and enemy oracles), then it is reasonable to
expect that the player will perform poorly as well. On the other hand, if there is some expert in
E which is good, that is, whose advice yields losses much lower than that of the other experts
throughout the game, a good player oracle should be expected to notice that and learn to follow
this good expert. So, a natural and traditionally used hypothesis class for the experts problem is
H := {x ∈ AE 7→ xe : e ∈ E}, that is, the class of predictors which follow the same expert at every
round. Thus, the regret w.r.t. H measures how sorry the player is for not following in every round
the best expert in hindsight.

Let us look at the case of online regression. As briefly commented on Section 2.2, the hypothesis
class used for online regression is what defines most of the structure of the problem. If we are in the
online linear regression case, and no linear function performs well in the game with certain nature
and enemy oracles at hand, the player may still be able to get low regret, since she only needs to
perform as well as the best linear function, none of which perform well in the current game. Finally,
in online classification, a natural hypothesis set is a set of naive predictors, usually easy to come up
with (such as a fixed random assignment of labels, or predictors based in very simple rules). Thus,
the task in online classification is to classify as well as any of these benchmark predictors.

Given a learning problem and a hypothesis set, we are interested in finding player oracles that
attain low regret w.r.t. this hypothesis set for any online learning instance from this class. However,
we have yet to say what is low regret. First in words and not so formally, we consider the regret of
the player w.r.t. a hypothesis set H to be low if it is sublinear in the number of rounds T , which
happens only if, for any h ∈ H, the difference of the loss of the player at round t and the loss of
the function h in the same round (i.e. L(h(xt), yt)) goes to zero as the number t goes to infinity.
Intuitively, if L(dt, yt) − L(h(xt), yt) → 0 as t → +∞ for any h ∈ H, it means that the player is
being able to “learn” how to perform as well as the best hypothesis H for the game. Formally, let
PLAYER be a player oracle for the OL instance P := (X,D, Y, L). We say that PLAYER attains
low regret w.r.t. a hypothesis set H and to nature and enemy oracles NATURE and ENEMY for
P, respectively, if

lim
T→∞

1

T
RegretT (NATURE,PLAYER,ENEMY,H) = 0.

That is, the player attains low regret with respect to H and to the oracles NATURE and ENEMY if
the regret grows sublinearly w.r.t. the number of rounds T . We may also say that PLAYER attains

21

low-regret w.r.t. a single hypothesis instead of a hypothesis set with a definition similar to the one
above. We will usually be interested in player oracles that attain low regret for any pair of enemy
and nature oracles for the online learning instance at hand. We say that a player oracle attains
low regret w.r.t. a hypothesis set H if it attains low regret w.r.t. H and to any pair of nature and
enemy oracles for P. Although we are not going to use this terminology in this text, it is worth
noting that player oracles whose regret against any nature and enemy oracles grows sublinearly
w.r.t. the number of rounds of the game are said to be Hannan consistent (see [24, Section 4.2]).
Additionally, we will be interested in the speed with which the above limit goes to 0. The faster it
converges to zero, the fewer rounds the player needs to “learn”, in some sense.

We have seen that regret is, at least intuitively, a performance measure which seems more sensible
than looking at the raw cumulative loss. Additionally, note that regret is exactly the loss of the
player if we are in the realizable case, which contributes to the idea that this performance measure is
a good generalization unifying the realizable and non-realizable cases. Still, pursuing regret sublinear
in the number of rounds happens to be an impossible mission in quite simple cases, as the next
proposition due to Cover [26] shows. The proof idea is simple: consider an instance of the prediction
with experts advice with two experts, each with a distinct constant advice at every round. Then, a
player who is put against its worst possible enemy (which attributes loss of 1 only to the player’s
current choice) in a game of T ∈ N rounds will suffer a loss of T , while one of the experts will have
cumulative loss smaller than T/2.

Proposition 2.3.3 (Cover’s impossibility result [26]). Define the prediction with expert advice
instance P := ({1, 2}2, {1, 2}, [−1, 1]2, L), where L(d, y) := yd for every d ∈ {1, 2} and y ∈ [−1, 1]2.
Set h1(x) := x1 and h2(x) := x2 for every x ∈ {1, 2}, and define H := {h1, h2}. Moreover, define
the nature oracle NATURE for P by NATURE(t) := (1, 2)T for every t ∈ N \ {0} and let PLAYER
be a player oracle for P. Finally, define the enemy oracle ENEMY∗PLAYER for every t ∈ N, every
x ∈ ({1, 2}2)t+1, and every d ∈ ({1, 2}2)t by

ENEMY∗PLAYER(x,d) := edt+1 with dt+1 := PLAYER(x,y′), where
(x1:t,d

′,y′) := OLP(NATURE,PLAYER,ENEMY∗PLAYER, t).

Then,
RegretT (NATURE,PLAYER,ENEMY∗PLAYER,H) ≥ bT2 c, ∀T ∈ N.

Proof. Let T ∈ N and set (x,d,y) := OLP(NATURE,PLAYER,ENEMY∗PLAYER, T). By Proposi-
tion 2.3.1, we have that the player suffers a loss of 1 at every round, that is,

∑T
t=1 L(dt, yt) = T .

Moreover, note that for every t ∈ [T] we have L(hi(xt), yt) = L(xt(i), yt) ∈ {0, 1} for any i ∈ {1, 2}
and

L(h1(xt), yt) + L(h2(xt), yt) = L(xt(1), yt) + L(xt(2), yt) = 1.

Therefore, there is i ∈ {1, 2} such that

T∑
t=1

L(hi(xt), yt) =
T∑
t=1

L(xt(i), yt) =
T∑
t=1

L(xt(i), yt) ≤ bT2 c.

2.4 Relation of Online Learning with Statistical Learning

In this text, our focus is the online learning setting, where a player in a sequential game has to
compete against an adversarial enemy picking the “correct” answers to queries. Still, it is enlightening
to compare the OL setting with the statistical learning setting [50, 71]. More specifically, in this

22

section we look at the Probably and Approximately Correct (PAC) framework for supervised learning,
i.e. learning from a previously sampled set of pairs of queries and labels, called training sequence/set
(these concepts will be formally defined soon). We then compare these ideas with the ones developed
so far for online learning, and we give a brief overview of techniques to convert algorithms for a
player from the online learning setting to algorithms for the statistical (or batch) setting.

A (supervised) statistical learning instance is a quadruple L := (X,D, Y, L), where X, D,
and Y called query, decision, and label sets, respectively, each being a measurable space (i.e.,
each is equipped with a σ-algebra), and L : D × Y → R is the loss function, a Borel-measurable
function. That is, a statistical learning instance has the same form of an OL instance, with the
addition of the measurability conditions for us to work with probability distributions over these
sets (or to create random variables with the loss function). The goal of the player9 is to “learn” a
certain unknown probability distribution D over X × Y equipped with the product σ-algebra of
the σ-algebras for X and Y . In order to do so, the idea is that the player has access to a sequence
of 〈(x1, y1), . . . , (xT , yT)〉 ∈ (X × Y)T of independent and identically distributed samples from the
probability distribution D over X × Y , a realization of a training sequence10 (for D). Formally,
if T ∈ N and D is a probability distribution over X × Y , then, a training sequence (of size T
and for a probability distribution D on X × Y) is a sequence Z := 〈Z1, . . . , ZT 〉 ∈ ((X × Y)Ω)T of
T ∈ N independent random variables on a probability space (Ω,Σ,P) such that Zi ∼ D in (Ω,Σ,P)
for each i ∈ [T]. We will abuse notation so that, if Z is a training sequence of size T ∈ N on a
probability space (Ω,Σ,P), then we set Z(ω) := 〈Z1(ω), . . . , ZT (ω)〉 for each ω ∈ Ω, that is, we treat
Z as a random variable taking values on (X × Y)T .

Given a supervised statistical learning instance L := (X,D, Y, L), our goal is to devise a function
A from Seq(X×Y) to DX such that, given as input to A a sequence in Seq(X×Y) (which will be a
realization/evaluation of the training sequence we have access to), it outputs a hypothesis h : X → D.
Recall from Section 1.1.2 that, since X and Y are measurable spaces, X × Y is a measurable space
(equipped with the σ-algebra from the product space) and, as discussed in Section 1.1.2, we equip
on Seq(X × Y) a properly crafted σ-algebra as described in (1.1). A player oracle for L is a
measurable function11 A : Seq(X × Y)→ DX such that each function h : X → D in the image of
A is measurable. The intuition is that, for each sequence of points from Seq(X × Y) the player
outputs a hypothesis which tries to predict, for each query in X, the probably best answer in D to
the “enemy’s answer” from Y . Formally, if Z is a training sequence on a probability space (Ω,Σ,P)
and A is a player oracle for L, then we define12 the random variable

[TRAIN(A,Z)](ω) := A(Z(ω)), ∀ω ∈ Ω.

Although we have said that the goal of the player is to learn the unknown distribution D, we
have not formally defined what it means for the player to learn. The idea is that the player wants
to pick a function from X to D which tries to predict the pairing of points from X × Y sampled

9The entity “player” is not commonly used in the statistical learning literature, since it simply poses problems
without needing any notion of “player” and “enemy”. Still, attributing to an entity called player the goal that the
learning problem poses is useful to compare this setting with the online one.

10Again, in traditional statistical learning this is a set, known as the training set, not a sequence. But we do not
lose generality by dealing with sequences and it will ease the definition of some concepts later on.

11We use the notation A for a player for statistical learning instances to avoid confusion with online learning
notation and due to tradition in the literature.

12One may argue that the following definition is innocuous and that it is equivalent to the random variable A ◦Z,
which we would denote simply by A(Z) based on our conventions from Section 1.1.2. Still, in this case it is good to
avoid any kind of confusion since we want the oracle A to receive only points from X × Y , and not the entire random
variable, which could give unfair information for the player about the unknown probability distribution that she wants
to learn.

23

from the distribution D and, thus, to choose for each point in X a point in D to minimize her losses.
More specifically, fixed an unknown to the player probability distribution D on X × Y , the player
wants to pick a measurable function h : X → D with small generalization error or risk w.r.t. D,
which is given by

riskD(h) = E(X̄,Ȳ)∼D[L(h(X̄), Ȳ)],

where E(X̄,Ȳ)∼D is the expectation taken with respect to a probability space (Ω,Σ,P) in which (X̄, Ȳ)
is a random variable with probability distribution given by D. Usually, the player picks the function
h from a known hypothesis set H ⊆ DX , that is, a set of measurable functions from X to D.

One example of a statistical learning instance is a statistical version of the prediction with expert
advice problem. Let (AE , A, Y, L) be a prediction with expert advice problem, and suppose that
A and Y are measurable spaces, and that the function L is measurable (the set E is naturally a
measurable space when equipped with its power set). In this version of the problem, the advice of
the experts (and their respective costs) are bound to a probability distribution, that is, there is a
distribution D on AE × [−1, 1]E on which the training sequence is based. We are often interested
in finding the expert whose advice, in expectation, minimizes the loss given by the loss function
L : A× Y → [−1, 1]. In the context of statistical learning, this is the same as picking a hypothesis in
{x ∈ AE 7→ xe : e ∈ E} that minimizes the risk with respect to the probability distribution D.

A natural question that arises after the above definitions is: how small should the error of the
hypothesis be so that we can consider that the player was able to learn the unknown probability
distribution from where the training sequence was sampled? In online learning, we have seen that a
reasonable goal is to seek for player oracles with regret sublinear in the number of rounds for any
pair of enemy and nature oracles. Since the statistical setting is a probabilistic setting by nature, we
should expect the learnability condition to be probabilistic as well. Let us look first at the simpler
deterministic case. In this case, we suppose that there is a (measurable) function c : X → Y , a
target concept, which determines the relation between X and Y that we want to learn. In this case,
we need training sequences with a special form, which we call deterministic training sequences. A
deterministic training sequence (for the concept c : X → Y) based on a probability distribution
D on X is a sequence Z = 〈(X1, c ◦ X1), . . . , (XT , c ◦ XT)〉, where X1, . . . , XT are independent
random variables on a probability space (Ω,Σ,P), each following the probability distribution D.

Moreover, overloading the notation of risk to capture the deterministic case, we define the
deterministic generalization error or the deterministic risk of a measurable function h : X →
D w.r.t. a probability distribution D on X and to a concept c : X → Y by

riskD(h, c) = EX̄∼D[L(h(X̄), c(X̄))],

Hence, given a concept set C ⊆ Y X , we want to decide if it is possible to devise an algorithm for
the player which, for any target concept c ∈ C given together with a training sequence based on
a fixed probability distribution, generates a hypothesis (i.e., a function from X to D) with small
deterministic risk. This idea is formalized by PAC-learnability, concept first proposed in [70]. Here
we closely follow the presentation from [50].

Definition 2.4.1 (PAC-learnability). Let L := (X,D, Y, L) be a statistical learning instance, and let
C ⊆ Y X be a set of measurable functions. Then C is PAC-learnable for L if there is a player oracle
AC : Seq(X × Y)→ DX for L and a real polynomial function p : R3 → R such that, for any c ∈ C,
any probability distribution D over X, any ε > 0, any δ > 0, any T ∈ N with T > p(1/ε, 1/δ, T),
and any deterministic training sequence Z of size T for c sampled from a probability distribution D
on X on the probability space (Ω,Σ,P), we have

P(riskD(TRAIN(AC ,Z), c) ≤ ε) ≥ 1− δ.

24

Moreover, if there is an algorithm which implements A that runs in time O(p(1/ε, 1/δ, T)), then C
is efficiently PAC-learnable for L. In this definition, we omit the dependence of the minimum
size of T and the space required to represent the concept c for the sake of simplicity.

With the definition of PAC-learnability, we can already spot major differences between the
statistical and the online learning settings. In the statistical case, we have strong statistical
assumptions over the points sampled from X × Y , while in the online case the points can be picked
in a way adversarial to the player. Another major difference is that in statistical learning the
player has access to all the points sampled from X × Y before picking a hypothesis, while in the
online learning setting the player has to make a prediction (and thus suffer some kind of loss)
for each round. Arguably, the most interesting difference is the way that each setting measures
algorithm/oracle quality (regret and risk). In the statistical case, the player tries to pick a single
function that generalizes well in expectation in unseen data sampled from a fixed distribution (the
same distribution on which training sequence is based on), that is, that performs well in the “real
world”. Indeed, note that in the definition of PAC-learnability, we require the algorithm to be able to
have low risk with respect to any fixed probability distribution, only requiring the training sequence
to be sampled from this same probability distribution. On the other hand, in the online case the
player is affected only by the points she sees during the game. Not only that, the player can, in some
sense, change her strategy in the middle of the current game based on the points she has already
seen, not committing to a single hypothesis as in the statistical scenario. While strategies used in
these frameworks can differ in approach, with some effort, algorithms for online learning that have
low regret can be used for statistical learning in some cases to obtain low risk [21, 46]. Later we will
briefly look at the idea of some of these transformations, called Online to Batch conversions.

Before talking about online to batch conversions, let us look at the “deterministic case” assumption
made on the PAC-learnability definition. Let (X,D, Y, L) be a statistical learning instance. Note
that assuming there exists a (measurable) concept c ∈ Y X which correctly maps each query to its
label in the training sequence, or even in the points from the “real world”, which is done in the
definition of risk with respect to a concept c, is restrictive. For example, if X is the set of pairs of
weight and height of a certain population, and Y is the set of possible genders, there probably are
two people with the same height and weight with different genders. Thus, assuming that there is a
function which maps each distinct pair of height and weight in X to a gender in Y is not valid in
this case. A better assumption is to suppose that, given the weight and the height of a person, there
is a probability distribution over Y describing the probability of a person with these characteristics
being of each gender in Y . Not only that, recall that a concept class C is PAC-learnable if, for any
given concept c ∈ C, there is an algorithm which generates with high probability a hypothesis with
arbitrarily small risk. However, it is often the case that there is no such hypothesis. That is, the
PAC learning model pratically supposes that we are in the realizable case, that is, the case where
there is a hypothesis with no risk. A model which captures the notion of learnability without relying
on the deterministic or realizable case assumptions is the idea of Agnostic PAC-learnability.

Definition 2.4.2 (Agnostic PAC-learnability). Let L := (X,D, Y, L) be a statistical learning
instance and let H ⊆ DX be a set of measurable functions. Then H is agnostic PAC-learnable for
L if there is a player oracle A : Seq(X × Y)→ DX for L and a real polynomial function p : R3 → R
such that, for any probability distribution D over X × Y , any ε > 0, any δ > 0, any T ∈ N with
T > p(1/ε, 1/δ, T), and any training sequence Z of length T sampled from D on the probability
space (Ω,Σ,P), we have

P(riskD(TRAIN(A,Z))− inf
h∈H

riskD(h)) ≤ ε) ≥ 1− δ.

25

Moreover, if there is an algorithm which implements A that runs in time O(p(1/ε, 1/δ, T)), then H
is efficiently agnostic PAC-learnable for L. In this definition, we omit the dependence of the
minimum size of T and the space required to represent the concept c for the sake of simplicity.

Note that the agnostic PAC-learnability model has more similarities to the idea of regret used in
online learning if compared to the original PAC-learning model. In words, a hypothesis set H is
agnostic PAC-learnable if there is an algorithm which, with a big enough training sequence, outputs
with high probability a hypothesis in H which is as accurate as the best hypothesis in H. Thus, a
natural question is if we can translate, in some way, player oracles with low regret guarantees for a
hypothesis set H into algorithms for agnostically PAC-learning the set H. It is indeed possible to
make such a conversion, with many different techniques proposed for different cases [21, 23, 29, 30,
46]. The details of the conversion are out of the scope of this text, but a brief overview is interesting
nonetheless.

Let L := (X,D, Y, L) be an statistical learning instance, let H ⊆ DX be a hypothesis set for L,
and define the online learning instance P := L. Even though both are the same, it is useful to have
different notations for the cases when we look at (X,D, Y, L) as an online learning instance (P) and
when we look at it as an statistical learning instance (L). Suppose there is a player oracle PLAYER
for the online learning instance P which suffers low regret against any pair of nature and enemy
oracles for P. Finally, let T ∈ N, let D be a probability distribution on X × Y , and let

Z := 〈(X1, Y1), . . . , (XT , YT)〉

be a training sequence for L of size T based on D on the probability space (Ω,Σ,P). The idea now
is that we want to use, in some way, the oracle PLAYER in sequences of the form 〈X1, . . . , XT 〉 and
〈Y1, . . . , Yt−1〉 for each t ∈ [T]. However, the latter sequences are random variables and, thus, what
we would like to do is actually to define random variables of the form

ω ∈ Ω 7→ PLAYER(〈X1(ω), . . . , Xt(ω)〉, 〈Y1(ω), . . . , Yt−1(ω)〉), ∀t ∈ [T]. (2.3)

Some subtleties appear when we try to build random variables of this form, which we call randomized
player oracles. For the sake of simplicity we defer the discussion of some of these subtleties to
Section 2.6.2. For now, just assume that PLAYER is such that the functions in (2.3) are random
variables, and let us discuss how to obtain, given ω ∈ Ω, a hypothesis with low risk.

Thus, let ω ∈ Ω and set

xt := Xt(ω) and yt := Yt(ω), for each t ∈ [T].

The idea to use PLAYER to obtain a low-risk hypothesis for L is to look at the regret of PLAYER
against a pair of nature and enemy oracles for P such that, at round t ∈ [T], nature outputs xt ∈ X
and the enemy picks yt ∈ Y . One annoying difference between online learning and statistical learning
is that, in OL, the player makes predictions and, in the statistical learning setting, the player outputs
an entire hypothesis. Still, note that during the game the player oracle for P at any round works as
a hypothesis: given a query in X, the player oracle computes a prediction in D. Namely, for each
t ∈ [T] we define the hypothesis ht : X → D given by

ht(x) := PLAYER(〈x1, . . . , xt−1, x〉, 〈y1, . . . , yt−1〉), ∀x ∈ X.

In this way, we have that the regret of PLAYER w.r.t. a hypothesis h ∈ H and to the sequences
〈x1, . . . , xT 〉 ∈ XT and 〈y1, . . . , yT 〉 ∈ Y T (divided by T) is

1

T

T∑
t=1

L(ht(xt), yt)−
1

T

T∑
t=1

L(h(xt), yt). (2.4)

26

This way of viewing regret is enlightening. The second sum is an estimator13 of the risk of h w.r.t.
the probability distribution D, usually named empirical risk. Not only that, the above difference
vanishes as T grows in the case where PLAYER is guaranteed to have sublinear regret in T . Thus,
the crux of most of the techniques to convert online player oracles to statistical learning algorithms
is how to build a final hypothesis from the set h1, h2, . . . , hT of hypotheses generated by the player
oracle in a way that some guarantee on the risk can be derived from bonds on (2.4). Interestingly,
the hypothesis hT , the last one picked by the player in the game, does not necessarily has (with high
probability) low risk since it is harder to relate it to the expression from (2.4). Some techniques
used to build a final hypothesis are averaging the hypotheses (if possible) and picking a hypothesis
from h1, . . . , hT uniformly at random.

2.5 Online Convex Optimization

In this section we describe the online convex optimization setting, which may be seen as a special
case of the online learning setting. Let us first describe the setting in an intuitive way, leaving the
formalization for later. Recall from Section 1.1 that, throughout the text, E denotes an arbitrary
euclidean space (finite-dimensional real vector space equipped with an inner product), and we denote
its inner product by 〈·, ·〉.

Similarly to the online learning setting, the OCO framework is a game played in rounds by a
player and its enemy. At round t, the player picks a point xt from a convex set X ⊆ E, and the
enemy picks, simultaneously, a convex function14ft : E→ (−∞,+∞] from some set F . At the end of
the round, the player suffers the loss ft(xt). Similarly to the online learning setting, at round t the
player knows the previous functions f1, . . . , ft−1 ∈ F played by the enemy, and the enemy knows the
previous points x1, . . . , xt−1 ∈ X picked by the player. The goal of the player is to minimize, in some
sense, the cumulative loss suffered along a sequence of T rounds. As one may already guess based
on the results and discussions from Section 2.3, minimizing the raw cumulative loss is impossible in
the case of adversarial enemy oracles. Thus, we shall define regret for OCO in a way analogous to
the regret of the online learning setting. Let us now formalize this setting.

Definition 2.5.1 (Online (convex) optimization instance). An online optimization instance is
a pair (X,F) where X ⊆ E is nonempty and F ⊆ (−∞,+∞]X is a set of functions such that15

X ⊆ dom f for every f ∈ F , and it is an online convex optimizaton (OCO) instance if X and
each f ∈ F are convex.

Let C := (X,F) be an online optimization instance. We associate with C the function16 OCOC ,
which takes the following parameters:

• PLAYER: Seq(F)→ X, which we call a player oracle;

• ENEMY: Seq(X)→ F , which we call an enemy oracle;

• T ∈ N, which we call the number of rounds or iterations,

and outputs a point in Seq(X)× Seq(F). As in the case of online learning, we define the function
OCOC in an iterative way in Algorithm 2.3. For t ∈ N \ {0} we consider to be the t-th round the

13Recall that the latter sum is a random variable by taking (xt, yt) as ω ∈ Ω 7→ (Xt(ω), Yt(ω)) for each t ∈ [T], and
we only fixed ω here to ease the discussion.

14We will use extended-real-valued functions, a convention justified in Chapter 3.
15We impose this condition on the effective domain of the functions since it would be mildly unfair to the player to

make her suffer infinite loss in a single round.
16Although this function can be used for non-convex online optimization instances, we stick with the name OCO

since the convex case is our main focus, with sporadic mentions to online optimization in its general form.

27

Algorithm 2.3 Definition of OCOC(PLAYER,ENEMY, T)

Input:
(i) An OCO instance C,
(ii) player and enemy oracles for C denoted by PLAYER and ENEMY, respectively, and

(iii) a number T ∈ N of rounds.
Output: (x,f) ∈ XT ×FT .
for t = 1 to T do

xt ← PLAYER
(
〈f1, . . . , ft−1〉

)
ft ← ENEMY

(
〈x1, . . . , xt−1〉

)
return (x,f)

iteration of Algorithm 2.3 in which are defined the t-th elements of the sequence of points picked by
the oracles. Even though this is intuitive in Algorithm 2.3, one may get confused later in the text
when we define more complex algorithms and start talking about its actions on round t.

Definition 2.5.2 (Regret for online convex optimization). Let C := (X,F) be an online optimization
instance and let T ∈ N. The regret of x ∈ XT with respect to f ∈ FT and to a point u ∈ E is

Regret(x,f , u) :=

T∑
t=1

(
ft(xt)− ft(u)

)
,

and the regret of x ∈ XT w.r.t. f ∈ FT and to a set U ⊆ E is

Regret(x,f , U) := sup
u∈U

Regret(x,f , u).

Moreover, let PLAYER be a player oracle for C and define x′t := PLAYER(〈f1, . . . , ft−1〉) for
each t ∈ [T]. Then, the regret of PLAYER with respect to f ∈ FT and to u ∈ E is

Regret(PLAYER,f , u) := Regret(x′,f , u),

and the regret of PLAYER w.r.t. f ∈ FT and to a set U ⊆ E is

Regret(PLAYER,f , U) := Regret(x′,f , U).

Finally, let ENEMY be player and enemy oracle for C and define the pair of sequences (x′′,f ′) :=
OCOC(PLAYER,ENEMY, T). Then, the regret of PLAYER in T rounds w.r.t. ENEMY and to
u ∈ E is

RegretCT (PLAYER,ENEMY, u) := Regret(x′′,f ′, u),

and the regret of PLAYER in T rounds w.r.t. ENEMY and to U ⊆ E is

RegretCT (PLAYER,ENEMY, U) := Regret(x′′,f ′, U),

where we omit C from the notation of regret when it is clear from context.

It is interesting to note that the regret for online optimization is computed comparing the loss of
the player with that of fixed points, whereas in the case of online learning, regret is computed with
respect to the loss of other functions (or hypotheses). Although this may seem arbitrary at first, the
next theorem shows that the online optimization framework is a special case of the online learning
setting with a nature oracle which is just a constant function. On account of this nature oracle, each
hypothesis in the regret from online learning will evaluate to only one point. Thus, the regret for
these online learning problems is exactly the regret defined here for online optimization instances.

28

Theorem 2.5.3. let C := (X,F) be an online optimization instance and define the online learning
instance P := ({0}, X,F , L), where17 L(x, f) := f(x) for every (x, f) ∈ X × F . Moreover, let
PLAYEROCO and ENEMYOCO be player and enemy oracles for C, respectively, and let T ∈ N.
Then, there are nature, player, and enemy oracles NATURE, PLAYEROL, and ENEMYOL for P,
respectively, such that

(0,x,f) = OLP(NATURE,PLAYEROL,ENEMYOL, T), (2.5)

where (x,f) := OCOC(PLAYEROCO,ENEMYOCO, T) and 0 is a properly-sized sequence with
all entries equal to 0. Additionally, for every u ∈ E we have Regret(PLAYEROCO,f , u) =
Regret(0,PLAYEROL,f , hu, L), where hu(0) := u.

Proof. Define the nature, player, and enemy oracles NATURE, PLAYEROL, and ENEMYOL for P
by

NATURE(t) := 0 for every t ∈ N,
PLAYEROL(0,f) := PLAYEROCO(f) for every t ∈ N \ {0} and f ∈ F t−1, and

ENEMYOL(0,x) := ENEMYOCO(x) for every t ∈ N \ {0} and x ∈ Xt−1.

By the definition of these oracles and of the functions OLP and OCOC , it is clear that (2.5) holds.
Moreover, if x and y are as in (2.5), if u ∈ E, and if hu(0) := u, then

Regret(PLAYEROCO,f , u) =
T∑
t=1

(ft(xt)− ft(u)) =
T∑
t=1

(L(xt, ft)− L(u, ft))

=
T∑
t=1

(L(xt, ft)− L(hu(0), ft))

= Regret(0,PLAYEROL,f , hu, L).

The above result formally proves what we had commented earlier: online (convex) optimization
is a special case of online learning. Still, what we want to do is to model problems from online
learning into the online convex optimization framework. The reason is that, as we are going to see in
later chapters, there are player oracles for online convex optimization instances which, under some
mild assumptions, have regret upper bounds which grow sublinearly with the number of rounds.
Some problems from the online learning setting fit almost seamlessly into the online optimization
setting. For example, the next proposition shows how to model online linear regression as an online
optimization instance. Not only that, one may note that if the loss function L in the proposition is
convex w.r.t. its first argument (that is, L(·, α) is convex for any α ∈ R), the online optimization
instance given is actually an OCO instance. Later, we will see one reduction of a problem from OL
to OCO where convexity is essential.

Proposition 2.5.4. Let P := (Rd,R,R, L) be an instance of online linear regression and let
C := (Rd,F) be a online optimization instance where

F := {w ∈ Rd 7→ L(wTx, y) : x ∈ Rd, y ∈ R}.
17One may note that there are many instances of online learning in which the loss function only evaluates one of

the arguments at the other, which is the case here.

29

Finally, let PLAYEROCO be a player oracle for C, letW ⊆ Rd, and setH := {x ∈ Rd 7→ wTx : w ∈W}.
Then, there exists a player oracle PLAYEROL for P such that, for any T ∈ N and any se-
quences x ∈ (Rd)T and y ∈ (R)T , there is f ∈ FT such that Regret(x,PLAYEROL,y,H) =
Regret(PLAYEROCO,f ,W).

Proof. For every x ∈ Rd and y ∈ R, define the function f(x,y) : Rd → R by f(x,y)(w) := L(wTx, y) for
every w ∈ Rd. Moreover, define the player oracle PLAYEROL for P by

PLAYEROL

(
x,y

)
:= PLAYEROCO

(
〈f(x1,y1), . . . , f(xT−1,yT−1)〉

)T
xT ,

for every T ∈ N, and all sequences x ∈ (Rd)T and y ∈ (R)T .
Set hw(x) := wTx for each x ∈ Rd. Let T ∈ N, let x ∈ (Rd)T , let y ∈ RT , and define

dt := PLAYEROL(x1:t,y1:t−1) for each t ∈ [T],

ROL := Regret(x,PLAYEROL,y, hw, L),

ft := f(xt,yt) for each t ∈ [T],

wt := PLAYEROCO(f1:t−1) for each t ∈ [T].

Let w ∈ Rd. In this case, we have,

ROL =
T∑
t=1

L(dt, yt)−
T∑
t=1

L(hw(xt), yt) =
T∑
t=1

L(wT
t xt, yt)−

T∑
t=1

L(wTxt, yt)

=
T∑
t=1

f(xt,yt)(wt)−
T∑
t=1

f(xt,yt)(w) = Regret(PLAYEROCO,f(x,y), w).

Let us look at one final example of an online learning problem which can be easily modeled as
an online convex optimization problem. One may note that in this case convexity is fundamental
for the reduction to yield an interesting relation between the regret of both instances. Consider an
instance of the prediction with expert advice problem P := (AE , A, Y, L) such that A is convex and
L is convex w.r.t. its first argument. This case is interesting because the player can pick a convex
combination of the experts’ advice and still have some information about the loss incurred by this
point. Without any structure on A, the player is virtually forced to decide to follow only one of
the experts at each round (unless the player has some kind of prior information about the game),
and the enemy can exploit this fact, as we have seen earlier in the impossibility results. The next
proposition shows that player oracles to a closely related online convex optimization problem yield
player oracles for this convex version of the prediction with expert advice problem. Recall from
Section 1.1 that if E is a finite set, then ∆E := { p ∈ [0, 1]E : 1Tp = 1} denotes the simplex on the
space RE .

Proposition 2.5.5. Let P := (AE , A, Y, L) be an instance of prediction with expert advice such that
A ⊆ E is a convex set and L : A× Y → R is convex w.r.t. its first argument18, and let C := (∆E ,F)
be an OCO problem where

F := { p ∈ RE 7→ pTc : c ∈ [−1, 1]E}.

Finally, let PLAYEROCO be a player oracle for C, let U := { ei ∈ {0, 1}E : i ∈ E}, and define the
hypothesis set H := {x ∈ AE 7→ x(i) : i ∈ E}. Then, there exists a player oracle PLAYEROL for P
such that, for any T ∈ N and any sequences x ∈ (AE)T and y ∈ Y T , there is f ∈ FT such that
Regret(x,PLAYEROL,y,H) ≤ Regret(PLAYEROCO,f , U).

18That is, L(·, y) is convex for any y ∈ Y .

30

Proof. For every x ∈ AE and y ∈ Y , define c(x, y) ∈ [−1, 1]E by

(c(x, y))e := L(x(e), y), ∀e ∈ E.

Define the player oracle PLAYEROL for P given for every T ∈ N, x ∈ XT , and y ∈ Y T−1 by

PLAYEROL(x,y) := PLAYEROCO(f ′)TxT , where f ′ ∈ FT−1 is given by

f ′t(z) := c(xt, yt)
Tz for each z ∈ RE and t ∈ {1, . . . , T − 1}.

Let T ∈ N, and let both x ∈ (AE)T and y ∈ Y T be arbitrary sequences of length T . Moreover,
define

dt := PLAYEROL(x1:t,y1:t−1), ∀t ∈ [T],

ft(z) := c(xt, yt)
Tz ∀z ∈ RE ,∀t ∈ [T],

zt := PLAYEROCO(〈f1, . . . , ft−1〉) ∀z ∈ RE ,∀t ∈ [T].

Finally, let i∗ ∈ E, define h(x) := x(i∗) for every x ∈ AE , and setROL := Regret(x,PLAYEROL,y, h).
Then,

ROL =
T∑
t=1

[L(dt, yt)− L(xt(i
∗), yt)]

=
T∑
t=1

[L(zTt xt, yt)− L(xt(i
∗), yt)] by the def. of PLAYEROL

≤
T∑
t=1

[(∑
e∈E

zt(e)L(xt(e), yt)
)
− L(xt(i

∗), yt)

]
by the convexity of L(·, yt)

=
T∑
t=1

[c(xt, yt)
Tzt − c(xt, yt)Tei∗] by the def. of c(xt, yt)

=
T∑
t=1

[ft(zt)− ft(ei∗)] = Regret(PLAYEROCO,f , ei∗) by the def. of ft.

2.6 From Online Learning to Online Convex Optimization

As we have seen on the previous section, online optimization is a special case of online learning.
However, this remark is of no practical help since in simple online learning instances it is already
impossible for the player to attain sublinear regret (see Proposition 2.3.3, for example). Thus, it is
more interesting to investigate how to go the other way around: model online learning instances into
online optimization instances, or at least use algorithms from the latter to tackle instances from the
former. In fact, we want to devise player strategies for OL problems using algorithms from online
convex optimization since, for the latter, there are algorithms for the player which attain sublinear
regret under some mild assumptions. In this section we will look at two major strategies which allow
us to use players for OCO instances to obtain players for OL instances. The first is to use, at each
round, a convex function to emulate the loss function with the current query point from nature, and
use such functions in an OCO player oracle. Such convex functions are sometimes called surrogate
loss functions [69]. The second technique which we look at is randomization, that is, letting the
player randomize her choices with random bits which the enemy does not have access to. However,
this latter technique brings some subtleties to the setting which need to be handled carefully and
which we discuss later in this section.

31

2.6.1 Surrogate Loss Functions

An online learning instance may be harder to model as an OCO instance if the loss function is not
convex w.r.t. its first argument. For example, Proposition 2.5.4 shows that linear regression fits
seamlessly into the online optimization framework. However, if the loss function is not convex w.r.t.
its first argument, we cannot guarantee that the functions from F as defined in the statement of that
proposition are convex. Thus, the oracles devised for OCO instances would not be usable in this
case. Still, not all hope is lost. In Proposition 2.5.4, the functions of the online convex optimization
instance are built in a way that the regrets of the OL and OCO instances (each with the proper
arguments) are equal. But we do not need equality to hold, because we only want to upper bound
the regret of the OL instance by the regret of an OCO instance, as in Proposition 2.5.5, since for
the latter there usually are player oracles with low regret guarantees. Therefore, building an OCO
instance with functions which upper bound the loss of the OL instance, the surrogate loss functions,
may already yield good regret guarantees. Before giving a rough idea of this technique in the general
case, let us look at an application of this idea to the problem of online binary classification.

Proposition 2.6.1. Let19 P := (X, {0, 1}, {0, 1}, L) be an online binary classification instance with
L(d, y) := [d 6= y] for every d, y ∈ {0, 1}, and let H ⊆ {0, 1}X be a finite hypothesis set for P.
Moreover, define the set F := {w ∈ RH 7→ |vTw − α| : v ∈ {0, 1}H, α ∈ {0, 1}}, the online convex
optimization instance C := (∆H,F), and let PLAYEROCO be a player oracle for C. Then, there
is a player oracle PLAYEROL for P such that, for every T ∈ N, and all sequences x ∈ XT and
y ∈ {0, 1}T , there is f ∈ FT such that

Regret(x,PLAYEROL,y, h) ≤ Regret(PLAYEROCO,f , eh) +

T∑
t=1

L(h(xt), yt), ∀h ∈ H. (2.6)

Proof. Define v : X → RH by v(x)h := h(x) for every x ∈ X and h ∈ H. Set

F (x, y, w) := 2|wTv(x)− y|, ∀w ∈ RH, ∀x ∈ X,∀y ∈ Y.

Moreover, define the player oracle PLAYEROL for every T ∈ N \ {0}, and all sequences x ∈ XT and
y ∈ {0, 1}T−1 by

PLAYEROL(x,y) :=
[
PLAYEROCO(f)Tv(xT) ≥ 1/2

]
,

where ft(w) :=
[
PLAYEROL(x1:t,y1:t−1) 6= yt

]
F (xt, yt, ·) ∀t ∈ {1, . . . , T − 1}.

Let T ∈ N \ {0}, let x ∈ XT , and let y ∈ {0, 1}T . Additionally,define, for every t ∈ [T],

dt := PLAYEROL(x1:t,y1:t−1)

ft := [dt 6= yt]F (xt, yt, ·),
and wt := PLAYEROCO(f1:t−1).

Let t ∈ [T]. If dt = yt, we have L(dt, yt) = 0 = ft(wt). On the other hand, suppose dt 6= yt. By
definition, we have dt = [wT

t v(xt) ≥ 1/2]. Thus, either wT
t v(xt) ≥ 1/2 and yt = 0, or wT

t v(xt) < 1/2
and yt = 1. In any of these cases, we have |wT

t v(xt)− yt| ≥ 1/2, that is, ft(wt) = 2|wT
t v(xt)− yt| ≥

1 = L(dt, yt). Therefore,
ft(wt) ≥ L(dt, yt), ∀t ∈ [T]. (2.7)

19Note that X does not need to be finite in this case.

32

In words, the functions f1, . . . , fT at the points picked by PLAYEROCO upper-bound the losses of
PLAYEROL. Moreover, for every t ∈ [T] we have

ft(eh) = [dt 6= yt]2|eThv(xt)− yt| = [dt 6= yt]2|h(xt)− yt| ≤ 2L(h(xt), yt), ∀h ∈ H. (2.8)

Finally, let h ∈ H and set ROL := Regret(x,PLAYEROL,y, h). Therefore,

ROL =
T∑
t=1

(L(dt, yt)− L(h(xt), yt))
(2.7)
≤

T∑
t=1

(ft(wt)− 2L(h(xt), yt)) +
T∑
t=1

L(h(xt), yt)

(2.8)
≤ Regret(PLAYEROCO,f , eh) +

T∑
t=1

L(h(xt), yt).

One may be wondering if the extraneous loss term on the above bound ruins its usefulness. Note
that in the realizable case (see Section 2.1), there is a hypothesis h∗ in the hypothesis set which
zeroes out this extra loss term. Thus, by taking h = h∗ in (2.6), the proposition shows that the
regret20 of the OCO player w.r.t. the point eh∗ upper bounds the number of mistakes made by the
player from the online learning game. Additionally, for each h ∈ H one may note that the bigger the
value of

∑T
t=1 L(h(xt), yt) in the above proposition, the harder it is to interpret or use the above

bound. Thus, if there is no hypothesis which models reasonably well the queries from nature and
the answers from the OL enemy, then the above bound is not very informative.

Let us now give a rough idea of the technique for the general case. One may find it helpful to
keep in mind the above proof while reading the remainder of this section. Let P := (X,D, Y, L)
be an online learning instance, let H ⊆ DX be a hypothesis set, and let C := (S,F) be an online
convex optimization instance, where S ⊆ E. A strategy of building surrogate functions for P on C
goes as follows: first, we know a player oracle PLAYEROCO for C. Then, we define a player oracle
PLAYEROL for P for every T ∈ N \ {0}, every x ∈ XT , and every y ∈ Y T , by

PLAYEROL(x,y1:T−1) := G(PLAYEROCO(f1:T−1),

where G : S → D and f := f(x,y) ∈ FT are carefully crafted to upper bound the loss function on
the points picked by the player (and may depend on the hypothesis set H, as we shall see). More
specifically, for every T ∈ N \ {0}, and all sequences x ∈ XT and y ∈ Y T , we want the following to
hold:

L(dt, yt) ≤ ft(st), ∀t ∈ [T], (2.9)

where, for every t ∈ [T],

ft := (f(x,y))t,

st := PLAYEROCO(〈f1, . . . , ft−1〉),
dt := PLAYEROL(〈x1, . . . , xt〉, 〈y1, . . . , yt−1〉).

(2.10)

Let NATURE and ENEMYOL be nature and enemy oracles for P, define

(x,d,y) := OLP(NATURE,PLAYEROL,ENEMYOL),

20Or, actually, the loss of the OCO player, since ft(eh∗) = 0 for each t ∈ N, where T ∈ N, H, and f ∈ RH are as
in Proposition 2.6.1.

33

and define the sequences f ∈ FT and s ∈ ST as in (2.10). If (2.9) holds, the loss of PLAYEROL

can be upper bounded by the loss of PLAYEROCO against an enemy which plays the sequence of
functions f (which depends on the sequences x and y from the OL game), that is,

T∑
t=1

L(dt, yt) ≤
T∑
t=1

ft(st).

Although this guarantees a bound on the raw cumulative loss of PLAYEROL, the property on (2.9)
is not enough to bound the regret since we do not have a bound on the cumulative loss of the
hypotheses in H, that is, a lower bound on

∑T
t=1 L(h(xt), yt)) for each h ∈ H. To obtain a bound

on the regret, the functions in the sequence f must lower bound the loss of the hypotheses from H
when evaluated in some set UH ⊆ E. That is, for each h ∈ H, there must be u ∈ E such that

L(h(xt), yt) ≥ ft(u), ∀t ∈ [T]. (2.11)

If the above inequality holds, then, it together with (2.9) imply that there is UH ⊆ E such that

Regret(x,PLAYEROL,y,H) ≤ Regret(PLAYEROCO,f , UH).

For example, in Proposition 2.6.1, we have (2.7), which is analogous to (2.9). However, in the
proposition we were not able to cleanly obtain an inequality like (2.11). In fact, note that the
extraneous cumulative loss term on the bound from Proposition 2.6.1 originates from (2.8), which is
a weaker version of (2.11).

2.6.2 Randomization

Recall that Proposition 2.3.3 shows that for simple instances of prediction with expert advice it
is impossible to find a player oracle which attains regret sublinear in the number of rounds. That
proposition relies on the possibility of the enemy predicting exactly which is the next player prediction
in the online learning setting. What if, instead of making predictions deterministically, the player
decided only on a probability distribution over her possible predictions, and left the actual choice for
randomness to take care of? Let us take the online binary classification case as an example. Given a
query, the player may think that there is a 60% chance of it being from the class 1, for example. If
the player decides to deterministically pick the class in which she is more confident, the enemy will
be able to exploit that. If, instead, we flip a biased coin which the enemy does not have access to,
we take away part of this advantage. Randomizing the choices seems even more appealing when
we have a greater number of choices and the confidence that the player has about each choice is
small. In view of this discussion, we can change the model to allow the player oracle in the online
learning setting to randomize its predictions, and restrict the access to information of the enemy
oracle: it will not have access to the “random bits” played. For example, consider a player oracle
in the prediction with expert advice problem that, instead of choosing an expert deterministically,
samples one from some probability distribution. The key here is that the enemy is able to simulate
this player oracle and see the probability of each expert being sampled that round, but the enemy
does not know which expert gets sampled before making a decision.

Formally, let P := (X,Y,D,L) be an online learning instance such that Y andD are each equipped
with a σ-algebra21 and such that L is measurable. Additionally, let (Ω,Σ,P) be a probability space.

21If D is a finite set or R, there are natural σ-algebras over them. Namely, the power set of D and the (Borel)
σ-algebra generated by the open intervals in the real line, respectively. Whenever we are in one of these cases,
we assume D is equipped with such a σ-algebra, unless stated otherwise.

34

A randomized player oracle for P is a function PLAYER: Seq(X) × Seq(Y) → DΩ such that
every function F : Ω→ D in the image of PLAYER is measurable, that is, F is a random variable
over (Ω,Σ,P) that takes values in D. In Algorithm 2.4 we overload the definition of OLP for
randomized player oracles, making it clear which information each oracle has access to. Moreover, in
the definition of OLP for randomized player oracles we also naturally suppose that ENEMY is a
measurable enemy oracle for P , that is, we assume that for each T ∈ N \ {0} and every x ∈ XT

be have that ENEMY(x, ·) is a measurable function from Y T−1 to D. Finally, the definition of
regret for randomized player oracles is similar to the definition of regret for deterministic player
oracles seen earlier. Note, however, that the function Regret for online learning becomes a random
variable in the case of randomized player oracles (given that the enemy oracle is a measurable enemy
oracle and that the loss function is measurable).

Algorithm 2.4 Definition of [OLP(NATURE,PLAYER,ENEMY, T)](ω) (overloading OLP)
Input:

(i) An OL instance P = (X,D, Y, L) such that D and Y are each equipped with a σ-algebra
and L is Borel measurable,

(ii) nature and measurable enemy oracles for P denoted, respectively, by NATURE and ENEMY,

(iii) a randomized player oracle PLAYER on a probability space (Ω,Σ,P),

(iv) a number T ∈ N of rounds, and

(v) an elemente ω ∈ Ω (the “random bits”).
Output: (x,d,y) ∈ XT ×DT × Y T .
for t = 1 to T do

xt ← NATURE(t)
Dt ← PLAYER

(
〈x1, . . . , xt〉, 〈Y1(ω), . . . , Yt−1(ω)〉

)
Yt(ω)← ENEMY

(
〈x1, . . . , xt〉, 〈D1(ω), . . . , Dt−1(ω)〉

)
return (x, 〈D1(ω), . . . , DT (ω)〉, 〈Y1(ω), . . . , YT (ω)〉)

Let us revisit the prediction with expert advice problem. On Proposition 2.5.5, we have looked
at the expert instances on which the loss function was convex w.r.t. its first argument and the
advice set was convex. In this case, it was enough to have a player oracle for the OCO instance
C := (∆E ,F), where E is the set of experts and F is a set of linear functions, to build a player
oracle for the original experts problem with the same regret guarantees. The next proposition shows
how to build a randomized player oracle for the experts problem from a player oracle for the OCO
instance C such that the expected regret on the experts’ problem is the same as the regret of the
player for C against a properly chosen enemy.

Proposition 2.6.2. Let P := (AE , A, Y, L) be a prediction with expert advice problem such that
A and Y are each equipped with a σ-algebra and L is measurable. Moreover, let C := (∆E ,F) be an
OCO instance where

F := { p ∈ RE 7→ pTc : c ∈ [−1, 1]E}.
Finally, let PLAYEROCO be a player oracle for C and let U := { ei ∈ {0, 1}E : i ∈ E}. Then,
there exists a randomized player oracle PLAYEROL for P such that, for any T ∈ N and any
sequences x ∈ (AE)T and y ∈ Y T , there is f ∈ FT such that E[Regret(x,PLAYEROL,y,H)] =
Regret(PLAYEROCO,f , U), where

Proof. For every x ∈ AE and y ∈ Y , define c(x, y) ∈ [−1, 1]E by

(c(x, y))e := L(x(e), y), ∀e ∈ E.

35

Let (Ω,Σ,P) be a probability space such that, for each T ∈ N \ {0} and p ∈ ∆E , there is an
independent random variable22 Ip : Ω→ E such that P(Ip = e) = pe for each e ∈ E. Finally, define
the randomized player oracle PLAYEROL for P given, for every T ∈ N, x ∈ XT , and y ∈ Y T−1 by

[PLAYEROL(x,y)](ω) := xT (IpT (ω)) for each ω ∈ Ω, where

ft(z) := c(xt, yt)
Tz for all z ∈ RE and t ∈ {1, . . . , T − 1} and

pT := PLAYEROCO(f).

Let T ∈ N, x ∈ XT , and y ∈ Y T . Moreover, for each t ∈ [T] define

ft(z) := c(xt, yt)
Tz, ∀z ∈ RE ,

pt := PLAYEROCO(f1:t−1),

Dt := PLAYEROL(x1:t, y1:t−1).

Let t ∈ [T]. Note that Dt = xt(Ipt(·)). Thus, P(Dt = xt(e)) = P(Ipt = e) = pt(e) for each e ∈ E.
Since y is fixed, we have

E[L(Dt, yt)] =
∑
e∈E

pt(e)L(xt(e), yt) =
∑
e∈E

pt(e)[c(xt, yt)](e) = pTt c(xt, yt) = ft(pt).

With that, by setting ROL := Regret(x,PLAYEROL,y,H) we have

E[ROL] = E
[T∑
t=1

L(Dt, yt)−min
i∈E

T∑
t=1

L(xt(i), yt)
]

=

T∑
t=1

E[L(Dt, yt)]−min
i∈E

T∑
t=1

L(xt(i), yt)

=

T∑
t=1

ft(pt)−min
i∈E

T∑
t=1

ft(ei) = Regret(PLAYEROCO,f , U).

We have claimed that the above proposition shows that a player oracle for an OCO instance
with low regret guarantees was enough to build a randomized player oracle for the experts problem
with good guarantees on the expected regret. However, as one might have noticed, there is a catch.
The above proposition proves an upper bound on the expected regret of the randomized player
oracle against fixed sequences of enemy choices. In other words, the above proposition only proves
that such a player oracle has low expected regret against enemies which are oblivious to the choices
of the player. This nuance might be often overlooked, but we find extremely insightful to deeply
understand it. Thus, let us discuss this issue more formally.

Let P := (X,Y,D,L) be an online learning instance such that Y and D are each equipped with
a σ-algebra and L is measurable, and let NATURE, PLAYER, and ENEMY be nature, player, and
measurable enemy oracles for P, respectively. Let H ⊆ DX , let T ∈ N, and suppose there is α ∈ R
such that

Regret(x,PLAYER,y,H) ≤ α, ∀x ∈ XT , ∀y ∈ Y T . (2.12)

The above bound, which is of the same type as the bound on Proposition 2.5.5, guarantees an upper
bound of α on the regret of PLAYER against NATURE and ENEMY. To see this, note that if we
set

(x,d,y) := OLP(NATURE,PLAYER,ENEMY, T),

we can plug such sequences x and y into (2.12) to obtain a bound on the regret of the player oracle
in this game. Let us now look at what happens if we have a bound as the one in Proposition 2.6.2.

22Since E is finite, it is a measure space when equipped with its powerset as its σ-algebra.

36

Namely, let PLAYER be a randomized player oracle for P on a probability space (Ω,Σ,P), and
suppose there is β ∈ R such that

E[Regret(x,PLAYER,y,H)] ≤ β, ∀x ∈ XT ,∀y ∈ Y T . (2.13)

Even though (2.12) and (2.13) are similar, the latter does not directly yield a bound on the expected
regret of PLAYER against NATURE and ENEMY. To see this, define

(x,D,Y) := OLP(NATURE,PLAYER,ENEMY, T)

and let t ∈ {2, . . . , T}. Note that Yt is a function of x1:t and D1:t−1, and since the latter are random
variables (since t > 1), we have that Yt is a random variable. That is, we cannot plug Y in the place
of y in (2.13). Thus, (2.13) only applies directly in the cases where ENEMY is oblivious (to the
choices of the player), that is, when

ENEMY(x,d) = ENEMY(x,d′) ∀T ∈ N \ {0},∀x ∈ XT ,∀d,d′ ∈ DT−1.

In words, an oblivious enemy oracle only depends on the nature queries, without taking into account
in his decisions the choices of the player. An extreme case of obliviousness is when the enemy oracle
only depends on the length of the sequence of queries from nature (i.e. the number of the current
round). In this latter case, the oblivious enemy oracle already knows which points it is going to pick
at each round even before the game begins. Oblivious enemies are not any longer functions of the
specific choices of the player, only of the nature queries, which are deterministic. Thus, the bound on
(2.13) can be applied for games where the randomized player oracle plays against oblivious enemies.

At first sight, devising randomized player oracles with low expected regret against oblivious
enemies seems much easier than devising such oracles to work against general/adaptive enemies.
Surprisingly, it seems that in most online learning problems, a player oracle which is guaranteed to
attain low expected regret against any oblivious enemy is also guaranteed to attain low expected
regret against adaptive enemies. For example, [24, Lemma 4.1] states that in the prediction with
expert advice, if a randomized player oracle which only chooses actions suggested by one of the
experts (which is the usual case) has expected regret against any oblivious enemy bounded by β ∈ R,
then the expected regret against adaptive enemies is also bounded by β. However, it is not clear
how to adapt the arguments from the proof of [24, Lemma 4.1] to the framework we present here
since, for example, the lemma By Cesa-Bianchi and Lugosi focuses on the experts’ problem.

Still, it seems that the claim that a player oracle which performs well against any oblivious
enemy also performs well against any adaptive enemy should hold for more general online learning
problems. For example, if the set Y from where the enemy makes his choices is countable, then using
expectations conditioned on the choices of the enemy and the law of total expectation seems to prove
this claim. Additionally, in [28, Section 3], the authors prove that randomized player oracles for
the online optimization setting whose random variables picked by the player are all independent23

and that have low expected regret against oblivious enemies also have low expected regret against
adaptive enemies. It seems that since the nature oracle for any OL instance is deterministic, this
result should be extensible to the online learning setting almost seamlessly. However, some arguments
used in the proof of [28, Theorem 3.1] do not seamlessly translate to the framework presented in this
text (in particular, the application of their induction hypothesis).

Finally, this “equivalence” between the power of players for adaptive and oblivious enemies does
not seem to hold for an online learning framework with bandit feedback [10], that is, the player
oracle only receives the loss it suffered on past rounds, not the points picked by the enemy as in the
classical online learning setting. Thus, having a clear proof for our framework of the claim discussed
above and looking at the arguments that do not hold for the bandit setting may be very insightful.

23Which we suppose for the randomized player oracles of this section.

37

2.7 A Closer Look at Regret

On Section 2.3, we have shown that looking only at the raw cumulative loss of the player oracle in
general does not give us much information about the quality of its predictions and proposed regret
as a better quality measure. On that same section, we also discussed the intuitive meaning of the
regret of a player oracle w.r.t. a comparison hypothesis h : X → D: it measures how “sorry” the
player is for not using h to pick his decisions throughout the game. However, this intuition is not
entirely accurate.

Let us formalize our discussion before continuing. Let P := (X,D, Y, L) be an online learning
instance. Moreover, let NATURE, PLAYER, and ENEMY be nature, enemy, and player oracles
for P, respectively, let T ∈ N, and define

(x,d,y) := OLP(NATURE,PLAYER,ENEMY, T).

Then, the regret of PLAYER w.r.t. a hypothesis h : : X → D is

RegretT (NATURE,PLAYER,ENEMY h) =

T∑
t=1

L(dt, yt)−
T∑
t=1

L(h(xt), yt).

Note that, when we say “(...) [regret] measures how sorry the player is for not using h to pick his
decisions throughout the game”, we are assuming that, even if the player had used h to make her
decisions, the enemy would still pick y as he sequence of the points for the game. In other words,
this intuition assumes that

ENEMY(x1:t,d1:t−1) = yt = ENEMY(x1:t, 〈h(x1), h(x2), . . . , h(xt−1)〉), ∀t ∈ [T].

The above holds in particular if the enemy oracle is oblivious, i.e. if the enemy oracle does not
adapt to the player’s choices (see Section 2.6.2 for the formal definition and further discussion about
oblivious enemy oracles). Still, the above equation does not hold for general enemy oracles. This
does not nullify the search of low-regret player oracles, which has been a strong focus of research in
online learning and online convex optimization [36, 67]. Besides, the classic notion of regret yields
interesting connections with other areas, such as game theory [24] and statistical learning theory [36,
Chapter 9]. Nevertheless, it is still useful to look at the idea of policy regret, a stronger notion of
regret introduced in [5] which better reflects the intuition we gave previously.

Let P := (X,D, Y, L) be an online learning instance. Moreover, let NATURE, PLAYER, and
ENEMY be nature, enemy, and player oracles for P, respectively. Finally, let T ∈ N and define

(x,d,y) := OLP(NATURE,PLAYER,ENEMY, T).

Then, the policy regret of PLAYER against ENEMY in T rounds (w.r.t. NATURE and a hypothesis
h : X → D) is

PRegretT (NATURE,PLAYER,ENEMY, h, L) :=
T∑
t=1

L(dt, yt)−
T∑
t=1

L(h(xt),ENEMY(x1:t,u1:t−1)),

where u := 〈h(x1), h(x2), . . . , h(xT)〉. One may note that the main distinction between the definitions
of regret and policy regret is in the second summation in the above definition. As we have discussed,
we are now comparing the loss of the player with the actual loss she would have suffered had she
made her predictions according to the hypothesis h. Unfortunately, this notion of regret is too strong.

38

From Cover’s impossibility result24 (Proposition 2.3.3), we know that there is no deterministic player
oracle which attains sublinear policy regret in general. However, even randomized player oracles
have no hope of attaining sublinear (in the number of rounds) expected policy regret.

Theorem 2.7.1 (Based on [5, Theorem 1]). Let P := ({1, 2}2, {1, 2}, [−1, 1]2, L) be a prediction
with expert advice problem, where25 L(d, y) := yd for every d ∈ {1, 2} and y ∈ Y . Let PLAYER
be a randomized player oracle for P on a probability space (Ω,Σ,P). Then, there are nature and
measurable enemy oracles NATURE and ENEMY for P , respectively, such that, for any T ∈ N \ {0}
and for the hypothesis set H := {x ∈ {1, 2}2 7→ xi : i ∈ {1, 2}}, we have

max
h∈H

E[PRegretT (NATURE,PLAYER,ENEMY, h)] ≥ T − 1

2
.

Proof. Let y ∈ {1, 2} be such that

P
(
PLAYER(〈(1, 2)T〉, 〈〉) = y

)
≥ 1

2
.

One exists since the player is bound to make a choice from a pool of 2 options. Moreover, define
nature and enemy oracles NATURE and ENEMY∗PLAYER for P, respectively, by

NATURE(t) := (1, 2)T for each t ∈ N,
ENEMY∗PLAYER(x,d) := [t > 1 and d1 = y]1 for each t ∈ N, x ∈ ({1, 2}2)t, and d ∈ ({1, 2}2)t−1.

Note that for any T ∈ N \ {0} and any x ∈ (AE)T , we have that ENEMY∗PLAYER(x, ·) is a constant
function on AT−1 and, thus, measurable. Let T ∈ N, and define

(x,D,Y) := OCOP(NATURE,PLAYER,ENEMY∗PLAYER, T).

By the definition of the enemy oracle ENEMY∗PLAYER, the player suffers a loss of 1 at every round
(except for the first) if she picks y on the first round, and suffers a loss of 0 otherwise. Thus,

E
[T∑
t=1

L(Dt, Yt)
]

= (T − 1)P(D1 = y) ≥ T − 1

2
.

Let z ∈ {1, 2} \ {y}, set hz(x) := xz for every x ∈ {1, 2}2, and define

u := 〈hz(x1), hz(x2), . . . , hz(xT)〉.

Then, u1 = hz(x1) = x1(z) = z 6= y. Hence, by definition,

ENEMY∗PLAYER(x1:t,u1:t−1) = 0 for each t ∈ [T]

=⇒
T∑
t=1

L(hz(xt),ENEMY∗PLAYER(x1:t,u1:t−1)) = 0.

Since hz ∈ H, we are done.
24Although Cover’s result is about regret, the enemy built in the statement of the proposition is oblivious. Thus,

one can check that regret and policy regret are equal for such an enemy, and the result holds for policy regret.
25Note that L is measurable.

39

Even though the original result from [5] is slightly more general, this version of the theorem
which looks at a specific instance of the prediction with experts’ problem can be easily compared to
Cover’s impossibility result (Proposition 2.3.3). Additionally, by Proposition 2.6.2 we know that
the randomized experts problem can be reduced, in some sense, to an online convex optimization
instance over the simplex. For this latter OCO problem, we are going to see that there are player
oracles which attain regret sublinear in the number of rounds. This shows that policy regret is way
harder to handle than the traditional notion of regret.

Policy regret is not the focus of our text, so we limit its discussion to this section. Still, we
point the reader who is interested in policy regret minimization to [5] and [22]. Interestingly, in
both of these papers the authors obtain more interesting results when the enemy is oblivious to
“old” rounds, that is, the enemy is a function only of the last c rounds, where c is some constant.
Finally, there are some other variations of regret which are useful for some problems and in some
applications of online learning to other fields. For more information on different regret variations,
see [24, Sections 4.4 and 4.6].

40

Chapter 3

Convex Analysis, Optimization, and
Duality Theory

It is not surprising that the description and analysis of most algorithms for online convex optimization,
which is the focus of the remainder of the text, heavily relies on ideas from convex analysis and
optimization. Even though the early developments in OCO could be seen in a mostly self-contained
way, the field has recently been experiencing a more coherent and unified progress, mainly due to the
use of powerful ideas from convex analysis and optimization, chiefly the ideas from convex duality
theory based on the Hyperplane Separation Theorem and on Fenchel conjugates of functions. The
presentation of the algorithms on next chapters follows this latter trend since it reveals interesting
insights about the inner-working and connections among OCO algorithms. However, simply requiring
the reader to have a background on convex analysis heavily restricts the accessibility of this text.

In this chapter we overview the main concepts from convex analysis which we use throughout
the remainder of the text, with a focus on building intuition. The presentation of this chapter aims
to be of use for both proficient and inexperienced readers when it comes to convex analysis. For
the former group, this chapter serves as a revision of the main concepts from convex analysis we
use throughout the text, together with some proofs of more specific results which are used on later
chapters. For those who are having one of their first contacts with convex analysis through this text,
we aim to build most of the intuition necessary to understand the descriptions and analyses of the
main algorithms presented in this text. For the sake of conciseness and simplicity, we do not prove
many results that we state in this chapter, although leave references the interested reader in such
cases.

Recall from Section 1.1 that, throughout the whole text, E denotes an euclidean space (finite-
dimensional real vector space equipped with an inner product) whose inner product we denote by 〈·, ·〉.
Moreover, throughout the remainder of the text we equip Rd with the euclidean inner product
(x, y) ∈ Rd×Rd 7→ xTy, and we equip Sd with the trace inner product (X,Y) ∈ Sd×Sd 7→ Tr(XY).
Finally, this chapter is mainly based on [59], although it also draws from many other sources such
as [15, 17, 18, 55]

3.1 Convex Sets and Functions

A set C ⊆ E is convex if λx+ (1− λ)y ∈ C for any λ ∈ [0, 1] and any x, y ∈ C, and C is affine if
λx+ (1− λ)y ∈ C for any λ ∈ R and for any x, y ∈ C. That is, a set C ⊆ E is convex if and only if,
for any x, y ∈ C, the line segment (between x and y) given by [x, y] := {λx+ (1− λ)y : λ ∈ [0, 1]}
is entirely contained in C. Moreover, a set C ⊆ E is affine if the line that passes through any

41

two distinct points x, y ∈ C is contained in C. Note that intersections of convex (affine) sets are
convex (affine).

Let us now define convex functions. We do so by looking at the set formed by the graph of the
function, in some sense. This way of looking at functions is useful since results and concepts for
convex sets can often be translated into analogous results about convex functions almost seamlessly.
Formally, let f : S → R where S ⊆ E. The epigraph of f is the set

epi f := {x⊕ µ ∈ S ⊕ R : f(x) ≤ µ},

and f is convex if epi f is convex. That is, the epigraph of a function f is the set built by taking
the graph of f and extruding it upwards. On Figure 3.1 we present a graphic representation of the
epigraph of a two-dimensional function.

Figure 3.1: Illustration of the epigraph of a (non-convex) function f .

In this text we will follow the same convention used in [59]: all functions we deal with can be
evaluated everywhere in E, even though they can take on infinite values. The arithmetic properties
of +∞ (which we often denote simply by ∞) and −∞ that we use are the same the author of [59]
uses. Namely,

α+∞ = +∞+ α = +∞ and α−∞ = −∞+ α = −∞ for all α ∈ R,
α(+∞) = (+∞)α = (+∞) and α(−∞) = (−∞)α = −∞ for all α ∈ R++,

α(+∞) = (+∞)α = −∞ and α(−∞) = (−∞)α = +∞ for all α ∈ −R++,

0(+∞) = (+∞)0 = 0 and 0(−∞) = (−∞)0 = 0,

+∞+∞ = (+∞) and −∞−∞ = −∞,
inf ∅ = (+∞) and sup∅ = −∞.

We note that the expressions +∞−∞ and −∞+∞ are not define and, thus, are utterly avoided.
We do not lose any generality with this assumption over the values functions can take since

a convex function f defined only in a subset S ⊆ E can be extended by setting f(x) := +∞ for

42

every x ∈ E \ S. This extension preserves the epigraph and, thus, convexity. The usefulness of this
convention is that it makes many proofs and results less technical, just needing, in some cases, some
care with the (non-)finiteness at some points. The (effective) domain of f : E → [−∞,+∞] is
dom f := {x ∈ E : f(x) 6= +∞} (see Figure 3.1 for an example of effective domain of a function).
While +∞ is used to indicate places outside the domain of f , functions which take the value −∞
somewhere are, in some sense, pathological. Not only that, we want to avoid dealing with functions
which are infinite everywhere. Thus, we will almost always deal with proper functions: a function
f : E→ [−∞,+∞] is proper if epi f is nonempty, that is, dom f is nonempty and f(x) 6= −∞ for
every x ∈ E.

Finally, one can prove that a function f : E→ (−∞,+∞] is convex if and only if it satisfies the
more familiar condition

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ E, ∀λ ∈ [0, 1].

Even though intuitive, the above characterization of convex functions may be hard to show convexity
of some given function. The next lemma will be useful later on to show convexity of two-times
continuously differentiable functions.

Lemma 3.1.1 ([59, Theorem 4.5] or [15, Corollary 2.1]). Let f : Rd → (−∞,+∞] be a proper
two-times continuously differentiable on dom f function such that dom f is convex. Then f is convex
if and only if ∇2f(x) � 0 for any x ∈ dom f .

Some functions are very useful when stating or proving convex analysis results. For any set C ⊆ E,
define

• the indicator function δ(· |C) of C by δ(x |C) := 0 for every x ∈ C and δ(x |C) := +∞ for
every x ∈ E \ C, and

• the support function δ∗(· |C) of C ⊆ E by δ∗(x |C) := sup{ 〈y, x〉 : y ∈ C}.

The best way to build intuition about indicator functions is by looking at its epigraph. For example,
the epigraph of δ(· | [−1, 1]) is simply the (infinity) rectangle on R2 formed by taking the segment
from (−1, 0) to (1, 0) and extruding it upwards (i.e., in the direction (0, 1)). More generally, if C ⊆ E,
then the epigraph of δ(· |C) it is the set C embedded in the hyperplane E⊕ 0 and extruded in the
direction 0⊕ 1 ∈ E⊕ R.

The intuition on the support function for a convex set C ⊆ E, on the other hand, is better
pictured in a different way. Namely, let a ∈ C be such that β̄ := δ∗(a |C) is finite. For every β ∈ R
we have the hyperplane H(β) := {x ∈ E : 〈a, x〉 = β}, and two associated (closed) half-spaces

H≤(β) := {x ∈ E : 〈a, x〉 ≤ β} and H≥(β) := {x ∈ E : 〈a, x〉 ≥ β}

which, in some sense, divide E in two almost disjoint sets. In particular, H(β̄) is also a hyperplane,
and by the definition of support function, we have 〈a, x〉 ≤ δ∗(a |C) = β̄ for every x ∈ C, that is, we
have C ⊆ H≤(β̄). Thus, H(β̄) is such that the set C is entirely contained in one of its half-spaces.
Not only that, by the definition of support function we have β̄ = inf{β ∈ R : C ⊆ H(β)}. In words,
β̄ is the minimum value of β ∈ R such that C in contained into one of the half-spaces associated
with H(β). Finally, on Section 3.4 it will become clear why the notations for indicator and support
function are similar.

Given a set S ⊆ E, we are sometimes interested in the smallest set with some property that
contains S. For example, the smallest affine set that contains S tells us, in some sense, if we could
fit the points of S in a space of smaller dimension. For any S ⊆ E, define

43

• aff S :=
⋂
{M ⊆ E : S ⊆M and M is affine}, called the affine hull of S;

• convS :=
⋂
{C ⊆ E : S ⊆ C and C is convex}, called the convex hull of S.

Even though the above operations will not be used very often in the remainder of the text, they are
important in some results and definitions that we see in this chapter. However, one may find it hard
to have much intuition on the hull operations with the definitions given above. The following result
shows an easier way to see the hull operations: the affine (convex) hull of a set S ⊆ E is the set of
all affine (convex) combinations of finite subsets of points in S.

Proposition 3.1.2 (see [59, Chapter 1] and [59, Theorem 2.3]). For any S ⊆ E, we have

aff S =
{ m∑
i=1

λixi ∈ E : for every m ∈ N, every {xi}mi=1 ⊆ S, and every λ ∈ Rm s.t.
m∑
i=1

= 1
}

and

convS =
{ m∑
i=1

λixi ∈ E : for every m ∈ N, every {xi}mi=1 ⊆ S, and every λ ∈ Rm+ s.t.
m∑
i=1

= 1
}
.

For concreteness, let us look at a small example. Define S := {(1, 0), (2, 1)} ⊆ R2. With the
above proposition, one can easily see that convS is the line segment between the points (1, 0) and
(2, 1) and that aff S is the line that passes through (1, 0) and (2, 1). By setting S′ := S ∪ {(2, 0)}, we
have that convS′ is the region enclosed by the triangle formed by the points in S′ and, interestingly,
aff S′ is the entire space R2.

3.2 Topological Properties of Convex Sets and Functions

Many results of convex analysis depend on some topological properties of the sets or functions
considered. Thus, in this section we state and try to give intuition on the main results and definitions
regarding topological properties of convex sets and functions. For this section we suppose that the
reader is mildly familiar with the basic concepts from topology, such as closed and open sets.

Set B := {x ∈ E : 〈x, x〉 ≤ 1}. For every C ⊆ E, define

• the closure of C by clC :=
⋂
ε>0(C + εB);

• the interior of C by intC := {x ∈ C : there exists ε > 0 s.t. x+ εB ⊆ C};

• the relative interior of C by riC := {x ∈ C : there exists ε > 0 s.t. (x+ εB) ∩ aff C ⊆ C}.

Moreover, a set C ⊆ E is relatively open if riC = C. The concepts of closure and interior of a
set are classic topology ideas. Loosely saying, the closure of a set C is the set C with just enough
points added so that it becomes closed, and the interior of a set is the set C with the sets from the
“boundary” (i.e., points which do not lie in the interior) which prevent C from being open removed.
However, the notion of relative interior is not a standard topology concept. Thus, let us look a little
bit closer at it.

Loosely saying, the relative interior of a set C ⊆ E is the interior C would have if it lived in the
“correct” dimension. For example, the interior of the line segment [0, 1] is (0, 1). However, if we place
this same line segment into R2, its interior becomes empty. Namely, the set C := [(0, 0), (0, 1)] ⊆ R2

has empty interior. This is unfortunate if one hoped to obtain the analogous of the set (0, 1) on

44

the 2-dimensional case. This is where the notion of relative interior comes in handy, since it is built
exactly for the purpose of looking at the interior the set would have if it were “full-dimensional”,
that is, in the case it lived in a space in which it had non-empty interior. In the example of the line
segment, we have riC = 0⊕ (0, 1) = { (0, λ) : λ ∈ (0, 1)}. On Figure 3.2 we illustrate a 3-dimensional
example.

Figure 3.2: Illustration of the relative interior (yellow) and affine hull (red) of the set C, a closed
two-dimensional rectangle in R3, whose interior is empty.

It is worth warning that the operation of taking relative interior of sets can sometimes behave
in unexpected ways. For example, if C ⊆ E and D ⊆ E are such that C ⊆ D, then from the
definitions of closure and interior one can see that clC ⊆ clD and that intC ⊆ intD. However,
riC is not necessarily contained in riD. In fact, it may happen that riC and riD are disjoint,
and such cases are not so pathological as one might think. For example, take C := 0⊕ [0, 1] and
D := { (λ, µ) ∈ R2 : λ, µ ∈ [0, 1]}. That is, D is a square on R2, and C is its bottom edge. In this
case we have C ⊆ D. Yet, we have seen in the previous paragraph that riC = 0⊕ (0, 1). Moreover,
aff D = R2, which implies that riD = intD = { (λ, µ) ∈ R2 : λ, µ ∈ (0, 1)}, that is, riC and riD are
disjoint in this case.

Still, there are some tools which allows us to work with relative interiors without much trouble.
The next theorem states, for a convex set C ⊆ E, that the segment between a point in riC with any
other point x̄ ∈ clC is almost entirely contained in riC, with the only exception being the point x̄
itself.

Theorem 3.2.1 ([59, Theorem 6.1]). Let C ⊆ E be a nonempty convex set, let x̊ ∈ riC, and
let x̄ ∈ clC. Then (1− λ)̊x+ λx̄ ∈ riX for every λ ∈ [0, 1).

Even though the above theorem gives us some intuition about points in the relative interior, it is
of no help if we want to show that a point from a set lies in its relative interior. The next theorem
helps us in this sense, showing a very enlightening characterization of points in the relative interior
of convex sets: a point x̊ in a convex set C ⊆ E is in its relative interior if and only if, for every
x ∈ C, the line segment between x and x̊ can be slightly extended in the direction of x̊. To obtain a
grasp of why this holds, recall that a point x̊ ∈ C is in riC if and only if there is ε > 0 such that
(̊x+ εB) ∩ aff C ⊆ C where B := {x ∈ E : 〈x, x〉 ≤ 1}. That is, there is a ball confined in the affine
hull of C and centered in x̊ which lies entirely in C. Since x̊− x ∈ aff C for any x ∈ C, one can at

45

least intuitively see that if the segment between x̊ and every point x ∈ C can be extended in the
direction of x̊, there must be such a “ball confined in aff C” from the definition of relative interior.

Theorem 3.2.2 ([59, Theorem 6.4]). Let C ⊆ E be a nonempty convex set and let x̊ ∈ C. Then
x̊ ∈ riC if and only if for each x ∈ C there is µ > 1 such that (1− µ)x+ µx̊ ∈ C .

As an application of the above theorem, let us compute the relative interior of some kinds of
polyhedra.

Corollary 3.2.3. Let A ∈ Rm×n, b ∈ Rm, C ∈ Rk×n, and d ∈ Rk be such that there is x̊ ∈ P :=
{x ∈ Rn : Ax ≤ b, Cx = d} such that Ax̊ < b. Then riP = {x ∈ Rn : Ax < b,Cx = d}.

Proof. Define P ′ := {x ∈ Rn : Ax < b,Cx = d} and let x̄ ∈ P . For any µ ∈ R \ {0} and x ∈ P we
have C((1− µ)x+ µx̄) = d. Thus, by Theorem 3.2.2 it suffices to show that for every x ∈ P there is
µ > 1 such that A((1− µ)x+ µx̄) < b if and only if Ax̄ < b (i.e. x̄ ∈ P ′).

First, suppose that for any x ∈ P there is µ > 1such that A((1− µ)x+ µx̄) < b. In particular,
there is µ̄ > 1 such that z := (1− µ̄)̊x+ µ̄x̄ ∈ P . Since 1− µ̄ < 0 we have

Az = A((1− µ̄)̊x+ µ̄x̄) = (1− µ̄)Ax̊+ µ̄Ax̄ > (1− µ̄)b+ µ̄Ax̄.

Since z ∈ P , we have Az ≤ b, which holds if and only if µb > µAx̄, that is, if and only if Ax̄ < b.
Suppose now that Ax̄ < b, and let x ∈ P . Set r := b−Ax̄ > 0 and s := b−Ax ≥ 0. Note that,

for any µ > 1, by setting xµ := (1− µ)x+ µx̄ we have

Axµ = A((1− µ)x+ µx̄) = Ax+ µ(Ax̄−Ax) = b− s+ µ(s− r). (3.1)

If s − r ≤ 0, then we are done since, in this case, Axµ ≤ b − s ≤ b for any µ > 1. Thus, suppose
there is i ∈ [n] with si − ri > 0 and set

µ̄ := min

{
si

si − ri
: i ∈ [n], si − ri > 0

}
> 1,

and let i∗ ∈ [n] such that si∗(si∗ − ri∗)−1 attains the above minimum. It only remains to show
that Axµ̄ ≤ b. Let i ∈ [n]. If si − ri ≤ 0, then by (3.1) we have (Ax̄)i ≤ bi. On the other hand,
if si − ri > 0, then

(Axµ̄)i = bi − si + µ̄(si − ri) = bi − si +
si∗

si∗ − ri∗
(si − ri) ≤ bi − si +

si
si − ri

(si − ri) = bi.

Let us look at the idea of lower semi-continuity for functions which, maybe surprisingly, is just
the translation of the closure property of the epigraph. Let f : E → (−∞,+∞]. The function f
is lower semi-continuous at x ∈ E if f(x) = lim infy→x f(y). One may note that a continuous
function is, in particular, lower semi-continuous. The next theorem shows that for a function f to
be lower semi-continuous is equivalent to its epigraph epi f being closed.

Theorem 3.2.4 ([59, Theorem 7.1]). Let f : E→ (−∞,+∞]. The following are equivalent:

(i) f is lower semi-continuous on E;

(ii) For every α ∈ R the set {x ∈ E : f(x) ≤ α} is closed;

(iii) The epigraph of f is a closed set in E⊕ R.

46

The above theorem makes it natural to define the closure of a function f as the function
whose epigraph is cl(epi f). Formally, the closure of f : E→ (−∞,+∞] is the function cl f : E→
(−∞,+∞] given by

(cl f)(x) := inf{µ ∈ R : x⊕ µ ∈ cl(epi f)}, ∀x ∈ E.

That is, cl f for some function f is the function whose epigraph is cl(epi f). If f : E→ [−∞,+∞] is
such that there is x ∈ E with f(x) = −∞, we set (cl f)(x) := −∞ for every x ∈ E. Moreover, we say
that f : E→ [−∞,+∞] is closed if cl f = f . The next theorem shows that the closure operation for
convex functions yields closed convex functions and does not change the functions by much. Namely,
a function and its closure differ maybe only on the border of the domain.

Theorem 3.2.5 ([59, Theorem 7.4]). Let f : E→ (−∞,+∞] be a proper convex function. Then
cl f is a proper closed convex function, and f(x) = (cl f)(x) for every x ∈ ri(dom f).

With the above theorem we know where a function and its closure can differ. Yet, we have not
shown, besides taking the inferior limit, a way to discover the value of the closure of the function at
one of these boundary points. The next theorem shows a simpler way to obtain the values of the
closure of a function.

Theorem 3.2.6 ([59, Theorem 7.5]). Let f : E→ (−∞,+∞] be a proper convex function and let
x̊ ∈ ri(dom f). Then,

(cl f)(x) = lim
λ↑1

f(λx+ (1− λ)̊x), ∀x ∈ E.

Finally, in the same way that the sum of continuous functions is continuous, we would like the
sum of closed convex functions to be a closed convex function as well. The next theorem states
exactly this.

Theorem 3.2.7 ([59, Theorem 9.3]). Let f1, . . . , fm : E→ (−∞,+∞] be convex. If fi is closed for
each i ∈ [m], then

∑m
i=1 fi is a closed convex function.

3.3 Hyperplane Separation and Duality

As pointed out at the beginning of this chapter, many of the results and ideas we shall see in future
chapters rely on results and ideas from convex duality theory. The latter is fundamentally based in
the well-known Hyperplane Separation Theorem, which states that for any two convex set which are
“sufficiently disjoint” (i.e., their relative interiors do not meet), there is a hyperplane such that each
convex set lies in a different closed half space.

Theorem 3.3.1 (Hyperplane Separation Theorem; see [59, Theorems 11.1 to 11.4]). Let X,Y ⊆ E
be nonempty convex sets such that ri(X) ∩ ri(Y) = ∅. Then, there is a ∈ E \ {0} which satisfies the
following properties:

(i) supx∈X〈a, x〉 ≤ infy∈Y 〈a, y〉, and

(ii) infx∈X〈a, x〉 < supy∈Y 〈a, y〉.

Moreover, if 0 6∈ cl(X − Y), then there is a ∈ E \ {0} as above such that the inequality from (i) is
strict.

47

Let us look a bit closer at the meaning of the above theorem. Let X,Y ⊆ E and a ∈ E \ {0} be
as in Theorem 3.3.1 and define

β̄ :=
1

2

(
sup
x∈X
〈a, x〉+ inf

y∈Y
〈a, y〉

)
.

Moreover, define the hyperplane H := {x ∈ E : 〈a, x〉 = β̄} and define its two associated closed
half-spaces

H≤ := {x ∈ E : 〈a, x〉 ≤ β̄} and H≥ := {x ∈ E : 〈a, x〉 ≥ β̄}.

In the above theorem, condition (i) states that the sets X and Y lie each in a different half-space
associated with H. To see this, note that (i) implies supx∈X〈a, x〉 ≤ β̄ ≤ infy∈Y 〈a, y〉, that is,
X ⊆ H≤ and Y ⊆ H≥. Condition (ii) states that H is such that at least one of the convex sets
is not entirely contained in H, that is, either there is x̄ ∈ X such that 〈a, x̄〉 6= β̄, or there is
ȳ ∈ Y such that 〈a, ȳ〉 6= β̄. Finally, if 0 6∈ cl(X − Y), Theorem 3.3.1 states that we can pick
a ∈ E\{0} in a way a such that the inequality from (i) holds strictly. The latter fact implies that the
hyperplane H separates X and Y strongly : there is1 ε > 0 such that X ⊆ {x ∈ E : 〈a, x〉 ≤ β̄ − ε}
and that Y ⊆ {x ∈ E : 〈a, x〉 ≥ β̄ + ε}. In particular, neither X nor Y meet the hyperplane H in
this latter case.

The Hyperplane Separation Theorem forms the basis of a powerful duality theory in convex
analysis. However, at this point one may find it hard to see how the above theorem induces any
kind of duality theory. In fact, it is hard to say what we mean by the last phrase since the term
“duality” is loosely used in many different contexts in mathematics. In the introductory remarks of a
brief survey on many duality theories in mathematics [9], Atiyah says the following:

Duality in mathematics is not a theorem, but a “principle”. (...) Fundamentally, duality
gives two different points of view of looking at the same object.

Here, our objects of interest are convex sets. Usually, any set is described by the points contained
in it. This can be seen as a way of describing sets in an internal fashion since we are describing
the set by stating which points are contained in it. In the convex case, the Hyperplane Separation
Theorem allows us to represent (closed) convex sets by hyperplanes: a closed convex set C ⊆ E is
the intersection of all closed half-spaces which contain C. This can be seen as a way to describe a
convex set in an external fashion, since each hyperplane tells us which points are certainly not in
the set. We formally show this dual description of closed convex sets in the next theorem.

Theorem 3.3.2 ([59, Theorem 11.5]). Let C ⊆ E be a closed convex set and set H≤a (β) :=
{x ∈ E : 〈a, x〉 ≤ β} for every a ∈ E \ {0} and β ∈ R. Then

C =
⋂{

H≤a (β) : a ∈ E \ {0}, β ∈ R, C ⊆ H≤a (β)
}
. (3.2)

Proof. First, suppose ∅ 6= C 6= E since the statement holds trivially otherwise. Moreover, by
definition we have that C is contained in the set from the right-hand side of (3.2). Let x̄ ∈ E \ C.
Then 0 6∈ C− x̄ = cl(C− x̄), where the last equation holds since C is closed. Thus, by Theorem 3.3.1
there is a ∈ E \ {0} such that supx∈C〈a, x〉 < 〈a, x̄〉. By setting β := (supx∈C〈a, x〉+ 〈a, x̄〉)/2, we
conclude C ⊆ H≤a (β) and x̄ 6∈ H≤a (β), that is, x̄ is not in the set in the right-hand side of (3.2).

1Namely, one can set ε := (supx∈X〈a, x〉 − infy∈Y 〈a, y〉)/2. In this case, we have β̄ − ε = infy∈Y 〈a, y〉 >
supx∈X〈a, x〉 = β̄ + ε.

48

The concepts from this section are the cornerstone ideas for a beautiful duality theory in convex
analysis. We will focus only in a small subset of duality correspondences the above theorems yield
since our purpose here is only to introduce ideas and build intuition for the study of OCO algorithms.
Namely, our focus will be to look at the application of hyperplane representation of convex sets to
epigraphs of functions in Section 3.4 and then to look at the set of hyperplanes which are “tangent”
to the epigraphs of convex functions in Section 3.5.

3.4 Fenchel Conjugate

Since our focus in this text is optimization of convex functions, we will focus on the theory and
results derived by applying the ideas from the previous section to convex functions. Before jumping
to the main definition of this section, let us apply some of the ideas regarding separating hyperplanes
to the epigraph of a proper closed convex function f : E→ (−∞,+∞].

By Theorem 3.3.2, the set epi f ⊆ E⊕ R is the intersection of a collection of closed half-spaces
in E ⊕ R. To study the form of the half-spaces that contain epi f , let us look at the form of
hyperplanes in E ⊕ R. If H ⊆ E ⊕ R is a hyperplane, then there are y∗ ⊕ γ∗ ∈ E ⊕ R and α ∈ R
such that

H = {x⊕ µ ∈ E⊕ R : 〈x⊕ µ, y∗ ⊕ α〉 = γ∗}.

If we multiply the equation regarding the points in H by a non-zero scalar, the hyperplane H
keeps unchanged. With this in mind, let us look at two cases in which the hyperplane H may fit.
Either α = 0, in which case we say that H is vertical, or α 6= 0, which we assume is the case for
the remainder of this discussion. In this case, define x∗ ⊕ µ∗ := −α−1(y∗ ⊕ γ∗) and multiply the
equation in the definition of H by −α−1. Then,

H = {x⊕ µ ∈ E⊕ R : 〈x⊕ µ, x∗ ⊕−1〉 = µ∗}
= {x⊕ µ ∈ E⊕ R : 〈x, x∗〉 − µ∗ = µ}.

Finally, define the closed half-spaces

H≤ := {x⊕ µ ∈ E⊕ R : 〈x, x∗〉 − µ∗ ≤ µ}

and
H≥ := {x⊕ µ ∈ E⊕ R : 〈x, x∗〉 − µ∗ ≥ µ}.

Since x⊕µ ∈ epi f for any x ∈ dom f and µ ∈ R such that µ ≥ f(x), we have epi f 6⊆ H≥. Moreover,
by setting h(x) := 〈x, x∗〉 − µ∗, one can readily see that H≤ = epih. Not only that, we also have
epi f ⊆ epih if and only if h(x) ≤ f(x) for every x ∈ E.

From the above discussion, we conclude that the epigraph of a proper closed convex function
f : E→ (−∞,+∞] is the intersection of half-spaces of two types. In one of these cases, the half-spaces
are epigraphs of affine functions which lower bound f everywhere, that is, functions of the form
x ∈ E 7→ 〈x∗, x〉−µ∗ where x∗⊕µ∗ ∈ E⊕R such that 〈x∗, x〉−µ∗ ≤ f(x) for every x ∈ E. The second
type of half-spaces considered are associated with vertical hyperplanes in E⊕ R. Since f is proper,
f(x) 6= −∞ for any x ∈ E and, thus, epi f cannot be the intersection of only half-spaces associated
with vertical hyperplanes. The next theorem tell us an interesting fact: half-spaces associated with
vertical hyperplanes do not need to be considered at all, that is, epi f is the intersection of all affine
functions which lower bound f everywhere.

49

Theorem 3.4.1 ([59, Theorem 12.1]). Let f : E→ (−∞,+∞] be a proper closed convex function
and define2

H := {x ∈ E 7→ 〈x∗, x〉 − µ∗ : x∗ ⊕ µ∗ ∈ E⊕ R and 〈x∗, x〉 − µ∗ ≤ f(x) for each x ∈ E}.

Then f(x) = suph∈H h(x) and epi f =
⋂
h∈H epih for every x ∈ E.

The above discussion helps us gain some intuition on how the results from Section 3.3 can be
interpreted when applied to epigraphs of convex functions. Maybe more importantly, the above
discussion tries to give a bit of the intuition on the Fenchel conjugate of a convex function. Take the
set

F ∗ := {x∗ ⊕ µ∗ ∈ E⊕ (−∞,+∞] : epi f ⊆ epih, where h := 〈x∗, ·〉 − µ∗}, (3.3)

that is, that set of points which define the affine functions that lower bound f . In this section we
will study the function whose epigraph is the set F ∗. This function is know as the Fenchel conjugate
of f .

Formally, let f : E → [−∞,+∞]. The (Fenchel) conjugate of f is the function f∗ : E →
(−∞,+∞] defined by

f∗(x∗) := sup
x∈E

(〈x∗, x〉 − f(x)), ∀x∗ ∈ E.

Note that for any function f : E→ [−∞,+∞] we have that epi f∗ can be written as follows:

epi f∗ = {x∗ ⊕ µ∗ ∈ E⊕ R : f∗(x∗) ≤ µ∗}
= {x∗ ⊕ µ∗ ∈ E⊕ R : 〈x∗, x〉 − f(x) ≤ µ∗ for all x ∈ E}
= {x∗ ⊕ µ∗ ∈ E⊕ R : 〈x∗, x〉 − µ ≤ µ∗ for all x⊕ µ ∈ epi f}

=
⋂

x⊕µ∈epi f

{x∗ ⊕ µ∗ ∈ E⊕ R : 〈x∗, x〉 − µ ≤ µ∗}

=
⋂

x⊕µ∈epi f

{x∗ ⊕ µ∗ ∈ E⊕ R : 〈x∗ ⊕ µ∗, x⊕−1〉 ≤ µ}.

That is, epi f∗ is the intersection of closed half-spaces. Thus, epi f∗ is a closed convex set and by
Theorem 3.2.4 we have that f∗ is a closed convex function. Moreover, note that the epigraph of the
conjugate matches the set from (3.3) from our discussion. On Figure 3.3 we give a illustration of the
evaluation of the conjugate f∗ of a function f at a point x∗ ∈ E.

In spite of the discussion regarding the connections between the Fenchel conjugate and separating
hyperplanes, one may still feel that the results from Section 3.3 were not useful. Indeed, the only
result so far which relies on the Hyperplane Separation Theorem is Theorem 3.4.1, which was not yet
put to use. One may even note that the definition of Fenchel conjugate applies to general functions,
not only to convex functions. The importance of Theorem 3.4.1 and, thus, of the Hyperplane
Separation Theorem, is to show that the conjugate of the conjugate of a closed convex function is
the function itself. This result is fundamental for most of the results regarding Fenchel conjugates.
Additionally, the property that the dual of the dual of some object is the object itself is usually one
of the most important properties of many duality theories (see [9] for some examples).

Theorem 3.4.2 ([59, Theorem 12.2]). Let f : E→ (−∞,+∞] be a convex function. Then f∗ is a
closed convex function and proper if and only if f is proper. Moreover, (cl f)∗ = f∗ and f∗∗ = cl f .

2In words, H is the set of affine functions which lower bound f .

50

Figure 3.3: Illustration of the Fenchel conjugate of a function f evaluated at a point x∗ ∈ E. One
can think of the supremum in the definition of f∗ as sliding the red line (the graph of the affine
function) vertically up to the point where it touches the graph of the function.

Proof. As we have already discussed, epi f∗ is the intersection of closed half-spaces. Thus, epi f∗

is a closed convex set and f∗ is a closed function by Theorem 3.2.4. For the remainder of the
claims in the statement, let us first look at the case when f is improper. If there is x̄ ∈ E such
that f(x̄) = −∞, then f∗(x) = +∞ for any x ∈ E. In this case we have (cl f)∗ = f∗ since cl f is the
constant −∞ function by definition. Moreover, f∗∗ is the constant −∞ function, that is, f∗∗ = cl f .
If dom f = ∅, then f = cl f , we clearly have f∗(x) = −∞ for every x ∈ E, and, thus, f∗∗ is the
constant −∞ function.

Suppose now that f is proper. In this case, cl f is the function whose epigraph is cl(epi f). With
this in mind, we have

epi f∗ = {x∗ ⊕ µ∗ ∈ E⊕ R : f∗(x∗) ≤ µ∗}
= {x∗ ⊕ µ∗ ∈ E⊕ R : 〈x∗, x〉 − f(x) ≤ µ∗ for every x ∈ E}
= {x∗ ⊕ µ∗ ∈ E⊕ R : 〈x∗, x〉 − µ∗ ≤ f(x) for every x ∈ E}
= {x∗ ⊕ µ∗ ∈ E⊕ R : h(x) ≤ f(x) for every x ∈ E, where h := 〈x∗, ·〉 − µ∗} (3.4)
= {x∗ ⊕ µ∗ ∈ E⊕ R : epi f ⊆ epih where h := 〈x∗, ·〉 − µ∗}
= {x∗ ⊕ µ∗ ∈ E⊕ R : cl(epi f) ⊆ epih where h := 〈x∗, ·〉 − µ∗} (3.5)
= {x∗ ⊕ µ∗ ∈ E⊕ R : epi(cl f) ⊆ epih where h := 〈x∗, ·〉 − µ∗}
= epi((cl f)∗),

where in (3.5) we used that epih is closed since it is a closed half-space in E⊕R. Thus, f∗ = (cl f)∗.
By Theorem 3.4.1, cl f is the pointwise supremum of all affine functions h := 〈x∗, ·〉 − µ∗ with
x∗ ⊕ µ∗ ∈ E ⊕ R such that h(x) ≤ (cl f)(x) holds for every x ∈ E. By (3.4), the latter holds for
x∗ ⊕ µ∗ ∈ E⊕ R if and only if we have x∗ ⊕ µ∗ ∈ epi f∗. Therefore, for every x ∈ E we have

cl f(x) = sup{ 〈x∗, x〉 − µ∗ : x∗ ⊕ µ∗ ∈ epi f∗} = sup{ 〈x∗, x〉 − f∗(x) : x∗ ∈ E} = f∗∗(x).

If f : E→ (−∞,+∞] is a proper function, then by the definition of conjugate one can easily get

51

the Fenchel-Young inequality:

〈x∗, x〉 ≤ f∗(x∗) + f(x), ∀x∗, x ∈ E.

In spite of the simplicity of the above inequality, the case when this inequality holds as an equation
will be very important when we look at subgradients in Section 3.5.

For the sake of concreteness, let us quickly compute the conjugates of some functions. As a
warm-up, let us compute the conjugate of the indicator function of a convex set C ⊆ E. For each
x∗ ∈ E, we have

(δ(· |C))∗(x∗) = sup
x∈E

(
〈x∗, x〉 − δ(x |C)

)
= sup

x∈C
〈x∗, x〉 = δ∗(x∗ |C).

That is, the conjugate of the indicator function is the support function! This is one of the reason of
the similarity between the notation for both of these functions.

Fortunately, we will not need to compute the conjugate of very complex functions. Still, if
we know the conjugate of a convex function f : E → (−∞,+∞], we often need to deal with the
conjugate of the functions λf for any λ ∈ R++. The following theorem shows how to compute such
conjugates and, even though we skip the proof for the sake of conciseness, the proof follows easily
from the definition of conjugate.

Theorem 3.4.3 ([59, Theorem 16.1]). If f : E→ (−∞,+∞] is a proper convex function, then for
any λ ∈ R++ and x∗ ∈ E we have (λf)∗(x∗) = λf∗(λ−1x∗).

Let us now compute the conjugate of the negative entropy function. This function will be used
extensively in the text and understanding the behavior of its conjugate shall be very useful later on.

Proposition 3.4.4. Define R(x) := 1
η

∑d
i=1[xi > 0]xi lnxi + δ(x |Rd+) for each x ∈ Rd, where η ∈ R

is some positive constant. Then R is a proper closed convex function and

R∗(y) =
1

η

d∑
i=1

eηyi−1, ∀y ∈ Rd.

Proof. Define ψ(α) := [α > 0]α lnα + δ(α |R+) for every α ∈ R. Note that R(x) =
∑d

i=1
1
ηψ(xi).

First, let us show that psi is a closed convex function, which implies that so is R. Define the
function φ := ψ + δ(· |R++). Since φ′′(α) = α−1 > 0 for any α ∈ R++ by Lemma 3.1.1 we conclude
that φ is a convex function. Moreover, limα↓0 φ(α) = 0 = ψ(α). Thus, clφ = ψ and we conclude
that ψ is a closed convex function. Thus, R is a closed convex function and one can easily see that
R is proper.

Let us now show that,
(3.6)for any β ∈ R, the supremum supα∈R(βα− ψ(α)) = ψ∗(β) is attained by eβ−1

and ψ∗(β) = eβ−1.
To see this, let β ∈ R and define h(α) := βα− ψ(α) for each α ∈ R. Note that for any α ∈ R++ we
have

h′(α) = β − ψ′(α) = β − 1− lnα.

Therefore, for α ∈ R++ we have that h′(α) = 0 if and only if α = eβ−1, that is, eβ−1 is a critical point
of ψ. Since limα→+∞ ψ(α) = +∞, we have infα∈R++(βα−ψ(α)) = −∞. Thus, supα∈R++

(βα−ψ(α))

is attained by eβ−1. Moreover, one can check that h(eβ−1) = eβ−1. Since ψ(0) = 0, we have that
eβ−1 > 0 = 0β − ψ(0). Finally, noting that βα − ψ(α) = −∞ for α ∈ R with α < 0 finishes the
proof of (3.6).

52

Therefore, for every y ∈ Rd

R∗(y) = sup
z∈Rd

(
yTz −R(z)

)
= sup

z∈Rd

(∑
i∈E

(
yizi −

1

η
ψ(zi)

))
=

d∑
i=1

(1

η
ψ
)∗

(yi)

Thm. 3.4.3
=

d∑
i=1

1

η
ψ∗(ηyi)

(3.6)
=

1

η

d∑
i=1

eηyi−1.

3.5 Subgradients

Let us look now at the idea of subgradients, a generalization of gradients for non-differentiable
functions which is specially fruitful for convex functions. Let f : E → R. A point x∗ ∈ E is a
subgradient of f at x if x∗ satisfies, for every z ∈ E, the subgradient inequality

f(z) ≥ f(x) + 〈x∗, z − x〉.

The subdifferential of f at x is the set ∂f(x) comprised of all the subgradients of f at x, and the
subdifferential of f is the mapping ∂f : x ∈ E 7→ ∂f(x). Moreover, f is subdifferentiable at a
point x ∈ E if ∂f(x) 6= ∅.

Let us try to understand the subgradient inequality for a subgradient x∗ ∈ ∂f(x) of a function
f : E→ (−∞,+∞] at a point x ∈ E. On Figure 3.4 we have an representative illustration of some
subgradients. Note that the function given by h(z) := f(x) + 〈x∗, z − x〉 for every z ∈ E is an affine
function. Thus, the graph of this function is a hyperplane. Namely, it is the hyperplane H given
by H := { z ⊕ h(z) ∈ E⊕ R : z ∈ E}. In this case, note that H has some special properties. First of
all, by the definition of subgradient we have that epi f is contained in one of the closed half-spaces
associated with H (namely, epih). Not only that, we have that the hyperplane and the epigraph
of the function meet on at least one point: x⊕ f(x) ∈ epi f ∩H. A hyperplane H ⊆ E such that
a set C ⊆ E is entirely contained in one of its closed half-spaces and such that H ∩ C 6= ∅ is a
supporting hyperplane of C. Thus, subgradients of a function f at a point x are associated with
supporting hyperplanes of epi f which meet the later at least at x⊕ f(x).

Although we are able to picture a little better the meaning of the subgradient inequality, we
have never shown that subgradients exist. Indeed, there may be points on the domain of a function
at which there are no subgradients. The next theorem shows that this may only happen at the
(relative) boundary of the effective domain.

Theorem 3.5.1 ([59, Theorem 23.4]). Let f : E→ R be a proper convex function and let x ∈ E. If
x 6∈ dom f , then ∂f(x) = ∅, and if x ∈ ri(dom f), then ∂f(x) 6= ∅. Finally, ∂f(x) is nonempty and
bounded if and only if x ∈ int(dom f).

From the previous discussion, the reader may already be guessing that the Fenchel conjugate and
subgradients have deep connections due to their relation with separating hyperplanes. The Fenchel
conjugate of a function f is built based on all hyperplanes which have epi f entirely contained in
one of its closed half-spaces and subgradients are associated with only the supporting hyperplanes
which have epi f contained in one of its closed half-spaces. Indeed, on Figure 3.3 one may note that,
at least graphically, the hyperplane in red is a supporting hyperplane at the point x̄ and, in this
case, x∗ ∈ ∂f(x̄). The intuition is that the supremum from the definition of f∗(x∗) is, in some sense,
sliding a hyperplane until it touches the graph of f , and at the point of contact x̄ ∈ E the point x∗

is actually a subgradient of f at x̄. Finally, such a point x̄ where the “sliding hyperplane” touches
the graph of f is exactly the point which attains the supremum from the definition of f∗(x∗).

53

Figure 3.4: Illustration of the subgradients of f at the points x̄, where f has multiple subgradients,
and ȳ, where f is differentiable.

The next theorem shows this and other relations between conjugate functions and subgradients.
In spite of its simple proof, this is one of the most used theorems throughout the whole text since
it establishes useful relations regarding subgradients and Fenchel conjugates. As one will see, the
proof basically shows that the points which attain the supremum in the definition of conjugate (that
is, the point of contact when the sliding hyperplane hits the graph of the function in our intuitive
discussion) are subgradients of the function.

Theorem 3.5.2 ([59, Theorem 23.5]). Let f : E→ (−∞,+∞] be proper and convex and let x, x∗ ∈ E.
Then, the following are equivalent:

(i) x∗ ∈ ∂f(x);

(ii) x attains the supremum supz∈E(〈x∗, z〉 − f(z)) = f∗(x∗);

(iii) f∗(x∗) + f(x) ≤ 〈x∗, x〉;

(iv) f∗(x∗) + f(x) = 〈x∗, x〉.

Moreover, if (cl f)(x) = f(x), the following can be added to the list:

(v) x ∈ ∂f∗(x∗);

(vi) x∗ attains the supremum supz∗∈E(〈z∗, x〉 − f∗(z∗)) = f(x);

(vii) x∗ ∈ ∂(cl f)(x).

Proof. [(i) ⇐⇒ (ii)] Note that x∗ ∈ ∂f(x) if and only if f(z) ≥ f(x) + 〈x∗, z − x〉 for every z ∈ E,
that is, if and only if 〈x∗, x〉 − f(x) ≥ 〈x∗, z〉 − f(z) for every z ∈ E. Since equality holds for z = x,
we are done.

[(iii) ⇐⇒ (iv)] By the Fenchel-Young inequality, f(x∗) + f(x) ≥ 〈x∗, x〉. Thus, f(x∗) + f(x) ≤
〈x∗, x〉 if and only if equality holds.

54

[(ii) ⇐⇒ (iv)] we have 〈x∗, x〉 − f(x) = f∗(x∗) = supz∈E(〈x∗, z〉 − f(z)) if and only if the latter
supremum is attained at z = x.

For the remainder of the proof, suppose (cl f)(x) = f(x). By Theorem 3.4.2, this implies that
f∗∗(x) = f(x)

[(iv) ⇐⇒ (v)] By the equivalence of (i) and (iv) applied to f∗, we have x ∈ ∂f(x∗) if and only
if 〈x, x∗〉 = f∗∗(x) + f∗(x∗) = f(x) + f∗(x).

[(v) ⇐⇒ (vi)] By the equivalence of (i) and (ii) applied to f∗, we have x ∈ ∂f∗(x∗) if and only
if x attains supz∗∈E(〈z∗, x〉 − f∗(z∗)) = f∗∗(x) = f(x).

[(v) ⇐⇒ (vii)] By the equivalence between (i) and (v), we have x∗ ∈ ∂(cl f)(x) if and only if
x ∈ ∂(cl f)∗(x∗) = ∂f∗(x∗), where the last equation holds since (cl f)∗ = f∗ by Theorem 3.4.2.

For the sake of concreteness, let us compute the subdifferential of the indicator function of a
convex set. In order to do so, we need to define normal cones. The normal cone of C at x ∈ C is
the set NC(x) := { d ∈ E : 〈d, z − x〉 ≤ 0 for every z ∈ C} and it is the empty set for every c ∈ E\C.
That is, a direction d ∈ E is in the normal cone of a set C ⊆ E at x ∈ C is the inner product of d
with any vector starting at x and point into the set C is non-positive. In the two-dimensional case
(i.e., C ⊆ R2), this is equivalent to saying that the direction d forms a degree of at least 90 degrees
with any vector starting at x and pointing into C. The idea of normal cones of convex sets and the
following lemma will be fundamental for the study of optimality conditions in the next section.

Lemma 3.5.3. Let C ⊆ E be a convex set. Then, for every x ∈ C we have

NC(x) = ∂(δ(· |C))(x).

Proof. Let x ∈ C and x∗ ∈ E. By definition, x∗ ∈ (∂δ(· |C))(x) if and only if δ(z |C) ≥ δ(x |C) +
〈x∗, z − x〉 = 〈x∗, z − x〉 for every z ∈ E, that is, if and only if 0 ≥ 〈x∗, z − x〉 for every z ∈ C.

If we have a collection of m functions from E to (−∞,+∞], all of them differentiable at a point
x̄ ∈ E, then the gradient of the sum of the m functions at x̄ is just the sum of the gradients of each
function at x̄. In the case where the functions are subdifferentiable at x̄ instead of differentiable,
things are not that simple. The subdifferential of the sum of functions at a point may be equal to
the sum of the subdifferentials, but this depends on some conditions on the relative interior of the
effective domains of the functions we are looking at.

Theorem 3.5.4 ([59, Theorem 23.8]). Let f1, . . . , fm : E→ (−∞,+∞] be proper convex functions
and set f :=

∑m
i=1 fi. Then

∂f1(x) + · · ·+ ∂fm(x) ⊆ ∂f(x),

and equality holds if
⋂
i∈[m] ri(dom fi) 6= ∅.

It is high time we relate subgradients and gradients. As one may already guess, if a convex
function f : E → (−∞,+∞] is differentiable at a point x ∈ E, then ∇f(x) is a subgradient of f .
The next theorem shows that ∇f(x) is the only subgradient of f at x and, maybe more importantly,
shows that if the subdifferential of f at x is a singleton, then f is actually differentiable at x.

Theorem 3.5.5 ([59, Theorem 25.1]). Let f : E→ (−∞,+∞] be convex, and let x ∈ dom f . If f is
differentiable at x, then ∂f(x) = {∇f(x)}. Moreover, if ∂f(x) is a singleton, then f is differentiable
at x.

From Theorem 3.5.2, we know that in the case of a proper closed convex function f : E →
(−∞,+∞], the point x∗ ∈ E is a subgradient of f at x ∈ E if and only if x is a subgradient of f∗

55

at x∗. That is, the conjugacy operation switches the roles of subgradient and point of evaluation of
the function. This together with the above theorem shows a fact in the case where both f and f∗

are differentiable which will be extremely important for Chapter 5: the gradient map of f is the
inverse of the gradient map of f∗

Corollary 3.5.6. Let f : E → (−∞,+∞] be a closed proper convex function. Moreover, let
D,D∗ ⊆ E be open convex sets such that f is differentiable on D and f∗ is differentiable on D∗.
Then, for every x ∈ D such that ∇f(x) ∈ D∗, we have ∇f∗(∇f(x)) = x, and for every x∗ ∈ D∗
such that ∇f∗(x∗) ∈ D we have ∇f(∇f∗(x∗)) = x∗.

Proof. Let x ∈ D be such that ∇f(x) ∈ D∗. By Theorem 3.5.5, we have ∂f∗(∇f(x)) =
{∇f∗(∇f(x))}. Thus, by Theorem 3.5.2 items (i) and (v) we have x ∈ ∂f∗(∇f(x)) = {∇f∗(∇f(x))},
that is, ∇f(∇f∗(x)) = x. Since f is closed, f = f∗∗ by Theorem 3.4.2, which together with what
we have just proved yields that if x∗ ∈ D∗ is such that ∇f∗(x∗) ∈ D, then ∇f(∇f∗(x∗)) = x∗.

3.6 Optimality Conditions

Since the focus of this text is the optimization of convex functions (often over convex sets), it is of no
surprise that we are interested in necessary and sufficient conditions for x ∈ E to attain infx∈C f(x),
where f : E→ (−∞,+∞] is a proper convex function and C ⊆ E is a convex set. First, let us look at
one of the nicest facts about minimizers of convex functions: if a point minimizes a convex function
“locally”, then it is a (global) minimizer of the function.

Lemma 3.6.1. Let f : E→ (−∞,+∞] be a proper convex function and set B := {x ∈ E : 〈x, x〉 ≤ 1}.
If x̄ ∈ E is such that there is ε > 0 such that f(x̄) ≤ f(z) for any z ∈ εB + x̄, then f(x̄) ≤ f(z) for
any z ∈ E.

Proof. Let x̄ ∈ E and ε > 0 be as in the statement of the lemma, and let z ∈ E \ {x̄}. By the
convexity of f , for any λ ∈ (0, 1] we have

f(x̄+ λ(z − x̄))− f(x̄) ≤ λ(f(x̄)− f(z)) =⇒ f(x̄+ λ(z − x̄))− f(x̄)

λ
≤ f(z)− f(x̄).

Set
δ :=

ε

〈z − x̄, z − x̄〉
> 0.

Then, for any λ ∈ (0, δ], we have λ(z − x̄) ∈ εB. Thus, for any λ ∈ (0, δ],

0 ≤ f(x̄+ λ(z − x̄))− f(x̄)

λ
≤ f(z)− f(x̄) =⇒ f(x̄) ≤ f(z).

The above lemma is one of the reasons why convex functions are so ubiquitous in optimization:
if we find a point x̄ which minimizes a convex function f locally, we know that it is also a global
minimizer of f .

When devising algorithms for optimization, sufficient (and hopefully necessary) conditions of
optimality are extremely helpful. There are well-known optimality conditions from Calculus, but to
hold they usually rely on the functions to be differentiable. Fortunately, subgradients are specially
useful as tools to check optimality in the case of convex and not necessarily differentiable functions.
Indeed, let f : E→ (−∞,+∞] be a proper convex function and x̄ ∈ E be such that f(x̄) ≤ f(z) for
any z ∈ E. Equivalently,

f(x̄) + 〈0, z − x̄〉 = f(x̄) ≤ f(z), ∀z ∈ E.

56

That is, x̄ minimizes f if and only if 0 is a subgradient of f at x̄! Even though this condition
does not apply for the optimization problem infx∈C f(x) where C ⊆ E is convex, it forms the basis
for the optimality condition we look next. The proof of the next theorem relies on the fact that
infx∈C f(x) = infx∈E(f(x) + δ(x |C)) and then applies the subgradient condition we have just seen
with Theorem 3.5.4 which shows the form of the subdifferential of the sum of functions.

Theorem 3.6.2 ([59, Theorem 27.4]). Let C ⊆ E be a nonempty convex set and let f : E →
(−∞,+∞] be proper convex function. A sufficient condition for a point x ∈ E to attain infz∈C f(z)
is that ∂f(x) ∩ (−NC(x)) is nonempty. If ri(dom f) ∩ riC 6= ∅, this condition is also necessary.

Proof. Define F := f + δ(· |C) and let x̄ ∈ C. In this way we have infx∈C f(x) = infx∈E F (x) and x̄
attains the former infimum if and only if it attains the second infimum. Moreover, by the definition
of subgradient we have that x̄ attains infx∈E F (x) if and only if 0 ∈ ∂F (x̄). By Lemma 3.5.3 we
have ∂(δ(· |C))(x̄) = NC(x̄). Thus, by Theorem 3.5.4,

∂f(x̄) +NC(x̄) ⊆ ∂F (x̄), (3.7)

and equality holds above if ri(dom f) ∩ riC 6= ∅. Finally, note that 0 ∈ ∂f(x̄) +NC(x̄) if and only
if ∂f(x) ∩ (−NC(x)) is nonempty. Thus, if ∂f(x) ∩ (−NC(x)) 6= ∅, then 0 ∈ ∂F (x̄) and, thus, x̄
attains infx∈E F (x). Moreover, if ri(dom f) ∩ riC 6= ∅, then (3.7) holds as an equation and, thus,
0 ∈ ∂F (x̄) in this case if and only if ∂f(x) ∩ (−NC(x)) is nonempty.

3.7 Convex Spectral Functions

On some parts of the text, mainly on Chapter 6 and on Section 7.3, we will deal with convex
functions on the space of d× d symmetric matrice Sd equipped with the trace inner product given
by 〈X,Y 〉 := Tr(XY) for every X,Y ∈ Sd. Luckily, the matrix functions we meet in this text are
special: they depend only on the eigenvalues of the matrix given as input, which we call by spectral
functions. In this section we develop tools to compute conjugates, gradients, and subgradients of
such spectral functions based on the results from previous sections.

First, let us define spectral functions. Let f : Rd → [−∞,+∞]. Define the function fS : Sd →
[−∞,+∞] by

fS(X) = f(λ↑(X)), ∀X ∈ Sd,

where λ↑ : Sd → Rd extracts the eigenvalues of the matrix given as input in non-decreasing order
(this and other definitions can be found on Section 1.1.3). Moreover, the function f is symmetric if
for every permutation matrix P ∈ Rd×d and x ∈ Rd we have f(Px) = f(x). Functions on Sd which
can be expressed as hS for some symmetric function h : E→ (−∞,+∞] are said to be spectral. We
require the functions over which spectral functions are based on to be symmetric since the order of
the eigenvalues should not change the function’s behavior, even though in our definition of spectral
functions we use the eigenvalues in increasing order.

Before looking at the Fenchel conjugates of spectral functions, we need a result which connects the
inner products from Sd and from Rd. We skip the proof of this inequality for the sake of conciseness,
but it is of fundamental importance for the remainder of the results of this section.

Theorem 3.7.1 ([45, Theorem 2.2]). Let X,Y ∈ Sd. Then

Tr(XY) ≤ λ↑(X)Tλ↑(Y).

If equality holds, then there is an orthogonal matrix Q ∈ Rd×d such that QTXQ = Diag(λ↑(X))
and QTY Q = Diag(λ↑(Y)).

57

Let us look now at the Fenchel conjugate of spectral functions. Let f : E → (−∞,+∞] be a
symmetric function. Intuitively, if we know the conjugate f∗ of f , we should be able to compute the
conjugate (fS)∗ of fS . Not only that, ideally one would hope (fS)∗ = (f∗)S to hold. This is indeed
the case, holding even for not necessarily convex functions.

Theorem 3.7.2 ([17, Theorem 5.2.2]). Let f : Rd → (−∞,+∞] be a symmetric function. Then

(fS)∗ = (f∗)S .

Proof. Let X∗ ∈ Sd. Then

(fS)∗(X∗) = sup
X∈Sd

(〈X∗, X〉 − fSd(X))

= sup
X∈Sd

(〈X∗, X〉 − f(λ↑(X)))

≤ sup
X∈Sd

(λ↑(X∗)Tλ↑(X)− f(λ↑(X)))

= sup
x∈Rd

(λ↑(X∗)Tx− f(x))

= f∗(λ↑(X∗)) = (f∗)S(X∗).

Moreover, by the Spectral Decomposition Theorem (Theorem 1.1.1), there is an orthogonal matrix
Q ∈ Rd such that X∗ = QDiag(λ↑(X∗))QT. Since QTQ = I and Tr(AB) = Tr(BA) for any matrices
real matrices A and B of appropriate dimensions, we have

(f∗)S(X∗) = sup
x∈Rd

(λ↑(X∗)Tx− f(x))

= sup
x∈Rd

(
Tr(λ↑(X∗)Tx)− f(λ↑(QDiag(x)QT))

)
= sup

x∈Rd

(
Tr(Diag(λ↑(X∗)) Diag(x))− fS(QDiag(x)QT)

)
= sup

x∈Rd

(
Tr(QTQDiag(λ↑(X∗))QTQDiag(x))− fS(QDiag(x)QT)

)
= sup

x∈Rd

(
Tr(QTX∗QDiag(x))− fS(QDiag(x)QT)

)
= sup

x∈Rd

(
Tr(X∗QDiag(x)QT)− fS(QDiag(x)QT)

)
≤ sup

X∈Sd

(
Tr(X∗X)− fS(X)

)
= sup

X∈Sd

(
〈X∗, X〉 − fS(X)

)
= (fS)∗(X∗).

With the above theorem in hands, many results for spectral functions can be almost directly
obtained from results from sections Sections 3.4 and 3.5. For example, the next corollary states
that a spectral function based on a closed convex function is also closed convex function. The proof
follows almost directly from the above theorem and Theorem 3.4.2 (the “double conjugacy theorem”).

Corollary 3.7.3 ([17, Corollary 5.2.3]). Let f : Rd → (−∞,+∞] be proper symmetric closed convex
function. Then fS is a proper closed convex function.

58

Proof. The fact that fS is a proper convex function is trivial. Thus, we need only o show that
cl(fS) = fS holds. Using Theorem 3.4.2 and Theorem 3.7.2 we have

cl(fS) = (fS)∗∗ = ((f∗)S)∗ = (f∗∗)S = (cl f)S = fS .

Since we will often need look at infima regarding spectral functions, it is of no surprise that we will
need to compute subgradients or even gradients of these functions at some points. Although we skip
the proofs for the sake of conciseness, the proofs of the following corollaries follow from the results
from Section 3.5 together with Theorem 3.7.2 and, sometimes, the conditions for Theorem 3.7.1 to
hold as an equation.

Corollary 3.7.4 ([17, Corollary 5.2.4]). Let f : Rd → (−∞,+∞] be proper, symmetric, closed, and
convex. Then, for any X,Y ∈ Sd, the following are equivalent:

(i) Y ∈ ∂fS(X);

(ii) λ↑(Y) ∈ ∂f(λ↑(X)) and there is an orthogonal matrix Q ∈ Rd×d such that QTXQ =
Diag(λ↑(X)) and QTY Q = Diag(λ↑(Y)).

Corollary 3.7.5 ([17, Corollary 5.2.5]). Let f : Rd → (−∞,+∞] be proper, symmetric, closed,
and convex, and let X ∈ Sd . Then fS is differentiable at X if and only if f is differentiable
at λ↑(X). Moreover, if fS is differentiable at X, then, for any orthogonal matrix Q ∈ Rd×d such
that QTXQ = λ↑(X), we have

∇fS(X) = QDiag(∇f(λ↑(X)))QT.

3.8 Norms

On the Euclidean space E, norms are functions which assign non-negative “lengths” or “sizes” to
each point in E, assigning length zero only to the zero vector. In the case of Rd, one is most used
with the euclidean norm

x ∈ Rd 7→
(d∑
i=1

x2
i

) 1
2
.

In this text we will be interested in cases where we use a bit less standard norms. Thus, let us define
what properties a function needs to satisfy to be a norm and then let us see some concepts and
results related to convex analysis duality applied to norms.

Let ‖·‖ : E→ R. We say that ‖·‖ is a norm on E if, for all u, v ∈ E,

(i) ‖v‖ ≥ 0, and equality holds if and only if v = 0,

(ii) ‖αv‖ = |α|‖v‖ for every α ∈ R,

(iii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖, also known as triangle inequality.

If ‖·‖ satisfies only conditions (ii) and (iii) and ‖v‖ ≥ 0 for any v ∈ E, then ‖·‖ is a semi-norm
on E. Condition (ii) and the non-negativity imply that semi-norms and norms are convex functions.
Moreover, one may verify that if ‖·‖ is a norm on E, then it is a continuous3 function on E.

3The definition of continuous function itself (at least at first sight) depends on a norm, so say that all norms are
continuous without defining continuity is a somewhat circular statement. Thus, we use the following definition of
continuity: a function f : E→ [−∞,+∞] is continuous at a point x̄ ∈ E if for every ε > 0 there is δ > 0 such that,
for any x ∈ E with 〈x̄− x, x̄− x〉 ≤ δ, we have |f(x̄)− f(x)| ≤ ε. That is, we use the (squared) euclidean norm in E
to define continuity.

59

The euclidean norm or `2-norm on E is the norm ‖·‖2 given by ‖x‖2 :=
√
〈x, x〉 for every x ∈ E.

Additionally, throughout the text we may use some special and known norms for Rd:

• the `1-norm given by ‖x‖1 :=
∑d

i=1|xi| for every x ∈ Rd,

• the `∞-norm given by ‖x‖∞ := maxi∈[d]|xi| for every x ∈ Rd,

• the `p-norm for p ∈ (1,∞) given by

‖x‖p :=
(d∑
i=1

|xi|p
) 1

p
, ∀x ∈ Rd.

As we have already said, our main focus in this chapter is to define and gain intuition about
duality relations and concepts in convex analysis. One very interesting dual object related to norms
are the dual norms. If ‖·‖ is a norm on E, the dual norm of ‖·‖ is the norm4 ‖·‖∗ on E defined by

‖x∗‖∗ := max{ 〈x∗, x〉 : x ∈ E, ‖x‖ ≤ 1}, ∀x∗ ∈ E.

At first sight, the definition of the dual norm ‖·‖∗ of a norm ‖·‖ on E hardly has any intuitive
meaning. There are two ways of looking at ‖·‖∗ which may be helpful in gaining some intuition. One
way is to see dual norms as special cases of support functions. Set B‖·‖ := {x ∈ E : ‖x‖ ≤ 1}, that
is, B‖·‖ is the unit ball (w.r.t. the norm ‖·‖). Then, by the definition of conjugate function we have

‖x∗‖∗ = δ∗(x∗ |B‖·‖), ∀x∗ ∈ E.

This way of seeing the dual norm as the support function of the unit ball of the original norm
may be useful in some cases, but it is arguably yet too abstract. A more concrete way of seeing
norms is as norms in the space of linear functionals on E, that is, linear functions from E to R. Let
x∗ ∈ E and fix a norm ‖·‖ on E. The point x∗ can be seen as representing the linear functional Tx∗
given by Tx∗(x) := 〈x∗, x〉 for every x ∈ E. Given that we have the norm ‖·‖ to measure the sizes of
elements in E, it would be interesting to have a related way to measure the “size” of Tx∗ . Intuitively,
we want a measure such that the bigger the norm of Tx∗(x) when compared to the norm of x ∈ E,
the bigger is the size of Tx∗ . That is, we want to measure how much Tx∗ stretches the vectors when
we measure lengths with ‖·‖. Of course, for distinct non-zero vectors x, y ∈ E the ratios Tx∗(x)/‖x‖
and Tx∗(y)/‖y‖ may differ. Thus, we measure a linear functional by the direction which it stretches
the most, that is,

sup
x∈E\{0}

Tx∗(x)

‖x‖
= sup

x∈E\{0}

〈x∗, x〉
‖x‖

= sup
x∈E : ‖x‖≤1

〈x∗, x〉 = ‖x∗‖∗.

Let us look at some properties and interesting special cases of dual norms. One interesting fact
that we will use repeatedly during the remainder of the text, usually without reference, is that the
`2-norm on E is self-dual, that is, we have (‖·‖2)∗ = ‖·‖2.

Lemma 3.8.1. The dual norm of ‖·‖2 on E is ‖·‖2.

Proof. Let ‖·‖2,∗ be the norm dual to ‖·‖2. By the Cauchy–Schwarz inequality we have, for any
x∗ ∈ E \ {0},

‖x∗‖2,∗ = max{x∗Tx : x ∈ E, ‖x‖2 ≤ 1} ≤ max{ ‖x∗‖2‖x‖2 : x ∈ E, ‖x‖2 ≤ 1} = ‖x∗‖2,

and since the above inequality holds as an equation for x := ‖x∗‖−1
2 x∗, we have ‖·‖2,∗ = ‖·‖2.

4We skip the proof that the dual norm is indeed a norm for the sake of conciseness.

60

As expected, we show in the next theorem that the dual norm of a dual norm is the original
norm. Maybe more interestingly, the proof follows relatively easily when we use the results about
Fenchel conjugates, mainly the fact that the conjugate of the conjugate of a closed function if the
function itself. Since norms are continuous, and thus closed, functions, we are guaranteed that the
conjugate of the conjugate of (the square of) a norm is the norm itself.

Theorem 3.8.2. Let ‖·‖ be a norm on E. Then (1
2‖·‖

2)∗ = 1
2‖·‖

2
∗. In particular, ‖·‖∗∗ = ‖·‖.

Proof. Let x∗ ∈ E. Note that(
1
2‖·‖

2
)∗

(x∗) = sup
x∈E

(
〈x∗, x〉 − 1

2‖x‖
2
)
≤ sup

x∈E

(
‖x∗‖∗‖x‖ − 1

2‖x‖
2
)

= 1
2‖x

∗‖2∗, (3.8)

where in the last inequality we used that supα∈R(α‖x∗‖∗ − α2/2) is attained by ‖x∗‖∗. Let ȳ ∈ E
attain max{ 〈x∗, x〉 : x ∈ E, ‖x‖ ≤ 1} = ‖x∗‖∗, and set x̄ := ‖x∗‖∗ȳ. We have

〈x∗, x̄〉 − 1
2‖x̄‖

2 = ‖x∗‖∗〈x∗, ȳ〉 − 1
2‖x

∗‖2∗‖ȳ‖2 = ‖x∗‖2∗ − 1
2‖x

∗‖2∗‖ȳ‖2 = 1
2‖x

∗‖2∗.

Hence, (3.8) holds as an equation. Finally, since 1
2‖·‖

2 is continuous (and, thus, closed), by what we
have just proved and by Theorem 3.4.2 we have

1
2‖·‖

2
∗∗ = (1

2‖·‖
2
∗)
∗ = (1

2‖·‖
2)∗∗ = 1

2‖·‖
2,

that is, ‖·‖∗∗ = ‖·‖.

One result that we will use extensively in this text is the fact that `1 and `∞-norms are dual to
each other.

Lemma 3.8.3. The dual norm of ‖·‖1 on Rd is ‖·‖∞.

Proof. Let x∗ ∈ Rd and let x ∈ Rd such that ‖x‖1 ≤ 1. We have

(x∗)Tx =

d∑
i=1

x∗ixi ≤
d∑
i=1

|x∗i ||xi| ≤ ‖x∗‖∞
d∑
i=1

|xi| ≤ ‖x∗‖∞.

Since the above chain of inequalities holds as an equation for x := |x∗i∗ |ei∗ , where i∗ ∈ arg maxi∈[d]|x∗i |,
we are done.

When we start to look at regret bounds for OCO algorithms, most of them will depend on the
norms of the subgradients of the functions used by the enemy. Thus, one may already imagine that if
the player is able to have any control on the norm which measures the sizes of the subgradients, she
could pick a norm under which the enemy functions’ subgradients have small norm. Still, to make
such a choice, the players needs to have some information on the functions the enemy is allowed to
pick. In optimization problems one usually assumes that the functions which one has to handle are
Lipschitz continuous, that is, the functions cannot change too much between points which are close
to each other (w.r.t. to some fixed norm). For differentiable functions, Lipschitz continuity means
that the derivative in any direction is bounded by a constant. Interestingly, Lipschitz continuity
and the (dual) norms of the subgradients of the function are deeply connected. Before proving this
result, let us define Lipschitz continuity.

Let ρ > 0. A function f : E→ (−∞,+∞] is ρ-Lipschitz continuous on a set X ⊆ dom f w.r.t.
a norm ‖·‖ on E if

|f(x)− f(y)| ≤ ρ‖x− y‖, ∀x, y ∈ X,

and when X is not explicitly stated, assume X = dom f .

61

Theorem 3.8.4 (Based on [67, Lemma 2.6]). Let X ⊆ E be a convex set with nonempty interior,
and let f : E→ (−∞,+∞] be a proper closed convex function which is ρ-Lipschitz continuous on X
w.r.t. a norm ‖·‖ on E. Then, for every x ∈ X there is g ∈ ∂f(x) such that ‖g‖∗ ≤ ρ. Additionally,
for every x ∈ intX we have ∂f(x) ⊆ { g ∈ E : ‖g‖∗ ≤ ρ}.

Proof. First, let us show that

∅ 6= ∂f (̊x) ⊆ { y ∈ E : ‖y‖∗ ≤ ρ}, ∀x̊ ∈ intX. (3.9)

Let x̊ ∈ intX and let u ∈ ∂f (̊x), which exists by Theorem 3.5.1 since X ⊆ dom f and, thus,
intX ⊆ int(dom f). Moreover, since the set B := { v ∈ E : ‖v‖ ≤ 1} is compact5, supv∈B〈v, u〉 = ‖u‖∗
is attained. Let

y ∈ x̊+ arg max
v∈B

〈u, v〉. (3.10)

Additionally, for every λ ∈ [0, 1] define zλ := x̊+ λ(y − x̊). Since x̊ ∈ intX, there is ε > 0 such that
zε ∈ X. Therefore,

ε‖u‖∗
(3.10)

= ε〈u, y − x̊〉 = 〈u, zε − x̊〉 ≤ f(zε)− f (̊x) ≤ ρ‖zε − x̊‖ = ρε‖y − x̊‖
(3.10)
≤ ρε,

where in the first inequality we just used the subgradient inequality. Hence, ‖u‖∗ ≤ ρ. This completes
the proof of (3.9).

Let x̄ ∈ X, let x̊ ∈ intX, and define

xk := x̊+

(
1− 1

k + 1

)
(x̄− x̊), ∀k ∈ N.

By Theorem 3.2.1, we have xk ∈ intX for every k ∈ N. Thus, by (3.9), for every k ∈ N there is
uk ∈ ∂f(xk) with ‖uk‖∗ ≤ ρ. That is, {uk}k∈N is a bounded sequence and therefore it has a convergent
subsequence. Namely, there is an increasing injection π : N → N such that limk→∞ uπ(k) = ū for
some ū ∈ E with ‖ū‖∗ ≤ ρ. Moreover, since f is closed, by Theorem 3.2.6 we have

lim
k→∞

f(xπ(k)) = f(x̄). (3.11)

Finally, by the subgradient inequality we have, for every k ∈ N and z ∈ N,

f(z) ≥ f(xπ(k)) + 〈uπ(k), z − xπ(k)〉.

Taking the limit for k tending to +∞ in the above inequality together with (3.11) (and since the
inner product= is a continuous function) yields

f(z) ≥ f(x̄) + 〈ū, z − x̄〉, ∀z ∈ E,

that is, ū ∈ ∂f(x̄).

On Chapter 6, we will look at (semi-)norms on Rd which have a special form: they are the
`2-norm skewed by a positive semi-definite matrix A ∈ Sd+. Formally, for every A ∈ Sd+, define the
(semi-)norm induced by A by

‖x‖A :=
√
xTAx, ∀x ∈ Rd.

The next lemma shows us that the functions that we have just defined are indeed semi-norms.
Moreover, it shows that in the case of positive definite matrices, the above functions are indeed
norms and that the dual norm of a norm induced by A ∈ Sd++ is the norm induced by the inverse
matrix A−1.

5Recall that any norm in E is a continuous function.

62

Lemma 3.8.5. Let A ∈ Sd+. Then ‖·‖A is a semi-norm, and if A � 0, then ‖·‖A is actually a norm
whose dual norm is ‖·‖A−1 .

Proof. Since A � 0, we have that by Proposition 1.1.4 A1/2 ∈ Sd+ exists and is unique. Thus,
‖v‖A = ‖A1/2v‖2 for any v ∈ Rd. Since v ∈ Rd 7→ A1/2v is a linear function, it is clear that
v ∈ Rd 7→ ‖A1/2v‖2 is non-negative everywhere on Rd and that it satisfies properties (iii) and (ii)
from the definition of norm. Suppose A � 0. Then A1/2 is invertible, and for any v ∈ Rd we have
A1/2v = 0 if and only if v = A−1/20 = 0. Thus, in this case, ‖·‖A is a norm on Rd. Finally, by
Proposition 1.1.4 we have (A−1)1/2 = A−1/2 = (A1/2)−1. With this, note that for every x ∈ Rd
there is y := A1/2x ∈ Rd such that x = A−1/2y. Thus, Rd = {A−1/2y : y ∈ Rd}. Therefore, by
Theorem 3.8.2 and since the `2-norm is dual to itself we have, for any x∗ ∈ Rd,

(1
2‖·‖

2
A)∗(x∗) = sup

x∈Rd

((x∗)Tx− 1
2‖x‖

2
A) = sup

y∈Rd

(
(x∗)TA−1/2y − 1

2‖A
−1/2y‖2A

)
= sup

y∈Rd

(
(A−1/2x∗)Ty − 1

2y
T(A−1/2AA−1/2)y

)
= sup

y∈Rd

(
(A−1/2x∗)Ty − 1

2y
Ty
)

= sup
y∈Rd

((
A−1/2x∗

)T
y − 1

2‖y‖
2
2

)
Thm 3.8.2

= ‖A−1/2x∗‖22 = ‖x∗‖2A−1 .

Thus, by Theorem 3.8.2 we conclude that the norm dual to ‖·‖A is ‖·‖A−1 .

Finally, at some points of the text we shall need some norms for the space of real square matrices.
One of the better-known norms for matrices are the operator norms, which are based on norms
for Rd. In this text we shall restrict our attention only to the operator norm induced by the `2-norm.
Formally, the operator norm (induced by the `2-norm) of A ∈ Rd×d is

‖A‖2 := max{ ‖Ax‖2 : x ∈ Rd, ‖x‖2 ≤ 1}.

The next lemma shows useful connections between the operator norm of a matrix and its eigenvalues.
We skip its proof for the sake of conciseness.

Lemma 3.8.6 ([39, Example 5.6.6]). If A ∈ Sd, then ‖A‖2 = max{|λ↑1(A)|, |λ↑d(A)|}. In particular,
if A � 0, then ‖A‖2 ≤ Tr(A).

3.9 Strong Convexity

In some situations, we need convex functions whose graphs have at least some kind of “curvature”.
In other words, we need convex functions R : E→ (−∞,+∞] such that, for any two points x, y ∈ E,
the line segment between R(x) and R(y) lies strictly above the graph of the functions (except, of
course, for the points R(x) and R(y)). In this section we study two classes of convex functions which
satisfy this condition: strictly and strongly convex function. Even though the focus of this section is
strong convexity, looking at strict convexity first helps to build intuition.

A convex function R : E → (−∞,+∞] is strictly convex on a convex set X ⊆ E if, for any
distinct x, y ∈ X and any λ ∈ (0, 1), we have

R(λx+ (1− λ)y) < λR(x) + (1− λ)R(y). (3.12)

It is immediate from the definition that the sum of a strictly convex and a convex function is strictly
convex and that strict convexity is preserved under multiplication of positive scalars. The above
inequality basically translates the intuition from the previous paragraph: the relative interior of the

63

segment between two points of the graph of a strictly convex function R lies strictly above the graph
of R.

As an example of a non-strictly convex function, consider the affine function x ∈ Rd 7→ 〈a, x〉+ β
where a ∈ Rd and β ∈ R. Thus function clearly satisfies (3.12) as an equation everywhere. Thus,
affine functions are not strictly convex. Indeed, the graphs of affine functions have exactly the form
that we want graphs of strict convex to avoid: they are flat everywhere.

To look at some concrete examples of strictly convex functions, we will use the following lemma6

(without proving it). It gives a criterion to detect convexity through a function’s hessian similar
to the convexity criterion from Lemma 3.1.1. Still, one should note that Lemma 3.1.1 gives a
characterization of convexity, while the following lemma only gives a sufficient condition for strict
convexity.

Lemma 3.9.1 ([16, Proposition 1.2.6]). Let X ⊆ Rd be a convex set and let R : Rd → (−∞,+∞]
be twice continuously-differentiable on Rd. If ∇2R(x) � 0 for every x ∈ X, then R is strictly convex
on X.

The above lemma allows us to quickly detect strict convexity of many functions. A classic
1-dimensional example of strictly convex function is the exponential function given by α ∈ R 7→ eα.
Its second derivative at α ∈ R is eα and, by Lemma 3.9.1, we conclude that the exponential
function is strictly convex. Another interesting example is the squared `2-norm. Namely, define
R(x) := 1

2‖x‖
2
2 = 1

2〈x, x〉 for every x ∈ Rd (the 1
2 factor is not necessary but it is a nice normalization

factor, as we are going to see). In this case we have, for every x ∈ Rd we have

∇R(x) = x and ∇2R(x) = I,

where one should recall from Section 1.1.3 that I denotes the identity matrix with fitting dimensions.
By Lemma 3.9.1 we conclude that the squared `2-norm is strictly convex on Rd.

Hopefully the above examples helped the reader gain some intuition about strictly convex
functions. Although we have looked at some examples, we have not yet seen any properties of
strictly convex functions which may be of use in optimization. The following lemma shows the main
property of strictly convex functions that we shall use: if a minimizer of a strictly convex function
exists, it is unique.

Lemma 3.9.2. Let R : E→ (−∞,+∞] be a proper strictly convex function on a convex set X ⊆ E.
Then infx∈X R(x) is attained by at most one point.

Proof. Suppose there are distinct x, y ∈ E such that both x and y attain infx∈X R(x). Then
1
2x+ 1

2y ∈ X and, by the strict convexity of R,

R(1
2x+ 1

2y) < 1
2R(x) + 1

2R(y) = inf
x∈X

R(x),

a contradiction.

As discussed earlier, the graph of a strictly convex function R : E→ (−∞,+∞] is curved, that
is, a line segment joining any two distinct points of its graph lies strictly above the graph. However,
the definition of strict convexity does not state how curved R is. That is, for any distinct x, y ∈ E
and λ ∈ (0, 1), we know that

λR(x) + (1− λ)R(y)−R(λx+ (1− λ)y) (3.13)
6Although the lemma states the result only for Rd, it holds for an arbitrary euclidean space with minor changes in

terminology (such as positive-definiteness). We state it for Rd only for the sake of simplicity.

64

is positive, but we do not know how far away from zero it is, no matter the distance between x
and y. For example, the following lemma shows that in the case where R is the squared `2-norm
on E, the value of (3.13) is fully determined by the distance (w.r.t. the `2-norm) between x and y
besides, of course, the value of λ ∈ (0, 1).

Lemma 3.9.3. Let x, y ∈ E and λ ∈ [0, 1]. Then,

λ‖x‖22 + (1− λ)‖y‖22 − ‖λx+ (1− λ)y‖22 = λ(1− λ)‖x− y‖22

Proof. We have

λ‖x‖22 + (1− λ)‖y‖22 − ‖λx+ (1− λ)y‖22
= λ‖x‖22 + (1− λ)‖y‖22 − λ2‖x‖22 − (1− λ)2‖y‖22 − 2λ(1− λ)〈x, y〉
= λ(1− λ)‖x‖22 + λ(1− λ)‖y‖22 − 2λ(1− λ)〈x, y〉
= λ(1− λ)(‖x‖22 + ‖y‖22 − 2〈x, y〉)
= λ(1− λ)‖x− y‖2.

With the above lemma, we know that the value of (3.13) for the squared `2-norm is invariant to
translations, that is, the value of (3.13) for somex, y ∈ E is the same for the points x+ d and y + d
for any direction d ∈ E. This is not the case for the exponential function, for example.

Lemma 3.9.4. Let λ ∈ (0, 1) and let δ ∈ R. Then

lim
α→−∞

λeα + (1− λ)e(α+δ) − eλα+(1−λ)(α+δ) = 0 (3.14)

Proof. Let α ∈ R. Since eα is the gradient of the exponential function at α, it is also a subgradient
by Theorem 3.5.5. Thus, by the subgradient inequality we have

eλα+(1−λ)(α+δ) ≥ eα + eα(λα+ (1− λ)(α+ δ)− α) = eα + eα(1− λ)δ = λeα + (1− λ)eα(1 + δ).

Therefore,

λeα + (1− λ)eα+δ − eλα+(1−λ)(α+δ) ≤ (1− λ)(eα+δ − eα(1 + δ)) = (1− λ)eα(eδ − 1− δ).

Since the limit of the right-hand side for α tending to −∞ is 0 and since the limit in (3.14) is
nonnegative due to the convexity of the exponential function, we are done.

That is, for scalars α, β ∈ R, the bigger the value of δ ∈ R+, the better the line segment between
the points eα−δ and eβ−δ approximates the graph of the exponential in the interval [α− δ, β − δ]. In
other words, the further one goes in the direction of −∞ in the real line, the flatter the graph of the
exponential function is.

As one may expect, there are cases which we need a function which has a certain curvature
throughout the space we are considering, such as in the case of the squared `2-norm in E. Additionally,
how much curved the function is should matter in these cases. This idea of more “uniformly curved”
functions is translated into the definition of strongly convex functions.

Let σ > 0. A function R : E→ (−∞,+∞] is σ-strongly convex on a convex set X ⊆ E (with
respect to a norm ‖·‖ on E) if for every x, y ∈ X and λ ∈ [0, 1] we have

R(λx+ (1− λ)y) ≤ λR(x) + (1− λ)R(y)− λ(1− λ)
σ

2
‖x− y‖2.

65

If the set X is not explicitly stated, consider X := E. Moreover, we may omit σ and/or the norm
‖·‖ whenever their knowledge is not necessary.

Let R : E→ (−∞,+∞] be a σ-strongly convex function on a convex set X ⊆ E w.r.t. a norm ‖·‖
on E. Then, in particular, R is strictly convex on X. Still, the definition of strong convexity requires,
in some sense, for the function to be curved at least by a factor of σ throughout X. Formally, for
any x, y ∈ X and λ ∈ (0, 1), the difference in (3.13) in the case where R is σ-strongly convex w.r.t.
‖·‖ is at least σ

2λ(1− λ)‖x− y‖2.
There is another property of σ-strongly convex functions w.r.t. a norm ‖·‖ which may help the

reader to gain some intuition: it is a function which has, at each point, a quadratic (on ‖·‖) lower
bound. For simplicity’s sake, let us first look at the case where ‖·‖ is the euclidean norm on E. The
next lemma shows a characterization of strong convexity for this latter case which helps us show the
existence of such quadratic lower bounds

Lemma 3.9.5. Let R : E→ (−∞,+∞] be proper and let σ ∈ R++. Then R is σ-strongly convex
w.r.t. ‖·‖2 if and only if R− σ

2 ‖·‖
2
2 is convex.

Proof. For any x, y ∈ E and λ ∈ (0, 1) we have

R(λx+ (1− λ)y)− σ

2
‖λx+ (1− λ)y‖22 ≤ λ

(
R(x)− σ

2
‖x‖22

)
+ (1− λ)

(
R(y)− σ

2
‖y‖22

)
⇐⇒ R(λx+ (1− λy)) ≤ λR(x) + (1− λ)R(y)− σ

2

(
λ‖x‖22 + (1− λ)‖y‖22 − ‖λx+ (1− λ)y‖22

)
Le. 3.9.3⇐⇒ R(λx+ (1− λy)) ≤ λR(x) + (1− λ)R(y)− σ

2
λ(1− λ)‖x− y‖22.

It directly follows from Lemma 3.9.5 that 1
2‖·‖

2
2 is 1-strongly convex on E w.r.t. ‖·‖2. More

importantly, the above lemma allows us to derive a stronger version of the subgradient inequality for
strongly convex functions w.r.t. the `2-norm. Namely, let σ ∈ R++ and let R : E→ (−∞,+∞] be a
proper σ-strongly convex w.r.t. ‖·‖2 function. Moreover, let x ∈ E be such that there is g ∈ ∂R(x).
By Lemma 3.9.5 the function R′ := R− σ

2 ‖·‖
2
2 is convex, and by Theorems 3.5.4 and 3.5.5 we have

the subgradient g − σx ∈ ∂R′(x). Thus, by the subgradient inequality, for every z ∈ E we have

R′(z) ≥ R′(x) + 〈g − σx, z − x〉
⇐⇒ R(z)− σ

2 ‖z‖
2
2 ≥ R(x)− σ

2 ‖x‖
2
2 + 〈g, z − x〉 − σ〈x, z〉+ σ‖x‖22

⇐⇒ R(z) ≥ R(x) + 〈g, z − x〉+ σ
2 ‖z‖

2
2 − σ〈x, z〉+ σ

2 ‖x‖
2
2

⇐⇒ R(z) ≥ R(x) + 〈g, z − x〉+ σ
2 ‖z − x‖

2
2.

That is, at each point x ∈ E on which R is subdifferentiable there is a quadratic function which
lower bounds R and meets it at least at x. On R2, such lower bounds as simply parabolas, and in
this simpler case one is able to see how strong convexity implies that the function is curved: having
parabolas as lower bounds makes it impossible for the function to be linear (or “flat”) anywhere.

Although we are looking only at the `2-norm case, it happens that the above “strong version”
of the subgradient inequality holds for strongly convex function w.r.t. arbitrary norms on E. Even
more surprisingly, such strong subgradient inequality characterizes strongly convex functions. That
is, a function R is strongly convex if and only if such strong subgradient inequality holds on every
point where R is subdifferentiable. To prove this claim, we will first show an interesting fact: to
check if a closed convex function is strongly convex or not, it suffices to look at the relative interior
of its domain.

Lemma 3.9.6. Let R : E → (−∞,+∞] be a proper closed convex function and let X ⊆ E be a
convex set such that X ∩ ri(domR) is nonempty. If R is σ-strongly convex w.r.t. a norm ‖·‖ on
X ∩ ri(domR), then R is σ-strongly convex on X w.r.t. ‖·‖.

66

Proof. Suppose R is σ-strongly convex w.r.t. a norm ‖·‖ on X ∩ ri(domR). We need to show that,
for every x, y ∈ X,

R(λx+ (1− λ)y) ≤ λR(x) + (1− λ)R(y)− λ(1− λ)
σ

2
‖x− y‖2, ∀λ ∈ (0, 1). (3.15)

By assumption, we know that the above inequality holds for x, y ∈ X ∩ ri(domR). Let us show that

(3.16)If (3.15) holds for every x ∈ X ∩ ri(domR) and for y = ȳ for some ȳ ∈
X ∩ (domR), then (3.15) actually holds for every x ∈ X and for y = ȳ.

Let ȳ ∈ X∩(domR) be as in the above claim. Since (3.15) holds trivially for x ∈ X\(domR), we only
need to show that it holds for every x ∈ X ∩ (domR). Let x̄ ∈ X ∩ (domR), let x̊ ∈ X ∩ ri(domR),
let µ ∈ [0, 1), and define xµ := (1− µ)̊x+ µx̄. By Theorem 3.2.1, xµ ∈ ri(domR) and xµ ∈ X since
X is convex. Let λ ∈ (0, 1). By setting z̊λ := λx̊ + (1 − λ)ȳ and z̄λ := λx̄ + (1 − λ)ȳ we have by
assumption (since xµ ∈ X ∩ ri(domR))

R((1− µ)̊zλ + µz̄λ) = R((1− µ)(λx̊+ (1− λ)ȳ) + µ(λx̄+ (1− λ)ȳ))

= R(λxµ + (1− λ)ȳ)

≤ λR(xµ) + (1− λ)R(ȳ)− λ(1− λ)
σ

2
‖xµ − ȳ‖2.

(3.17)

By Theorem 3.2.1, we have z̊λ = λx̊+ (1− λ)ȳ ∈ ri(domR) since λ > 0. Thus, since R is closed, by
Theorem 3.2.6 we have

lim
µ↑1

R((1− µ)̊zλ + µz̄λ) = R(z̄λ) and lim
µ↑1

R(xµ) = R(x̄).

Therefore, taking the limit as µ tends to 1 from below on (3.17) yields

R(λx̄+ (1− λ)ȳ) = R(z̄λ) ≤ λR(x̄) + (1− λ)R(ȳ)− λ(1− λ)
σ

2
‖x̄− ȳ‖2.

This proves (3.16).
To ease the notation, for every x, y ∈ E and λ ∈ (0, 1), define Fλ(x, y) := λR(x) + (1− λ)R(y)−

λ(1− λ)σ2 ‖x− y‖
2. Now, note that

R(λx+ (1− λ)y) ≤ Fλ(x, y), ∀λ ∈ (0, 1), ∀x, y ∈ X ∩ ri(domR)

(3.16)
=⇒ R(λx+ (1− λ)y) ≤ Fλ(x, y), ∀λ ∈ (0, 1), ∀y ∈ X ∩ ri(domR),∀x ∈ X
=⇒ R(λy + (1− λ)x) ≤ Fλ(y, x), ∀λ ∈ (0, 1),∀y ∈ X ∩ ri(domR),∀x ∈ X
(3.16)
=⇒ R(λy + (1− λ)x) ≤ Fλ(y, x), ∀λ ∈ (0, 1),∀x, y ∈ X.

Let us now show that strongly convex functions are characterized by the “strong subgradient
inequality” about which we discussed earlier.

Theorem 3.9.7. Let R : E→ (−∞,+∞] be a proper closed convex function and let X ⊆ E be a
convex set such that X ∩ ri(domR) is nonempty. Then R is σ-strongly convex on X w.r.t. a norm
‖·‖ on E if and only if for every x ∈ ri(domR) ∩X, every y ∈ X, and every g ∈ ∂R(x) we have

R(y) ≥ R(x) + 〈g, y − x〉+
σ

2
‖y − x‖2. (3.18)

67

Proof. Suppose R is σ-strongly convex on X ⊆ E w.r.t. a norm ‖·‖ on E, let x ∈ ri(domR)∩X, and
let y ∈ X. Moreover, let λ ∈ (0, 1). By the definition of strong convexity, we have

R(x) + λ(R(y)−R(x))− (1− λ)λ
σ

2
‖x− y‖2 ≥ R(x+ λ(y − x)).

Thus, rearranging the above inequality and using the subgradient inequality for any u ∈ ∂R(x)
(which exists by Theorem 3.5.1),

R(y)−R(x)− (1− λ)
σ

2
‖x− y‖2 ≥ R(x+ λ(y − x))−R(x)

λ
≥ λ〈u, y − x〉

λ
= 〈u, y − x〉.

Taking the limit with λ tending to zero on the above expression yields (3.18).
For the converse, let us first show that

(3.19)if (3.18) holds for every x, y ∈ riX, then R is σ-strongly convex on ri(domR)∩X
w.r.t. ‖·‖.

Suppose that (3.18) holds for every x, y ∈ riX, let x̊, ẙ ∈ X ∩ ri(domR), let λ ∈ (0, 1), and define

zλ := λx̊+ (1− λ)ẙ.

Since ri(domR) is convex, zλ ∈ ri(domR). Hence, by Theorem 3.5.1 there is vλ ∈ ∂f(zλ). By (3.18),
we have

〈vλ, x̊− zλ〉 ≤ R(̊x)−R(zλ)− σ

2
‖x̊− zλ‖2

and
〈vλ, ẙ − zλ〉 ≤ R(ẙ)−R(zλ)− σ

2
‖ẙ − zλ‖2.

Taking a convex combination of 〈vλ, x̊− zλ〉 and 〈vλ, ẙ − zλ〉 with weights given by λ yields

〈vλ, λ(̊x− zλ) + (1− λ)(ẙ − zλ)〉 = 〈vλ, λx̊+ (1− λ)ẙ − zλ〉 = 〈vλ, zλ − zλ〉 = 0.

Therefore,

0 = λ〈vλ, x̊− zλ〉+ (1− λ)〈vλ, ẙ − zλ〉

≤ λ
(
R(̊x)−R(zλ)− σ

2
‖x̊− zλ‖2

)
+ (1− λ)

(
R(ẙ)−R(zλ)− σ

2
‖ẙ − zλ‖2

)
= λR(̊x) + (1− λ)R(ẙ)−R(zλ)− σ

2

(
λ‖x̊− zλ‖2 + (1− λ)‖ẙ − zλ‖2

)
= λR(̊x) + (1− λ)R(ẙ)−R(zλ)− σ

2

(
λ(1− λ)2‖x̊− ẙ‖2 + (1− λ)λ2‖x̊− ẙ‖2

)
= λR(̊x) + (1− λ)R(ẙ)−R(zλ)− λ(1− λ)

σ

2
‖x̊− ẙ‖2.

This finishes the proof of (3.19), and by Lemma 3.9.6 we are done.

The following proposition, which we state without proof, gives another characterization of strongly
convex functions and shows that the conjugate of a strongly convex function is very well-behaved: it
is finite and differentiable everywhere. On the next section we shall see that this properties on the
conjugate of strongly convex functions is part of a dual relation regarding strong convexity with
strong smoothness.

Proposition 3.9.8 ([60, Section 12H]). Let σ > 0 and R : E→ (−∞,+∞] be a proper, closed, and
convex function. Moreover, let ‖·‖ be a norm on E and let X be a nonempty convex set. Then, the
following are equivalent:

68

(i) R is σ-strongly convex on X w.r.t. ‖·‖,

(ii) for every x, y ∈ X∩ri(domR) and every u ∈ ∂R(x), we have R(y) ≥ R(x)+〈u, y−x〉+σ
2 ‖x−y‖

2;

(iii) for every x, y ∈ X ∩ ri(domR), every u ∈ ∂R(x), and every v ∈ ∂R(y), we have 〈u−v, x−y〉 ≥
σ‖x− y‖2;

Moreover, if R is strongly convex on E, then R∗ is finite and differentiable on E.

As an application of the above properties, let us show that the negative entropy on Rd is 1-strongly
convex w.r.t. ‖·‖1 on (multiples of) the unit ball of the `1-norm. Interestingly, the negative entropy
is only strictly convex on Rd. Thus, we need to restrict the negative entropy to get strong convexity.
First we will show a known inequality regarding the exponential of a scalar and then we shall prove
the strong convexity of the negative entropy.

Lemma 3.9.9. For each α ∈ R,
eα ≥ 1 + α.

Moreover, for every β ∈ R++,
lnβ ≤ β − 1.

Proof. Let us divide the proof in three cases. For α ≤ −1 the statement is trivially true. Suppose
that α ≥ 0. By definition,

eα =
∞∑
i=0

αi

i!
.

Since α ≥ 0, each term of this series is nonnegative. Hence,

eα =
∞∑
i=0

αi

i!
= 1 + α+

∞∑
i=2

αi

i!
≥ 1 + α.

Suppose now that −1 < α < 0 and define β := −α. Hence, 0 < β < 1 and

eα = e−β =
∞∑
i=0

(−β)i

i!
.

It is easy to see that the terms of this alternating serie decreases in modulus since 0 < β < 1. Hence,

∞∑
i=2

(−β)i

i!
≥ 0 =⇒ e−β = 1− β +

∞∑
i=2

(−β)i

i!
≥ 1− β.

Finally, note that due to what we have just proved, eβ−1 ≥ β for every β ∈ R++, which implies that
lnβ ≤ β − 1 holds.

Lemma 3.9.10 ([68, Lemma 16]). Define R(x) :=
∑d

i=1[xi > 0]xi lnxi + δ(x |Rd+) for every x ∈ Rd
and let θ ∈ R++. Then R is closed and (1/θ)-strongly convex on Bθ := {x ∈ Rd : ‖x‖1 ≤ θ} w.r.t.
‖·‖1.

Proof. First, note that R(x) is continuous and differentiable on int(domR) = Rd++. Moreover, by
Proposition 3.4.4 R is closed. Let us now show that R is (1/θ)-strongly convex w.r.t. ‖·‖1 on Bθ.
By Proposition 3.9.8, we just need to show that

〈∇R(x)−∇R(y), x− y〉 ≥ 1
θ‖x− y‖

2
1, ∀x, y ∈ Bθ ∩ Rd++.

69

Let x, y ∈ Bθ ∩ Rd++, and define w ∈ Rd by

wi := (∇R(x)i −∇R(y)i)(xi − yi) = (lnxi − ln yi)(xi − yi), ∀i ∈ [d].

Since the logarithm is an increasing function on (0,+∞), we have w ≥ 0 and wi = 0 if and only
if xi = yi for each i ∈ [d]. Set supp(w) := { i ∈ [d] : wi 6= 0} = { i ∈ [d] : xi 6= yi}. Then, by the
Cauchy-Schwarz inequality and the definition of w,

‖x− y‖21 =
(d∑
i=1

(xi − yi)
)2

=
(∑
i∈supp(w)

(xi − yi)
)2

=
(∑
i∈supp(w)

√
wi

(xi − yi)√
wi

)2

≤
(∑
i∈supp(w)

wi

)(∑
i∈supp(w)

(xi − yi)2

wi

)
= 〈∇R(x)−∇R(y), x− y〉

(∑
i∈supp(w)

xi − yi
lnxi − ln yi

)
.

Thus, it only remains to prove (∑
i∈supp(w)

xi − yi
lnxi − ln yi

)
≤ θ.

In order to prove the above inequality, let us first show that

xi − yi
lnxi − ln yi

≤ xi + yi
2

, ∀i ∈ supp(w). (3.20)

Let i ∈ supp(w) and, without loss of generality, suppose xi > yi. Define

φ(α) := [α > 0](2(α− yi)− (α+ yi)(lnα− ln yi)), ∀α ∈ R.

Note that φ(yi) = 0. Moreover, for every α ∈ R++ we have

φ′(α) = 2− (lnα− ln yi)−
α+ yi
α

= 1 + ln
yi
α
− yi
α
≤ yi
α
− yi
α

= 0,

where in the last inequality we used lnβ ≤ β − 1 for any β ∈ R++ (see Lemma 3.9.9). Therefore, φ
is a non-increasing function, and since φ(yi) ≤ 0 we have φ(α) ≤ 0 for every α ∈ [yi,+∞). Since
yi < xi we conclude that φ(xi) ≤ 0, which finally implies (3.20). Therefore,(∑

i∈supp(w)

xi − yi
lnxi − ln yi

)
≤
(∑
i∈supp(w)

xi + yi
2

)
≤ ‖x‖1 + ‖y‖1

2
≤ θ.

The focus of this text is ultimately optimization of convex functions. As we have seen on
Section 3.6, convex functions are easier to optimize since (among other facts) their local minima
on convex sets are also global minima. At the beginning of this section we have seen that when
we restrict our attention to strictly convex function, we have the additional property that, if the
infimum over a convex set is attained, it is actually attained by a unique point (this uniqueness will
be important in Section 3.11). One natural question is: when we further restrict our attention to
strongly convex function, do we have additional properties regarding their infima over convex sets?
Fortunately, the answer is yes and the additional property we earn will be fundamental in many
algorithms seen in the next chapters.

70

We will show in the next results that the infimum of a proper closed strongly convex function
R over a closed convex set X ⊆ E is guaranteed to be attained. The intuition behind this results
is that the level sets of R are bounded and, thus, compact. The boundedness is an implication of
the “curvature” of the graph of these functions, as we shall see soon. Then, since the intersection of
non-empty nested compact sets is non-empty (Cantor’s Intersection Theorem), the intersection of all
level-sets of the function is non-empty, that is, there is a point which attains infx∈ER(x). Finally,
since R+ δ(· |X) is also a closed (usually proper) strongly convex function, then infx∈X R(x) is also
attained. First, let us show that the level sets of R are compact. To do so, we will use the following
theorem, which we state without proof.

Theorem 3.9.11 ([59, Thm. 8.4]). Let C ⊆ E be a nonempty closed convex set. Then C is
unbounded if and only if there is d ∈ E \ {0} such that C + µd ⊆ C for every µ ∈ R+.

The idea of the above theorem has a very nice intuition. If a set C ⊆ E is convex and unbounded,
there must be a direction d ∈ E\{0} such that, starting at any point in C, we can go in the direction
d as much as we want. With this result, we are able to prove boundedness of the level sets of strongly
convex functions.

Lemma 3.9.12. Let R : E→ (−∞,+∞] be a proper closed strongly convex on E function. Then,
for every α ∈ R such that infx∈ER(x) < α the set Lα := {x ∈ E : f(x) ≤ α} is nonempty and
compact.

Proof. Since R is closed, by Theorem 3.2.4 we have that Lα is closed for any α ∈ R. Thus, we
only need to prove boundedness. Suppose there is α ∈ R with infx∈ER(x) < α such that Lα is
unbounded. By Theorem 3.9.11, there is d ∈ E \ {0} such that x + µd ∈ Lα for any x ∈ Lα and
any µ ∈ R+. Let x̄ ∈ Lα and for every γ ∈ R+ with γ ≥ 1/‖d‖ define

xγ := x̄+ γd ∈ Lα and λγ :=
1

‖x̄− xγ‖
=

1

γ‖d‖
∈ (0, 1].

Thus, by the definition of strong convexity, for every γ ∈ R+ with γ ≥ 1/‖d‖ we have

R((1− λγ)x̄+ λγxγ) ≤ (1− λγ)R(x̄) + λγR(xγ)− λγ(1− λγ)
σ

2
‖x̄− xγ‖2

= (1− λγ)R(x̄) + λγR(xγ)− (1− λγ)
σ

2
‖x̄− xγ‖

≤ α− (1− λγ)
σ

2
γ‖d‖.

Note that for any γ ∈ R++ we have (1− λγ)x̄+ λγxγ = x̄+ ‖d‖−1d ∈ Lα. This together with the
fact that R is proper implies that R((1− λγ)x̄+ λγxγ) = R(x̄+ ‖d‖−1d) 6= −∞ for any γ ∈ R++.
However, limγ→∞ α− (1− λγ)σ2γ‖d‖ = −∞, a contradiction.

Finally, let us show that infima of closed strongly convex function over closed convex sets are
attained. As we have discussed earlier, the proof relies mainly on Cantor’s Intersection Theorem,
which we state next. Following it, we prove the attainability of the infima.

Theorem 3.9.13 (Cantor’s Intersection Theorem [64, Theorem 2.36]). Let {Ki}∞i=0 be a collection
of nonemtpy compact sets on E such that Ki+1 ⊆ Ki for every i ∈ N. Then

⋂∞
i=0Ki is nonempty.

Lemma 3.9.14. Let R : E→ (−∞,+∞] be a proper closed strongly convex on E function. Then
infx∈ER(x) is attained by a unique point. In particular, if X ⊆ E is convex such that (epiR)∩(X⊕R)
is a closed nonempty set, then infx∈X R(x) is attained by a unique point. In particular, if X is
closed and (domR) ∩X is nonempty, then infx∈X R(x) is attained by a unique point.

71

Proof. For every n ∈ N, define ρn := infx∈ER(x) + 1
n+1 and Ln := {x ∈ E : R(x) ≤ ρn}, where

the latter sets are nonempty and compact for every n ∈ N by Lemma 3.9.12. Since Ln+1 ⊆
Ln holds for every n ∈ N, by Cantor’s Intersection Theorem (Theorem 3.9.13), we have that
{x ∈ E : R(x) ≤ infx∈ER(x)} =

⋂∞
n=0 Ln is nonempty, that is, infx∈ER(x) is attained. The unique-

ness of the minimizer comes from the fact that R is strictly convex on E (since R is strongly convex
in E) and by Lemma 3.9.2.

In particular, let X ⊆ E be a convex set such that (epiR) ∩ (X ⊕ R) is closed and nonempty.
Note that if we define R′ := R + δ(· |X), then epiR′ = (epiR) ∩ (X ⊕ R) is a closed nonempty
set. Thus, we have that R′ is a proper strongly convex function which is closed by Theorem 3.2.4.
Thus, infx∈ER

′(x) = infx∈X R(x) is attained by a unique point by the result we have just proved.
Finally, note that if X ⊆ E is closed and (domR) ∩ X is nonempty, then X ⊕ R is closed and
(X ⊕ R) ∩ (epiR) is a closed nonempty set.

3.10 Strong Convexity and Smoothness Duality

As we have discussed on the previous section, the fact from Proposition 3.9.8 that the conjugate of
a strongly convex function is finite and differentiable everywhere is, in fact, a corollary of a much
more fundamental result. We investigate such a result in this section. Namely, we study the duality
relation between strongly convex and strongly smooth functions.

Let β ∈ R++. A function R : E→ R is β-strongly smooth (with respect to a norm ‖·‖ on E)
if R is everywhere differentiable and if for every x, y ∈ E we have7

‖∇R(x)−∇R(y)‖∗ ≤ β‖x− y‖.

From the definition, one can see that strong smoothness restricts how rapidly the slope of a
function can change from one point to another. As an example of a smooth function, one may easily
see that R := 1

2‖·‖
2
2 is 1-strongly smooth w.r.t. the `2-norm. This holds since ∇R(x) = x for any

x ∈ E and since the `2-norm is self-dual. Another example of strongly smooth function (this time
with respect to any norm) is any affine function, that is, any function of the form R(x) := 〈a, x〉+ α
for every x ∈ E for some a ∈ E and α ∈ R. The latter function is in fact ε-strongly smooth w.r.t. a
norm ‖·‖ on E for any ε > 0 since ∇R(x)−∇R(y) = 0 for any x, y ∈ E. Thus, in some sense, affine
functions are the most extreme example of strongly smooth functions. This was expected since the
slope of affine functions are constant throughout E.

At this point, it is not clear yet how strong convexity and strong smoothness may be related at
all. The following lemma, which we state without proof, shows that strong smoothness implies a
condition dual to Theorem 3.9.7: at each point x ∈ E a strongly smooth function R is upper-bounded
by a quadratic function which touches the graph of R at least at x.

Lemma 3.10.1 ([55, Lemma 1.2.3]). If R : E→ (−∞,+∞] is a β-strongly smooth function w.r.t.
a norm ‖·‖ in E, then, for every x, y ∈ E we have

R(y) ≤ R(x) + 〈∇R(x), y − x〉+
β

2
‖y − x‖2.

Another way to interpret the above result is as a bound for the error of approximating a strongly
smooth function by its first-order Taylor expansion. It shows that β-strongly smooth functions can
be well-approximated by its first-order Taylor expansions, and the smaller the value of β the better
the approximation.

7That is, ∇R is β-Lipschitz continuous with respect to ‖·‖.

72

Finally, the next theorem shows a dual relation regarding strongly convex and strongly smooth
functions. Namely, the conjugate of a strongly convex function is strongly smooth and, maybe
surprisingly, the converse also holds. It is important to notice that the theorem only holds for
functions which are strongly convex throughout E. Thus, if a function R : E→ (−∞,+∞] is strongly
convex only on a closed convex set X ⊆ E, one may apply the lemma to R+ δ(· |X) but not to R
itself.

Theorem 3.10.2 ([41, Theorem 3]). Let R : E→ (−∞,+∞] be a closed convex function, let ‖·‖
be a norm on E, and let σ > 0. Then R is σ-strongly convex on E w.r.t. ‖·‖ if and only if R∗ is
(1/σ)-strongly smooth w.r.t. ‖·‖∗.

3.11 Bregman Divergence and Projection

In the algorithms we will see in the next chapters, we shall use different norms in order to obtain
algorithms with better guarantees. However, this may force us to change other aspects of the
algorithm, such as the way we measure distances. For example, if one needs to project a point x ∈ E
onto a (convex) set X ⊆ E, a natural way to do so is by using euclidean projection. Namely, to
pick the (unique) point which attains minz∈X‖x− z‖2. This clearly depends on the euclidean norm,
which will not be ideal in some applications we shall see. Moreover, simply replacing the `2-norm
by any norm of our choice often does not work as intended. For example, consider the situation
where we have the all ones vector 1 ∈ R2 and want to project it onto the two-dimensional simplex
∆2 = {x ∈ R2

+ : x1 + x2 = 1} using distances based on the `1-norm. This does not work as intended
since the point which attains infz∈∆2‖1− z‖1 is not unique. In fact, ‖1− z‖1 = 1 for any z ∈ ∆2,
rendering the idea of projecting 1 onto the simplex meaningless. A notion which works better as a
way of measuring “distances”8 when we use a norm different of the `2-norm as the “reference norm”
is the idea of Bregman Divergences.

Let R : E → (−∞,+∞] be a function which is differentiable on an open set D ⊆ E. The
Bregman divergence associated with R is the function

BR(x, y) := R(x)−R(y)− 〈∇R(y), x− y〉, ∀x ∈ E, y ∈ D.

On Figure 3.5 we give a illustration of the Bregman Divergence with respect to R. By looking at
the figure the main idea behind the Bregman Divergence at (x̄, ȳ) ∈ E×D is made clear: it is the
difference between the value of R at x̄ and value of the first-order Taylor expansion of R around ȳ
evaluated at x̄. Although we define Bregman Divergence for arbitrary differentiable functions, when
the function R is convex at least one nice property arises: BR(x, y) ≥ 0 for any x ∈ E and y ∈ E and
equality holds at least when x = y. Intuitively, we want the divergence between two points x, y ∈ E
to be a measure of how different these points are when one looks at them through the lens of R.

From the above discussion, one may have noticed that the usefulness of the Bregman Divergence
depends on the function R being curved throughout E. As an extreme example, on may note that
if R is of the form 〈a, ·〉 + β for some a ∈ E and β ∈ R, then BR is identically zero. In words,
the Bregman Divergence associated with a flat function is zero everywhere. As we shall see, the
divergence function starts to look nicer and have more interesting properties when R is strictly or
even strongly convex, for example.

Before looking at some of the properties of Bregman Divergences, let us look at a classic example
of Bregman Divergence. Namely, set R := 1

2‖·‖
2
2. In this case, R is differentiable on E with∇R(y) = y

8Saying that we measure distances with Bregman Divergences is misleading since Bregman Divergences do not
satisfy the conditions of a distance function.

73

Figure 3.5: Illustration of the Bregman Divergence associated with R.

for every y ∈ E. Thus,

BR(x, y) =
1

2

(
‖x‖22 − ‖x‖22 − 2〈y, x− y〉

)
=

1

2

(
‖x‖22 + ‖y‖22 − 2〈y, x〉

)
=

1

2
‖x− y‖22.

That is, the Bregman Divergence associated with the squared euclidean norm is the squared
euclidean distance. Later we shall look at a more interesting example of Bregman Divergence.
Namely, we shall show that the Bregman Divergence associated with the negative entropy x ∈ Rd 7→
−
∑d

i=1[xi > 0]xi lnxi + δ(· |Rd+) is (practically) the Kullback–Leibler divergence (also known as
relative entropy).

Let us now look at simple but useful properties of Bregman Divergences. First, let us see the
form of the (sub)gradients of Bregman Divergences.

Lemma 3.11.1. Let R : E→ (−∞,+∞] be a proper convex function which is differentiable on a
convex set D ⊆ E. Then,

∂(BR(·, y))(x) = ∂R(x)−∇R(y), ∀x ∈ E,∀y ∈ D.

In particular, ∇(BR(·, y))(x) = ∇R(x)−∇R(y) for every x, y ∈ D.

Proof. Let y ∈ D and define Ly(x) := R(y) + 〈∇R(y), y − x〉 for every x ∈ E. For every x ∈ E we
have ∂Ly(x) = {∇Ly(x)} = {−∇R(y)} by Theorem 3.5.5. Thus, by Theorem 3.5.4 we have, for
every x ∈ E,

∂(BR(·, y))(x) = ∂R(x) + ∂Ly(x) = ∂R−∇R(y).

In particular, if x ∈ D, then by Theorem 3.5.5 we have ∂R(x) = {∇R(x)}.

Let us look now at the Bregman Divergence associated with a strongly convex function R : E→
(−∞,+∞] which is differentiable on a convex set D ⊆ E. By definition of Bregman Divergence, for
every y ∈ D we have that BR(·, y) is the sum of R, which is strongly convex, and the linear function

74

x ∈ E 7→ −R(y)− 〈∇R(y), x− y〉. Thus, BR(·, y) is also strongly convex for any y ∈ E. Although
trivial, we state this result in the next lemma for future reference since it shall be important in the
next results and chapters.

Lemma 3.11.2. Let ‖·‖ be a norm on E, let σ ∈ R++, and let R : E → (−∞,+∞] be a proper
σ-strongly convex on X w.r.t. ‖·‖ function which is differentiable on a convex set D ⊆ E. Then, for
every y ∈ D, the functionBR(·, y) is also σ-strongly convex w.r.t. ‖·‖.

Proof. Let y ∈ D and define Ly(x) := R(y)+〈∇R(y), x−y〉 for every x ∈ E. Then BR(·, y) = R−Ly.
Since −Ly is convex and R is σ-strongly convex on X w.r.t. ‖·‖, we conclude that BR(·, y) is also
σ-strongly convex on X w.r.t. ‖·‖.

For the sake of brevity, we do not show more properties regarding Bregman Divergences since
they will not be used in the remainder of the text. Still, many properties (and applications) of
Bregman Divergences can be found, for example, in [24, Section 11.2] and in [19, Section 5.1].

Now, let us look at the idea of Bregman projetions which is extensively used in the algorithms
seen in Chapter 5. Let R : E→ (−∞,+∞] be a proper convex function which is differentiable on
a convex set D. Further, let X ⊆ E be a closed convex set and let x̄ ∈ D. If infx∈X BR(x, x̄) is
attained by a unique point, then the Bregman projection ΠR

X(x̄) of x̄ onto X (with respect to R)
is given by

{ΠR
X(x̄)} := arg min

x∈X
BR(x, x̄).

The operator ΠR
X is called the Bregman projector onto X w.r.t. R. As an example, if R = 1

2‖·‖
2
2,

then ΠR
X recovers the well-known euclidean projection onto X since BR becomes (half of) the squared

euclidean distance.
As we briefly discussed at the beginning of this section, one of our motivations for using Bregman

Divergences is to project points onto (convex) sets in ways which do not rely on the euclidean norm.
The above definition of Bregman projection assumes that the projection is unique at every point
where the function R is differentiable. The following lemma shows that the existence and uniqueness
of the projection are guaranteed when the function R is strongly convex. Thus, in applications we
usually will have Bregman projections w.r.t. strongly convex function. Additionally, it is worth
noting that the norm associated with the strong convexity will usually play a major role in the
analyses of the algorithms we shall see in future chapters.

Lemma 3.11.3. Let R : E→ (−∞,+∞] be a closed and strongly convex function which is differen-
tiable on D and let X ⊆ E be such that (domR)∩X is nonempty. Then infx∈X BR(x, y) is attained
by a unique point for any y ∈ D.

Proof. Let y ∈ D. By Lemma 3.11.2, BR(·, y) is strongly convex. Since (domR) ∩X is nonempty,
by Lemma 3.9.14 we conclude that infx∈X BR(x, y) is attained. Uniqueness of the minimizer follows
directly from the strict convexity of R and Lemma 3.9.2.

Finally, it shall be very useful to have sufficient and necessary conditions for a point to be the
Bregman projection of another onto some convex set. The next lemma derives some conditions of
this form by basically applying the optimality conditions from Section 3.6 and writing them in a
more palatable way.

Lemma 3.11.4. Let R : E→ (−∞,+∞] be a proper strictly convex function which is differentiable
on an open set D ⊆ E and let X ⊆ E be a convex set. Finally, suppose riX ∩ ri(domR) 6= ∅. Then,
for any x, z ∈ D we have

x = ΠR
X(z) ⇐⇒ ∇R(z)−∇R(x) ∈ NX(x). (3.21)

75

In particular, if y ∈ E is such that R∗ is differentiable at y and ∇R∗(y) ∈ D, then, for any x ∈ domR,

x = ΠR
X(∇R∗(y)) ⇐⇒ y −∇R(x) ∈ NX(x). (3.22)

Proof. Let x, z ∈ D. Recall that, by definition of the Bregman projector, x = ΠR
X(z) if and

only if x (is the unique point which) attains infu∈X BR(u, z). Since domR = domBR(·, x) and
riX ∩ ri(domR) 6= ∅, by the optimality conditions given by Theorem 3.6.2,

x ∈ arg min
u∈X

BR(u, z) ⇐⇒ ∇R(z)−∇R(x) = −∇(BR(·, z))(x) ∈ NX(x),

and the uniqueness of the projection follows from the strict convexity of R (which implies that
BR(·, z) is strictly convex as well). Let y ∈ E be such that R∗ is differentiable at y and that
∇R∗(y) ∈ D. By Corollary 3.5.6 we have ∇R(∇R∗(y)) = y. Therefore, taking z = ∇R∗(y) on
(3.21) yields (3.22).

Finally, let us look at another classic example about which we have briefly talked about earlier on
this section. The next proposition shows that the Bregman Divergence associated with the negative
entropy on Rd is almost equal to the well-known Kullback-Leibler divergence (where equality holds
when we look at the divergence among points in the simplex). Moreover, we also show that the
Bregman projection w.r.t. the negative entropy in the simplex boils down to a normalization w.r.t.
the `1-norm. Thus, Bregman projection associated with the negative entropy might be seen as a
better way of computing projections when one has as a “reference norm” the `1-norm (one may recall
the failed attempt of projecting onto the simplex by minimizing the distance w.r.t. the `1-norm from
the beginning of this section).

Proposition 3.11.5. Define R(x) :=
∑d

i=1[xi > 0]xi lnxi + δ(x |Rd+) for each x ∈ Rd. Then, for
any x ∈ Rd+ and y ∈ Rd++,

BR(x, y) =
d∑
i=1

(
[xi > 0]xi ln

(
xi
yi

))
+ ‖y‖1 − ‖x‖1.

In particular, if X := ∆d is the (d− 1)-dimensional simplex, then

ΠR
X(y) =

1

‖y‖1
y, y ∈ Rd++. (3.23)

Proof. Let x ∈ Rd+ and y ∈ Rd++. Then,

BR(x, y) = R(x)−R(y)− 〈∇R(y), x− y〉

=

d∑
i=1

(
[xi > 0]xi lnxi − yi ln yi − (1 + ln yi)(xi − yi)

)
=

d∑
i=1

(
[xi > 0]xi(lnxi − ln yi)− (xi − yi)

)
=

d∑
i=1

(
[xi > 0]xi ln

(
xi
yi

))
+ ‖y‖1 − ‖x‖1.

76

In particular, set X := ∆d. Then, since all points in X have same same `1-norm,

{ΠR
X(y)} = arg min

x∈X

(
d∑
i=1

(
[xi > 0]xi ln

(
xi
yi

))
+ ‖y‖1 − ‖x‖1

)

= arg min
x∈X

d∑
i=1

(
[xi > 0]xi ln

(
xi
yi

))
.

Define ȳ := ‖y‖−1
1 y. By Corollary 3.2.3, ri ∆d = {x ∈ Rd++ : ‖x‖1 = 1} ⊆ Rd++ = riRd+. Therefore,

by Lemma 3.11.4 we have ȳ = ΠR
X(y) if and only if ∇R(y)−∇R(ȳ) ∈ NX(ȳ). We have

∇R(y)−∇R(ȳ) =

d∑
i=1

ei(1 + ln yi − 1− ln ȳi) =

d∑
i=1

ei

(
ln yi − ln

(
yi
‖y‖1

))
= ln(‖y‖1)1,

and, for every u ∈ ∆d, we have

ln(‖y‖1)〈1, u− ȳ〉 = ln(‖y‖1)(‖u‖1 − ‖ȳ‖1) = 0.

Therefore, ∇R(y)−∇R(ȳ) ∈ NX(ȳ) and, thus, ȳ = ΠR
X(y).

77

Chapter 4

The Follow The Regularized Leader
Algorithm

Intuitively, the best point for a player to pick in an online convex optimization game is one that
performs best on the already-seen functions. This strategy in its purest form, known as Follow
the Leader (FTL), a name first coined in [42], fails to attain sublinear regret even in simple cases
(see Section 4.1 or [67, Example 2.2]). Still, it is possible to tweak it to make it work well on a
rich class of OCO problems. One issue with FTL is that simply picking a point that minimizes
the cumulative loss of the past functions makes the player’s choices overly susceptible to enemies’
strategies, e.g. consecutive points from the player may be forced to be far from one another. As a
matter of fact, a point picked following the FTL strategy does not leave any room for the player to
skew this choice in any way, leaving the possibility for the enemy to direct the player’s decisions
through a smart choice of functions. A better strategy for the player is to pick a point that minimizes
the cost of the already-seen functions plus a (convex) regularization term, which makes the choices
of the player change less wildly between consecutive rounds. This idea is the basis of the Follow the
Regularized Leader (FTRL) algorithm, which we describe and discuss in this chapter.

We first describe the algorithm in a more general and adaptive form, with a time-dependent
regularizer. Later, we derive its classical version, that is, the one with a static regularizer, and apply
both the classical and adaptive FTRL strategies to some problems. Even though the non-adaptive
FTRL algorithm in the OCO context was first presented by Shalev-Shwartz and Singer in [69] (and
by Shalev-Shwartz in [68]) its adaptive version and the analysis techniques here presented are due to
McMahan [48].

4.1 The Follow the Leader and Follow the Regularized Leader Al-
gorithms

As a warm-up and to build intuition for most of the algorithms of this chapter, let us look at the
Follow the Leader algorithm for online convex optimization. For the sake of simplicity, let us first
look at the randomized prediction with expert problem. As we have seen on Proposition 2.6.2, to
obtain a good (in expectation) randomized player oracle for the expert’s problem P := (AE , A, Y, L),
where E is a finite set of experts and A is a set of actions, it suffices to build a player oracle for the
OCO instance C := (∆E ,F) which attains sub-linear regret, where ∆E is the simplex on RE and

F := { p ∈ RE 7→ zTp : z ∈ [−1, 1]E}.

78

Consider the situation in which a certain player oracle for C has already played T ∈ N \ {0} rounds
against an enemy oracle ENEMY for C. Moreover, suppose that z ∈ ([−1, 1]E)T is such that, for
every t ∈ [t] the function ft : RE → R given by ft(p) := zTt p for every p ∈ RE is the function chosen
by ENEMY on round t. In this case, at least intuitively, which is a good choice in ∆E for the player
at round T + 1?

All the information the player has at round T + 1 to make her choice is comprised in the
sequence z. In particular, for each expert e ∈ E she can compute its cumulative cost

∑T
t=1 zt(e), i.e.,

the sum of all the costs attributed to this expert throughout the game. Instinctively, the lower the
cumulative loss of an expert, the better its advice have been up to round T . Thus, an idea for an
strategy for the player at round T + 1 is for her to follow the expert with minimum cumulative cost.
More generally, the player may pick at round T + 1 the probability distribution over the experts
which minimizes the sum of the expected losses from rounds 1 to T , that is,

pT+1 ∈ arg min
p∈∆E

T∑
t=1

〈zt, p〉. (4.1)

That is the main idea behind the Follow the Leader (FTL) algorithm: at round t + 1 the player
picks point which minimizes the sum of the already-seen functions. On Algorithm 4.1 we define an
oracle which formally implements the FTL algorithm.

Algorithm 4.1 Definition of FTLX
(
〈f1, . . . , fT 〉

)
Input:

(i) Functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]E,

(ii) A set X ⊆ E such that arg minx∈X
∑T

t=1 ft(x) is attained.
Output: xT+1 ∈ X
Compute xT+1 ∈ arg minx∈X

∑T
t=1 ft(x)

return xT+1

One may be wondering how good the FTL algorithm performs in certain classes of OCO problems.
Although there are some certain classes of OCO problems in which the FTL algorithm is able to
attain sub-linear regret (we shall look at this case in details in Section 4.8), there are quite natural
OCO problems, such as the experts’ problem, in which FTL fails to attains sub-linear regret in the
worst-case scenario. Note that when discussing the idea of the algorithm in the expert’s problem, we
ended up with the formula on (4.1). Since in the latter we are minimizing a linear function on the
simplex, we have that for some expert i ∈ E the vector ei attains the minimum. That is, at each
round the FTL algorithm may choose to follow one expert deterministically and, as we have seen
on Proposition 2.3.3, this is bound to fail in the worst-case scenario. For the sake of concreteness,
let us build an enemy oracle for an instance of the expert’s problem (with only two experts) against
which the FTL algorithm suffers linear regret.

Proposition 4.1.1. Define E := {1, 2} and define the OCO instance C := (∆E , [−1, 1]E). Moreover,
define

zt :=

1
2e2 if t = 1,

e1 − e2 if t is even,
−e1 + e2 if t is odd and t 6= 1,

∀t ∈ N \ {0},

and define the enemy oracle ENEMY for C by

ENEMY(〈p1, . . . , pT 〉) := (x ∈ RE 7→ (zT+1)Tx), ∀T ∈ N,∀p ∈ (∆E)T .

79

Then,
RegretT (FTL∆E ,ENEMY, {e1, e2}) ≥ T − 2.

Proof. Let T ∈ N and define

(p,f) := OCOC(FTL∆E ,ENEMY, T).

First, let us derive a closed formula for the player’s choices. Namely, let us show that

pt =

{
e1, if t is even
e2, if t is odd,

∀t ∈ [T] \ {1}. (4.2)

From the definition of zt, by an easy induction one may see that

t∑
i=1

zi =

{
e1 − 1

2e2, if t is even
1
2e2, if t is odd,

∀t ∈ [T]. (4.3)

Therefore, for every t ∈ {1, . . . , T − 1}

pt+1 ∈ arg min
p∈∆E

(t∑
i=1

zi
)T
p = arg min

p∈∆E

(
[t is even]p1 + (−1)t+1p2

)
=

{
{e1} if t is odd
{e2} if t is even.

This proves (4.2). Using (4.2) together with the definition of zt for each t ∈ [T], we have

T∑
t=1

ft(pt) = zT1 p1 +
T∑
t=2

zTt pt = zT1 p1 +
T∑
t=2

1 ≥ T − 1.

Finally, by the definition of zt for each t ∈ [T] together with (4.3) we have, for any i ∈ E,

T∑
t=1

ft(ei) =
T∑
t=1

zt(i) ≤ 1.

As one may have noticed, one of the problems of the FTL algorithm is that the enemy has too
much power over the player’s decisions. In the above proposition, the enemy is able to make the
player switch from one expert to another while making, at the same time, the expert chosen by the
player suffer the maximum amount of loss possible. It seems that if we could make the choices of the
player change less widely from one round to another, the algorithm would be less susceptible to such
kind of malicious enemy. One way to stabilize the player’s choices is to add to the functions being
minimized an extra function R : E→ (−∞,+∞], a regularizer. Intuitively, when a regularizer with
certain properties is added to the functions being minimized in the Follow the Leader algorithm,
it is harder for the iterates from one round to the next to be very different from one another. On
Algorithm 4.2 we define an oracle which formally implements the FTL algorithm with the addition
of a regularizer, strategy known as the Follow the Regularized Leader algorithm.

We shall leave the discussion about which functions work well as a regularizer for later sections.
For now, let us try to understand the FTRL oracle and look at some nice properties for regularizer
functions to have.

One may have noticed that while on Algorithm 4.1 the oracle is parameterized by the set on
which the minimization shall happen, on Algorithm 4.2 the algorithm is only parameterized by the
regularizer function. This is possible since we can embed the set restriction into the regularizer

80

Algorithm 4.2 Definition of FTRLR
(
〈f1, . . . , fT 〉

)
Input:

(i) Functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]E,

(ii) R : E→ (−∞,+∞] such that, for every t ∈ {0, . . . , T}, the function R+
∑t

i=1 fi is proper
and its infimum over E is attained.

Output: xT+1 ∈ domR ⊆ E
Compute xT+1 ∈ arg minx∈E

(
R(x) +

∑T
t=1 ft(x)

)
return xT+1

through the use of indicator functions. For example, for any set X ⊆ E we have FTRLδ(· |X) = FTLX .
More generally, given a function R : E → (−∞,+∞], we can use the function R + δ(· |X) as a
regularizer for FTRL to enforce the points chosen by the algorithm to lie in a set X ⊆ E.

Finally, the biggest issue now is to properly choose regularizer functions for FTRL for a given
OCO instance C := (X,F). Without trying to think about which conditions the regularizer ought to
have in order for the FTRL algorithm to attain sub-linear regret, there are some basic properties
which it should have to either make the analysis simpler and/or to certify that the FTRL algorithm
with such a function as a regularizer is properly defined. These conditions as encapsulated in the
concept of classical FTRL regularizer.

Definition 4.1.2 (Classical FTRL regularizer). Let R : E→ (−∞,+∞] be a convex function and
let C := (X,F) be an OCO instance. Then R is a (classical) FTRL regularizer for C if

(4.4.i) R is closed, proper, and convex,

(4.4.ii) domR ⊆ X, and

(4.4.iii) for any T ∈ N and any f ∈ FT , the function R+
∑T

i=1 fi is closed, proper, convex, and
its infimum over E is attained.

Property (4.4.i) ensures that a FTRL regularizer is well-behaved, which shall allow us to use
many of the tools developed on the previous chapter. Property (4.4.ii) is only to ensure that the
points picked by the FTRL oracle are valid points for the player to pick at the OCO game. Finally,
property (4.4.iii) ensures that minima which the FTRL algorithm computes are well-behaved.

4.2 The Adaptive FTRL Algorithm

In the previous section we have briefly looked at the Follow the Regularized algorithm. In a nutshell,
the algorithm picks at round a given round t ∈ N the point which minimizes the sum of the
already-seen functions plus a regularizer function. However, no matter which functions the enemy
play, the algorithm is stuck with the same regularizer throughout the whole game. In this section we
look at a generalization of the FTRL algorithm which works similarly to the FTRL algorithm with
the key difference that, at each round, it chooses a different regularizer.

Namely, let f1, . . . , ft : E→ (−∞,+∞] be closed proper convex functions played by an enemy
oracle until round t in an OCO instance. That idea is that, at round t + 1, the player u picks a
function Rt+1, the regularizer at round t+ 1, and then picks a point that minimizes Rt+1 +

∑t
i=1 fi

as her choice for the round. One important aspect of Rt+1 is that it may depend on f1, . . . , ft and
on the past player choices. In order to derive bounds on the regret and define the algorithm more

81

concisely, it is convenient for us to write Rt+1 as the sum of t+ 1 functions1 r1, r2, . . . , rt+1, where ri
is chosen by the player on round i for each i ∈ {1, . . . , t+ 1}. In this way, at round t+ 1 the player
picks the point that minimizes

∑t+1
i=1 ri +

∑t
i=1 fi. This algorithm is known as Adaptive Follow the

Regularized Leader (Adaptive FTRL or AdaFTRL), and an oracle that implements it is formally
defined in Algorithm 4.3.

Algorithm 4.3 Definition of AdaFTRLR(〈f1, . . . , fT 〉)
Input:

(i) Functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]E,

(ii) R : Seq(F) → (−∞,+∞]E such that, for every t ∈ {1, . . . , T + 1}, the function∑t+1
i=1R(〈f1, . . . , fi−1〉) +

∑t
i=1 fi is proper and its infimum over E is attained.

Output: xT+1 ∈ domR(〈〉) ⊆ E
for t = 1 to T + 1 do

rt ← R(〈f1, . . . , ft−1〉)
Rt ← [t > 1]Rt−1 + rt

Compute xT+1 ∈ arg minx∈E

(
RT+1(x) +

∑T
t=1 ft(x)

)
return xT+1

To formalize the dependence of the regularizer function rt+1 on the past functions f1, . . . , ft,
the AdaFTRL oracle is parameterized by a function R from Seq(F) to (−∞,+∞]E for some F ⊆
(−∞,+∞]E. Such R is what defines the strategy behind the choice of the regularizers for the
player. In other words, at a round t ∈ N the regularizer increment rt of the player is given
by R(〈f1, . . . , ft−1〉), where f1, . . . , ft−1 were the functions played by the enemy in past rounds.
Moreover, the regularizer function used in the minimization by the player is the sum of all the
regularizer increments computed up to round t.

To use AdaFTRL in games for an OCO instance C := (X,F), we want the algorithm to behave
exactly as the FTRL algorithm but with a different regularizer at each round. Thus, we usually want
to use AdaFTRL with a function R : Seq(F)→ (−∞,+∞] which, for any T ∈ N and any f ∈ FT ,
the function RT+1 :=

∑T+1
t=1 R(〈f1, . . . , ft−1〉) is a classical FTRL regularizer. Moreover, to make

the analysis easier it is good that R(f) is a well-behaved (proper closed convex) function for any
f ∈ Seq(F).

Definition 4.2.1 (FTRL regularizer strategy). If C := (X,F) is an OCO instance, we say that a
function R : Seq(F) → (−∞,+∞] is a FTRL regularizer strategy for C if, for any T ∈ N and
any f ∈ FT ,

(4.5.i) R(f) is closed, proper, and convex,

(4.5.ii)
∑T+1

t=1 R(f1:t−1) is a classical FTRL regularizer for C

Property (4.5.i) from the definition of FTRL regularizer strategy guarantees that the regularizer
increments are well-behaved. Property (4.4.ii) from the definition of classical FTRL regularizer
together with (4.5.ii) from the definition of FTRL regularizer strategy ensures that the iterates picked
by AdaFTRLR are valid points for the player, that is, AdaFTRLR(f) ∈ X for any f ∈ Seq(F).

1We can usually do that since, given functions R1, R2, . . . , Rt+1, we may define ri := Ri − [i > 1]Ri−1 for
i ∈ {1, . . . , t+ 1}. However, we will usually go the other way around, defining the “increment” functions ri first. In
this way, we can guarantee some properties on these increment functions, such as convexity, which will be useful
mainly on the next chapter.

82

Finally, property (4.4.iii) together with (4.5.ii) from the definition of FTRL regularizer strategy
guarantees that the infimum of the function minimized by the AdaFTRL oracle when applied to
any sequence from Seq(F) is attained. Most of the convexity properties stated above will not be
used until Section 4.4 (and this is made clear in the statements of the results). Still, it is worth
standardizing these conditions for FTRL regularizers from the outset since they will be ubiquitous
throughout most of the remaining of the text.

At first sight, one might think that R should also receive the points chosen by the player in
the past rounds as input, since it may be a good idea for the player to choose regularizers based
also on the points she picked in the past rounds. Note, however, that for every round t ∈ N, the
point xt+1 := AdaFTRLR(〈f1, . . . , ft〉) depends deterministically only on f1, . . . , ft and R. Thus,
at round t+ 1, which is when R receives as input f1, . . . , ft, the regularizer strategy R knows (or
can compute) the points picked on past rounds by the player, even without receiving such points
explicitly as input.

Before we continue, we need to address a technical problem. The definition of AdaFTRLR is
ambiguous, since different choices of points in the set of minimizers could lead to different evaluations
of AdaFTRLR given the same arguments. In order to fix that, not only for this definition but for
other oracles that we will define throughout this chapter, we assume that every set A is equipped
with an arbitrary relation ≤A which defines a well-ordering of the elements on A. Thus, every time
we have to pick a point from a nonempty set A, we will use the convention that such a point is the
minimum with respect to ≤A. This solves the technical problem and, since the order is arbitrary,
it does not restrict us in any way. We stress here that the sole purpose of this assumption is to
guarantee that, if we give the same input at different points in the text to any oracle that we define,
the outputs of the oracle in these cases are the same, i.e., the oracle is a function. This assumption
is used for no other purpose besides this one.

Finally, let us look at some regularizer strategies examples for the sake of concreteness. Let
C := (Rn,F) be an OCO instance such that every function in F is differentiable on Rn. Probably
the most classical example of FTRL regularizer strategy is the (static) `2-norm squared. Namely,
let η ∈ R++ be some fixed positive constant, define R := 1

2η‖·‖
2
2, and define the FTRL regularizer

strategy R by

R(h) := [h = 〈〉]R = [h = 〈〉] 1

2η
‖·‖22, ∀h ∈ Seq(F),

That is, the regularizer increment in the first round is the `2-norm squared (scaled by a constant),
and all the other increments are 0. It is easy to see that R satisfies the conditions of a classical FTRL
regularizer for C, which implies that R is indeed an FTRL regularizer strategy for C. Indeed, since
the `2-norm is convex and continuous on Rd, we have that R satisfies (4.4.i), and (4.4.ii) is easily
satisfied since we are in the unconstrained case (i.e., the player’s decision space is Rd). Finally, since
the squared `2-norm is strongly convex on Rd (see Lemma 3.9.5) and since dom f = Rd, we have that
R+

∑T
t=1 ft is also strongly convex on Rd for any T ∈ N and any f ∈ FT . Thus, condition (4.4.iii)

for R is a consequence of Lemma 3.9.14, which states that the infimum of a closed strongly convex
function over the entire space is always attained.

Let us now look if we can obtain a closed formula for the iterates of AdaFTRL with this
regularizer. Let T ∈ N and f ∈ FT be a sequence of linear functions, that is, there is g ∈ (Rd)T
such that ft = gTt · for each t ∈ [T]. By definition we have

xt := AdaFTRLR(f1:t−1) ∈ arg min
x∈Rn

(1

2η
‖x‖22 +

t−1∑
i=1

fi(x)
)
, ∀t ∈ [T].

Since the whole function being minimized above is differentiable, with ∇ft(x) = gt and ∂ft(x) =

83

{∇ft(x)} (the latter by Theorem 3.5.5) for any x ∈ E and t ∈ [T], optimality conditions (Theo-
rem 3.6.2) yield, for each t ∈ [T],

xt = −η
t−1∑
i=1

∇fi(xi) = −η
t−1∑
i=1

gi =⇒ xt = [t > 1](xt−1 − ηgt−1),

where the implication follows by a simple induction since x1 = 0 in this case. That is, in this
unconstrained case the Adaptive FTRL with squared `2 regularization is exactly the well-known
gradient descent algorithm! A reader familiar with gradient descent is probably thinking how to use
time-varying values for η, the step size. For this case, define R by

R(h) :=

(
1

ηt+1
− [t > 0]

1

ηt

)
1

2
‖·‖22, ∀t ∈ N,h ∈ F t,

where η : N \ {0} → R++. Then, following similar steps to the static `2-norm case, we get the
update rule xt = [t > 1](xt−1 − ηtgt−1). On Section 4.5 we will look at the general case with static
regularizers, and on Section 4.6 we will look at time-varying step sizes. Moreover, the connections
among FTRL and different variants of gradient descent will be further investigated in Chapter 5.
There are several other regularizer strategy examples which we will look at throughout the remaining
of the text. For example, in both of the previous examples we have always used squared norm as the
regularizer at each round, changing only maybe the scaling factor. One option is too look at the
squared distance from the previous iterate, that is, use at round t a regularizer increment of the type
x ∈ E 7→ ‖x− xt‖2. We will look at these types of regularizers on Section 4.7. Another interesting
option is, for each t ∈ N \ {0}, to have a positive definite matrix At ∈ Rn×n, and to use at round t
a regularizer of the type x ∈ Rn 7→ xTAtx. That is, at each round use a different (squared) norm
induced by some matrix. This is a path which we investigate on Chapter 6.

4.3 Fundamental Lemmas for Regret Bounds

Our goal now is to prove general upper bounds on the worst-case regret of AdaFTRL. The main
ingredients for our bounds will be proved in this section. Namely, we will prove Lemmas 4.3.1
and 4.3.2. The first is also known as the Strong FTRL Lemma, a very general result which does not
depend on convexity, and even though it is not that useful by itself, it highlights which quantities we
should focus on to obtain meaningful bounds. On Section 4.9 we will compare this lemma to the
similar Follow the Leader–Be the Leader Lemma by Kalai and Vempala [42], which is often used to
bound the regret of non-adaptive FTRL algorithms. Lemma 4.3.2 is the second ingredient, whose
proof shown here relies heavily on convex analysis concepts and duality, and is the tool that makes
the bounds given by the Strong FTRL Lemma more concrete by connecting these guarantees with
the convexity parameters of the functions played by the enemy.

Lemma 4.3.1 (Strong FTRL Lemma [48, Lemma 5]). Let F ⊆ (−∞,+∞]E and R : Seq(F) →
(−∞,+∞]E. Let T ∈ N and f ∈ FT . Moreover, define

xt := AdaFTRLR(〈f1, . . . , ft−1〉) for each t ∈ {1, . . . , T + 1},
rt := R(〈f1, . . . , ft−1〉) for each t ∈ {1, . . . , T + 1},

Ht :=
t+1∑
i=1

ri +
t∑
i=1

fi for each t ∈ {0, . . . , T},

84

and set x0 := x1. If Ht is proper and its infimum over E is attained for every t ∈ {0, . . . , T}, then,
for every u ∈ E,

Regret(AdaFTRLR,f , u) ≤
T+1∑
t=1

(rt(u)− rt(xt−1)) +
T∑
t=1

(Ht(xt)−Ht(xt+1)). (4.6)

Proof. For each t ∈ {0, . . . , T}, define ht := rt+1 + [t > 0]ft. In this way, we have

xt ∈ arg min
x∈E

Ht−1(x) = arg min
x∈E

t−1∑
i=0

hi(x), ∀t ∈ {1, . . . , T + 1}. (4.7)

Let us now bound the regret of the points x1, . . . , xT with respect to the functions h1, . . . , hT and to
a comparison point u ∈ E (plus a −h0(u) term):

T∑
t=1

(ht(xt)− ht(u))− h0(u) =
T∑
t=1

ht(xt)−HT (u) =
T∑
t=1

(Ht(xt)−Ht−1(xt))−HT (u)

(4.7)
≤

T∑
t=1

(Ht(xt)−Ht−1(xt))−HT (xT+1)

=
T∑
t=1

(Ht(xt)−Ht(xt+1))−H0(x1),

where in the last equation we just re-indexed the summation, placing HT+1(xT+1) inside the
summation, and leaving H0(x1) out. Re-arranging the terms and using H0 = h0 = r1 and x0 = x1

yield

T∑
t=1

(ft(xt) + rt+1(xt)− ft(u)− rt+1(u)) =
T∑
t=1

(ht(xt)− ht(u))

≤ r1(u)− r1(x0) +
T∑
t=1

(Ht(xt)−Ht(xt+1)),

which implies

Regret(AdaFTRLR,f , u) =
T∑
t=1

(ft(xt)−ft(u)) ≤
T+1∑
t=1

(rt(u)−rt(xt−1))+
T∑
t=1

(Ht(xt)−Ht(xt+1)).

The above lemma has a quite straightforward proof, so much so that one may finish reading
it with a feeling that we have not done much by proving this lemma. Indeed, most of the proof
boils down to rewriting the regret expression in a way in which the terms are displayed in a more
palatable way. Interestingly, the only inequality used in the whole proof of the lemma is due to (4.7),
which holds by the definition of the AdaFTRL algorithm.

The Strong FTRL Lemma bounds the regret of AdaFTRL by two sums. The first is usually
bounded by some kind of per-round diameter, as measured by the regularizer, of the set X ⊆ E
where the player is making her predictions (assuming u ∈ X as well). This already shows that
the choice of a regularizer will be heavily influenced by the set X. The second sum translates the
intuition we talked about in the beginning of the chapter: it measures the stability of consecutive
iterates. The player then has to balance two competing factors. On the one hand, she wants to

85

minimize the raw values of the functions Ht by the definition of the AdaFTRL oracle. On the other
hand, her choices from one round to another should not change too abruptly, so the terms of the
form Ht(xt)−Ht(xt+1) on the bound do not become too high.

As one may have noticed, consecutive iterates from the AdaFTRL algorithm are minimizers of
functions which are, in some sense, similar. More explicitly, let F ⊆ (−∞,+∞]E be nonempty, let f ∈
F t for some t ∈ N \ {0}, and let R be any appropriate regularizer strategy for F . Define consecutive
iterates xt := AdaFTRLR(〈f1, . . . , ft−1〉) and xt+1 := AdaFTRLR(〈f1, . . . , ft〉). Note that xt
minimizes H :=

∑t
i=1 ri +

∑t−1
i=1 fi, and xt+1 minimizes H + ft + rt+1, where ri := R(〈f1, . . . , fi〉) for

each i ∈ {0, . . . , t}. Looking from this perspective, one may wonder if we can say something about
the distance between xt and xt+1 (or the difference between the values of H + ft + rt+1 at these
points). For example, in the case where ft + rt+1 does not vary much throughout E we can guess
that xt and xt+1 and the values of H + ft + rt+1 at these points are close. Unfortunately, if we allow
the functions from f and the regularizers delivered by R to be arbitrary, we cannot guarantee much.
This is a point where convexity starts to play a major role in the analysis of AdaFTRL. The next
lemma shows that if H + ft is strongly convex2, then the distance between xt and xt+1 is bounded
by the dual norm of the subgradients of ft at xt. Even though a bound which depends on the dual
norm of the subgradient may seem to lack any intuitive meaning at first, recall that such a quantity
is deeply connected with the Lipschitz continuity constant of ft (see Theorem 3.8.4). Thus, the
following lemma tell us that if ft is ρ-Lipschitz continuous for small ρ and H is strongly convex (for
example), then adding ft to H does not move much the points which attain the minimum. It is
worth noting that, when we apply this result, it is not always that case that F from the statement
is of the same form as the function H from our current discussion (though usually F will only be
slightly different from H). As a matter of fact, the different functions the we plug into F in different
applications of the lemma when bounding terms from the Strong FTRL Lemma yield similar bounds,
but with important “off-by-one” differences which will be discussed in the next section.

Lemma 4.3.2 ([48, Lemma 7]). Let F, f : E→ (−∞,+∞] be closed proper convex functions such
that F +f is σ-strongly convex with respect to a norm ‖·‖ on E and such that infx∈E F (x) is attained,
and let x̄ ∈ arg minx∈E F (x). If ri(domF) ∩ ri(dom f) is nonempty, then infx∈E(F (x) + f(x)) is
attained and, for any g ∈ ∂f(x̄),

‖x̄− ȳ‖ ≤ 1
σ‖g‖∗ ∀ȳ ∈ arg min

x∈E
(F (x) + f(x))

and
F (x̄) + f(x̄)− (F (u) + f(u)) ≤ 1

2σ
‖g‖2∗, ∀u ∈ E.

Proof. Let g ∈ ∂f(x̄) and define φ := F + f − 〈g, ·〉. Since F + f is σ-strongly convex w.r.t. ‖·‖
and −〈g, ·〉 is convex, we have that φ is also σ-strongly convex w.r.t. ‖·‖. Thus, by the strong
convexity/smoothness duality (Theorem 3.10.2), we have that

φ∗ is 1
σ -strongly smooth with respect to ‖·‖∗. (4.8)

By Theorem 3.2.7, the sum of closed convex functions is itself a closed function. Thus, F + f is
closed, and since F + f is strongly convex, by Lemma 3.9.14 there is ȳ ∈ arg minx∈E(F (x) + f(x)).

2We do not add rt+1 here since we want to use bounds which depend on the subgradients of ft, not of ft + rt+1.
How we deal with this extra rt+1 term will become clear when we apply Lemma 4.3.2 to derive regret bounds in
the next section. One example of a case where it is easy to deal with this term is in the classical FTRL case, where
we use a static regularizer (i.e., one that does not change throughout the game). In this case, R(f) = 0 for any
nonempty f ∈ Seq(F). Thus, H + ft + rt+1 = H + ft for any t ∈ [T] since rt = 0 for t ∈ {2, . . . , T + 1} in this case.

86

Assume for now that
x̄ = ∇φ∗(0) and ȳ = ∇φ∗(−g). (4.9)

We will prove the above claim later. With that, since φ∗ is (1/σ)-strongly smooth, by the definition
of strong smoothness and since ‖·‖∗∗ = ‖·‖ by Theorem 3.8.2 we have

‖x̄− ȳ‖ (4.9)
= ‖∇φ∗(0)−∇φ∗(−g)‖ ≤ 1

σ
‖g‖∗.

To prove the second inequality from the statement, note that by Theorem 3.5.2 (items (iv) and (v))
together with (4.9), we have

〈0, x̄〉 (4.9)
= 〈0,∇φ∗(0)〉 Thm. 3.5.2

= φ∗(0) + φ(∇φ∗(0))
(4.9)
= φ∗(0) + φ(x̄)

=⇒ F (x̄) + f(x̄)− 〈g, x̄〉 = φ(x̄) = −φ∗(0)
(4.10)

and

〈−g, ȳ〉 (4.9)
= 〈−g,∇φ∗(−g)〉 Thm. 3.5.2

= φ∗(−g) + φ(∇φ∗(−g))
(4.9)
= φ∗(−g) + φ(ȳ)

=⇒ F (ȳ) + f(ȳ) = φ(ȳ) + 〈g, ȳ〉 = −φ∗(−g).
(4.11)

Moreover, (4.8) together with Lemma 3.10.1 implies

φ∗(y) ≤ φ∗(x) + 〈y − x,∇φ∗(x)〉+
1

2σ
‖y − x‖2∗, ∀x, y ∈ E. (4.12)

Therefore, for every u ∈ E,

F (x̄) + f(x̄)− 〈g, x̄〉 − (F (u) + f(u))

≤ F (x̄) + f(x̄)− 〈g, x̄〉 − (F (ȳ) + f(ȳ)) since ȳ ∈ arg min
x∈E

(F (x) + f(x))

= −φ∗(0) + φ∗(−g) by (4.10) and (4.11)

≤ 〈−g,∇φ∗(0)〉+
1

2σ
‖g‖2∗ by (4.12)

= −〈g, x̄〉+
1

2σ
‖g‖2∗ by (4.9).

Since the 〈g, x̄〉 terms above cancel out, this yields the second inequality from the statement.
Finally, it only remains to prove (4.9). Since ri(domF)∩ri(dom f) is nonempty, by Theorem 3.5.4

we have
∂φ(x) = ∂F (x) + ∂f(x)− g, ∀x ∈ E. (4.13)

Since x̄ minimizes F , we have 0 ∈ ∂F (x̄) by the definition of subgradient. Thus, g ∈ ∂f(x̄) together
with (4.13) implies 0 ∈ ∂φ(x̄). Since F, f , and 〈g, ·〉 are closed we have that φ is closed as well by
Theorem 3.2.7. Thus, by Theorem 3.5.2, we have x̄ ∈ ∂φ∗(0).

Similarly, since ȳ minimizes F + f , we have 0 ∈ ∂(F + f)(ȳ) = ∂F (ȳ) + ∂f(ȳ), where the
equality holds by Theorem 3.5.4. This with (4.13) yields −g ∈ ∂φ(ȳ), and again by Theorem 3.5.2
we have ȳ ∈ ∂φ∗(−g) since φ is closed by Theorem 3.2.7.

To complete the proof of (4.9), note that since φ∗ is strongly smooth, it is differentiable by the
definition of strong smoothness. Therefore, by Theorem 3.5.5 we have ∂φ∗(x) = {∇φ∗(x)} for every
x ∈ E, which completes the proof of (4.9).

87

We stress here that the condition over the relative interior of the domains of the functions on
the above lemma is extremely fundamental for its proof, but normally one need not worry (much)
about it. As we are going to see on the next section, we will need this condition to be satisfied,
for every t ∈ N, by the domain of functions whose form3 is usually the sum of enemy choices and
regularizer increments up to round t with the domain of the regularizer increment rt+1 of round
t+ 1. In many applications, such as the problems described in Section 2.5, the functions played by
the enemy have all the same domain (usually E), and the player has control over the regularizers.
Therefore, we will hardly meet an OCO instance in the next sections and chapters where such
conditions are not satisfied. Still, every time we need this type of condition on the domains of the
functions for some result, we clearly describe it in the statement of the result. In this way, every
condition needed for the results to hold, even if met by most or all of the problems we see in this
text, are always clearly stated. Thus, one may keep in mind that the sole purpose of most of the
stated conditions about the intersection of the relative interiors of function domains in the results of
this chapter are meant to enable us to apply the above lemma.

4.4 Regret Bounds for the Adaptive FTRL Algorithm

We may finally derive useful regret bounds for AdaFTRL for a rich class of problems by using the
results from the last section. Theorems 4.4.3 and 4.4.4 below both bound the regret of AdaFTRL,
yet the latter holds only for specific kinds of regularizer strategies. Namely, Theorem 4.4.4 holds for
proximal regularizer strategies.

Definition 4.4.1 (Proximal FTRL regularizer strategy). We say that a FTRL regularizer strategy
R : F → (−∞,+∞]E is proximal if

AdaFTRLR(〈f1, . . . , ft−1〉) ∈ arg min
x∈E

[R(〈f1, . . . , ft−1, ft〉)](x), ∀f ∈ F t, ∀t ∈ N \ {0}.

In words, the point chosen by the player (using the AdaFTRL oracle) on round t ∈ N \ {0}
minimizes the value of the regularizer increment of the round t + 1. The name comes from the
connection of this definition with proximal operators. We will briefly discuss more about proximal
operators and algorithms on Section 5.3.

Before diving into the theorems and their proofs, it is worth noting that one of the main features
of AdaFTRL (as of some of the other algorithms that we shall see in later chapters) is its ability to
adapt as time goes on. In the regret bounds, this adaptiveness is translated through different norms
for each round of the game. Therefore, throughout the remainder of the text, we often manipulate
norms with indices, such as ‖·‖(t), whose dual norm we denote by ‖·‖(t),∗. It is worth noting that
we use the parentheses to differentiate indices which enumerate different norms from indices which
define p-norms, such as the `2-norm ‖·‖2 or the `1-norm ‖·‖1. Even though this notation may seem
cumbersome and visually cluttered, it follows the notation from [48], and is one of the few we found
which still makes norms visually recognizable, as opposed to naming norms with non-standard
notation.

As hinted at the end of the previous section, the slightly different ways in which we apply
Lemma 4.3.2 in the general and proximal cases are going to lead to the differences in the regret
bounds. Since this lemma requires some assumptions on the strong convexity and the relative
interiors of the effective domains of some functions, one can guess that the general and the proximal

3Not all results require the intersection of the relative interior of functions which are exactly of this form. Still, all
such conditions on the next results are similar.

88

cases will need slightly different assumptions. These assumptions are encapsulated in the concept of
strong regularizer strategy.

Definition 4.4.2 (σ-strong and σ-proximally strong FTRL regularizer strategies). Let T ∈ N, let
σ ∈ RT++, let C := (X,F) be an OCO instance, let f ∈ FT , and let R be an FTRL regularizer
strategy for C. Define

rt := R(〈f1, . . . , ft−1〉) for each t ∈ {1, . . . , T + 1} and

Ht :=
t+1∑
i=1

ri +
t∑
i=1

fi for each t ∈ {0, . . . , T}.

We say that R is σ-strong for f (with respect to norms ‖·‖(1), ‖·‖(2), . . . , ‖·‖(T) on E) if

(i) Ht−1 + ft is σt-strongly convex4 w.r.t. ‖·‖(t) for each t ∈ [T] and

(ii) ri(domHt−1) ∩ ri(dom ft) is nonempty for each t ∈ [T].

If ‖·‖ := ‖·‖(1) = ‖·‖(2) = · · · = ‖·‖(T), we may say that R is σ-strong w.r.t. ‖·‖. Likewise, we say
that R is σ-proximally strong for f (with respect to norms ‖·‖(1), ‖·‖(2), . . . , ‖·‖(T) on E) if

(i) Ht−1 is σt-strongly convex w.r.t. ‖·‖(t) for each t ∈ [T],

(ii) ri(dom(Ht−1 + rt+1)) ∩ ri(dom ft) is nonempty for each t ∈ [T], and

(iii) R is proximal.

If ‖·‖ := ‖·‖(1) = ‖·‖(2) = · · · = ‖·‖(T), we may say that R is σ-proximally strong w.r.t. ‖·‖.

The second condition in each of the above definitions is a technical assumption to apply
Lemma 4.3.2 which is usually easily satisfied. Even though it is important to know that such
a condition on the effective domains is needed, in the most common OCO instances this condition
will be easily satisfied. Usually, the functions from the set F ⊆ (−∞,+∞]E from where the enemy
picks his functions have all the same domain. In this way, it is not hard to design regularizers which
satisfy either (ii) or (ii) for the proximal case. We shall see some examples soon. The first condition
on each of these definitions deals with the the strong convexity parameters σ of the functions, which
will play a major role in the following regret bounds. Moreover, it is worth saying that even though
the strong convexity assumption is over the “cumulative functions” Ht, since the functions played by
the enemy are convex, σ will usually be determined single-handedly by the regularizer strategy.

For example, consider the OCO instance C := (Rd,F), where F is a set of closed proper
convex functions on Rd with effective domain equal to Rd. Recall from Lemma 3.9.5 that the
function (1/2)‖·‖22 is 1-strongly convex w.r.t. ‖·‖2. Thus, for any T ∈ N and f ∈ F the function
(1/2)‖·‖22 +

∑T
t=1 ft is also 1-strongly convex w.r.t. ‖·‖2 since summing convex functions to a strongly

convex function preserves strong convexity. Finally, since dom f = Rd for each f ∈ F , we conclude
that the FTRL regularizer strategy given by R(f) := [f = 〈〉](1/2)‖·‖22 for each f ∈ Seq(F) is
1-strong for any function sequence in Seq(F), where 1 is a properly sized sequence with all entries
equal to 1. One example of proximally strong FTRL regularizer strategy is one with the regularizer
increment on round t ∈ N of the type x 7→ ‖x − [t > 1]xt−1‖, where xt−1 is the iterate from the
previous round. We will look at these type of regularizers in details on Section 4.7. Let us now
prove general regret bounds for the Adaptive FTRL oracle with strong and proximally strong FTRL
regularizer strategies. Again, we note that the following proofs rely mainly on the lemmas from the
previous section.

4Note that, for each t ∈ [T], the norm ‖·‖(t) may be influenced by the regularizer increments r1, . . . , rt, i.e. the
ones chosen up to round t.

89

Theorem 4.4.3 (General AdaFTRL Regret Bound). Let C := (X,F) be an OCO instance such that
each f ∈ F is proper and closed. Let R : Seq(F)→ (−∞,+∞]E be a FTRL regularizer strategy, let
T ∈ N, and let ENEMY be an enemy oracle for C. Moreover, define

(x,f) := OCOC(AdaFTRLR,ENEMY, T),

rt := R(〈f1, . . . , ft−1〉) for each t ∈ {1, . . . , T + 1},

Finally, suppose there exists5 gt ∈ ∂ft(xt) for each t ∈ [T]. If σ ∈ RT++ and R is σ-strong for f
w.r.t. norms ‖·‖(1), . . . , ‖·‖(T) on E, then x ∈ Seq(X) and

Regret(AdaFTRLR,f , u) ≤
T∑
t=1

(rt(u)− rt(xt)) +
1

2

T∑
t=1

1

σt
‖gt‖2(t),∗.

Proof. Define

Ht :=
t+1∑
i=1

ri +
t∑
i=1

fi for each t ∈ {0, . . . , T}.

First of all, since infx∈EHt(x) = infx∈E(
∑t+1

i=1 ri(x)+
∑t

i=1 fi(x)) is attained for every t ∈ {0, . . . , T},
we have that AdaFTRLR(〈f1, . . . , ft〉) is properly defined for each t ∈ {0, . . . , T}. Moreover, since
dom r1 ⊆ X, we have x ∈ Seq(X) by the definition of AdaFTRLR.

Define x0 := x1 and xT+1 := AdaFTRLR(〈f1, . . . , fT 〉). By the Strong FTRL Lemma (Lemma 4.3.1),
we have

Regret(AdaFTRLR,f , u) ≤
T+1∑
t=1

(rt(u)− rt(xt−1)) +

T∑
t=1

(Ht(xt)−Ht(xt+1))

= −r1(x0) +

T+1∑
t=1

rt(u) +

T∑
t=1

(Ht(xt)−Ht(xt+1)− rt+1(xt))

= −r1(x1) +
T∑
t=0

rt+1(u) +
T∑
t=1

(Ht(xt)−Ht(xt+1)− rt+1(xt)).

(4.14)

Let t ∈ [T]. By assumption, ri(domHt−1) ∩ ri(dom ft) is nonempty and Ht−1 + ft is σt-strongly
convex w.r.t. ‖·‖(t). Thus, since xt ∈ arg minx∈EHt−1(x), by Lemma 4.3.2 with F := Ht−1 (which is
closed since the sum of closed functions is closed by Theorem 3.2.7) and f := ft we have

Ht(xt)−Ht(xt+1)− rt+1(xt) = Ht−1(xt) + ft(xt) + rt+1(xt)−Ht−1(xt+1)− ft(xt+1)

− rt+1(xt+1)− rt+1(xt)

≤ 1

2σt
‖gt‖2(t),∗ − rt+1(xt+1).

Plugging the above inequality for every t ∈ [T] into (4.14) yields

Regret(AdaFTRLR,f , u) ≤
T∑
t=0

(rt+1(u)− rt+1(xt+1)) +
1

2

T∑
t=1

1

σt
‖gt‖2(t),∗

=

T+1∑
t=1

(rt(u)− rt(xt)) +
1

2

T∑
t=1

1

σt
‖gt‖2(t),∗.

(4.15)

5From Theorem 3.5.1, we know that a convex function is always subdifferentiable on the relative interior of its
domain. Thus, it is usually hard to find a case where the functions played by the enemy are not subdifferentiable at
the iterates from the player.

90

We are almost done: there is still an extra term in the first summation when compared to the
bound on the statement. Note, however, that if we set rT+1 := 0, then the iterates delivered by
the AdaFTRLR oracle over the sub-sequences of f would still be x1, . . . , xT . We can do such a
modification formally by defining R′ by R′(f) := 0, and by making it equal to R on Seq(F) \ {f}.
In this way, we have xt = AdaFTRLR′(〈f1, . . . , ft−1〉) for each t ∈ [T], as argued. Therefore,

Regret(AdaFTRLR,f , u) = Regret(AdaFTRLR′ ,f , u)

(4.15)
≤

T∑
t=1

(rt(u)− rt(xt)) +
1

2

T∑
t=1

1

σt
‖gt‖2(t),∗.

Theorem 4.4.4 (Proximal AdaFTRL Regret Bound). Let C := (X,F) be an OCO instance such
that each f ∈ F is proper and closed. LetR : Seq(F)→ (−∞,+∞]E be a proximal FTRL regularizer
strategy, let T ∈ N, and let ENEMY be an enemy oracle for C. Moreover, define

(x,f) := OCOC(AdaFTRLR,ENEMY, T),

rt := R(〈f1, . . . , ft−1〉) for each t ∈ {1, . . . , T + 1},

Finally, suppose there exists gt ∈ ∂ft(xt) for each t ∈ [T]. If σ ∈ RT++ and R is σ-proximally strong
for f w.r.t. norms ‖·‖(1), . . . , ‖·‖(T) on E, then x ∈ Seq(X) and

Regret(AdaFTRLR,f , u) ≤
T∑
t=0

(rt+1(u)− rt+1(xt)) +
1

2

T∑
t=1

1

σt+1
‖gt‖2(t+1),∗.

Proof. Define

Ht :=
t+1∑
i=1

ri +
t∑
i=1

fi for each t ∈ {0, . . . , T}.

First of all, since infx∈EHt(x) = infx∈E(
∑t+1

i=1 ri(x)+
∑t

i=1 fi(x)) is attained for every t ∈ {0, . . . , T},
we have that AdaFTRLR(〈f1, . . . , ft〉) is properly defined for each t ∈ {0, . . . , T}. Moreover, since
dom r1 ⊆ X, we have x ∈ Seq(X) by the definition of AdaFTRLR.

Define x0 := x1 and xT+1 := AdaFTRL(f). By the Strong FTRL Lemma (Lemma 4.3.1), we
have

Regret(AdaFTRLR,f , u) ≤
T∑
t=0

(rt+1(u)− rt+1(xt)) +

T∑
t=1

(Ht(xt)−Ht(xt+1)). (4.16)

Let6 t ∈ [T]. By assumption, ri(dom(Ht−1+rt+1))∩ri(dom ft) is nonempty and Ht = Ht−1+rt+1+ft
is σt+1-strongly convex w.r.t. ‖·‖(t+1). Moreover, we have xt ∈ arg minx∈EHt−1(x) and xt ∈
arg minx∈E rt+1(x) (recall that R is proximal). Thus, xt ∈ arg min(Ht−1(x) + rt+1(x)). Finally, we
can apply Lemma 4.3.2 with F := Ht−1 + rt+1 (which is closed since the sum of closed functions is
closed by Theorem 3.2.7) and f := ft, which yields

Ht(xt)−Ht(xt+1) = F (xt) + f(xt)− F (xt+1)− f(xt+1) ≤ 1

2σt+1
‖gt‖2(t+1),∗, ∀gt ∈ ∂ft(xt).

Plugging the above inequality for every t ∈ [T] into (4.16) yields the bound from the statement.
6Up to this point, the proof is identical to the one from Theorem 4.4.3. The main differences appear from now on,

which is when we use Lemma 4.3.2.

91

Let f1, . . . , fT ∈ F for some F ⊆ (−∞,+∞]E, and let R : Seq(F) → (−∞,+∞]E. When
applying AdaFTRLR, we usually choose regularizer functions which are strongly convex. That is,
we choose R such that the sum of regularizer increments

∑t
i=1 ri is strongly convex for each t ∈ [T],

where ri := R(〈f1, . . . , fi−1〉) for each i ∈ [T]. However, on the regret bounds stated above, we make
assumptions on the strong convexity of the functions Ht :=

∑t+1
i=1 ri +

∑t
i=1 fi. The reason for that

is to capture the case where the functions ft themselves are strongly convex, sometimes making
AdaFTRL have low-regret guarantees without any regularization at all.

Let us now compare both of these theorems. Note that they are very similar, with the main
difference appearing on the indices of the norms on the second summation on each of the bounds. Let
us try to understand better what are the implications of these “off-by-one” differences. Let f1, . . . , fT
and r1, . . . , rT+1 be as in Theorem 4.4.3, and let t ∈ {1, . . . , T − 1}. Recall that, at round t, the
player and the enemy choose, respectively, xt and ft simultaneously. Since xt as defined by the
AdaFTRL oracle is the first iterate which depends on rt, it is at round t that the player has to
choose the regularizer rt.

Note that on both theorems the norm ‖·‖(t) is related to the regularizers r1, . . . , rt. Since
these regularizer increments are up to the player to choose, then the player partially7 chooses the
parameters of strong convexity and the norms ‖·‖(t). With that in mind, the player will probably
want to choose a regularizer strategy which yields norms and parameters that give better guarantees
on the regret. That is, at round t the player will try to come up with a regularizer increment rt
strongly convex w.r.t. a norm ‖·‖(t) which makes small the terms measured with its dual norm.
Note, however, that on the general case (Theorem 4.4.3) we measure the norm of the subgradients
of ft, which the player does not know until round t+ 1, with the norm ‖·‖(t), which the player has
control over only up to round t. That is, the player has to pick a regularizer on round t aiming to
control the norm of the subgradient of the function she will get to know only on the next round,
i.e., round t+ 1. In contrast, on Theorem 4.4.4 the subgradients of ft are measured with the norm
‖·‖(t+1), which the player has some control over up to round t+ 1, since ‖·‖(t+1) on Theorem 4.4.4
depends on r1, . . . , rt+1, and rt+1 is chosen at round t + 1 by the player. Thus, on the case of a
proximal regularizer strategy, the player can craft the norm ‖·‖(t+1) with knowledge of ft whose
subgradient norms she wants to control in order to get good regret guarantees. The implications
of this, as we are going to see later in applications, is that AdaFTRL algorithms with proximal
regularizer strategies may need less prior information about the functions the enemy will play in
order to get good regret bounds.

With these bounds, one can already expect the bounds on the regret of FTRL algorithms to
depend heavily on the (dual) norms of the subgradients of the functions given by the enemy. Thus,
for these bounds to be meaningful, we may need to assume a bound on the norms of the subgradients.
Although such an assumption may seem artificial at first glance, it happens to be somewhat natural
due to an interesting connection with Lipschitz continuity (see Theorem 3.8.4), the latter being a
traditional hypothesis in convergence proofs of many optimization algorithms. One may note at least
one of the reasons why Lipschitz continuity may be a sensible assumption: if the function can change
drastically between two close points, intuitively, the algorithm will have a harder time optimizing
over this function. Thus, if the functions played by the enemy are ρ-Lipschitz continuous, and this is
usually the case in the cases studied in the next sections, most of the subgradients of the functions
have dual norm bounded by ρ.

7We say “partially” here because the strong convexity parameter depends also on the functions played by the enemy.
However, if the regularizer increments are strongly convex (which is usually the case), summing convex functions to
these regularizers preserves the strong convexity property. Thus, one may ignore the “partially” in this sentence to
build intuition.

92

4.5 The Classical FTRL Algorithm

Using the tools from the previous sections, let us now analyze the performance of the FTRL
algorithm as define in Section 4.1. As expected, the classical FTRL algorithm is a special case of
AdaFTRL: for any function R : E→ (−∞,+∞] we have FTRLR = AdaFTRLR where R is given
by R(f) := [f = 〈〉]R for every f ∈ Seq((−∞,+∞]E). A natural choice for a regularizer function
R : E→ (−∞,+∞] is the squared `2-norm, that is, R := 1

2‖·‖
2
2. As we have briefly seen at the end

of Section 4.2, in the unconstrained case against linear functions, FTRLR boils down to steps in the
direction of minus gradient at each round. Still, we do not yet know in which OCO instances and
with which kind of regularizers FTRL performs well, that is, attains sublinear regret.

Looking at the bounds given by the theorems from the last section, we know that the dual
norms of the subgradients play a major role our FTRL regret guarantees. As discussed at the
end of the last section, this naturally directs our attention towards OCO instances with Lipschitz
continuous functions. Consider the OCO instance for the randomized experts problem C := (∆E ,F),
for example, and set d := |E|. As we are going to see later on this section, the functions from F are√
d-Lipschitz continuous w.r.t. ‖·‖2, and this together with the theorems from the last section yield

a
√
dT bound on the regret. Besides, later we will see that choosing a different regularizer which

is strongly convex w.r.t. the `1-norm will yield an regret bound which has an exponentially better
dependence on the dimension.

Naturally, the functions R : E → (−∞,+∞] we use in FTRLR will usually be classical FTRL
regularizers for the OCO instances in which we are going to use the FTRL oracle. Additionally, we
want FTRL regularizers which allow us to apply Lemma 4.3.2 so that we can use the regret bounds
from Section 4.4. Thus, in a way similar to the adaptive case, we encapsulate the usually required
assumptions on the regularizer function R for FTRLR for the application of Lemma 4.3.2 in the
concept of σ-strong classical regularizers.

Definition 4.5.1 (σ-strong classical FTRL regularizer). Let σ ∈ R be such that σ > 0, and let ‖·‖
be a norm on E. We say that a classical FTRL regularizer R for C is σ-strong for C if

(i) R is σ-strongly convex w.r.t. ‖·‖, and

(ii) for any f ∈ FT , we have that ri(dom(R+
∑T−1

t=1 ft)) ∩ ri(dom fT) is nonempty.

Again, one may note that the notion of strong FTRL regularizer is closely related to the notion of
strong regularizer strategy. If a classical FTRL regularizer R is σ-strong for C, then, the regularizer
strategy R : Seq(F)→ (−∞,+∞]E given by R(f) := [f = 〈〉]R for each f ∈ Seq(F) is a σ-strong
regularizer strategy for any f ∈ Seq(F), where σ ∈ Seq(R) is a sequence of appropriate size with
each entry equal to σ. Note, however, that we require σ-strong classical FTRL regularizers to be
strongly convex. Thus, this definition does not cover cases in which the player could use non-strongly
convex regularizers (such as in cases against enemies which play strongly convex functions). Still, it
is insightful to look at this simpler and quite common class of FTRL regularizers.

Moreover, it is worth noticing that the notion of strong classical FTRL regularizer is defined
with respect to all possible sequences of functions the enemy can play, while the concept of strong
FTRL regularizer strategy was defined only with respect to a single sequence. The reason for this
difference is that, in future chapters, some FTRL regularizer strategies will be σ-strong with varying
values of σ depending on the functions played by the enemy, that is, the regularizer strategies will
be adaptive. Since the classical FTRL regularizer is not adaptive by definition, we do not need to
specify the parameter of strong convexity for each of the possible function sequences separately.

Before deriving a regret bound for the classical FTRL oracle, let us prove that if R is a σ-strong
classical FTRL regularizer for some OCO instance C, then for any positive constant µ ∈ R++, we

93

have that µR is a (µσ)-strong classical FTRL regularizer strategy. This will be useful to obtain
optimal constants in the final regret bounds for the classical FTRL. The only condition from the
definition of classical FTRL regularizer which might not hold for a positive multiple of the regularizer
is condition (4.4.iii). In general, it is not clear if multiplying the regularizer by a positive constant
affects the attainability of the infimum in some case of (4.4.iii). Fortunately, if R is strongly convex,
the infimum will still be attained due to Lemma 3.9.14, which states that the infimum of closed
strongly convex functions is always attained.

Lemma 4.5.2. Let C := (X,F) be an OCO instance such that each f ∈ F is proper and closed, let
σ ∈ R++, and let R : E→ (−∞,+∞] be a σ-strong classical FTRL regularizer for C. Then, for any
µ ∈ R++ we have that µR is a (µσ)-strong FTRL regularizer strategy for C.

Proof. Let µ ∈ R++ and set R′ := µR. Let us first show that R′ is a classical FTRL regularizer for C.
Since R is closed, proper, and convex (property (4.4.i) of a classical FTRL regularizer strategy),
then so is R′ since µ > 0. Moreover, domR′ = domR ⊆ X, that is, R′ satisfies property (4.4.ii).
Let T ∈ N and let f ∈ FT . Note that F := R′ +

∑T
t=1 ft is closed since the sum of convex and

closed functions is also closed by Theorem 3.2.7, and it is proper since R +
∑T

t=1 ft is proper
and since domF = dom(R +

∑T
t=1 ft). Finally, since R is strongly convex and µ is positive, F is

strongly convex. Thus, by Lemma 3.9.14 we have that infx∈E F (x) is attained, that is, R′ satisfies
condition (4.4.iii) from the definition of classical FTRL regularizer or C.

Let us now show that R′ is (µσ)-strong. Since µ is positive, it is clear that R′ is (µσ)-strongly
convex. Moreover, since domR′ = domR, we have that R′ clearly satisfies condition (ii) from the
definition of (µσ)-strongness for a classical FTRL regularizer of C.

Corollary 4.5.3 (Derived from Theorem 4.4.3). Let C := (X,F) be an OCO instance such that
each f ∈ F is proper and closed. Let R : E→ (−∞,+∞] be a σ-strong classical FTRL regularizer
for C. Let T ∈ N, let ENEMY be an enemy oracle for C, and define

(x,f) := OCOC(FTRLR,ENEMY, T).

Finally, let gt ∈ ∂ft(xt) for each t ∈ [T]. Then x ∈ Seq(X) and

Regret(FTRLR,f , u) ≤ R(u)−min
x∈E

R(x) +
1

2σ

T∑
t=1

‖gt‖2∗, ∀u ∈ E. (4.17)

In particular, if every function in F is ρ-Lipschitz continuous w.r.t. ‖·‖ on a convex set D ⊇ X with
nonempty interior8 and there is θ ∈ R++ such that9 θ ≥ sup{R(x)−R(y) : x ∈ X, y ∈ X ∩ domR},
then

RegretT (FTRLR′ ,ENEMY, X) ≤ ρ
√

2θT

σ
,

where R′ :=
(
ρ
√
T/
√

2σθ
)
R.

Proof. Note that FTRLR = AdaFTRLR where R is given by R(f) := [f = 〈〉]R for every f ∈
Seq((−∞,+∞]E). Moreover, since R is a σ-strong FTRL regularizer, R is a σ-strong regularizer
strategy for f w.r.t. ‖·‖, where σ := 〈σ, . . . , σ〉 ∈ RT . Therefore, the first inequality is a direct
application of Theorem 4.4.3 together with the fact that R(x1) = minx∈ER(x).

8Nonempty interior is need only for us to apply Theorem 3.8.4 to bound the dual norms of the subgradients.
9One may think of this value as the diameter of the set X measured through the lens of R.

94

If each f ∈ F is ρ-Lipschitz continuous w.r.t. ‖·‖ on a convex set D ⊇ X with nonempty
interior, then by Theorem 3.8.4 we have that, for each f ∈ F and x ∈ X, there is g ∈ ∂f(x)
such that ‖g‖∗ ≤ ρ. Using such subgradients with bounded dual norm in (4.17) and the fact that
minx∈ER(x) = minx∈X R(x) yields

RegretT (FTRLR,ENEMY, u) ≤ R(u)−min
x∈X

R(x) +
Tρ2

2σ
. (4.18)

Moreover, suppose there is θ ∈ R++ such that θ ≥ sup{R(x)−R(y) : x ∈ X, y ∈ X ∩ domR}, and
define

R′ :=
ρ
√
T√

2σθ
R.

Note that R′ is a (ρ
√
σT/
√

2θ)-strong classical FTRL regularizer by Lemma 4.5.2. Thus, plugging
R′ into the above inequality yields, for every u ∈ X,

RegretT (FTRLR′ ,ENEMY, u) ≤ ρ
√
T√

2σθ
(R(u)−min

x∈X
R(x)) +

ρ
√
θT√
2σ
≤ ρ
√
θT√
2σ

+
ρ
√
θT√
2σ

= ρ

√
2θT

σ
,

where in the second inequality we took the supremum over u ∈ X.

Let us look at the problem of prediction with expert advice. As we have seen on Chapter 2
(namely, on Proposition 2.6.2), in order to obtain a low-expected-regret randomized player oracle
for the experts’ problem instance (AE , Y, A, L), it suffices to devise a player oracle for the OCO
instance C := (∆E ,F), where the set F is given by F := { p ∈ RE 7→ yTp : y ∈ [−1, 1]E}. The next
proposition shows that FTRL with `2-regularization in any instance of the randomized experts has
low expected regret.

Proposition 4.5.4. Define the OCO instance C := (∆E ,F), where E is a finite set and F :=
{ p ∈ RE 7→ yTp : y ∈ [−1, 1]E}. Set d := |E| and define R := 1

2‖·‖
2
2 + δ(· |∆E). Moreover, let T ∈ N

and define R′ :=
√
dTR. Then, for every enemy oracle ENEMY for C we have

RegretT (FTRLR,ENEMY,∆E) ≤
√
dT .

Proof. First, let us show that

R is a 1-strong FTRL regularizer for C w.r.t. ‖·‖2. (4.19)

We have that 1
2‖·‖ is closed (in fact, continuous) and that δ(· |∆E) is closed, the latter since ∆E

is closed. Thus, R is a sum of closed functions and, hence, closed by Theorem 3.2.7, which means
that R satisfies condition (4.4.i) of a FTRL regularizer. Moreover, clearly domR ⊆ ∆E , that is, R
satisfies condition (4.4.ii). Let T ′ ∈ N and f ∈ FT ′ . Let us show that infx∈Rd(R(x) +

∑T ′

t=1 ft(x))
is attained. First, notice that since the `2-norm is induced by the euclidean inner product, by
Lemma 3.9.5 we know that 1

2‖·‖
2
2 is 1-strongly convex on RE w.r.t. ‖·‖2, which implies that so is

1
2‖·‖

2
2 + δ(· |X) = R. Therefore, R+

∑T ′

t=1 ft is also strongly convex. It is also proper and closed, the
latter by Theorem 3.2.7 since it is the sum of closed functions. Thus, by Lemma 3.9.14 we have that
the infimum of R+

∑T ′

t=1 ft over RE is attained. Therefore, R satisfies condition (4.4.iii), and we
conclude that R is a classical FTRL regularizer. To see that R is a 1-strong FTRL regularizer, note
first that R is 1-strongly convex w.r.t. ‖·‖2 again by Lemma 3.9.5. Finally, since every function in F
is linear, we have that dom f is the entire space for any f ∈ F . Since R is proper, this implies that

95

ri(dom(R+
∑T ′−1

t=1 ft)) ∩ ri(dom fT ′) is nonempty for every f ∈ FT ′ and any T ′ ∈ N. We conclude
that R is 1-strong w.r.t. ‖·‖2, which proves (4.19).

Let show now that

every function in F is
√
d -Lipschitz continuous on RE w.r.t. ‖·‖2. (4.20)

Let y ∈ [−1, 1]E and define fy(x) := yTx for every x ∈ [−1, 1]E . By the definition of dual norm, for
every u, v ∈ RE and for every norm ‖·‖ on RE we have

|fy(u)− fy(v)| = |yT(u− v)| ≤ ‖y‖∗‖u− v‖.

Since the `2-norm is self-dual and since ‖y‖2 ≤
√
d for every y ∈ [−1, 1]E , from the above inequality

we conclude that every function in F is
√
d-Lipschitz continuous w.r.t. ‖·‖2 on RE , which proves (4.20).

Finally, let us show that

sup
x,y∈∆E

(R(x)−R(y)) ≤ 1

2
. (4.21)

Indeed, note that

sup
x∈∆E

R(x) =
1

2
sup
x∈∆E

xTx ≤ 1

2
sup
x∈∆E

1
Tx =

1

2
.

This together with the fact that R(x) ≥ 0 for any x ∈ RE proves (4.21). Since by definition we have

R′ =
√
dTR =

ρ
√
T√

2θ
R,

where ρ :=
√
d is the Lipschitz constant from (4.20) and θ := 1

2 is from (4.21), by Corollary 4.5.3 we
have, for every enemy oracle ENEMY for C,

RegretT (FTRLR′ ,ENEMY,∆E) ≤
√
dT . (4.22)

It is natural to ask if this regret bound is optimal, especially since our choice of regularizer
was mainly due to the self-duality of the `2-norm for the sake of simplicity. It turns out that the
dependence on T on the bound given by Corollary 4.5.3 is optimal: there is a class of OCO instances
of the type (X,F ′), with each function in F ′ being Lipschitz continuous, such that the worst-case
regret in T rounds of any player oracle in such instance is no better than Ω(

√
T), where the constants

hidden by the asymptotic notation may depend on other parameters of the instance, such as the
dimension [2]. The fact that such an intuitive algorithm already attains optimal regret asymptotically
(w.r.t. T) is surprising. Still, this lower bound says nothing about the dependence on the dimension,
which can be high, even more so in machine learning applications.

However, a smarter choice of regularizer already improves exponentially the dependence of the
regret bound for FTRL on the number of the experts, which can be seen as the dimension of the
problem.

Proposition 4.5.5. Define the OCO instance C := (∆E ,F), where E is a finite set and F :=
{ p ∈ RE 7→ yTp : y ∈ [−1, 1]E}. Set d := |E|, define R(x) :=

∑
i∈E [xi 6= 0]xi lnxi + δ(x |∆E) for

every x ∈ RE , let T ∈ N, and set R′ := (
√
T/(2 ln d))R. Then, for every enemy oracle ENEMY

for C we have
RegretT (FTRLR′ ,ENEMY,∆E) ≤

√
2(ln d)T .

96

Proof. First, let us show that

R is a 1-strong FTRL regularizer for C w.r.t. ‖·‖1. (4.23)

By Lemma 3.9.10 and since ∆E is closed, we know that R is proper, closed, and convex, that is,
it satisfies condition (4.4.i) from the definition of FTRL regularizer. Moreover, we clearly have
domR ⊆ ∆E , which means that R satisfies condition (4.4.ii). To show that (4.4.iii) holds, let T ′ ∈ N
and let f ∈ FT ′ . Since each function in F is closed, we have that F := R+

∑T ′

t=1 ft is the sum of
closed functions and, thus, closed by Theorem 3.2.7. Moreover, by Lemma 3.9.10 we know that R,
and thus F , are strongly convex. Finally, by Lemma 3.9.14 we have that infx∈Rd F (x) is attained,
which proves that R is a classical FTRL regularizer for C. Let us prove that it is a 1-strong regularizer
for C w.r.t. the `1-norm. Indeed, by Lemma 3.9.10 one more time we know that R is 1-strongly
convex w.r.t. ‖·‖1. Additionally, by the definition of F we have dom ft = Rd for any t ∈ [T ′]. Since
R is proper, this implies that ri(dom(R+

∑t−1
i=1 fi))∩ ri(dom ft) is nonempty for every t ∈ [T ′]. This

completes the proof of (4.23).
Note now that, since the dual norm of ‖·‖1 is ‖·‖∞, by Hölder’s inequality we have, for every

y ∈ [−1, 1]E and every u, v ∈ RE ,

|yTu− yTv| = |yT(u− v)| ≤ ‖y‖∞‖u− v‖1 ≤ ‖u− v‖1.

Thus, we conclude that every function in F is 1-Lipschitz continuous w.r.t. ‖·‖1 on RE . To conclude,
let us show that

sup
x,y∈∆E

(R(x)−R(y)) ≤ ln d. (4.24)

First, since [α > 0]α lnα ≤ 0 for every α ∈ [0, 1], we have supx∈∆E
R(x) ≤ 0. Thus, we need only

show that infy∈∆E
R(y) is attained by d−1

1. Indeed, note that for every x ∈ ∆E we have

−∇R(d−1
1)T(x− d−1

1) = −
(
1 +

∑
i∈E

ei ln d−1
)T

(x− d−1
1)

= −(1− (ln d)1)T(x− d−1
1)

= (1− ln d)(1− 1) = 0.

That is, −∇R(d−1
1) ∈ N∆E

(d−1
1). By the optimality conditions from Theorem 3.6.2 we conclude

that infy∈∆E
R(y) = R(d−1

1) = − ln d, which proves (4.24). Since

R′ =

√
T

2 ln d
=
ρ
√
T√

2θ
R,

where ρ := 1 and θ := ln d, by Corollary 4.5.3 we have, for every enemy oracle ENEMY for C,

RegretT (FTRLR′ ,ENEMY,∆E) ≤
√

2(ln d)T .

It is interesting to try to understand the intuition behind the difference between the regret
bounds given by the entropic regularizer (which is strongly convex w.r.t. the `1-norm) and the
squared `2 regularizer on the prediction with expert advice problem with d experts. Notice that
in the case of `2 regularization, even though the “diameter” of the set where the player is making
her choices (i.e., the simplex in this case) is less than 1/2, the functions the enemy can pick behave
badly under the lens of the the `2 norm. Namely, the functions played by the enemy on the experts’
problem are

√
d-Lipschitz continuous w.r.t. ‖·‖2. In the case of the entropic regularizer, we have

97

that the functions behave way better w.r.t. the `1 norm: they are 1-Lipschitz continuous on the
simplex w.r.t. the `1-norm. However, this improvement on the Lipschitz constant is not for free: the
diameter of the simplex through the lens of the entropic regularizer is ln d, not a constant anymore if
compared to d. Still, in this case the trade-off is quite advantageous. Thus, when looking for FTRL
regularizers R for an OCO instance C := (X,F), the intuition that one should balance two factors.
The first is the diameter of X through the lens of R, that is, any two points inside X should not
have values of R which are too far away. At the same time, this regularizer is usually associated
with a norm ‖·‖ with respect to which R is strongly convex. In this case, one wants the functions
played by the enemy to be “well-behaved” under ‖·‖, that is, to have small Lipschitz constant w.r.t.
‖·‖. To study the Lipschitz constant of the functions from F , it is usually useful to look at the dual
norms of the subgradients since, for any x, y ∈ E and any convex function f : E→ (−∞,+∞] which
is subdifferentiable at x, the subgradient inequality yields, for any g ∈ ∂f(x),

f(x)− f(y) ≤ 〈g, x− y〉 ≤ ‖g‖∗‖x− y‖.

4.6 Regularization Regardless of the Number of Rounds

At the end of the last section, we have seen how to attain good regret guarantees in the experts’
problem with the classical FTRL algorithm. However, one may note that to attain these bounds the
player needs to know beforehand the total numbers of rounds T of the game she is going to play. If
she uses a regularizer designed for a game with T rounds in a game with significantly more (or less)
rounds, the regret guarantees would change, and the dependence on the number of rounds would not
necessarily be sublinear anymore. One way to circumvent this problem is to use the Doubling Trick
(see [67, Section 2.3.1]), where one re-starts the algorithm, not necessarily FTRL, at increasing time
intervals, adjusting the player oracle on each interval to the proper time horizon of that interval. We
define a player oracle which implements this strategy formally on Algorithm 4.4, parameterized by a
function PFAMILY from N to the set of possible player oracles. That is, PFAMILY is a family of
player oracles, where for each T ∈ N the oracle PFAMILYT is guaranteed to perform well in a game
with T rounds.

Algorithm 4.4 Definition of DOUBLINGCPFAMILY

(
〈f1, . . . , fT 〉

)
Input:

(i) An OCO instance C := (X,F) (which we omit if clear from context).

(ii) A function PFAMILY from N to XSeq(F) such that for each T ′ ∈ N the function PFAMILYT ′

is a player oracle for C.
(iii) Functions f1, . . . , fT ∈ F .

Output: xT+1 ∈ X
T ′ ← 2blg T c.
Let xT+1 ← PLAYERT ′(fT ′:T)
return xT+1

Let us look at an example of an example of a “player family” oracle as used by the DOUBLING
oracle. Consider a instance C := (∆E ,F) of the randomized experts’ problem, define R := 1

2‖·‖
2
2,

and set d := |E|. By Proposition 4.5.4, the FTRL oracle with regularizer
√
dTR performs well in

games against any enemy for C in a game with T rounds. Thus, a good example of a player family
oracle to be used in the doubling oracle is

PFAMILYT := FTRL√dTR, ∀T ∈ N.

98

Soon we will prove that DOUBLINGCPFAMILY performs well in games with any number of rounds.
Let us look more closely at Algorithm 4.4. The idea of the algorithm is to divide the rounds of

the game into intervals, each with double the size of the previous one. The sizes of these intervals are,
in some sense, estimates of the duration of the game. With that, the DOUBLING oracle starts to
play with a player oracle for a small number of rounds (the number of rounds of the first interval). If
the game goes beyond the timeframe given by the interval of rounds the DOUBLING oracle defined
last, the oracle doubles its estimate of the number of rounds, and starts to play from scratch, using
a brand new player oracle. That is, the oracle does not use the information of the functions given by
the enemy in the past round intervals.

The reason to not use the oracle with full information is that, in order to use the player oracle
for T functions f1, . . . , fT , one usually needs to compute the point given by the player oracle for
f1, . . . , ft for each t ∈ [T]. In an OCO game this is natural since the oracle receives only one new
function per round. However, the DOUBLING oracle picks a brand new player oracle on each
different section, and it would be inefficient10 to compute all the points this new player oracle would
have played in previous rounds in order to use this new oracle with complete information in the
next rounds. In Algorithm 4.4, the number T ′ is the last round on which the DOUBLING oracle
re-started, doubling its estimate of the number of rounds. A nice property of the this strategy is
that T ′ in Algorithm 4.4 is also the size of the current section of rounds which the DOUBLING
oracle is considering.

Maybe surprisingly, if the original time-dependent player oracle has a O(
√
T) regret bound in a

game with T rounds, the next theorem shows a regret bound for the DOUBLING oracle which is
worse by only a constant factor.

Theorem 4.6.1. Let C := (X,F) be an OCO instance and let PFAMILY: N → ESeq(F) be a
function such that PFAMILYT is a player oracle for C for each T ∈ N. If there are U ⊆ E and
α ∈ R+ such that, for every T ∈ N and every enemy oracle ENEMY for C,

RegretT (PFAMILYT ,ENEMY, U) ≤ α
√
T ,

then, for every T ∈ N and every enemy oracle ENEMY for C we have

RegretT (DOUBLINGPFAMILY,ENEMY, U) ≤

(√
2√

2− 1

)
α
√
T .

Proof. Let ENEMY be an enemy oracle for C. Moreover, let T ∈ N and define

(x,f) := OCOC(DOUBLINGPFAMILY,ENEMY, T).

Note that T ≤ 2blg T c+1 − 1. Set T ′ := 2blg T c+1 − 1 and define11 f ′ ∈ (F ∪ {0})T ′ by f ′i := [i ≤ T]fi
for each i ∈ [T ′]. In words, f ′ is just f extended with zeroes. In this case, note that

Regret(DOUBLINGPFAMILY,f , u) ≤ Regret(DOUBLINGPFAMILY,f
′, u), ∀u ∈ E.

Thus, we may assume without loss of generality that T = 2blg T c+1 − 1.
10Inefficient here is about practical implementations. All oracles in this text are defined in such a way that they

“re-compute” all the previous iterates at every round. Still, often these oracles need little effort to generate one iterate
given the past ones. This would not be the case for the DOUBLING player if it had to re-compute, even in practice,
all the past iterates once he changes his player oracle.

11Here we are using 0 to denote the identically zero function on E.

99

To ease the notation, define p(n) := 2n for every n ∈ N. Recall that, by our notation definition,
fi:j = 〈fi, fi+1, . . . , fj〉. Then, by the definition of the DOUBLING oracle, for any u ∈ U ,

Regret(DOUBLINGPFAMILY,f , u) =

blg T c∑
i=0

Regretp(i)(PFAMILYp(i),fp(i) : p(i+1)−1, u)

≤ α
blg T c∑
i=0

√
p(i) = α

blg T c∑
i=0

(√
2
)i

= α

(√
2
blg T c+1 − 1√

2− 1

)

≤ α

(√
2T − 1√
2− 1

)
≤ α
√
T

(√
2√

2− 1

)
.

Even though the Doubling Trick does guarantee regret bounds only a multiplicative constant
worse than the bound from Corollary 4.5.3, re-starting the algorithm several times seems wasteful.
What we can do instead is to use the AdaFTRL algorithm with a regularizer strategy that uses
always the same regularizer function, but with a different constant multiplying it at every round.
That is, we are still using a static function as our main regularizer, but at each round we adjust the
constants multiplying it so that it takes into account the duration of the game without the need
of re-starting the whole algorithm. Before jumping into Corollary 4.5.3, we need to prove a simple
lemma.

Lemma 4.6.2. Let a1 . . . , an ∈ R+ with a1 > 0. Then,

n∑
i=1

 ai√∑i
j=1 aj

 ≤ 2

√√√√ n∑
i=1

ai.

Proof. The proof is by induction on n. The statement holds trivially for n = 1. Let n > 1, and
define s :=

∑n
i=1 ai. By the induction hypothesis,

n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√n−1∑
i=1

ai +
an√∑n
j=1 aj

= 2
√
s− an +

an√
s
.

Finally, note that

2
√
s− an +

an√
s
≤ 2
√
s ⇐⇒ 2

√
s(s− an) ≤ 2s− an ⇐⇒ 4s(s− an) ≤ (2s− an)2

⇐⇒ 4s2 − 4san ≤ 4s2 − 4san + a2
n ⇐⇒ 0 ≤ a2

n.

Corollary 4.6.3 (Derived from Theorem 4.4.3). Let C := (X,F) be an OCO instance such that
each f ∈ F is proper and closed. Let R : E→ (−∞,+∞] be a 1-strong FTRL regularizer for C w.r.t.
a norm ‖·‖ on E, and suppose µR is also a classical FTRL strategy for C for any µ ∈ R++. Let
η : N \ {0} → R++ and define the regularizer strategy R : Seq(F)→ (−∞,+∞]E by, for each t ∈ N,

R(f) :=

(
1

ηt+1
− [t > 0]

1

ηt

)
R, ∀f ∈ F t.

Let T ∈ N and let ENEMY be an enemy oracle for C. Define

(x,f) := OCOC(AdaFTRLR,ENEMY, T).

100

Finally, let gt ∈ ∂ft(xt) for each t ∈ [T] and define σ ∈ RT by σt := η−1
t for each t ∈ [T]. Then, R

is a FTRL regularizer strategy for C which is σ-strong for f w.r.t. ‖·‖, x ∈ Seq(X) and, for every
u ∈ X,

Regret(AdaFTRLR,f , u) ≤
T∑
t=1

(
1

ηt
− [t > 1]

1

ηt−1

)
(R(u)−R(xt)) +

1

2

T∑
t=1

ηt‖gt‖2∗. (4.25)

In particular, consider the case where every function in F is ρ-Lipschitz continuous w.r.t. ‖·‖ on
a convex set D ⊇ X with nonempty interior and there is θ ∈ R++ such that it holds that θ ≥
sup{R(x)−R(y) : x ∈ X, y ∈ X ∩ domR}. If we define

ηt :=
1

ρ

√
θ

t
, ∀t ∈ N \ {0}, (4.26)

then,
Regret(AdaFTRLR,f , X) ≤ 2ρ

√
θT .

Proof. Define rt := R(〈f1, . . . , ft−1〉) for each t ∈ [T]. Note that, for each t ∈ [T], the function

t∑
i=1

ri +

t∑
i=1

fi =
1

ηt
R+

t∑
i=1

fi

is (1/ηt)-strongly convex w.r.t. ‖·‖. Therefore, R is a σ-strong FTRL regularizer strategy for f (the
other necessary properties are easily implied by the fact that µR is a classical FTRL regularizer for
any µ ∈ R++). Therefore, (4.25) and x ∈ Seq(X) follow directly from Theorem 4.4.3.

Suppose that every f ∈ F is ρ-Lipschitz continuous w.r.t. ‖·‖ on a convex set D ⊇ X with
nonempty interior, that there is θ ∈ R++ as in the statement, and that η is given by (4.26). By
Theorem 3.8.4, for each t ∈ [T] there is gt ∈ ∂ft(xt) such that ‖gt‖∗ ≤ ρ. Therefore, by (4.25), for
every u ∈ X we have

Regret(AdaFTRLR,f , u) ≤ θ
T∑
t=1

(
1

ηt
− [t > 1]

1

ηt−1

)
+
ρ2

2

T∑
t=1

ηt

= ρ
√
θT +

ρ
√
θ

2

T∑
t=1

1√
t
≤ 2ρ

√
θT ,

where in the last inequality we have used Lemma 4.6.2.

The above regret bound is a
√

2 multiplicative factor worse than the bound given by Corollary 4.5.3.
Yet, this bound holds at every round of the game, without the need of any prior knowledge on the
number of rounds. Still, note that we need to know the Lipschitz constants of the functions in order
to use the above regularizer strategies.

Even though we know the Lipschitz constant in some important examples, such as in the expert’s
problem, there are many cases where we do not have this information. Not only that, but even in
the cases in which we do know the Lipschitz constant, the enemy may pick many functions that have
subgradients with small dual norm, far from the upper bound given by the Lipschitz constant. We
may hope that, if the regularizer strategy could “notice” and adapt to subgradients with small norm,
the algorithm would perform better in these “easy” cases. On Chapter 6 we will investigate this idea.

101

4.7 An Adaptive Proximal Example

Up to this point, we have not given application examples of AdaFTRL with regularizer strategies
with interesting proximal properties (as opposed to a static regularizers which are trivially proximal).
Actually, from the discussion at the end of Section 4.4, one may expect that AdaFTRL with proximal
regularizer strategies may be able to adapt better to the enemy choices if compared to a general
regularizer strategy, thus yielding better regret guarantees. In this section, we will look at relatively
simple proximal regularizer strategies. Despite their simplicity, analyzing their performance and
comparing it to the regret bounds from the previous section is insightful.

For example, we have already seen that (1/2)‖·‖22 is a good static regularizer for some OCO
instances, even more so if properly scaled at each round as in the last section. A natural way to
make this regularizer strategy proximal is to change the regularizer increment from round t ∈ N \ {0}
to a multiple of x ∈ E 7→ ‖x − [t > 1]xt−1‖22, where xt−1 is the iterate from round t − 1. Thus,
this regularizer strategy is, in some sense, generated by the function R : E× E→ (−∞,+∞] given
by R(x, y) := ‖x − y‖22 for every x, y ∈ E. As expected, this change in the regularizer increments
preserves strong convexity, that is, R(·, y) is strongly convex w.r.t. the `2-norm for any y ∈ E.
Further, we have the freedom to choose where our regularizer is minimized: y ∈ arg minx∈ER(x, y)
for any y ∈ E. This regularizer does not yet fully exploit the capabilities of AdaFTRL since all
the regularizers are strongly convex w.r.t. the same norm. Still, regularizer strategies of this form,
which we call proximal FTRL regularizers, already cover some interesting cases, and we prove on
Corollary 4.7.3 that they have good regret guarantees. Let us formalize this discussion before jumping
to the corollary.

Definition 4.7.1 (Proximal FTRL regularizer). Let R : E→ (−∞,+∞] be a convex function and
let C := (X,F) be an OCO instance. The function R : E×X → (−∞,+∞] is a proximal FTRL
regularizer (for C) if

(i) For every T ∈ N \ {0} and each x ∈ XT , we have that
∑T

t=1R(·, xt) is a classical FTRL
regularizer strategy

(ii) For every y ∈ X we have that infx∈ER(x, y) is attained by y.

As expected, the above definition builds upon the one of classical FTRL regularizers, significantly
adding only the proximal property by (ii). Indeed, it is tailored to naturally build a proximal FTRL
regularizer strategy. To see that, let x0 ∈ X, and define the FTRL regularizer strategy R for C in a
recursive fashion by

R(〈〉) := R(·, x0),

R(f) := R(·,AdaFTRLR(〈f1, . . . , ft−1〉), ∀f ∈ F t,∀t ∈ N \ {0}.
(4.27)

One may check that R is a proximal FTRL regularizer strategy for C. Finally, let us make a proximal
version of the definition of σ-strong classical FTRL regularizer. This time we cannot simply re-use
the definition of σ-strong since we need slightly different condition to apply Lemma 4.3.2.

Definition 4.7.2 (σ-proximally strong proximal regularizer strategy). Let σ ∈ R++ and let R be a
proximal FTRL regularizer for C. Then R is σ-proximally strong for C w.r.t. a norm ‖·‖ on E if

(i) R(·, x) is σ-strongly convex for any x ∈ X, and

(ii) ri(dom(
∑T+1

t=1 R(·, xt) +
∑T−1

t=1 ft)) ∩ ri(dom fT) is nonempty for every x ∈ XT+1, f ∈ FT ,
and T ∈ N.

102

Again, the above definition is tailored in a way such that the functions which will be minimized by
the Adaptive FTRL oracle satisfy the conditions of Lemma 4.3.2. Indeed, if R used in the definition
of R as in (4.27) is a σ-proximally strong FTRL regularizer for an OCO instance C, then R is a
FTRL regularizer strategy which is σ-proximally strong for any f ∈ Seq(F), where σ ∈ Seq(R) is a
properly sized sequence with all entries equal to σ. This leaves us in position to use Theorem 4.4.4.
This discussion outlines the roadmap of the proof of the next corollary, except that in the actual
proof we take additional care with constants multiplying the regularizer (which one can interpret as
step sizes of the algorithm).

Corollary 4.7.3 (Derived from Theorem 4.4.4). Let C := (X,F) be an OCO instance such that
each f ∈ F is proper and closed. Let R : E ×X → (−∞,+∞] be a 1-proximally strong12 FTRL
regularizer for C w.r.t. a norm ‖·‖ on E. Let η : N \ {0} → R++, let z ∈ X, and define the regularizer
strategy R : Seq(F)→ (−∞,+∞]E by

R(〈〉) := R(·, z),

R(f) :=

(
1

ηt+1
− 1

ηt

)
R(·,AdaFTRLR(〈f1, . . . , ft−1〉), ∀t ∈ N \ {0}, ∀f ∈ F t.

Let T ∈ N and let ENEMY be an enemy oracle for C. Finally, define

(x,f) := OCOC(AdaFTRLR,ENEMY, T),

set x0 := x1, let gt ∈ ∂ft(xt) for each t ∈ [T], and define σ ∈ RT++ by σt := η−1
t for each t ∈ [T]. Then

R is a FTRL regularizer strategy for C which is σ-proximally strong for f w.r.t. ‖·‖, x ∈ Seq(X),
and, for every u ∈ X,

Regret(AdaFTRLR,f , u) ≤
T∑
t=0

(
1

ηt+1
− [t > 0]

1

ηt

)
(R(u, xt)−R(xt, xt))+

1

2

T∑
t=1

ηt+1‖gt‖2∗. (4.28)

In particular, consider the case where every function in F is ρ-Lipschitz continuous w.r.t. ‖·‖ on a con-
vex setD ⊇ X with nonempty interior and there is θ ∈ R++ such that θ ≥ sup{R(x, z)−R(y, z) : x, z ∈ X, y ∈ X ∩ domR(·, z)}
is finite. In this case, if we set η1 := 1 and define

ηt :=
1

ρ

√
θ

t− 1
, ∀t ∈ N \ {0, 1}, (4.29)

then,
Regret(AdaFTRLR,f , X) ≤ 2ρ

√
θT .

Proof. Let us show that

R is a FTRL regularizer strategy for C which is σ-proximally strong for f w.r.t. ‖·‖. (4.30)

Since R is a proximal FTRL regularizer, we have that R is a proximal FTRL regularizer strategy.
It only remains to show that it is σ-proximally strong. Define rt := R(〈f1, . . . , ft−1〉) for each
t ∈ {1, . . . , T + 1}. Note that, for each t ∈ [T], the function

t∑
i=1

ri +
t−1∑
i=1

fi =
t∑
i=1

(
1

ηi
− [i > 0]

1

ηi−1

)
R(·, xi−1) +

t∑
i=1

fi

12Supposing that R is 1-proximally strong instead of σ-strongly convex for some σ ∈ R++ can be made without loss
of generality since we can adjust the strong convexity constant by multiplying the regularizer the a positive constant.

103

is (1/ηt)-strongly convex w.r.t. ‖·‖. Indeed, the sum
∑t

i=1 ri of strongly convex functions is also
strongly convex, with strong convexity parameter equal to the strong convexity parameter of each one
of them added, which is

∑t
i=1(η−1

i − [t > 0]η−1
i−1) = η−1

t . Moreover, since multiplying the regularizers
by positive constants does not change their effective domains and since R is a 1-proximally strong
FTRL regularizer, we conclude that R satisfies property (ii) of the definition of σ-proximally strong.
This proves (4.30). With that, we conclude that (4.28) follows directly from Theorem 4.4.4.

Suppose that every function in F is ρ-Lipschitz continuous w.r.t. ‖·‖ on a convex set D ⊇ X
with nonempty interior, that there is θ ∈ R++ as in the statement, and that η is given by (4.29). By
Theorem 3.8.4, for each t ∈ [T] there is gt ∈ ∂ft(xt) such that ‖gt‖∗ ≤ ρ. Therefore, by (4.28), for
every u ∈ X we have

Regret(AdaFTRLR,f , u) ≤ θ
T∑
t=0

(
1

ηt+1
− [t > 0]

1

ηt

)
+
ρ2

2

T∑
t=1

ηt+1

= ρ
√
θT +

ρ
√
θ

2

T∑
t=1

1√
t
≤ 2ρ

√
θT ,

where in the last inequality we have used Lemma 4.6.2.

The bounds on Corollaries 4.6.3 and 4.7.3 are not much different. At first sight, this seems to
point into the opposite direction of the idea that FTRL with proximal regularizer strategies are able
to adapt better, as discussed at the end of Section 4.4. Nonetheless, it was expected that the regret
bounds of these corollaries were similar. The point is that the regret bound for proximal regularizer
strategies from Theorem 4.4.4 differs from the regret bound of the general case (Theorem 4.4.3) on
which norm is used to measure the subgradients. Thus, if we develop strategies which are oblivious
to the subgradients of the functions played by the enemy, as in Corollaries 4.6.3 and 4.7.3, there is
no reason for the regret bounds to be significantly different. On Chapter 6 we develop regularizer
strategies which take into account the subgradients from the functions played by the enemy on past
rounds, and a bigger difference between regret bounds for general and proximal regularizer strategies
appears.

For the sake of concreteness, let us apply a proximal regularizer strategy to the (randomized)
experts’ problem C := (∆E ,F), where F is given by F := { p ∈ RE 7→ yTp : y ∈ [−1, 1]E}. As we
have seen at the end of Section 4.5, every function in F is

√
d-Lipschitz continuous w.r.t. ‖·‖2

on RE , where d := |E|. Moreover, define R : E × E → (−∞,+∞] by R(x, y) := 1
2‖x − y‖22

for every x, y ∈ E. Note that R(·, y) is 1-strongly convex w.r.t. the `2-norm for every y ∈ E
by Lemma 3.9.5 since the `2-norm is induced by the euclidean inner product. Finally, define
R : Seq(F) → (−∞,+∞]E as in Corollary 4.7.3. Since R(x, y) ≤ 1

2(‖x‖ + ‖y‖)2 ≤ 2 for every
x, y ∈ ∆E , we have supx,y,z(R(y, x)−R(z, x)) ≤ 2. Therefore, by Corollary 4.7.3,

Regret(AdaFTRLR,f , X) ≤ 2
√

2dT ∀T ∈ N,∀f ∈ FT .

It is interesting to compare the above regret bound with the one on (4.22) derived by using the
classical FTRL algorithm with the (squared) `2-norm. Note that the above bound is a factor of 2

√
2

worse than the one on (4.22). A factor of
√

2 of this difference is due to the difference on the bounds
given by Corollaries 4.5.3 and 4.7.3. Nevertheless, the remaining difference is due to the different
upper bounds given on the value of the regularizers: a bound of 1/2 for 1

2‖x‖
2
2 for x ∈ ∆E when using

Corollary 4.5.3, and a bound of 2 for 1
2‖x− y‖

2
2 with x, y ∈ ∆E when using Corollary 4.7.3. Still,

this difference might be artificial and not hold in practice because we are loosely bounding 1
2‖x− y‖

2
2.

To see why this bound may be loose in practice, recall that the bound on 1
2‖x− y‖

2
2 is used to bound

104

the sum
∑T+1

t=1 rt(u) =
∑T

t=0
1
2‖u−xt‖

2
2 from Theorem 4.4.4, where u is the comparison point on the

regret formula, and the points xt are the iterates from of the Adaptive FTRL algorithm. Intuitively,
one should expect the iterates xt to be closer to a “good” comparison point u in the regret formula
than to 0 (for example, one might expect in the experts’ problem to see iterates attributing a high
weight to good experts), which would imply that ‖u− xt‖22 ≤ ‖u− 0‖22 = ‖u‖22 for each iterate xt.

4.8 Logarithmic Regret Against Strongly Convex Functions

As we have seen on Section 4.5, in a game with T rounds FTRL attains a dependence of O(
√
T) on

its worst-case regret, which is optimal for OCO instances with Lipschitz continuous functions [2].
Still, if we are dealing with an instance about which we know more about the functions the enemy is
allowed to use, we may improve the regret bounds. Indeed, the next corollary shows a bound on the
worst case regret bound of FTRL (pratically without a regularizer) for OCO instances with strongly
convex functions which is exponentially better than the one from Corollary 4.5.3.

Corollary 4.8.1 (Derived from Theorem 4.4.4). Let C := (X,F) be an OCO instance such
that X ⊆ E is closed and that each f ∈ F is σ-strongly convex and ρ-Lipschitz continuous
w.r.t. a norm ‖·‖ on E on a convex set D ⊇ X with nonempty interior. Moreover, suppose
(ri(dom(R+

∑T
t=1 ft)) ∩ ri(dom fT+1) is nonempty13 for any f ∈ FT+1 and T ∈ N, and define R :=

δ(· |X). Then, for any enemy oracle ENEMY for C and T ∈ N, we have

RegretT (FTRLR,ENEMY, X) ≤ ρ2

2σ
(1 + lnT).

Proof. Let T ∈ N, let ENEMY be an enemy oracle for C, and define

(x,f) := OCOC(FTRLR,ENEMY, T).

Note that FTRLR = AdaFTRLR where R is given by R(f ′) := [f ′ = 〈〉]R for every f ′ ∈
Seq((−∞,+∞]E). Let us show that

(4.31)R is a proximal FTRL regularizer strategy for C which is σ-proximally strong
for f , where σ ∈ RT is given by14 σt := (t− 1)σ for each t ∈ [T].

First, let us show that R is a FTRL regularizer strategy. Let t ∈ [T]. Since X is closed and
convex, R = δ(· |X) is closed, proper, and convex. Moreover, domR = X by the definition of
indicator function. Finally, since each h ∈ F is Lipschitz continuous on D ⊇ X, we have that
domh ⊇ X. Therefore, we have that dom(R +

∑t
i=1 fi) = X, and by Lemma 3.9.14 we conclude

that infx∈E(R(x) +
∑t

i=1 fi(x)) is attained. Thus, to prove (4.31) it only remains to show that R is
σ-proximally strong for f . Note that R is proximal, and that, since ft is σ-strongly convex for every
t ∈ [T], we have that

t∑
i=1

R(〈f1, . . . , fi−1〉) +

t−1∑
i=1

fi = δ(· |X) +

t−1∑
i=1

fi (4.32)

is (t− 1)σ-strongly convex for each t ∈ [T]. Moreover, we have that the condition on the intersection
of the relative interiors of the domain from the definition of proximally strong FTRL regularizer

13The sole purpose of this assumption, which is satisfied in most usual applications, is to enable us to apply
Lemma 4.3.2.

14One may find weird that σ1 = 0, which means that the first regularizer is not strongly convex. Note, however,
that σ1 does not affect the bound from Theorem 4.4.4.

105

(property (ii)) is satisfied by assumption. This shows that R is σ-proximally strong for f , which
finishes the proof of (4.31).

Let gt ∈ ∂ft(xt) be such that ‖gt‖∗ ≤ ρ, which exists by Theorem 3.8.4, for each t ∈ [T]. Thus,
by (4.31) and Theorem 4.4.4, for every u ∈ X we have

Regret(FTRLR,f , u) ≤ 1

2

T∑
t=1

1

tσ
‖gt‖2∗ ≤

ρ2

2σ

T∑
t=1

1

t
≤ ρ2

2σ
(1 + lnT).

Despite the appeal of such a good regret bound, there is no free lunch. In the application examples
we have seen of AdaFTRL, the functions played by the enemy were usually linear, or linearizing
them with the use of subgradients did not affect much the regret guarantees. This usually allowed
us to derive closed formulas for each application of the AdaFTRL. However, we cannot linearize the
functions given by the enemy in this case, otherwise we lose the strong convexity property which
yields the above regret bound. Thus, an efficient player oracle for the strongly convex case depends
on an efficient way to solve the minimization problem from AdaFTRL.

4.9 Follow the Leader–Be the Leader Lemma

In this chapter we presented the classical FTRL algorithm as a special case of the Adaptive FTRL
algorithm, whose regret analysis was based on the Strong FTRL Lemma. However, it is interesting
to give a quick look at the main tools for the original analysis of the classical FTRL algorithm, and
how the Strong FTRL Lemma yields slightly tighter bounds. The following lemma, originally proved
by Kalai and Vempala [42], and known as the Follow the Leader–Be the Leader (FTL–BTL) Lemma,
is the classical lemma for the analysis of FTRL–like algorithms.

Lemma 4.9.1 (Follow The Leader-Be The Leader Lemma, [42]). Let T ∈ N, let R, f1, . . . , fT : E→
(−∞,+∞] be proper and such that, for every t ∈ {1, . . . , T + 1}, the function R +

∑t−1
i=1 fi is

proper and its infimum over E is attained. Moreover, define xt := FTRLR(〈f1, . . . , ft−1〉) for every
t ∈ {1, . . . , T + 1}. Then, for every u ∈ E,

R(x1) +

T∑
t=1

ft(xt+1) ≤ R(u) +

T∑
t=1

ft(u) (4.33)

and

Regret(FTRLR,f , u) ≤ R(u)− inf
x∈E

R(x) +

T∑
t=1

(ft(xt)− ft(xt+1)). (4.34)

Proof. First of all, note that by re-arranging (4.34) we get (4.33). Thus, it suffices to prove that (4.33)
holds, and we will do so by induction on T . For T = 0 the inequality holds since x1 ∈ arg minx∈ER(x)
by definition. Suppose T > 0. Then, for every u ∈ E,

R(x1) +
T∑
t=1

ft(xt+1) = fT (xT+1) +R(x1) +
T−1∑
t=1

ft(xt+1) ≤ fT (xT+1) +R(xT+1) +
T−1∑
t=1

ft(xT+1)

= R(xT+1) +
T∑
t=1

ft(xT+1) ≤ R(u) +
T∑
t=1

ft(u),

where in the first inequality we used the induction hypothesis with (4.33) specialized to u = xT+1,
and in the second we used that xT+1 ∈ arg minx∈E(R(x) +

∑T
t=1 ft(x)) by definition.

106

One may note some “intuitive similarities” between the above lemma and Lemma 4.3.1. As in
the latter, the FTL–BTL Lemma bounds the regret by two terms. The first is R(u)−R(x1), which
can be seen, when we assume domR ⊆ X for X ⊆ E, as the diameter of the set X where the player
is making her predictions. The other term translates the idea that, in order for the FTRL algorithm
to perform well, the algorithm should be stable: for any round t, the values of the iterates xt and
xt+1 on ft should not be too far away.

Let us quickly derive a regret bound similar to the one from Corollary 4.5.3. Let R, f1, . . . , fT
and x1, . . . , xT+1 be as in Lemma 4.9.1. Moreover, suppose that R is σ-strongly convex and that,
for each t ∈ [T], the function ft is closed, convex, and that there is gt ∈ ∂ft(xt). Finally, let ‖·‖ be a
norm on E. By the subgradient inequality and by the definition of dual norm, we have

f(xt)− f(xt+1) ≤ 〈gt, xt − xt+1〉 ≤ ‖gt‖∗‖xt − xt+1‖, ∀t ∈ [T].

For each t ∈ [T], we have xt ∈ arg minx∈E(R(x) +
∑t−1

i=1 fi(x)). Thus, Lemma 4.3.2 yields15

‖xt − xt+1‖ ≤
1

σ
‖gt‖∗, ∀t ∈ [T].

Therefore, by Lemma 4.9.1, for every u ∈ E,

Regret(FTRLR,f , u) ≤ R(u)−min
x∈E

R(x) +

T∑
t=1

(ft(xt)− ft(xt+1))

≤ R(u)− inf
x∈E

R(x) +
1

σ

T∑
t=1

‖gt‖2∗.

Note that the above bound is slightly worse (only by a multiplicative constant) than the one
from Corollary 4.5.3. One factor that contributed to this difference is that we used, for a norm ‖·‖
on E, the inequality

〈u, v〉 ≤ ‖u‖‖v‖∗, ∀u, v ∈ E, (4.35)

to bound the differences of the form f(xt)− f(xt+1). Note that the inequality from Lemma 4.3.2
that bounds the values of the functions themselves, which is the one used on the adaptive case, is
tighter by a constant.

We can modify the FTL–BTL Lemma to bound the regret in the case when we have different
constants multiplying the regularizer, as in Section 4.6. However, the analyses start to be slightly
more ad hoc and technical in cases where the functions that the enemy plays are strongly convex
themselves, or when we do not want to use (4.35) in order to obtain tighter bounds. Additionally, it
is not clear how to use this lemma when we have a different regularizer at each round. Intuitively,
the Strong FTRL Lemma (Lemma 4.3.1) helps us by carrying, for each round, the information of the
regularizers and the functions from all the past rounds through the functions Ht on Lemma 4.3.1.
This allows us to capture a wider range of cases without needing to change the lemma itself.

15Keep in mind that in order to apply Lemma 4.3.2 we need to ensure that ri(dom(R+
∑t−1

i=1 fi)) ∩ ri(dom ft) is
nonempty for each t ∈ [T], which is usually the case.

107

Chapter 5

The Online Mirror Descent Algorithm

In the previous chapter, we have shown that Follow the Regularized Leader algorithms yield good
regret bounds. Not only that, the description of the method is fairly straightforward. In spite of
that, it is not clear how to efficiently implement the AdaFTRL oracle in general. Additionally, in
many applications one has access to the functions only through “first-order oracles”, that is, given
a point x and a function f , one may compute f(x) together with a (sub)gradient g of f at x. In
these cases, one usually wants to make a constant number of queries to the first-order oracle of
the enemy’s function at each round and wants the actions of the algorithm at each iteration to use
the subgradients and the value of the function at the current point in an efficiently implementable
fashion, that is, it should take time close to linear on the sizes of the subgradients to perform the
actions of the algorithm at each round.

In this chapter we explore Online Mirror Descent algorithms, which are the online (and adaptive)
counterparts of the Mirror Descent algorithms from classical convex optimization. The latter are a
generalizations of the well-known Gradient Descent technique, and it was first proposed by Nemirovski
and Yudin [54]. The general idea is to perform, at each iteration, a step on the direction of negative
subgradient of the current function. However, this subgradient step occurs on the dual space E∗
of linear functionals on E, and the connection between E and E∗ depends on functions, which we
call mirror maps, that the player can choose depending on the problem. The intuition behind the
choices of mirror maps is that the functions played by the enemy and the set where the optimization
is taking place are both better behaved (subgradients with smaller norm and smaller diameter w.r.t.
the mirror maps) when we look at them through the lens of the mirror map. One may notice that
this intuition is similar to the considerations we had to make when choosing FTRL regularizers, and
indeed there are interesting connections between online mirror descent and FTRL algorithms.

In this chapter we first describe the Adaptive Online Mirror Descent (AdaOMD) algorithm,
following the presentation from [48], and look at the form of the iterate updates with some static
regularizers. We then show connections of AdaOMD with proximal operators and to the AdaFTRL
algorithm, and from the latter connection we derive regret bounds of AdaOMD. We also describe
the Adaptive Dual Averaging (AdaDA) algorithm, a variation of the AdaOMD algorithm, which can
be seen as a version of AdaOMD with lazy projections. We prove the interesting fact that AdaDA
is practically equivalent to AdaFTRL when applied to linear functions. Finally, we discuss sufficient
conditions under which the non-adaptive versions of Online Mirror Descent and Dual Averaging
are equivalent. The content of this chapter is based on many sources [13, 18, 19, 48, 57, 67]. More
specific references will be given on each section.

108

5.1 Adaptive Online Mirror Descent

As described at the beginning of this chapter, the Adaptive Online Mirror Descent (AdaOMD or
Adaptive OMD) algorithm is an adaptive and online version of the Mirror Descent algorithm for
classical convex optimization first proposed by Nemirovski and Yudin [54]. The general idea of
Mirror Descent is to start at a point and then perform, at each iteration, a step in the direction
of minus subgradient of the current function. The difference on intuitions of this method to the
one of the well-known (sub)Gradient Descent algorithm is that, on Mirror Descent, the subgradient
step is seen as taking place on the dual space E∗ of E, that is, the space of linear functionals on
E, and the connection1 between primal and dual spaces is made through a “mirror map”. In a way
similar to the Adaptive FTRL algorithm, Adaptive OMD is parameterized by such mirror maps
(which one can imagine as functions analogous to FTRL regularizers), which make the connection
between the primal and dual spaces. The choice of mirror map, in a similar way to the choice of
FTRL regularizers, deeply affects the performance of the algorithm on different problems. As we
show later, the Online Subgradient Descent algorithm is a special case of the Online Mirror Descent
with a mirror map based on the `2-norm. To make the discussion of an intuition for the Online
Mirror Descent (OMD) algorithm more concrete, let us first formally define the algorithm, and then
discuss an intuitive interpretation of it. In the next section we provide some applications for the
sake of concreteness.

As in the case of AdaFTRL, at each round t ∈ N the Adaptive Online Mirror Descent algorithm
depends on a choice of a function Rt, the mirror map of round t, which can be thought of for now as
the analogous of a regularizer from AdaFTRL. In spite of the similarities, the conditions necessary
over such maps are a bit more delicate when compared to the conditions we have used on FTRL
regularizer strategies.

Definition 5.1.1 ((Classical) mirror map). Let X ⊆ E be convex. A (classical) mirror map
(for X) is a function R : E→ (−∞,+∞] such that

(5.1.i) R is a closed proper strictly convex on domR function such that int(domR) is nonempty
and such that R differentiable on int(domR),

(5.1.ii) for any y ∈ int(domR), the infima infx∈X R(x) and infx∈X BR(x, y) are attained by a
point in int(domR),

(5.1.iii) (ri(X)) ∩ int(domR) 6= ∅, and

(5.1.iv) {∇R(x) : x ∈ int(domR)} = E.

The properties of a mirror map may seem cryptic right now, but they become way clearer once
we define the AdaOMD oracle (in fact, for the sake of simplicity the above properties were slightly
simplified, see [18] for more detailed conditions). For this reason, we defer the discussion on the
mirror map properties for later.

In a way similar to the case of FTRL regularizer strategies, we define mirror map strategies,
which is basically a way of choosing at each round a different mirror map through “mirror map
increments”.

1In Euclidean (and Hilbert) spaces, such a connection is usually seamless by the Riesz representation theorem,
which states that for each x∗ ∈ E∗ there is an unique point g ∈ E such that x∗ = 〈g, ·〉. However, here we are interested
in looking at ways of connecting the primal and dual spaces in different ways. We will discuss this intuition in greater
detail later on.

109

Definition 5.1.2 (Mirror map strategy). Let C := (X,F) be an OCO instance and let D ⊆ E be
a nonempty open convex set such that ri(X) ∩D 6= ∅. A mirror map strategy (for C which is
differentiable on D) is a function R : Seq(F)→ (−∞,+∞]E such that, for each t ∈ N and f ∈ F t,
for R :=

∑t
i=0R(f1, . . . , fi) and r := R(f1, . . . , ft), we have

(5.2.i) D = int(dom r) = int(domR)

(5.2.ii) r is a proper closed convex functions which is differentiable on D, and

(5.2.iii) R is a classical mirror map for X.

In property (5.2.i) from the definition of mirror map strategies we require that the domains of the
mirror maps do not change much, that is, they need to have the same interior. Property (5.2.ii) is to
avoid cases with pathological mirror map strategies. Finally, (5.2.iii) formally states the main idea
of a mirror map strategy: to pick, at each round, a mirror map for the player. A player oracle which
implements the Adaptive Online Mirror Descent technique is formally defined on Algorithm 5.1.

Algorithm 5.1 Definition of AdaOMDX
R
(
〈f1, . . . , fT 〉

)
Input:

(i) A closed convex set X ⊆ E,
(ii) Convex functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]E such that ft is

subdifferentiable on X for each t ∈ [T],

(iii) R : Seq(F)→ (−∞,+∞]E is a mirror map strategy for the OCO instance (X,F) which is
differentiable on a nonempty open set D ⊆ E.

Output: xT+1 ∈ D ∩X
r1 ← R(〈〉)
{x1} ← arg minx∈X r1(x).
for t = 1 to T do

. Computations for round t+ 1
rt+1 ← R(〈f1, . . . , ft〉)
Rt+1 ←

∑t+1
i=1 ri

Compute gt ∈ ∂ft(xt)
yt+1 ← ∇Rt+1(xt)− gt,
xt+1 ← Π

Rt+1

X (∇R∗t+1(yt+1))
return xT+1

With the AdaOMD oracle defined, we may try to make sense of some of the properties of a mirror
map. Note that property (5.1.i) together with (5.2.i) implies that the mirror map of each round is
differentiable on the open set D ⊆ E where the mirror map strategy is differentiable. Thus, if the
iterates xt as in Algorithm 5.1 lie in D, then the points yt in Algorithm 5.1 are well-defined. This
later invariant is guaranteed by (5.1.ii), which ensures the Bregman projections yield points in D.
One may still be uneasy, since we do not know yet if the definition of AdaOMD makes any sense. For
example, in Algorithm 5.1 we take the gradient of the conjugate of each mirror map on the points yt,
but we do not know yet if the conjugate of the mirror map is differentiable at this point. The reader
is probably imagining that this and other problems are solved by looking at the other properties of
a mirror map. Indeed, the conditions on a mirror map are built in a way so that the definition of
AdaOMD is not ambiguous and, in some sense, the objects we use in the definition of AdaOMD are
not pathological. The following proposition shows that AdaOMD is indeed well-defined.

110

Proposition 5.1.3. Let X ⊆ E be a nonempty closed convex set and let R : E→ (−∞,+∞] be a
mirror map for X. Then,

(a) R∗ is differentiable on E,

(b) ∇R∗(x∗) ∈ int(domR) for any x∗ ∈ E, and

(c) infx∈X BR(x, y) is attained by a unique point in D for any y ∈ D.

Proof. Let x∗ ∈ E. By property (5.1.iv), there is y ∈ D such that x∗ = ∇R(y). By Theorem 3.5.2
(items (i), (ii), and (v)) and Theorem 3.5.5, we have

x∗ = ∇R(y) ⇐⇒ y ∈ arg max
x∈E

(〈x∗, x〉 −R(x)) ⇐⇒ y ∈ ∂R∗(x∗).

By (5.1.i) we have that R is strictly convex, which implies by Lemma 3.9.2 that y is the unique point
that attains infx∈E(R(x)− 〈x∗, x〉). This together with the above equivalences yields {y} = ∂R∗(x∗).
Hence, Theorem 3.5.5 implies that y = ∇R∗(x∗), thus proving (a) and (b). Finally, (c) follows
directly from properties (5.1.ii) (attainability) and (5.1.i) (uniqueness due to strict convexity) of a
mirror map.

One may have noticed that we have not used in the above proof the relative interior condition
between the sets X and D from the definition of mirror map. However, all of the results about Online
Mirror Descent algorithms which we describe here (and most in the literature, even if not clearly
stated) need this type of condition in one way or another, such as for applying Lemma 4.3.2 to prove
good regret bounds or to use optimality conditions for Bregman projections from Lemma 3.11.4.
Therefore, cases which do not satisfy these relative interior conditions pratically render most of the
results of this chapter useless, and are pathological. For this reason, we have chosen to add this
condition to the definition of a mirror map from the beginning.

PrimalDual

Figure 5.1: Graphic representation of the computations done by AdaOMD on round t+ 1.

Let us now look at the intuition behind the (Adaptive) Online Mirror Descent. On Figure 5.1 we
present an schematic diagram of the computations done by AdaOMD on round t+ 1. The idea is
that gradients are representations of the derivatives, which are linear functionals on E. That is, the

111

gradients represent elements from the dual space E∗ of E, the space of linear functions from E to R.
Thus, a gradient step style update such as xt −∇ft(xt), where xt ∈ E and ft : E → (−∞,+∞] is
convex and differentiable2, can be seen as actually dealing with the functionals 〈xt, ·〉 and 〈∇ft(xt), ·〉,
and summing xt and the derivative of ft at xt only makes sense due to Riesz representation theorem,
which ensures the existence of the representation of the derivative of ft at xt (namely, the gradient
∇ft(xt)) on the primal space. Without using this theorem, we need to transport the point xt from
the primal to the dual space in some way. Since we are in an Euclidean space, we may correspond
xt ∈ E with 〈xt, ·〉 ∈ E∗ (which yields the Gradient Descent method), but this choice is more or less
arbitrary: for each differentiable function R, we can build the linear function 〈∇R(xt), ·〉. Thus, we
should chose a function Rt+1, our mirror map at round t+ 1, to make such correspondences. With
that connection between E and E∗ made, the gradient step update becomes ∇Rt+1(xt)−∇ft(xt).
Yet, this update produces a point yt+1 in the dual space E∗, and we need to correspond it back
to a point in the primal space. Such a correspondence should, intuitively, be the inverse of the
mapping x ∈ E 7→ ∇Rt+1(x). By Proposition 5.1.3 we know that R∗t+1 is differentiable everywhere,
and by Corollary 3.5.6 we have that ∇R∗t+1 is the inverse mapping of ∇Rt+1. Thus, we correspond
the point yt+1 in the dual with the point ∇R∗t+1(yt+1) in the primal space. There is, still, one last
factor to discuss: the point ∇R∗t+1(yt+1) may be outside of the set X ⊆ E where our optimization
is actually taking place. Thus, we project ∇R∗t+1(yt+1) onto X with the Bregman projector based
on Rt+1, yielding a point xt+1 ∈ X. We will see why the use of this type of projection is at least
partially intuitive on Section 5.4. After this projection, we can again correspond xt+1 with a dual
point through ∇Rt+2 and make a gradient step, starting the process again.

5.2 Non-Adaptive Online Mirror Descent and Examples

As we have done in Chapter 4 with the FTRL algorithm, let us look at the non-adaptive version of
Online Mirror Descent. Besides the fact that looking at a special and simpler case of the AdaOMD
algorithm may help us to understand better how it works, the non-adaptive version is the one which
is usually presented by other authors as the Online Mirror Descent algorithm, such as in [19, 36]3, or
with time varying constants (step sizes) multiplying a fixed mirror map as in [13].

In Algorithm 5.2 we define the EOMD oracle, which implements the (Eager) Online Mirror
Descent algorithm. The reason we call this the eager version will become clearer when we present
the lazy one on Section 5.5.

As we have mentioned in the beginning of this chapter, Online Mirror Descent with the squared
`2-norm used as a mirror map yields the (Projected) Subgradient Descent algorithm [36, 72].

Lemma 5.2.1. Let X ⊆ Rd be a nonempty closed convex set, let η ∈ R++, and define the
function R := 1

2η‖·‖
2
2. Then, R is a 1-strongly convex w.r.t. ‖·‖2 classical mirror map for X such

that, for any y ∈ Rd,

ΠR
X(y) = arg min

x∈X
‖x− y‖2, ∇R(y) =

1

η
y, and ∇R∗(y) = ηy. (5.3)

Proof. We know that R is continuous (and, thus, closed) and, by Lemma 3.9.5, we know that R is
strongly convex on Rd and, in particular, strictly convex on Rd. That is, R satisfies (5.1.i). Since R is

2Even though we do not require in the original algorithm differentiability of functions ft, the intuition discussed
here fits almost seamlessly in the non-differentiable case, since subgradients are represententions of the directional
derivatives of a function. Still, we have chosen to discuss the intuition with differentiable functions for the sake of
clarity and simplicity.

3We note that in these works, the authors define the algorithm with a positive constant η (a step size) multiplying
the subgradient at each step, which is the same as multiplying the mirror map by η−1.

112

Algorithm 5.2 Definition of EOMDX
R

(
〈f1, . . . , fT 〉

)
Input:

(i) A closed convex set X ⊆ E,
(ii) Convex functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]E such that ft is

subdifferentiable on X for each t ∈ [T],

(iii) A mirror map R : E→ (−∞,+∞] for the OCO instance (X,F).
Output: xT+1 ∈ int(domR) ∩X
{x1} ← arg minx∈X R(x)
y1 ← 0.
for t = 1 to T do

. Computations for round t+ 1
Compute gt ∈ ∂ft(xt)
yt+1 ← ∇R(xt)− gt
xt+1 ← ΠR

X(∇R∗(yt+1))
return xT+1

1-strongly convex w.r.t. the `2-norm on Rd, then BR(·, y) is also strongly convex on Rd for any y ∈ Rd.
Thus, by Lemma 3.9.14 we have that R satisfies (5.1.ii) since X is closed, that is, infx∈X R(x) and
infx∈X BR(x, y) are both attained for any y ∈ Rd. We have int(domR) ∩ ri(X) = Rd ∩ ri(X) 6= ∅,
which implies that (5.1.iii) is satisfied. Finally, since ∇R(x) = ηx for every x ∈ Rd, we have
{∇R(x) : x ∈ Rd} = ηRd = Rd, that is, R satisfies property (5.1.iv). Therefore, R is a 1-strongly
convex w.r.t. ‖·‖2 classical mirror map for X. Let us now show that (5.3) holds.

First, note that for every x, y ∈ Rd,

BR(x, y) = 1
2η (‖x‖22 − ‖y‖22 − 2〈y, x− y〉) = 1

2η (‖x‖22 − 2〈y, x〉+ ‖y‖22) = 1
2η‖x− y‖

2
2.

That is, ΠR
X(y) = arg minx∈X‖x−y‖22 = arg minx∈X‖x−y‖2. Moreover, it is clear that ∇R(y) = 1

ηy

for any y ∈ Rd. Finally, by Theorem 3.8.2, for any norm ‖·‖ on Rd (or on any euclidean space) we
have

(
1
2‖·‖

2
)∗

= 1
2‖·‖

2
∗. Since the `2-norm is dual to itself, Theorem 3.4.3 yields, for every y ∈ Rd,

R∗(y) =
1

2η
‖ηy‖22 =⇒ ∇R∗(y) = ηy.

Proposition 5.2.2. Let C := (X,F) be an OCO instance such that X ⊆ Rd is closed and that
every function in F is subdifferentiable on X. Let T ∈ N, let ENEMY be an enemy oracle for C, let
η ∈ R++, define R := 1

2η‖·‖
2
2, and set

(x,f) := OCOC(EOMDX
R ,ENEMY, T).

Finally, let gt ∈ ∂ft(xt) be as in the definition of EOMDX
R (f) for each t ∈ [T]. Then,

xt = ΠR
X

(
[t > 1](xt−1 − ηgt−1)

)
, ∀t ∈ [T]. (5.4)

Proof. By Lemma 5.2.1, R is a mirror map for X, and thus EOMDX
R is well-defined. Let us now

show that (5.4) holds. First, note that

{x1} = arg min
x∈X

R(x) = arg min
x∈X

‖x‖2 = ΠR
X(0).

113

Let t ∈ {2, . . . , T} and let yt ∈ Rd and gt−1 ∈ ∂ft−1(xt−1) be as in the definition of EOMDX
R (f). By

the definition of EOMDX
R , yt = ∇R(xt−1)− gt−1 = 1

ηxt−1 − gt−1. Moreover, again by the definition
of EOMDX

R , we have

xt = ΠR
X

(
∇R∗(yt)

)
= ΠR

X

(
η(yt)

)
= ΠR

X

(
xt−1 − ηgt−1

)
.

The above proposition shows that EOMD with the squared `2-norm as a mirror map has a neat
closed formula. Thus, one may hope that this is the case for other important cases, such as for
the negative entropy regularizer used in Section 4.5 to obtain an exponential improvement on the
regret guarantees of FTRL on the randomized experts’ problem. Let us now show that this is indeed
the case: applying EOMD with the negative entropy as a mirror map yields the algorithm known
as Exponentiated Gradient Descent, Hedge [32] or, in the special case of the expert’s problem, as
Multiplicative Weights Update Method with exponential updates (see [6]).

Lemma 5.2.3. Let η ∈ R++ and define R(x) := 1
η

∑d
i=1[xi > 0]xi lnxi + δ(x |Rd+) for every Rd.

Then R is a mirror map for ∆d which is differentiable on Rd++ and which is 1-strongly convex on ∆d

w.r.t. ‖·‖1.

Proof. By Lemma 3.9.10, we know that for every θ ∈ R++ the function R is closed and 1
ηθ -strongly

convex w.r.t. ‖·‖1 on Bθ := {x ∈ Rd : ‖x‖1 ≤ θ}. In particular, this implies that R is strictly convex
on Rd+ since, for any distinct x, y ∈ Rd+ there is θ ∈ R++ such that ‖x‖1 ≤ θ and ‖y‖1 ≤ θ, which
implies that for any λ ∈ (0, 1) we have

R(λx+ (1− λ)y) ≤ λR(x) + (1− λ)R(y)− λ(1− λ)
1

2ηθ
‖x− y‖21 < λR(x) + (1− λ)R(y).

Thus, R satisfies condition (5.1.i).
Moreover, by Proposition 3.11.5 we have that for any y ∈ Rd++ the infimum infx∈∆d

BR(x, y) is
attained by ‖y‖−1

1 y ∈ Rd++. To show that infx∈X R(x) is attained, note that by Proposition 3.11.5
we have

BR(x,1) = 1
η

d∑
i=1

([xi > 0]xi lnxi + (xi − 1)) = R(x) + 1− d.

Thus, arg minx∈∆d
R(x) = arg minx∈∆d

BR(x,1), and d−1
1 is contained in the latter again by Propo-

sition 3.11.5. That is, R satisfies condition (5.1.ii) of a mirror map. Additionally, by Corollary 3.2.3,
we have ri ∆d = {x ∈ (0, 1]d : 1Tx = 1}. Thus, Rd++ ∩ ri ∆d 6= ∅ and, hence, R satisfies (5.1.iii).

Finally, let us show that {∇R(x) : x ∈ Rd++} = Rd, condition (5.1.iv) from the definition of
mirror map. By Proposition 3.4.4, we have that R∗ is differentiable on Rd and that

∇R∗(x∗)(i) =
1

η
eηx
∗(i)−1 > 0, ∀i ∈ [d],∀x∗ ∈ Rd

Thus, ∇R∗(x∗) ∈ Rd++ for any x∗ ∈ Rd. By Corollary 3.5.6 we have ∇R(∇R∗(x∗)) = x∗ for each
x∗ ∈ Rd. That is, for every x∗ ∈ Rd there is x ∈ Rd++ (namely, ∇R∗(x∗)) such that ∇R(x) = x∗.
This completes the proof that R is a mirror map for ∆d.

Proposition 5.2.4. Let C := (∆d,F) be an OCO instance such that every function in F is
subdifferentiable on ∆d. Let T ∈ N, let ENEMY be an enemy oracle for C, and define R(x) :=
1
η

∑d
i=1[xi > 0]xi lnxi + δ(x |Rd+) for each x ∈ Rd, where η ∈ R is some positive constant. Finally,

set
(x,f) := OCOC(EOMDX

R ,ENEMY, T)

114

and let gt ∈ ∂ft(xt) be as in the definition of EOMDX
R (f) for each t ∈ [T]. Then, x1 = d−1

1 and

xt+1(i) =
1

ωt+1
(xt(i))e

−ηgt(i), where ωt+1 :=
d∑
j=1

(xt(j))e
−ηgt(j) ∀i ∈ [d], ∀t ∈ {1, . . . , T − 1}.

Proof. By Lemma 5.2.3, we know that R is a mirror map for ∆d. Thus, it only remains to prove the
form of the points xt for t ∈ [T]. First of all, by Proposition 3.11.5 we have

{d−1
1} = arg min

x∈∆d

BR(x,1) = arg min
x∈∆d

(R(x)+‖x‖1−‖1‖1) = arg min
x∈∆d

(R(x)+1−d) = arg min
x∈∆d

R(x),

and since x1 ∈ arg minx∈∆d
R(x) by definition, we conclude that x1 = d−1

1. Let yt ∈ Rd be as in
the definition of EOMDX

R (f) for each t ∈ [T]. For every t ∈ {1, . . . , T − 1} we have by definition of
the algorithm that

yt+1(i) = ∇R(xt)(i)− gt(i) = 1
η

(
1 + ln

(
xt(i)

))
− gt(i), ∀i ∈ [d].

By Proposition 3.4.4, R∗(z) = 1
η

∑d
i=1 e

ηz(i)−1 , we for every z ∈ Rd, which implies

∇R∗(z)(i) = eηz(i)−1 = exp(ηzi − 1), ∀i ∈ [d],∀z ∈ Rd.

Therefore, for every t ∈ {1, . . . , T − 1}

∇R∗(yt+1)(i) = exp(η(yt+1(i))− 1) = exp(1 + ln(xt(i))− ηgt(i)− 1) = (xt(i))e
−ηgt(i), ∀i ∈ [d].

Since xt+1 = ΠR
∆d

(∇R∗(yt+1)), and since by Proposition 3.11.5 the Bregman Projector on ∆d w.r.t. R
boils down to a normalization w.r.t. the `1-norm, we are done.

The update rules derived by the mirror maps in the above propositions are simple to implement
and well-studied in the optimization literature. Thus, one may hope to unify convergence proofs
of many existing algorithms with a general convergence proof of Online Mirror Descent. Indeed,
Adaptive OMD happens to have many interesting connections with proximal operators and with
Adaptive FTRL. The connections with the former allows us to write the general update rule from
AdaOMD in a closed formula which sheds light on its inner workings. The connection with Adaptive
FTRL gives yet another perspective on how AdaOMD works, and yields regret bounds through the
use of the Strong FTRL Lemma.

5.3 OMD Connection to Proximal Operators

In this section we will look at the connections between OMD algorithms and proximal operators
and, for that, we will mostly follow the presentations from [13, 57]. Let f : E → (−∞,+∞] be
a proper closed convex function. The proximal operator or proximal map of f , first studied
independently by Moreau [51, 52, 53] and Rockafellar [61] (see [60, Section 1.H] for details and
historical notes), is the function proxf : E→ E given by

{proxf (x̄)} := arg min
x∈E

(
f(x) + 1

2‖x− x̄‖
2
2

)
, (5.5)

where ‖·‖2 is the norm induced by the inner product from E or the `2-norm on E. Since f is
proper and closed, and since the squared `2-norm is strongly convex (see Lemma 3.9.5), we know by

115

Lemma 3.9.14 that the above set is indeed a singleton. The name proximal comes from the fact that
if we use f := δ(· |X) for some closed set X ⊆ E, the point given by the proximal operator for x̄ ∈ E
is exactly (one of) the closest point(s) to x̄ in X (w.r.t. the `2-norm).

If we look more carefully at (5.5), we can see a clear intuition of the inner workings of proxf (x̄): it
tries to find a point that approximately minimizes f without going too far away from x̄. Interestingly,
if we want to find a point which is allowed to be closer (or farther) from x̄ when compared to
proxf (x̄) while still approximately minimizing f , it suffices to apply the proximal operator to a
positive multiple of f . To see this, note that for any λ ∈ R++ and x̄ ∈ E we have

{proxλf (x̄)} = arg min
x∈E

(
λf(x) +

1

2
‖x− x̄‖22

)
= arg min

x∈E

(
f(x) +

1

2λ
‖x− x̄‖22

)
.

Thus, if λ ∈ R++ is bigger than 1, the point proxλf (x̄) is allowed to be farther from x̄ than proxf (x̄).
In the same way, if λ ∈ R++ is smaller than 1, proxλf (x̄) is probably closer to x̄ than proxf (x̄). The
intuition on proximal operator we have discussed is close to the problem of minimizing f . Thus,
comes as no surprise that some of the proximal operator’s properties are closely related to the the
minimizers of f on E (if any). Indeed, the following proposition4 shows one (of the many) interesting
properties of the proximal map. It shows that the fixed points of proxf are exactly the minimizers
of f .

Proposition 5.3.1. Let f : E→ (−∞,+∞] be a proper closed convex function and let x̄ ∈ E. Then
proxf (x̄) = x̄ if and only if x̄ attains infx∈E f(x).

Proof. Suppose x̄ attains infx∈E f(x). Then, for every x ∈ E,

f(x) + 1
2‖x− x̄‖

2
2 ≥ f(x) ≥ f(x̄) = f(x̄) + 1

2‖x̄− x̄‖
2
2.

Suppose now that proxf (x̄) = x̄ and define h(x) := f(x) + 1
2‖x − x̄‖

2
2 for every x ∈ E. This way,

we have that x̄ attain infx∈E h(x). Note that x ∈ E 7→ 1
2‖x− x̄‖

2
2 is a differentiable function with

gradient x− x̄ at x ∈ E. Thus, by Theorems 3.5.4 and 3.5.5, for any x ∈ E we have

∂h(x) = ∂f(x) + x− x̄.

By the definition of subgradient, we have that x̄ attains infx∈E h(x) if and only if 0 ∈ ∂h(x̄) =
∂f(x̄) + x̄− x̄ = ∂f(x̄), that is, x̄ attains infx∈E f(x).

Since the idea behind proxf is to (at least approximately) minimize f , it is natural to ask whether
it can be applied to optimization. However, the proximal map itself is an optimization problem, and
if it is not efficiently solvable, it is of no help in optimizing f efficiently. Luckily, in many applications
of proximal operators there are efficient ways to compute this operator. One example is when the
function f to be minimized can be written as a sum of two functions, one differentiable but “hard”
to optimize over, and one non-smooth function but easier to handle in the proximal map. In this
case, one can handle the smooth function with a gradient step, the non-smooth part one handles by
computing the proximal map at the current iterate. This line of thought is not our focus here, but
one can find more information and related work in [57].

Another idea to make the proximal map proxf for a proper convex function f : E→ (−∞,+∞]
on a given point x̄ ∈ E useful in optimizing f even when we cannot compute proxf efficiently is to
substitute f by an approximation f̃ of f which is easier to handle. If f is subdifferentiable at x̄ and

4This proposition is not used in the remainder of the text, but it aids to build intuition about proximal operators.

116

g ∈ ∂f(x̄), then an intuitive approximation candidate is given by f̃(x) := f(x̄) + 〈g, x− x̄〉 for every
x ∈ E. With this function f̃ , we have

{proxf̃ (x̄)} = arg min
x∈E

(
〈g, x〉+ 1

2‖x− x̄‖
2
2

)
.

By the definition of subgradient, 0 must be a subgradient at proxf̃ (x̄) of the function being minimized
above. Since x ∈ E → 〈g, x〉 + 1

2‖x − x̄‖22 is a proper closed convex everywhere differentiable
function, by Theorem 3.5.5 we know that its only subgradient is its gradient. Thus, the gradient of
x ∈ E→ 〈g, x〉+ 1

2‖x− x̄‖
2
2 at proxf̃ (x̄) is 0, that is,

0 = g + proxf̃ (x̄)− x̄ ⇐⇒ proxf̃ (x̄) = x̄− g.

Therefore, the proximal map in this case is just a step in the direction of minus subgradient! Here
we used a step size of 1 for the sake of simplicity, but as we have discussed, one can just scale f̃ to
get a subgradient descent with an arbitrary positive step size.

In the above discussion, we have seen how to view a subgradient step from a point x for the
function f as the application of a proximal map based on a subgradient of f at x. Moreover, in the
previous section we have seen that the online subgradient descent algorithm is just a special case
of online mirror descent. Thus, one may ask if there is any generalized proximal operator which
generalizes many algorithms in a way similar to the way OMD generalizes many Online Convex
Optimization algorithms. Indeed, the first appearance of the proximal operator, which is exactly
the one we defined as proxf , uses the squared `2-norm as a way to measure distances. One possible
generalization replaces this norm with a distance-like function D : E × E → (−∞,+∞]. In this
way, the form of this generalized proximal operator when applied to a linear function5 〈g, ·〉 at a
point x̄ ∈ E is

arg min
x∈E

{〈g, x〉+D(x, x̄)}.

The next theorem shows that each iterate of the Adaptive OMD is given by a formula as the one
above, with the minimization taking place in the set X instead of the whole space. Additionally, the
distance-like functions used in the theorem seem incredibly intuitive given what we have already seen
about OMD: it is the Bregman divergence w.r.t. the mirror map at the current round. Moreover,
the proof of the next theorem follows the lines of the discussion we had above about the subgradient
step, that is, we just look at the optimality conditions of the generalized proximal step, and conclude
that the generalized proximal is exactly the Adaptive OMD step.

Theorem 5.3.2. Let C := (X,F) be an OCO instance such that X is closed and such that each
f ∈ F is a proper closed function which is subdifferentiable on X. Let R : Seq(F)→ (−∞,+∞]E

be a mirror map strategy for C, let ENEMY be an enemy oracle for C, and let T ∈ N. Define

(x,f) := OCOC(AdaOMDX
R,ENEMY, T)

and Rt :=

t∑
i=1

R(〈f1, . . . , ft−1〉), for each t ∈ [T].

Moreover, let gt ∈ ∂ft(xt) be the same as in the definition of AdaOMDX
R(f) on Algorithm 5.1 for

each t ∈ [T]. Set {x′1} := arg minx∈X R1(x) and define

{x′t+1} := arg min
x∈X

(
〈gt, x〉+BRt+1(x, x′t)

)
, ∀t ∈ {1, . . . , T − 1}. (5.6)

Then xt = x′t for each t ∈ [T].
5Recall that we saw in the discussion how the proximal applied to the linearized function yields the subgradient

step, not the proximal operator applied to the function itself.

117

Proof. Let us prove the statement by induction on t ∈ [T]. For t = 1 the statement holds by the
definitions of x1 and x′1. Let t ∈ {1, . . . , T − 1} and suppose xt = x′t. Define

yt+1 := ∇Rt+1(xt)− gt = ∇Rt+1(x′t)− gt.

By the definition of AdaOMDR on Algorithm 5.1, we have that xt+1 = Π
Rt+1

X (∇R∗t+1(yt+1)).
Proposition 5.1.3 states that, since Rt+1 is a mirror map for X, then R∗t+1 is differentiable on E and
Rt+1 is differentiable on ∇R∗t+1(yt+1) ∈ int(domRt+1). Thus, since (int(domRt+1)) ∩ ri(X) 6= ∅ by
the definition of mirror map, Lemma 3.11.4 yields

xt+1 = Π
Rt+1

X (∇R∗t+1(yt+1)) ⇐⇒ yt+1 −∇Rt+1(xt+1) ∈ NX(xt+1). (5.7)

Note that

yt+1 −∇Rt+1(xt+1) = ∇Rt+1(x′t)− gt −∇Rt+1(xt+1) = −gt − (∇BRt+1(·, x′t))(xt+1),

and the latter is minus the gradient of x ∈ E 7→ gTt x+BRt+1(x, x′t) at xt+1. Therefore, using (5.7)
with the above equation and by the optimality conditions from Theorem 3.6.2,

xt+1 = Π
Rt+1

X (∇R∗t+1(yt+1)) ⇐⇒ −(gt + (∇BRt+1(·, x′t))(xt+1)) ∈ NX(xt+1)

⇐⇒ xt+1 ∈ arg min
x∈X

(
〈gt, x〉+BRt+1(x, x′t)

)
.

This connection between Adaptive OMD and generalized proximal operators gives us yet another
intuitive view of online mirror descent. At round t, the algorithm minimizes, as much as possible,
the value of the linearized version of the function ft−1 played by enemy on the last round, but tries
to not pick a point too far from the last iterate w.r.t. the Bregman divergence based on the current
mirror map. In the next section, we will see that the Adaptive OMD can be seen as an application
of the Adaptive FTRL algorithm.

5.4 OMD Connection with FTRL and Regret Bounds

The form of a proximal operator is way closer to the minimization done by Follow the Regularized
Leader algorithms. Still, there are some key differences. For example, in the connection shown
between OMD and proximal operators, at each round we optimize only over the (linearized version
of the) last function played by the enemy. On the other hand, at each round FTRL algorithms
optimize over all the past functions played by the enemy. Still, note that OMD in proximal operator
form uses the point picked by the player in the last round, while FTRL look only at the functions
played by the enemy. Thus, we may still hope reduce one of them to the other.

Another interesting difference is that, unlike from the AdaFTRL oracle, the AdaOMD oracle
needs to explicitly receive the set X where the player is allowed to pick her points. In the case
of AdaFTRL this is not needed since adding the indicator function of a closed set X to the first
regularizer already makes the point picked to lie in X. In the case of the Adaptive OMD oracle, it is
not clear what is the effect of adding an indicator function to the mirror map since the gradients of
the regularizers play a major role in the iterate update rules of the oracle. Interestingly, the following
proposition says that, if we take strongly convex function plus the indicator function of a set X,
the gradient of its conjugate boils down to the gradient of the conjugate of the original function
projected onto X through a Bregman projection. The latter is exactly one of the steps done by the
Adaptive OMD oracle.

118

Proposition 5.4.1. Let X ⊆ E be a closed convex set and let R : E→ (−∞,+∞] be a mirror map
for X such that R is strongly convex on X. Finally, define RX := R + δ(· |X). Then, for every
x ∈ E,

∇R∗X(x) = ΠR
X(∇R∗(x)).

Proof. Note that the functions R∗ and R∗X are both differentiable everywhere, the former6 by the
properties of mirror maps given by Proposition 5.1.3 and the latter by Proposition 3.9.8 since
RX is actually strongly convex on E. Moreover, since int(domR) ∩ ri(X) is nonempty and since
∂(δ(· |X)(z) = NX(z) by Lemma 3.5.3, we have by Theorems 3.5.4 and 3.5.5 that, for every
z ∈ int(domR) ∩X,

NX(z) +∇R(z) = ∂(δ(· |X) +R)(z) = ∂RX(z). (5.8)

Finally, by (5.1.ii) from the mirror map definition, ΠR
X(∇R∗(x)) ∈ int(domR) ∩X. Therefore, for

any x ∈ E and z ∈ int(domR) ∩X,

z = ΠR
X(∇R∗(x)) ⇐⇒ x−∇R(z) ∈ NX(z) by Lemma 3.11.4,

⇐⇒ x ∈ ∂RX(z) by (5.8),
⇐⇒ z ∈ ∂R∗X(x) = {∇R∗X(x)} by Theorems 3.5.2 and 3.5.5.

The above proposition hints at the possibility of passing the restriction of the set X to the OMD
oracles through an indicator function added to the mirror map and make it more similar to a FTRL
algorithm. It only remains to look at the updates7 of the type

yt+1 = ∇R(xt)− gt (5.9)

from Algorithm 5.2, where R is a mirror map for a set X from an OCO instance C := (X,F).
However, at this point the universe stops its acts of kindness. If we define RX := R+ δ(· |X), then,
assuming that (ri(X))∩dom(riR) is nonempty, by Theorem 3.5.4 we have ∂RX(x) = ∇R(x)+NX(x)
for x ∈ domR. Since 0 is in in the normal cone of X at any point of X, we know that ∇R(x) is a
subgradient of RX at x, and thus EOMD might work as usual with such a mirror map if we use a
subgradient of the mirror map instead of its gradient in (5.9). However, without explicit knowledge
of the original mirror map R and of the indicator function of X, there is no way to know the “correct”
subgradient of RX to pick.

After the above discussion, one may guess that some connections between Adaptive OMD and
Adaptive FTRL will involve points from the normal cone of X. The following theorem shows one
connection in which this is exactly what happens.

Theorem 5.4.2. Let C := (X,F) be an OCO instance such that X is closed and such that each
f ∈ F is a proper closed function which is subdifferentiable on X. Let R : Seq(F)→ (−∞,+∞]E

be a mirror map strategy for C, let ENEMY be an enemy oracle for C, and let T ∈ N. Define

(x,f) := OCOC(AdaOMDX
R,ENEMY, T)

and rt := R(〈f1, . . . , ft−1〉) for each t ∈ {1, . . . , T + 1}.
6At first sight, one may think that the differentiability of R∗ is a consequence Proposition 3.9.8 as well. Note,

however, that R is strongly convex only on a subset X of E, and Proposition 3.9.8 only applies to functions which are
strongly convex on the whole euclidean space. For FTRL regularizers this was never an issue since we already needed
to add the indicator function of the set X ⊆ Rd where the player could pick her points and on which, usually, the
regularizer was strongly convex.

7We will look at the EOMD oracle for the sake of simplicity, but the same discussion holds for the AdaOMD oracle.

119

Moreover, let gt ∈ ∂ft(xt) be the same as in the definition of AdaOMDX
R(f1:t) on Algorithm 5.1 for

each t ∈ [T]. Then, there is pt ∈ NX(xt) for each t ∈ [T] such that, for every t ∈ [T], both infima

inf
x∈X

(t−1∑
i=1

〈gi, x〉+ r1(x) +
t−1∑
i=1

(Bri+1(x, xi) + 〈pi, x〉)
)
and (5.10)

inf
x∈E

(t−1∑
i=1

〈gi, x〉+ r1(x) + 〈pt, x〉+

t−1∑
i=1

(Bri+1(x, xi) + 〈pi, x〉)
)

(5.11)

are attained only by xt. In particular, if we define R′ : Seq(F)→ (−∞,+∞]E by

R′(〈〉) := r1 + 〈p1, ·〉+ δ(· |X)

and by
R′(f) := Brt+1(·, xt) + 〈pt+1, ·〉, ∀f ∈ F t,∀t ∈ {1, . . . , T − 1},

and define ht := 〈gt, ·〉 for each t ∈ [T], then AdaOMDX
R(f1:t−1) = AdaFTRLR′(h1:t−1) for each

round t ∈ [T].

Proof. Set xT+1 := AdaOMDX
R(f) and define p1, . . . , pT ∈ E, in order, by

pt = −
(t−1∑
i=1

gi +∇r1(xt) +
t−1∑
i=1

(∇ri+1(xt)−∇ri+1(xi) + pi)
)
, ∀t ∈ [T].

First, let us show that
(5.12)pt ∈ NX(xt) for each t ∈ [T] and xt is the unique point that attains the infimum

in (5.10) for each t ∈ {1, . . . , T + 1}.
Let us prove (5.12) by induction on T ∈ N. For T = 0, we have that (5.10) for t = 0 is infx∈X r1(x).
By (5.1.ii) the latter infimum is attained, and x1 ∈ arg minx∈X r1(x) by the definition of the
AdaOMDX

R oracle. Let T ∈ N \ {0}. By induction hypothesis, (5.12) holds for T − 1, that is, the
points p1, . . . , pT−1 are in normal cones as described in (5.12). Thus, we have that

{xT } = arg min
x∈X

(T−1∑
t=1

〈gt, x〉+ r1(x) +

T−1∑
t=1

(Brt+1(x, xt) + 〈pt, x〉)
)

Define H(x) :=
(∑T−1

t=1 〈gt, x〉 + r1(x) +
∑T−1

t=1 (Brt+1(x, xt) + 〈pt, x〉)
)
for every x ∈ E. Set D :=

int(dom rT) (which is nonempty and is such that D = int(dom rt) for t ∈ [T] by the definition of
mirror map strategy). One can easily see that int(domH) = D since H is the sum of Bregman
divergences w.r.t. the regularizer increments and linear functions. Since (ri(X)) ∩ D 6= ∅ (by
the definition of mirror map strategy) we can use the optimality conditions from Theorem 3.6.2.
That is, xT attains infx∈X H(x) if and only if (−∂H(xT)) ∩NX(xT) is nonempty. Since xT ∈ D
by the guarantees of the AdaOMDX

R oracle, we have that rt is differentiable at xT for each t ∈ [T].
Therefore, H is differentiable at xT , and by Theorem 3.5.5 we have ∂H(xT) = {∇H(xT)}. Therefore,
xT attains infx∈X H(X) if and only if

−
(T−1∑
t=1

gt +∇r1(xT) +
T−1∑
t=1

(∇rt+1(xT)−∇rt+1(xt) + pt)
)

= −∇H(x) ∈ NX(xT).

120

Since the left-hand side of the above equation if exactly pT from (5.4), we conclude that pT ∈ NX(xT).
It only remains to show that xT+1 is the unique point that attains the infimum in (5.10) with t = T+1.
To see this, first note that

T−1∑
t=1

gt +∇r1(xT) + pT +

T−1∑
t=1

(∇rt+1(xT)−∇rt+1(xt) + pt) = 0

⇐⇒
T−1∑
t=1

gt +∇r1(xT) +

T∑
t=1

(∇rt+1(xT)−∇rt+1(xt) + pt) = 0

⇐⇒
T+1∑
t=1

∇rt(xT) =

T∑
t=1

∇rt+1(xt)−
T−1∑
t=1

gt −
T∑
t=1

pt.

Define

RT+1 :=
T+1∑
t=1

rt and s :=
T∑
t=1

gt +
T∑
t=1

pt.

Since ∇RT+1(xT) =
∑T+1

t=1 ∇rt(xT), we have

∇RT+1(xT) =
T∑
t=1

∇rt+1(xt)−
T−1∑
t=1

gt −
T∑
t=1

pt =
T∑
t=1

∇rt+1(xt)− s+ gT . (5.13)

Moreover, recall that by Theorem 5.3.2,

{xT+1} = arg min
x∈X

(〈gT , x〉+BRT+1
(x, xT)).

Finally, note that, for any x ∈ E,

〈gT , x〉+BRT+1
(x, xT) = 〈gT , x〉+RT+1(x)−RT+1(xT)− 〈∇RT+1(xT), x− xT 〉

(5.13)
= 〈gT , x〉+RT+1(x)−RT+1(xT)−

T∑
t=1

〈∇rt+1(xt), x− xT 〉+ 〈s, x− xT 〉 − 〈gT , x− xT 〉

= r1(x)− r1(xT) +

T∑
t=1

(rt+1(x)− rt+1(xT)− 〈∇rt+1(xt), x− xT 〉) + 〈s, x− xT 〉+ 〈gT , xT 〉

= r1(x)− r1(xT) +

T∑
t=1

(
Brt+1(x, xt)− rt+1(xT)− rt+1(xt) + 〈∇rt+1(xt), xT − xt〉

)
+ 〈s, x− xT 〉+ 〈gT , xT 〉.

Therefore, by ignoring the terms which do not depend on x in the above equation (since they do not
affect which points attain the minimum for x ∈ X), we conclude that

{xT+1} = arg min
x∈X

(〈gT , x〉+BRT+1
(x, xT)) = arg min

x∈X

(
r1(x) +

T∑
t=1

Brt+1(x, xt) + 〈s, x〉
)
,

and the right-hand side of the above equation is exactly the set of points which attain (5.10) for
t = T + 1 by the definition of s. This finishes the proof of (5.12).

121

Finally, let us show that xt attains (5.11) for each t ∈ [T] using p1, . . . , pT ∈ E as in (5.4). Let
t ∈ [T] and define

F (x) := 〈pt, x〉+
(t−1∑
i=1

〈gi, x〉+ r1(x) +
t−1∑
i=1

(Bri+1(x, xi) + 〈pi, x〉)
)
.

Let us show that xt attains infx∈X F (x). Since xt ∈ D, we have that ri is differentiable at xt for
every i ∈ [t]. Hence, F is also differentiable at xt. Thus, by the form of pt from (5.12) we have

∇F (xt) = pt +
(t−1∑
i=1

gi +∇r1(xt) +
t−1∑
i=1

(∇ri+1(xt)−∇ri+1(xi) + pi)
) (5.12)

= 0,

that is∇F (xt) = 0. Since ∂F (xt) = {∇F (xt)} by Theorem 3.5.5, we have 0 ∈ ∂F (xt), which happens
if and only if xt ∈ arg minx∈E F (x). Moreover, since F is strictly convex (since r1, . . . , rt are strongly
convex), we have {xt} = arg minx∈E F (x). That is, xt is the unique point that attains infx∈E F (x).

In particular, if we define R′ and h ∈ (RE)T as in the statement, for every t ∈ [T] we have

{AdaFTRLR′(h1:t−1)} = arg min
x∈E

(t−1∑
i=1

hi(x) +
t∑
i=1

R′(h1:i−1)
)

= arg min
x∈X

(t−1∑
i=1

〈gi, x〉+ r1(x) + 〈p1, x〉+

t∑
i=2

(Bri(x, xi−1) + 〈pi, x〉)
)

= arg min
x∈X

(t−1∑
i=1

〈gi, x〉+ r1(x) + 〈pt, x〉+

t−1∑
i=1

(Bri+1(x, xi) + 〈pi, x〉)
)

= {AdaOMDX
R(f1:t−1)},

where in the last equation we used that the infimum in (5.11) is attained by the same point if we
add δ(· |X) to it.

The above theorem states that the Adaptive OMD algorithm can be seen as the application
of the Adaptive FTRL algorithm with a very interesting proximal regularizer strategy. At each
round t, the regularizer increment of the AdaFTRL oracle is a Bregman divergence w.r.t. the t-th
increment from the original mirror map strategy. Not only that, there are some special vectors from
the normal cone of the set X from where the player picks her points that crawl up in the FTRL
formula. Intuitively, they skew a bit the minimization formula of the original AdaFTRL oracle so
that the iterates match the ones of the AdaOMD oracle. Intuitively, this is the part that accounts
for the possibility of choice of subgradient from the mirror map plus the indicator function we had
discussed in our hypothetical version of AdaOMD.

Moreover, note that the infimum (5.11) is unfair in the sense the it “looks into the future”. To
decide the iterate xt+1 from round t+ 1 it needs the point on the normal cone of X at xt+1. Even
though this formula is not pratically implementable, it will help us in deriving regret bounds for
AdaOMD from the tools we have developed on Chapter 4. Specifically, the following theorem applies
the lemmas from Section 4.3 in a way very similar to the way we did to derive regret bounds for
AdaFTRL from Section 4.4. Unfortunately, just blindly applying one of the theorems to the above
FTRL regularizer strategies does not yield the regret bounds that we want. If we do so, the points
in the normal cone crawl into the bound in undesired ways: either inside the dual norms together
with the subgradients, or in the regret formula in not very desirable ways.

122

Finally, it is worth saying that this section is far from showing one the simplest ways to derive
regret bound for the Adaptive OMD algorithm. The reason we are showing these connections (mainly
based on the work of McMahan [48]) is two-fold. First, one of the main purposes of this text is to
analyze the connections among many algorithms from Online Convex Optimization, a interesting
fact which will be better discussed on Chapter 7. Second, some proofs of OMD regret bounds rely
on potential functions (e.g., see [11]) or other smart tricks. This proof is, arguably, more “automatic”
in the sense that we just apply what we already know, without major secrets and tricks.

Theorem 5.4.3. Let C := (X,F) be an OCO instance such that X is closed and such that each
f ∈ F is a proper closed function which is subdifferentiable on X. Let R : Seq(F)→ (−∞,+∞]E be
a mirror map strategy for C, let ENEMY be an enemy oracle for C, and let T ∈ N. Moreover, define

(x,f) := OCOC(AdaOMDX
R,ENEMY, T),

rt := R(〈f1, . . . , ft−1〉), for each t ∈ [T],

x0 := x1, and r0 := r1.

Finally, let gt ∈ ∂ft(xt) be the same as in the definition of AdaOMDX
R(f) on Algorithm 5.1 for

each t ∈ [T]. If for every t ∈ [T] there is σt ∈ R++ such that
∑t

i=1 ri is σt-strongly convex w.r.t. a
norm ‖·‖(t) on X, then,

Regret(AdaOMDX
R,f , u) ≤

T+1∑
t=1

Brt(u, xt−1) +
1

2

T∑
t=1

1

σt+1
‖gt‖2(t+1),∗, ∀u ∈ X.

Proof. Define ht := 〈gt, ·〉 for each t ∈ [T], define xT+1 := AdaOMDX
R(f), and let u ∈ X. By8

Theorem 5.4.2, there are pt ∈ NX(xt) for each t ∈ {1, . . . , T + 1} such that, if we define R′ : F →
(−∞,+∞]E by R′(〈〉) := r1 + 〈p1, ·〉+ δ(· |X) and by

R′(f) := Brt+1(·, xt) + 〈pt+1, ·〉, ∀f ∈ F t,∀t ∈ [T],

then, AdaOMDX
R(f1:t−1) = AdaFTRLR′(h1:t−1) for each t ∈ {1, . . . , T + 1}. Therefore, using the

subgradient inequality we have,

Regret(AdaOMDX
R,f , u) =

T∑
t=1

(ft(xt)− ft(u)) ≤
T∑
t=1

〈gt, xt − u〉 =

T∑
t=1

(ht(xt)− ht(u))

= Regret(AdaFTRLR′ ,h, u).

Make the following definitions:

bt := Brt(·, xt−1) for each t ∈ {2, . . . , T + 1},
b1 := r1 + δ(· |X),

Ht :=
t∑
i=1

hi +
t+1∑
i=1

(bi + 〈pi, ·〉) for each t ∈ [T],

x0 := x1.

8We use Theorem 5.4.2 for a game with T + 1 rounds so that it yields the point pT+1 ∈ NX(xT+1) that we use in
this proof.

123

By Lemma 4.3.1 we have

Regret(AdaFTRLR′ ,h, u) ≤
T+1∑
t=1

(bt(u)− bt(xt−1)) +

T∑
t=0

〈pt+1, u− xt〉+

T∑
t=1

(Ht(xt)−Ht(xt+1))

≤
T+1∑
t=1

(bt(u)− bt(xt−1)) +

T∑
t=1

〈pt+1, u− xt〉+

T∑
t=1

(Ht(xt)−Ht(xt+1)),

(5.14)

where in the last inequality we have used that 〈p1, u − x0〉 = 〈p1, u − x1〉 ≤ 0 since p1 ∈ NX(x1)
and u ∈ X. Let us now show that

Ht(xt)−Ht(xt+1) ≤ 1

2σt+1
‖gt‖2(t+1),∗ + 〈pt+1, xt − xt+1〉, ∀t ∈ [T]. (5.15)

Let t ∈ [T]. Since domht = E and since Ht−1 + bt+1 is proper, we have that ri(dom(Ht−1 + bt+1))∩
ri(domht) is nonempty. Moreover, xt ∈ arg minx∈E(Ht−1(x) + bt+1(x)) since xt minimizes Ht−1

by the definition of AdaFTRL and clearly minimizes bt+1 = Brt+1(·, xt). Finally, since
∑t+1

i=1 ri is
σt+1-strongly convex (w.r.t. ‖·‖(t+1)) on X, the function

∑t+1
i=1 bi is also σt+1-strongly convex on X

(see Lemma 3.11.2), but since dom(
∑t+1

i=1 bi) ⊆ X, we have that
∑t+1

i=1 bi is actually σt+1-strongly
convex on E. This implies that Ht−1 +bt+1 is also is σt+1-strongly convex. Therefore, by Lemma 4.3.2
and since ∇ht(x) = gt for every x ∈ E, we have

Ht(xt)−Ht(xt+1) = Ht−1(xt) + bt+1(xt) + ht(xt)− (Ht−1(xt+1) + bt+1(xt+1) + ht(xt+1))

+ 〈pt+1, xt − xt+1〉

≤ 1

2σt+1
‖gt‖2(t+1),∗ + 〈pt+1, xt − xt+1〉.

This ends the proof of (5.15). Putting together (5.14) and (5.15) yields

Regret(AdaFTRLR′ ,h, u) ≤
T+1∑
t=1

(bt(u)− bt(xt−1)) +

T∑
t=1

〈pt+1, u− xt〉+

T∑
t=1

(Ht(xt)−Ht(xt+1))

≤
T+1∑
t=1

(bt(u)− bt(xt−1)) +

T∑
t=1

〈pt+1, u− xt+1〉+

T∑
t=1

1

2σt+1
‖gt‖(t+1),∗

≤
T+1∑
t=1

(bt(u)− bt(xt−1)) +

T∑
t=1

1

2σt+1
‖gt‖(t+1),∗

=

T+1∑
t=1

Brt(u, xt−1) +

T∑
t=1

1

2σt+1
‖gt‖(t+1),∗,

where in the second inequality we have used that, 〈pt+1, u − xt+1〉 ≤ 0 for every t ∈ [T] since
pt+1 ∈ NX(xt+1) and u ∈ X, and in the last equation we have used the definition of bt for
t ∈ {1, . . . , T + 1} and the fact that r1(u) − r1(x1) ≤ Br1(u, x1) since ∇r1(x1) ∈ NX(x1) and,
thus, 〈∇r1(x1), u− x1〉 ≤ 0.

Recall that if R is a mirror map for a convex and closed set X and C := (X,F) is an OCO
instance, then R : Seq(F)→ (−∞,+∞]E given by R(f) := [f 6= 〈〉]R is a mirror map strategy for C.
Thus, an immediate corollary of the above theorem together with Theorem 3.8.4 is a regret bound
for the EOMD oracle which matches the regret bound of the classic FTRL algorithm.

124

Corollary 5.4.4 (Derived from Theorem 5.4.3). Let C := (X,F) be an OCO instance such that X
is closed and such that each f ∈ F is a proper closed function which is subdifferentiable on X . Let
R : (−∞,+∞]→ E be a mirror map for X, let ENEMY be an enemy oracle for C, and let T ∈ N.
Moreover, define

(x,f) := OCOC(AdaOMDX
R,ENEMY, T),

Finally, let gt ∈ ∂ft(xt) be as in the definition of EOMDX
R (f) on Algorithm 5.2 for each t ∈ [T]. If

σ ∈ R++ is such that R is σ-strongly convex w.r.t. a norm ‖·‖ on E, then,

Regret(EOMDX
R ,f , u) ≤ BR(u, x1) +

1

2σ

T∑
t=1

‖gt‖2∗, ∀u ∈ X, (5.16)

where x0 := x1. In particular, if every function in F is ρ-Lipschitz continuous w.r.t. ‖·‖ on a convex set
D ⊆ E such thatX ⊆ int(D), there is θ ∈ R++ such that θ ≥ sup{BR(, yy) : x ∈ X, y ∈ X ∩ int(domR)},
and R′ :=

(
ρ
√
T/(
√

2σθ)
)
R is also a mirror map for X, then

Regret(EOMDX
R′ ,ENEMY, X) ≤ ρ

√
2θT

σ
.

Proof. Note that EOMDX
R = AdaOMDR where R is given by R(f) := [f = 〈〉]R for every f ∈

Seq((−∞,+∞]E). Moreover, since R is mirror map for X, R is a mirror map strategy for C.
Therefore, the first inequality is a direct application of Theorem 5.4.3 together with the fact the R is
σ-strongly convex on X w.r.t. ‖·‖.

If each f ∈ F is ρ-Lipschitz continuous w.r.t. ‖·‖ on a convex set D such that X ⊆ int(D), then
by Theorem 3.8.4 we have that ∂f(x) ⊆ { g ∈ E : ‖g‖∗ ≤ ρ} for each f ∈ F and x ∈ X. Using this
in (5.16) yields

RegretT (EOMDX
R ,ENEMY, u) ≤ BR(u, x1) +

Tρ2

2σ
.

Moreover, suppose there is θ ∈ R++ such that θ ≥ sup{R(x)−R(y) : x ∈ X, y ∈ X ∩ domR}, and
define

R′ :=
ρ
√
T√

2σθ
R.

Note that R′ is a (ρ
√
σT/
√

2θ)-strongly convex on X. Finally, suppose R′ is also a mirror map.
Then, plugging R′ into the above inequality yields, for every u ∈ X,

RegretT (EOMDX
R′ ,ENEMY, u) ≤ ρ

√
T√

2σθ
BR(u, x1) +

ρ
√
θT√
2σ
≤ ρ
√
θT√
2σ

+
ρ
√
θT√
2σ

= ρ

√
2θT

σ
,

where in the second inequality we took the supremum over u ∈ X.

5.5 Dual Averaging or Lazy Online Mirror Descent

In this section, we look at a variation of the Adaptive Online Mirror Descent oracle. In the original
mirror descent algorithm, the step on direction of minus subgradient on round t is done from
∇Rt(xt−1), where Rt is the mirror map of round t and xt−1 is the point picked by the oracle on
round t−1 as in Algorithm 5.1. Note that before making this subgradient step, we had just projected

125

yt−1 (as defined in Algorithm 5.1) back into the primal through the Bregman projection to get
xt−1. Thus, one may wonder what happens if we are lazy and make the subgradient step directly
from yt instead of computing the gradient of Rt+1 at xt to only then make a subgradient step from
∇Rt+1(xt). Avoiding the computation of the gradient of the mirror map at every round (even though
the algorithm still has to project the iterate from the dual to the primal space) may yield a drastic
improvement in the time needed to compute each round in a practical implementation. This is exactly
the idea of the Adaptive Dual Averaging (Adaptive DA or AdaDA) or Adaptive Lazy Online
Mirror Descent algorithm. On Algorithm 5.3 we define the AdaDA oracle, which implements
this algorithm. Moreover, on Figure 5.2 we present an schematic view of the computations done
by AdaDA on round t + 1 (one may find it useful to compare this figure with Figure 5.1). The
name Dual Averaging comes originally from the static version of this algorithm for classic convex
optimization [56] (though it is not originally presented in the same way as presented in Algorithm 5.3).

Algorithm 5.3 Definition of AdaDAX
R
(
〈f1, . . . , fT 〉

)
Input:

(i) A closed convex set X ⊆ E,
(ii) Convex functions f1, . . . , fT ∈ F for some T ∈ N and set of convex functions F ⊆ (−∞,+∞]E

such that ft is subdifferentiable on X for each t ∈ [T],

(iii) R : Seq(F)→ (−∞,+∞]E is a mirror map strategy for the OCO instance (X,F) which is
differentiable on the open convex set D ⊆ E.

Output: xT+1 ∈ D ∩X
r1 ← R(〈〉)
{x1} ← arg minx∈X r1(x)
y1 ← 0.
for t = 1 to T do

. Computations for round t+ 1
Define rt+1 := R(〈f1, . . . , ft〉) and Rt+1 :=

∑t+1
i=1 ri

yt+1 := yt − gt, where gt ∈ ∂ft(xt)
xt+1 := Π

Rt+1

X (∇R∗t+1(yt+1))
return xT+1

One may note that, as for the AdaOMD oracle, we pass the set X ⊆ E where the player is
supposed to pick her points as a parameter for AdaDA. However, one may note that this is not
necessary due to Proposition 5.4.1, which says that using a mirror map strategy plus the indicator
function of X as a new mirror map renders the Bregman projection unnecessary. Still, we found
that presenting the AdaDA oracle in the way most similar to the AdaOMD oracle is informative.

Finally, one may recall from the last section that making, at each round, a subgradient step from
the gradient of R computed at the previous iterate was one of the sources of complications in writing
the Adaptive OMD as an application of the Adaptive FTRL oracle. Thus, we may hope the AdaDA
oracle to have a much cleaner connection with AdaFTRL if compared to AdaOMD. The following
theorem shows that this is indeed the case.

Theorem 5.5.1. Let C := (X,F) be an OCO instance such that X is closed and such that each
f ∈ F is proper and closed. Let R : Seq(F) → (−∞,+∞]E be a mirror map strategy for C, let

126

PrimalDual
(previous round)

Figure 5.2: Graphic representation of the computations done by AdaDA on round t+ 1.

ENEMY be an enemy oracle for C and let T ∈ N. Define

(x,f) := OCOC(AdaDAX
R,ENEMY, T),

xT+1 := AdaDAX
R(f),

and Rt :=

t∑
i=1

R(〈f1, . . . , fi−1〉) for each t ∈ {1, . . . , T + 1}.

Moreover, let gt ∈ ∂ft(xt) be the same as in the definition of AdaDAX
R(f) on Algorithm 5.3 for

each t ∈ [T]. If Rt is strongly convex9 on X for each t ∈ {1, . . . , T + 1}, then,

{xt} = arg min
x∈X

(t−1∑
i=1

〈gi, x〉+Rt(x)
)

(5.17)

for each t ∈ {1, . . . , T + 1}. Additionally set Fg := { f ∈ F : g ∈ ∂f(x) for some x ∈ X} for each
g ∈ E and L := { 〈g, ·〉 : g ∈ E s.t. Fg 6= ∅}. Moreover, for every h ∈ L and for gh := ∇h(0) (that is,
h = 〈gh, ·〉), set

fh :=

{
ft if gh = gt for some t ∈ [T],

some f ∈ Fgh otherwise,
∀h ∈ L.

Finally, define
R′(h) := R(〈fh1 , fh2 , . . . , fht〉) + δ(· |X) ∀h ∈ Lt,∀t ∈ N.

In this case, R′ is a FTRL regularizer strategy for C′ := (X,L) and

AdaDAX
R(f1:t−1) = AdaFTRLR′(〈〈g1, ·〉, . . . , 〈gt−1, ·〉〉) ∀t ∈ {1, . . . , T + 1}.

Proof. Let t ∈ [T] and let yt ∈ E be as in the definition of AdaDAX
R(f) in Algorithm 5.3. Since

y1 = 0, by an easy induction one can see that yt =
∑t−1

i=1 gi. By the definition of AdaDA in
9We need this assumption in order to apply Proposition 5.4.1.

127

Algorithm 5.3 we have that xt = ΠRt
X (∇R∗t (yt)). Since Rt is strongly convex on X, by Lemma 3.11.4

we have xt = ∇P ∗t (yt), where Pt := Rt + δ(· |X). Since Rt and δ(· |X) are closed (recall that X is
closed), by Theorem 3.2.7 we know that Pt is closed. Therefore, by the properties of subgradients
from Theorem 3.5.2 (namely items (ii) and (v)), and since {∇P ∗t (xt)} = ∂P ∗t (xt) by Theorem 3.5.5,
we have

xt = ∇P ∗t (yt) ⇐⇒ {xt} = arg max
x∈E

(〈yt, x〉 − Pt(x)) = arg min
x∈X

(t−1∑
i=1

〈gi, x〉+Rt(x))
)
.

In particular, define R′ as in the statement of the theorem. Let us first show that

R′ is a FTRL regularizer strategy for C′. (5.18)

Let T ′ ∈ N, let h ∈ LT ′ , and set R′ :=
∑T ′+1

t=1 R′(h1:t−1). Since R is a mirror map, since X is closed,
and since the sum of closed and convex functions is also closed and convex by Theorem 3.2.7, we
clearly have that R′(h) is a closed proper convex function, that is, R′ satisfies condition (4.5.i) of a
FTRL regularizer strategy for C′. Thus, we only need to show that R is a classical FTRL regularizer
for C′. With the same arguments we have just used, it is easy to see that R is a proper closed convex
function, that is, it satisfies property (4.4.i) of a FTRL regularizer for C. Moreover, we clearly have
domR ⊆ X, which is condition (4.4.ii) of a FTRL regularizer C′. Let T ′′ ∈ N and h′′ ∈ LT ′′ . Note
that by assumption we have that each mirror map increment R is strongly convex on X. Thus,
R is strongly convex on E, which implies that R+

∑T ′′

t=1 h
′′
t is strongly convex on E and closed by

Theorem 3.2.7 since it is the sum of closed and convex functions. Therefore, by Lemma 3.9.14 we
know that infx∈E(R+

∑T ′′

t=1 h
′′
t) is attained, which finishes that proof of (5.18). Finally, note that

for every t ∈ {1, . . . , T + 1} we have

{xt} = arg min
x∈X

(t−1∑
i=1

〈gi, x〉+Rt(x)
)

= arg min
x∈E

(t−1∑
i=1

〈gi, x〉+
t∑
i=1

([
R(〈f1, . . . , fi−1〉)

]
(x) + δ(x |X)

))
= arg min

x∈E

(t−1∑
i=1

〈gi, x〉+

t∑
i=1

[
R′
(
〈〈g1, ·〉, . . . , 〈gi−1, ·〉〉

)]
(x)
)

= AdaFTRLR′
(
〈〈g1, ·〉, . . . , 〈gt−1, ·〉〉

)
.

The above theorem tell us something very interesting: Adaptive Dual Averaging with mirror map
R is closely related (actually, almost equivalent) to the Adaptive FTRL algorithm with regularizer
strategy R with δ(· |X) added to each mirror map increment applied to the linearized versions of the
functions played by the enemy. The name Dual Averaging stems exactly from the equation between
AdaDA and AdaFTRL given by the above theorem. Indeed, on the application of AdaFTRL on the
above theorem we are minimizing over the set X the linear function given by the average10 of the
subgradients of the past functions plus a regularizer function.

This simplification done by the Adaptive Dual Averaging algorithm when compared to the
Adaptive Online Mirror Descent does not come without its costs. Note that, by the last theorem,
AdaDA works like a general FTRL algorithm, while AdaOMD works as a proximal FTRL algorithm.

10Even though we are looking at the sum of the subgradients at the formula, recall that we can scale the regularizer
to effectively normalize this sum.

128

As discussed on Section 4.7, this may influence the efficiency or the amount of previous information
needed by the oracle in some cases. We will look more carefully at some of these cases on Chapter 6.

Given such a clean connection of the Adaptive Dual Averaging algorithm and the Adaptive FTRL
algorithm, it is of no surprise that regret bounds for the AdaFTRL oracle directly imply regret
bound for AdaDA, as we show in the next corollary.

Corollary 5.5.2 (Derived from Theorems 4.4.3 and 5.5.1). Let C := (X,F) be an OCO instance
such that X is closed and such that each f ∈ F is a proper closed function which is subdifferentiable
on X. Let R : Seq(F) → (−∞,+∞]E be a mirror map strategy for C, let ENEMY be an enemy
oracle for C, and let T ∈ N. Moreover, define

(x,f) := OCOC(AdaDAX
R,ENEMY, T),

rt := R(〈f1, . . . , ft−1〉), for each t ∈ [T].

Rt :=
t∑
i=1

ri, for each t ∈ [T].

Finally, let gt ∈ ∂ft(xt) be as in the definition of AdaDAX
R(〈f1, . . . , ft〉) on Algorithm 5.3 for each

t ∈ [T], and suppose for each t ∈ [T] there are σt ∈ R++ and a norm ‖·‖(t) on E such that Rt is
σt-strongly convex w.r.t. ‖·‖(t) on E. Then,

Regret(AdaDAX
R,f , u) ≤

T∑
t=1

(rt(u)− rt(xt)) +
1

2

T∑
t=1

1

σt
‖gt‖2(t),∗.

Proof. Define ht := 〈gt, ·〉 for each t ∈ [T], set L := { 〈g, ·〉 : f ∈ F , x ∈ X, g ∈ ∂f(x)}, and define the
OCO instance C′ := (X,L). By Theorem 5.5.1, we know that there is a FTRL regularizer strategy R′
for C′ such that xt = AdaFTRLR′(〈h1, . . . , ht−1〉) for every t ∈ [T]. Therefore, by the subgradient
inequality, for every u ∈ X we have

Regret(AdaDAX
R,f , u) =

T∑
t=1

(ft(xt)−ft(u)) ≤
T∑
t=1

〈gt, xt−u〉 = Regret(AdaFTRLR′ ,h, u). (5.19)

Moreover, by the definition of R′ (see Theorem 5.5.1), we have

t∑
i=1

R′(h1:i−1) =

t∑
i=1

R(f1:i−1) + δ(· |X) = Rt + δ(· |X), ∀t ∈ [T]

Since Rt is σt-strongly convex w.r.t. the norm ‖·‖(t) on E for every t ∈ [T], we have that R′ is
σ-strong11 for h w.r.t. ‖·‖1, . . . , ‖·‖T , where σ := 〈σ1, . . . , σt〉. Finally, since ∇ht(xt) = gt for
each t ∈ [T], by the general AdaFTRL regret bound from Theorem 4.4.3 we have, for every u ∈ X,

Regret(AdaFTRLR′ ,h, u) ≤
T∑
t=1

(rt(u)− rt(xt)) +
1

2

T∑
t=1

1

σt
‖gt‖2(t),∗.

In a way similar to what we have done for the AdaFTRL and AdaOMD algorithms, let us look
at a version of AdaDA with a static regularizer, which we call (classical) Lazy Online Mirror
Descent. We define an oracle which implements this algorithm in Algorithm 5.4.

11Note that the condition on the relative interior of the regularizer and the functions in L is trivially satisfied since
all functions in L are finite everywhere.

129

Algorithm 5.4 Definition of LOMDX
R

(
〈f1, . . . , fT 〉

)
Input:

(i) A closed convex set X ⊆ E;
(ii) Convex functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]E such that fi is

subdifferentiable on X for each i ∈ [T];

(iii) A mirror map R : E→ (−∞,+∞] for (X,F).
Output: xT+1 ∈ int(domR) ∩X
{x1} ← arg minx∈X R(x)
y1 ← 0.
for t = 1 to T do

. Computations for round t+ 1
Compute gt ∈ ∂ft(xt)
yt+1 ← yt − gt
xt+1 ← ΠR

X(∇R∗(yt+1))
return xT+1

Corollary 5.5.3 (Derived from Corollary 5.5.2). Let C := (X,F) be an OCO instance such that X
is closed and such that each f ∈ F is a proper closed function which is subdifferentiable on X. Let
R : E→ (−∞,+∞] be a mirror map for X, let ENEMY be an enemy oracle for C, and let T ∈ N.
Moreover, define

(x,f) := OCOC(LOMDX
R ,ENEMY, T).

Finally, let gt ∈ ∂ft(xt) be as in the definition of LOMDX
R (f) on Algorithm 5.4 for each t ∈ [T] and

suppose there is σ ∈ R++ and a norm ‖·‖ on E such that R is σ-strongly convex w.r.t. ‖·‖ on X.
Then,

Regret(LOMDX
R ,f , u) ≤ R(u)−R(x1) +

1

2σ

T∑
t=1

‖gt‖2∗, ∀u ∈ X, (5.20)

In particular, if every function in F is ρ-Lipschitz continuous w.r.t. ‖·‖ on a convex set D ⊆ E such
that X ⊆ intD, if there is θ ∈ R++ such that θ ≥ sup{B(x, y) : x ∈ X, y ∈ X ∩ domR}, and if
R′ :=

(
ρ
√
T/(
√

2σθ)
)
R is also a mirror map for X, then

RegretT (LOMDR′ ,ENEMY, X) ≤ ρ
√

2θT

σ
.

Proof. Note that LOMDR = AdaDAR where R is given by R(f) := [f = 〈〉]R for every f ∈
Seq((−∞,+∞]E). Moreover, since R is mirror map for X, R is a mirror map strategy for C.
Therefore, the first inequality is a direct application of Corollary 5.5.2 together with the fact the R
is σ-strongly convex on X w.r.t. ‖·‖.

If each f ∈ F is ρ-Lipschitz continuous w.r.t. ‖·‖ on a convex set D such that X ⊆ intD, then
by Theorem 3.8.4 we have that ∂f(x) ⊆ { g ∈ E : ‖g‖∗ ≤ ρ} for each f ∈ F and x ∈ X. Using this
in (5.20) and the fact that minx∈ER(x) = R(x1) yields

RegretT (LOMDR,ENEMY, u) ≤ R(u)−min
x∈X

R(x) +
Tρ2

2σ
.

Moreover, suppose there is θ ∈ R++ such that θ ≥ sup{R(x)−R(y) : x ∈ X, y ∈ X ∩ domR}, and
define

R′ :=
ρ
√
T√

2σθ
R.

130

Note that R′ is a (ρ
√
σT/
√

2θ)-strongly convex on X. Suppose R′ is also a mirror map. Then,
plugging R′ into the above inequality yields, for every u ∈ X,

RegretT (LOMDR′ ,ENEMY, u) ≤ ρ
√
T√

2σθ
(R(u)−min

x∈X
R(x)) +

ρ
√
θT√
2σ
≤ ρ
√
θT√
2σ

+
ρ
√
θT√
2σ

= ρ

√
2θT

σ
,

where in the second inequality we took the supremum over u ∈ X.

5.6 When Lazy and Eager OMD are Equivalent

The eager and lazy versions of online mirror descent (see Algorithms 5.2 and 5.4) are very similar
and the regret bounds we have computed for them on Corollaries 5.4.4 and 5.5.3 are practically
the same. Thus, it is natural to as whether there are conditions under which they are equivalent,
that is, conditions under which they compute the same iterates when applied to the same functions.
If so, it would be interesting to understand exactly under which conditions this happens. They are
indeed equivalent in some cases. For example, [3, Appendix A] shows that Eager OMD and FTRL
applied to linear functions are equivalent when used with the regularizers/mirror maps and the OCO
instance that they consider. As we have seen on Theorem 5.5.1, FTRL and LOMD are basically
the same algorithm when applied to linear functions. Thus, the authors of [3] were indeed showing
equivalence of EOMD and LOMD for the cases they were looking at. Namely, they consider OCO
instances of the form (Sd,F), where Sd := {A ∈ Sd+ : Tr(A) = 1} is known as the spectraplex, a
matrix analogous of the simplex, and F is composed of functions of the form A ∈ Sd 7→ Tr(GA) for
some matrices G ∈ Sd. One mirror map that [3] considers, for example, is a matrix analogous of the
negative entropy. Although interesting, their proof is slightly technical and does not reveal much
about the general conditions under which LOMD and EOMD are equivalent. It would be more
interesting to obtain more general conditions for equivalence between EOMD and LOMD, without
the need of ad hoc proofs for specific cases.

At this point, writing both EOMD and LOMD as instances of FTRL is very enlightening.
For the sake of simplicity, let us first look at the case of OCO instances with linear functions.
That is, let C := (X,F) be an OCO instance such that X is closed and F := { 〈g, ·〉 : g ∈ E}.
Moreover, let R : E → (−∞,+∞] be a mirror map for X. Finally, let T ∈ N \ {0} and let
f := 〈〈g1, ·〉, · · · , 〈gT , ·〉〉 ∈ FT . By Theorem 5.4.2, by defining xt := EOMDX

R (f1:t−1) for each t ∈ [T],
there are p1, . . . , pT ∈ E with pt ∈ NX(xt) for each t ∈ [T] such that

{EOMDX
R (f)} = arg min

x∈X

(T∑
t=1

〈gt, x〉+R(x) +
T∑
t=1

〈pt, x〉
)
.

At the same time, by Theorem 5.5.1 we have

{LOMDX
R (f)} = arg min

x∈X

(T∑
t=1

〈gt, x〉+R(x)
)
.

This way of writing both algorithms makes thin differences between them pop out. Namely, the term
which we need to look at to see if both oracles compute the same iterate is the one involving the
vectors p1, . . . , pT , each lying in a different normal cone w.r.t. the set X. Note that, for any t ∈ [T],
if X had nonempty interior and xt ∈ int(X), then NX(xt) = {0}, which would imply equivalence
between both oracles. Thus, we should ask ourselves: under which conditions do the iterates of online
mirror descent algorithms are guaranteed to lie in the interior of X? Recall that, by property (5.1.ii)

131

of a mirror map, we know that the Bregman projections onto X w.r.t. R lie in int(domR) ∩ X.
Therefore, if we have int(domR) ∩X ⊆ intX, equivalence between EOMD and LOMD holds for C!

In fact, requiring the iterates to lie in the interior of X is excessively strong. For example, the
spectraplex is not full-dimensional since it lives inside a hyperplane w.r.t. the trace inner product.
Thus, the above argument does not cover the cases considered in [3]. Still, a very similar argument
holds if we require the iterates to lie on ri(X). Indeed, the next theorem proves equivalence of
the eager and lazy version of OMD under this assumption. One may note during the proof that
a slightly technical issue arises: we need to ensure that both iterates pick the same subgradients
whenever they have to choose one, that is, they have to pick a subgradient according to the same
well-order on the subdifferentials. Usually the algorithms access the subgradients of a convex function
f : E→ (−∞,+∞] through a function of the form x ∈ X 7→ g ∈ ∂f(x). Thus, assuming the both
algorithms pick the same subgradient given the same function f and the same point x is not a strong
assumption.

Theorem 5.6.1. Let C := (X,F) be an OCO instance such that X is a nonempty closed set and
each f ∈ F is a proper closed function which is subdifferentiable on X. Let R : E → (−∞,+∞]
be a mirror map for X. If int(domR) ∩X ⊆ ri(X) and both EOMDX

R and LOMDX
R use the same

well-order on the sets ∂f(x) for f ∈ F and x ∈ X, then EOMDX
R = LOMDX

R .

Proof. Suppose int(domR) ∩X ⊆ ri(X). Let us prove, by induction on T ∈ N, that

EOMDX
R (f) = LOMDX

R (f), ∀f ∈ FT .

For T = 0, we have
{EOMDX

R (〈〉)} = arg min
x∈X

R(x) = {LOMDX
R (〈〉)}.

Let T ∈ N \ {0} and f ∈ FT . By induction, we have

xt := EOMDX
R (f1:t−1) = LOMDX

R (f1:t−1), ∀t ∈ [T].

Let us show that EOMDX
R (f) = LOMDX

R (f). Let gt ∈ ∂ft(xt) be as in the definition of EOMDX
R (f)

for each t ∈ [T] (which are the same as gt in the definition of LOMDX
R (f) is both oracles use the

same well-order on the subdifferentials to pick the subgradients). By Theorem 5.4.2, there are
p1, . . . , pT ∈ E with pt ∈ NX(xt) for each t ∈ [T] such that

{EOMDX
R (f)} = arg min

x∈X

(T∑
t=1

〈gt, x〉+R(x) +
T∑
t=1

〈pt, x〉
)

By (5.1.ii) from the mirror map definition, ΠR
X(z) ∈ int(domR)∩X ⊆ ri(X) for any z ∈ int(domR).

In particular, xt = EOMDX
R (f1:t−1) ∈ ri(X) for every t ∈ [T]. Let us show that the terms 〈pt, x〉 for

t ∈ [T] do not affect the point that attains the above minimum. More specifically, let us show

〈pt, x〉 = 〈pt, xt〉, ∀x ∈ ri(X),∀t ∈ [T]. (5.21)

Let t ∈ [T]. Since pt ∈ NX(xt), we have 〈pt, x − xt〉 ≤ 0 for every x ∈ X. Thus, suppose there
is x̄ ∈ X such that 〈pt, x̄ − xt〉 < 0. Since xt ∈ ri(X), by Theorem 3.2.2 there is µ > 1 such that
xµ := µxt + (1− µ)x̄ ∈ X. Since 1− µ ≤ 0,

〈pt, xµ − xt〉 = (1− µ)〈pt, x̄− xt〉 > 0,

132

a contradiction to the fact that pt ∈ NX(xt). This proves (5.21). Thus, using that gt ∈ ∂ft(xt) are
the same in the definitions of EOMDX

R (f) and LOMDX
R (f) for each t ∈ [T], and by Theorem 5.5.1

we have

{EOMDX
R (f)} = arg min

x∈X

(T∑
t=1

〈gt, x〉+R(x) +
T∑
t=1

〈pt, x〉
)

(5.21)
= arg min

x∈X

(T∑
t=1

〈gt, x〉+R(x)
)

Thm. 5.5.1
= {LOMDX

R (f)}.

133

Chapter 6

Adaptive Regularization

Up to this point, all the algorithms we have seen for OCO problems required us to make a smart
choice of regularizer/mirror map strategy based on the parameters of the instance at hand to
guarantee good regret bounds. For example, most algorithms seen on Chapters 4 and 5 required
previous knowledge of the Lipschitz constant of the functions played by the enemy to properly scale
the regularizer and, in this way, guarantee low-regret bounds. Not only that, the strategies seen so
far used little to no information from functions previously played by the enemy, usually only looking
at most at the round number of the game to compute the new regularizer/mirror map increment.
Moreover, the regret bounds from previous chapters depend on the Lipschitz constant of the functions
played by the enemy, since by Theorem 3.8.4 the Lipschitz constant usually upper bounds the dual
norms of the subgradients. The problem is that this only reflects a worst-case scenario, not giving
much information in the case of enemies who play functions with subgradients whose dual norm
is small. Thus, one may wonder if it might be possible to derive regret bounds for some OCO
algorithms which still depend on the dual norms of the subgradients (in an informative way) instead
of using a crude upper bound on such norms. Intuitively, when playing against “easy” enemies, the
player oracle should perform better, and we should be able to have better regret guarantees in such
cases.

In this chapter we describe algorithms which use information from the subgradients of the
functions played by the enemy to better choose its regularizer increments during the game. In order
to derive regret bounds we show that these algorithms are special cases of the AdaReg algorithm,
first described in [33], which is a clever application of the Adaptive Online Mirror Descent algorithm
from Chapter 5. This enables us to make a unified analysis, first presented in [33], of two known
and similar algorithms from the OCO literature: the AdaGrad [31] and Online Newton Step [37]
algorithms. As a warm-up, on Section 6.1 we describe an online mirror descent algorithm (and its
lazy version) with step sizes which adapt based on the subgradient of the enemy’s functions. On
Section 6.2 we present the AdaReg algorithm, discuss its main ideas, and derive a general regret
bound by writing it as an AdaOMD algorithm with a smart choice of mirror map strategy. On
Section 6.3 we describe the AdaGrad algorithm and derive a regret bound for it from the regret
bound we have for AdaReg. On Section 6.4 we show a more efficient version of AdaGrad which
only uses diagonal instead of general matrices to skew the subgradient steps. On Section 6.5 we
define exp-concave functions and present the Online Newton Step algorithm, which has a logarithmic
regret bound against exp-concave functions. Again, we derive regret bounds for the Online Newton
Step algorithm by writing it as an application of the AdaReg algorithm. Finally, on Section 6.6
we show a step size strategy for online gradient descent which attains logarithmic regret against
strongly convex functions. Additionally, we show how it can be seen as a “scalar version” of the

134

Online Newton Step algorithm.
In this chapter we will extensively use norms induced by positive definite matrices. Thus, let us

define some notation related to norms based on positive definite matrices. Let A ∈ Sd++. Abusing
the notation of Bregman projection, for every closed convex set X ⊆ Rd define

{ΠA
X(z)} := arg min

x∈X
‖x− z‖A, ∀z ∈ Rd.

If R := 1
2‖·‖

2
A, then one may verify that BR(x, y) = 1

2‖x− y‖
2
A. Thus, in this case, for any closed

convex set X ⊆ Rd we have ΠR
X = ΠA

X . This equation of Bregman projections may be used without
reference throughout this chapter. Moreover, throughout this chapter we consider that Sd is equipped
with the trace inner product given by 〈X,Y 〉 := Tr(XY) for every X,Y ∈ Sd.

6.1 A First Example: Adaptive Online Gradient Descent

In Chapter 4, we have seen different FTRL regularizer strategies for some classes of OCO instances.
Among all the regularizer strategies seen in that chapter, the regret bounds when using them in
AdaFTRL depended mainly on whether the regularizer strategy was proximal or not, that is, whether
the regularizer increment at round t + 1 was minimized by the iterate from round t (if t > 1) or
not. In spite of the discussion made about the differences on the regret bounds we have for each of
these regularizer strategy classes (see Theorem 4.4.3, 4.4.4, and the discussion which follows them),
in all the cases studied in Chapter 4, proximal regularizer strategies did not yield any significant
differences on the final regret bounds if compared to the ones given by non-proximal strategies. Thus,
even though the regret bounds given by Theorems 4.4.3 and 4.4.4 hint at the possibility of proximal
regularizer strategies being able to adapt better to the functions picked by the enemy, we have not
yet exploited this difference in this text.

One aspect which also motivates the investigation of the advantages of proximal regularizer
strategies are the connections of Online Mirror Descent algorithms to Adaptive FTRL algorithms
seen in Chapter 5. Namely, let R be a mirror map strategy for some OCO instance C := (X,F). In
Section 5.4 we have seen that AdaOMDX

R is equal to AdaFTRLR′ when applied to linear functions,
where R′ is a proximal regularizer strategy for C mostly based on Bregman divergences w.r.t. the
regularizer increments given by R. Additionally, in Section 5.5 we have seen that AdaDAX

R is
equivalent to AdaFTRLR′′ when applied to linear functions, where R′′ is equal to R everywhere
but on the empty sequence, where R′′(〈〉) := R(〈〉) + δ(· |X). Thus, investigating when and how
proximal FTRL regularizer strategies can be advantageous may shed light on the key differences
between AdaOMD and AdaDA.

Our main goal in this chapter is to devise mirror map strategies for AdaOMD which take
advantage of the adaptiveness present on its regret bound, which is inherited from the regret bound
for proximal FTRL regularizer strategies from Theorem 4.4.4. One may build proximal FTRL
regularizer strategies similar to the mirror maps seen in this chapter which yield similar regret
bounds. Still, in this chapter our focus is on the Adaptive Online Mirror Descent algorithm since
looking at adaptive regularizers for AdaOMD yields an unified analysis of two major OCO algorithms:
AdaGrad [31] and Online Newton Step [37].

As a warm-up, let us devise versions of the Online Mirror Descent algorithm (with a static
mirror map) with time-varying step sizes based on the subgradients of the enemy’s functions. Our
goal is to devise an algorithm with low-regret guarantees regardless of the number of rounds and
without knowledge of a bound on the norms of the subgradients. Not only that, we want the regret
bound to be better for an enemy which picks “easy” functions, that is, functions whose subgradients

135

have small (dual) norm. For example, let C := (X,F) be an OCO instance such that each f ∈ F
is subdifferentiable on X ⊆ Rd with1 ‖g‖2 ≤ ρ for every x ∈ X and g ∈ ∂f(x) and that there is
θ ∈ R++ such that θ ≥ supx,y∈X

1
2‖x− y‖

2
2 . On Section 4.7 we have seen how to build a proximal

FTRL regularizer strategy which yields a regret bound that holds for any number of rounds. Roughly,
Corollary 4.7.3 tells us that AdaFTRL with (cumulative) regularizer Rt at round t ∈ N for t > 1
given by

Rt(x) :=

√
θ

(t− 1)ρ2

(
1

2
‖x− xt−1‖22

)
, ∀x ∈ Rd,

where xt−1 is the point chosen by the player at round t− 1, yields regret smaller than 2ρ
√
θT for a

game with T ∈ N rounds. Let g1, . . . , gT ∈ Rd be such that, for every t ∈ [T], we have gt ∈ ∂ft(xt)
where ft ∈ F is the function picked by the enemy on round t. Observe that

∑t−1
j=1‖gj‖22 ≤ (t− 1)ρ2.

That is, the denominator of the multiplicative factor on the regularizer at round t is an upper-bound
on the sum of the squared norms of the subgradients of the functions played by the enemy so far
(i.e., on rounds 1 up to t− 1). The idea to make this regularizer strategy adaptive is to, instead of
using such an upper bound on the multiplicative factor of the regularizer, use the actual sum of the
squared norms of the subgradients, without needing the knowledge of the constant ρ in advance.
Interestingly, this implies that in the case where the enemy plays functions whose subgradients have
small norm, then the step sizes2 will be bigger, that is, the algorithm will be more aggressive. In the
following theorem we describe a mirror map strategy with the same idea. Later we will see how this
strategy need not work very well for non-proximal regularizer strategies.

Theorem 6.1.1. Let C := (X,F) be an OCO instance such that X is closed and such that each
f ∈ F is a proper closed function which is subdifferentiable on X, and let R : E→ (−∞,+∞] be a
mirror map for X which is σ-strongly convex on X w.r.t. a norm ‖·‖ on E. Moreover, suppose there
is θ ∈ R++ such that θ ≥ sup{BR(u, x) : u ∈ X,x ∈ X ∩ int(domR)} and define

η(g) :=

√

θ
2
∑t

j=1‖gj‖22
if g 6∈ {0, 〈〉},

1 otherwise,
for every g = 〈g1, . . . , gt〉 ∈ Seq(E), and

R(f) :=

(
1

η(g1:t)
− [t > 0]

1

η(g1:t−1)

)
1√
σ
R, for every f = 〈f1, . . . , ft〉 ∈ Seq(F),where

gi ∈ E is as in AdaOMDR(f) for i ∈ [t].

Let ENEMY be an enemy oracle for C, let T ∈ N, and define

(x,f) := OCOC(AdaOMDX
R,ENEMY, T).

Finally, let gt ∈ ∂ft(xt) be the same as in the definition of AdaOMDX
R(f) on Algorithm 5.1 for

each t ∈ [T]. Then

Regret(AdaOMDX
R,f , X) ≤

√√√√2θ

σ

T∑
t=1

‖gt‖2∗.

Moreover, if R = 1
2‖·‖

2
2, then, by setting ηt := η(g1:t−1) for each t ∈ [T] we have

xt = Π
‖·‖2
X ([t > 1](xt−1 − ηtgt−1)), ∀t ∈ [T]. (6.1)

1We are using the squared `2-norm because for the sake of simplicity and since it yields the online gradient descent
algorithm.

2The constant multiplying the regularizer.

136

Proof. Let us first prove the regret bound. First of all, by the definition of mirror map, it is clear
that µR is a mirror map for X for any µ ∈ R++ since R is a mirror map for X. Thus, R is a mirror
map strategy for C. For each t ∈ {1, . . . , T + 1} define rt := R(f1:t−1). Note that, for every t ∈ [T],

t∑
i=1

ri =
1√
σηt

R,

which is (
√
σ/ηt)-strongly convex w.r.t. ‖·‖. By setting x0 := x1, Theorem 5.4.3 yields, for every

u ∈ X,

Regret(AdaOMDX
R,f , u) ≤

T+1∑
t=1

Brt(u, xt−1) +
1

2

T∑
t=1

ηt+1√
σ
‖gt‖2∗

=
1

2

T+1∑
t=1

(
1

ηt
− [t > 1]

1

ηt−1

)
1√
σ
BR(u, xt−1) +

1

2
√
σ

T∑
t=1

ηt+1‖gt‖2∗

≤ θ

2ηT+1
√
σ

+
1

2
√
σ

T∑
t=1

ηt+1‖gt‖2∗

≤ 1

2

√√√√2θ

σ

T∑
t=1

‖gt‖2∗ +
1

2

√
θ

2σ

T∑
t=1

‖gt‖2∗√∑t
j=1‖gj‖2∗

Le. 4.6.2
≤ 1

2

√√√√2θ

σ

T∑
t=1

‖gt‖2∗ +
1

2

√√√√2θ

σ

T∑
t=1

‖gt‖2∗ =

√√√√2θ

σ

T∑
t=1

‖gt‖2∗.

Let us show that (6.1) holds for R := 1
2‖·‖

2
2. First, recall that, by Lemma 5.2.1, 1

2‖·‖
2
2 is a mirror

map forX which is 1-strongly convex w.r.t. the `2-norm. Let us proceed with the proof by induction on
t ∈ [T]. For t = 1, by the definition of AdaOMDX

R(〈〉) we have {x1} = arg minx∈X‖x‖2 = {Π‖·‖2X (0)}.
Thus, let t ∈ {2, . . . , T}, and let Rt and yt be defined as in the definition of AdaOMDX

R(f)
in Algorithm 5.1, that is,

Rt :=

t∑
i=1

rt =
1

2ηt
‖·‖22 and yt := ∇Rt(xt−1)− gt =

1

ηt
xt−1 − gt.

So, since the `2-norm is self-dual, by Theorem 3.8.2 we have (1
2‖·‖

2
2)∗ = 1

2‖·‖
2
2. Thus, by Theorem 3.4.3

we have R∗t (y) = 1
2ηt
‖ηty‖22 = ηt

2 ‖y‖
2
2 for every y ∈ E. Finally, the definition of xt in AdaOMDX

R(f)
yields

xt = ΠRt
X (∇R∗t (yt)) = Π

‖·‖2
X (xt−1 − ηtgt−1).

Note that the above regret bound is at least as good as the one for EOMD from Corollary 5.4.4
(or as the one for the proximal FTRL example from Corollary 4.7.3). Indeed, let C := (X,F) be an
OCO instance, R be a mirror map for X which is 1-strongly convex on X w.r.t. a norm ‖·‖ on E,
T ∈ N, and let θ and gt ∈ Rd be as in the above theorem for every t ∈ [T]. If we know ρ ∈ R such
that ‖gt‖∗ ≤ ρ for every t ∈ N, then √√√√2θ

T∑
t=1

‖gt‖2∗ ≤ ρ
√

2θT ,

137

and the latter exactly matches the bound from Corollary 5.4.4. However, the bound given by
Theorem 6.1.1 can be much better since, if the enemy picks many functions whose subgradients
norm are way smaller than ρ, then the algorithm will be able to exploit this fact (using bigger step
sizes) and attain smaller regret.

One may be wondering if a mirror map strategy similar to the one from the above theorem
may work for the Adaptive Dual Averaging algorithm. As we have discussed on Section 5.5, Dual
Averaging is practically equivalent to the general FTRL algorithm applied to the subgradients
of the functions picked by the enemy. Thus, not surprisingly, the regret bound for AdaDA from
Corollary 5.5.2 is identical to the regret bound for AdaFTRL with general regularizer strategies
given by Theorem 4.4.3. That is, when using AdaDA we do not have the additional adaptiveness
present in the proximal FTRL regret bound from Theorem 4.4.4. Even though we can adjust the
multiplicative factors of AdaDA with a mirror map similar to the one from the last theorem so that
the final regret bound is similar as well, we still need in this case knowledge of the Lipschitz constant
(or an upper-bound on the subgradients’ norms) of the functions played by the enemy to properly
adjust the multiplicative factor of the mirror map strategy. This is one case where the intuition that
proximal regularizer strategies can “measure the subgradient from round t with the norm related to
the regularizer increment from round t+ 1”, as discussed on Section 4.4, yields a relevant difference
between regret bounds.

Theorem 6.1.2. Let C := (X,F) be an OCO instance such that X is closed and such that each
f ∈ F is a proper closed function which is subdifferentiable on X and let R : E→ (−∞,+∞] be a
mirror map for X which is σ-strongly convex on X w.r.t. a norm ‖·‖ on E. Suppose each f ∈ F is
ρ-Lipschitz continuous w.r.t. ‖·‖ on a convex set D ⊆ E with nonempty interior such that3 intD ⊇ X,
and suppose there is θ ∈ R++ such that θ ≥ sup{R(u)−R(x) : u, x ∈ X}. Define

η(g) :=

√
θ

2(ρ+
∑t

j=1‖gj‖22)
for every g = 〈g1, . . . , gt〉 ∈ Seq(Rd),

R(f) :=

(
1

η(g1:t)
− [t > 0]

1

η(g1:t−1)

)
1√
σ
R, for every f = 〈f1, . . . , ft〉 ∈ Seq(F),where

gi ∈ Rd is as in AdaDAR(f) for i ∈ [t].

Let ENEMY be an enemy oracle for C, let T ∈ N, and define

(x,f) := OCOC(AdaDAX
R,ENEMY, T).

Moreover, let gt ∈ ∂ft(xt) be the same as in the definition of AdaDAX
R(f) on Algorithm 5.3 for

each t ∈ [T] and set ηt := η(g1:t−1) for each t ∈ [T]. Then

Regret(AdaDAX
R,f , X) ≤

√√√√2θ

σ
(ρ+

T−1∑
t=1

‖gt‖2∗).

Proof. Since µR is a mirror map for X for any µ ∈ R++, we have that R is a mirror map strategy
for C. For each t ∈ {1, . . . , T + 1} define rt := R(f1:t−1). Note that, for every t ∈ [T],

t∑
i=1

ri =
1

ηt
√
σ
R,

3Here we assume this so that, for any f ∈ F , any subgradient of f at a point of F has small dual norm by
Theorem 3.8.4. Still, if one can control the choice of subgradients of AdaDA, one may only require X ⊆ D.

138

which is (
√
σ/ηt)-strongly convex w.r.t. ‖·‖. By setting x0 := x1, Corollary 5.5.2 yields, for every

u ∈ X,

Regret(AdaDAX
R,f , u) ≤

T∑
t=1

(rt(u)− rt(xt)) +
1

2

T∑
t=1

ηt√
σ
‖gt‖2∗

=
1

2

T∑
t=1

(
1

ηt
− [t > 1]

1

ηt−1

)
1√
σ

(R(u)−R(xt)) +
1

2
√
σ

T∑
t=1

ηt‖gt‖2∗

≤ θ

2ηT
√
σ

+
1

2
√
σ

T∑
t=1

ηt‖gt‖2∗

≤ 1

2

√√√√2θ

σ

(
ρ+

T−1∑
t=1

‖gt‖2∗
)

+
1

2

√
θ

2σ

T∑
t=1

‖gt‖2∗√
ρ+

∑t−1
j=1‖gj‖2∗

≤ 1

2

√√√√2θ

σ

(
ρ+

T−1∑
t=1

‖gt‖2∗
)

+
1

2

√
θ

2σ

T∑
t=1

‖gt‖2∗√∑t
j=1‖gj‖2∗

Le. 4.6.2
≤ 1

2

√√√√2θ

σ

(
ρ+

T−1∑
t=1

‖gt‖2∗
)

+
1

2

√√√√2θ

σ

T∑
t=1

‖gt‖2∗

≤

√√√√2θ

σ

(
ρ+

T−1∑
t=1

‖gt‖2∗
)
.

6.2 The AdaReg Algorithm

On the previous section, we have presented and analyzed a version of the Online Mirror Descent
algorithm with a fixed mirror map but adaptive step sizes. We are still not using the full capabilities
of the AdaOMD algorithm. Since the mirror map is fixed, the norm w.r.t. which the mirror map
is strongly convex is also fixed, which is also restrictive. One may wonder if we can use a mirror
map strategy which outputs, at each round, a mirror map which is strongly convex w.r.t. a different
norm in order to get even better regret bounds.

Another question is: how to choose the norm(s) and, consequently, the mirror map(s) (and step
sizes) to use in AdaOMD? In many interesting cases, such as in the prediction with expert advice
problem, one has enough previous information to choose a properly scaled mirror map (the negative
entropy function in the experts’ case) which yields a good regret bound. However, in other cases
it may not be clear which mirror map and step sizes yield good regret bounds, or it may be the
case that one does not have enough previous information to make such a decision. Thus, an ideal
scenario would be one in which the mirror map adapts itself to the problem at hand without the
need of much prior information about the instance. For example, in the mirror map strategy from
Theorem 6.1.1 from the previous section, the player does not need to know the Lipschitz constant of
the functions played by the enemy to obtain the asymptotically best regret bounds given by the
theorems we have proved.

One OCO algorithm which uses this idea of learning a regularizer during the game is the Adaptive
Gradient (AdaGrad) algorithm [31], which is described formally in the next section. Its basic idea is
to use, at round t, the norm induced by a positive definite matrix Ht, where Ht is constructed from

139

rank-one matrices based mainly on the subgradients of the previous functions picked by the enemy.
In this way, the update rule of the iterate of AdaGrad at round t ∈ N \ {0} is of the form

xt = Π
H−1

t
X ([t > 1](xt−1 −Htgt−1)), (6.2)

where X ⊆ Rd is the set from where the player is allowed to pick his points, xt−1 and gt−1 are,
respectively, the iterate and subgradient of enemy’s choice at round t− 1, and Π

H−1
t

X is the projection
onto X w.r.t. the norm ‖·‖H−1

t
. Thus, the matrix Ht intuitively skews the subgradient of the previous

round in a desirable way, and adjusts the projection to balance the skewed subgradient step.
Another algorithm for Online Convex Optimization with a similar update rule is the Online

Newton Step (ONS) algorithm [37], which is guaranteed to attain regret with a logarithmic dependence
on the number of rounds if the functions played by the enemy are guaranteed to be differentiable
and exp-concave, a generalization of strong convexity which will be formally described and discussed
later. The algorithm’s update rule is of the same form of (6.2), with only the choice of matrix Ht

being different, even though it is still a function of the subgradients of the previous choices of the
enemy.

In spite of their similarities, AdaGrad and ONS were discovered independently and each had
non-related analyses. The authors of [33] proposed the AdaReg algorithm and showed that both
AdaGrad and ONS are special cases of AdaReg. This sheds some light in the intuition behind
these algorithms. Additionally, it leaves room for the creation of other similar and interesting OCO
algorithms. We describe a player oracle which implements the AdaReg algorithm in Algorithm 6.1.
The AdaReg algorithm is parameterized by a function Φ: Sd → (−∞,+∞], called meta-regularizer,
which dictates which matrices to use in the update of (6.2).

Definition 6.2.1 (Meta-regularizer). A function Φ: Sd → (−∞,+∞] is a meta-regularizer if, for
any G ∈ Sd++,

(6.3.i) the infimum infH∈Sd++

(
〈G,H〉+ Φ(H)

)
is attained,

(6.3.ii) for any g ∈ E, if

HT ∈ arg min
H∈Sd++

(
〈G,H〉+ Φ(H)

)
and HT+1 ∈ arg min

H∈Sd++

(
〈G+ ggT, H〉+ Φ(H)

)
,

then HT � HT+1 (which implies HT+1 � HT since HT and HT+1 are positive definite).

Let us look a little bit closer at the definition of AdaReg on Algorithm 6.1 for a game with
T ∈ N rounds and some ε > 0 and, during this discussion, we look at the reasons for the conditions
imposed on meta-regularizers. Let C := (X,F) be an OCO instance, let T ∈ N, and let f ∈ FT .
Moreover, let t ∈ {0, . . . , T − 1}. At round t + 1, i.e. when the algorithm is computing xt+1, the
algorithm builds a positive definite matrix Gt, which is the sum of rank-one matrices (based on the
subgradients of the enemy’s functions) plus4 εI. Then AdaReg performs its key step: the choice of
the matrix Ht+1 which it uses to perform the “skewed” gradient step as in (6.2). Namely, AdaReg
with meta-regularizer Φ picks Ht+1 that attains

inf
H∈Sd++

(〈Gt, H〉+ Φ(H)), (6.4)

4The main goal of this latter term is to ensure that Gt is invertible, but the value of ε > 0 may affect the guarantees
of the algorithms we shall see later on.

140

Algorithm 6.1 Definition of AdaRegXΦ
(
〈f1, . . . , fT 〉

)
Input:

(i) A closed convex set X ⊆ Rd,

(ii) Convex functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]R
d such that ft is

subdifferentiable on X for each t ∈ [T],

(iii) A meta-regularizer Φ: Sd → (−∞,+∞],

(iv) A real number ε > 0 (usually clear from the context)
Output: xT+1 ∈ X
G0 ← εI
Let H1 ∈ arg minH∈Sd++

(〈G0, H〉+ Φ(H))

Let {x1} ← arg minx∈X‖x‖H−1
1

= arg minx∈X x
TH−1

1 x

for t = 1 to T do
. Computations for round t+ 1

Compute gt ∈ ∂ft(xt)
Gt ← Gt−1 + gtg

T
t

Compute Ht+1 ∈ arg minH∈Sd++
(〈Gt, H〉+ Φ(H))

xt+1 ← Π
H−1

t+1

X (xt −Ht+1gt)
return xT+1

where the above infimum is attained by property (6.3.i). Although the above expression can seem
cryptic at first, it has a very elegant interpretation. By the definition of the AdaReg oracle, we
have Gt = εI +

∑t
i=1 gig

T
i , where for each t ∈ [T] the vector gt ∈ Rd is a subgradient as defined in

AdaRegXΦ (f1:t). Thus, for every H ∈ Sd++ we have

〈Gt, H〉+ Φ(H) =
t∑
i=1

〈gigTi , H〉+ εTr(H) + Φ(H) =
t∑
i=1

Tr(gig
T
i H) + εTr(H) + Φ(H)

=

t∑
i=1

gTi Hgi + εTr(H) + Φ(H) =

t∑
i=1

‖gi‖2H + εTr(H) + Φ(H).

(6.5)

That is, the matrix Ht+1 is chosen so that the size of the subgradients measured by its induced
norm are minimized while still not making Φ(H) + εTr(H) too high5. Recall that the sum of the
squared norms of the subgradients is directly connected to almost all the regret bounds seen on
Chapters 4 and 5. Thus, Ht+1 can be seen roughly as the best matrix with low complexity w.r.t. the
meta-regularizer Φ through which to measure/see the subgradients of the functions played by the
enemy so far. Another way to see the choice of Ht+1, which is the main idea the authors of [33]
use in their analysis of AdaReg, is to note that Ht+1 is the point picked by FTRLΦ′(〈ψ1, . . . , ψt〉),
where ψi(H) := 〈gigTi , H〉 for each i ∈ [t] and Φ′ := Φ + εTr(·) + δ(· |Sd++). That is, the problem of
choosing a matrix norm through which to measure the subgradients played by the enemy is seen as
a separate OCO instance! On the regret bounds which we prove later in this section it will be clear
how well this strategy minimizes the norms of the subgradients.

The reader may still be confused about condition (6.3.ii) since, during the above discussion, this
condition was never mentioned. Not only that, the AdaReg oracle from Algorithm 6.1 does not seem
to need this condition for all of its operations to be well-defined. Indeed, condition (6.3.ii) from the

5The value of Φ(H) + εTr(H) here can be interpreted as the “complexity” of the norm ‖·‖H .

141

definition of meta-regularizers is not needed for the definition of AdaReg to make sense. However,
as we shall soon see, this condition is fundamental for the regret bounds that we derive to hold.
Interestingly, even though condition (6.3.ii) is not explicitly stated on [33], all the meta-regularizers
the authors use satisfy this condition (which is used explicitly in their proofs).

As one may have noticed, the update on (6.2) resembles a lot the update from the Adaptive
Online Mirror Descent. Indeed, to bound the regret of AdaReg we will write it as an Adaptive
Online Mirror Descent algorithm with a carefully6 crafted mirror map strategy, which we formally
define in Algorithm 6.2.

Algorithm 6.2 Definition of
[
M(X,Φ, ε)

](
〈f1, . . . , fT 〉

)
Input:

(i) A closed convex set X ⊆ Rd,

(ii) Convex functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]R
d such that ft is

subdifferentiable on X for each t ∈ [T],

(iii) A meta-regularizer Φ: Sd → (−∞,+∞],

(iv) A real number ε > 0
Output: A function rT+1 : Rd → (−∞,+∞]
for t = 1 to T do . Capture subgradients used on rounds 1, . . . , T

xt ← AdaOMDX
M(X,Φ,ε)(〈f1, . . . , ft−1〉)

. Equip the right well-order to match the subgradient choice of AdaOMDX
M(X,Φ,ε)

Equip ∂ft(xt) with the same well-order used by AdaOMDX
M(X,Φ,ε)

Pick gt ∈ ∂ft(xt)
. Compute the mirror map increment for round T + 1

GT−1 ← εI +
∑T−1

t=1 gtg
T
t

GT ← GT−1 + gT g
T
T

Let HT ∈ arg minH∈Sd++
(〈GT−1, H〉+ Φ(H))

Let HT+1 ∈ arg minH∈Sd++
(〈GT , H〉+ Φ(H))

DT+1 ← H−1
T+1 − [T > 0]H−1

T

return x ∈ Rd 7→ 1
2x

TDT+1x = 1
2‖x‖

2
DT+1

Note that if Φ on the definition ofM in Algorithm 6.2 is a meta-regularizer, then the matrices Dt

on the definition ofM are positive semidefinite by condition (6.3.ii). That is, the functions delivered
byM are always convex in this case. This is important if we want to write AdaReg in the form of
an AdaOMD algorithm, since in order forM to be a mirror map strategy (and for us to apply the
regret bounds we have proved on Chapter 5), we need the functions it delivers at each round, i.e.
the mirror map increments, to be convex. In the following lemma we prove that if we plug intoM a
meta-regularizer, thenM is a mirror map strategy and the mirror map it builds at each round are
scaled squared matrix norms.

Lemma 6.2.2. Let C := (X,F) be an OCO instance such that X is a closed set and such that
each f ∈ F is a proper closed function which is subdifferentiable on X. Moreover, let ε > 0 and let
Φ: Sd → (−∞,+∞] be a meta-regularizer. Let T ∈ N, let f ∈ FT , and let Ht ∈ Sd++ and Dt ∈ Sd

6One may note that we need to ensure the subgradients used by the mirror map strategy matches the ones used by
the AdaOMD oracle, and we do so by synchronizing the well-orders used on the subdifferentials by the AdaOMD
oracle and by the mirror map strategy. See the discussion following Definition 4.2.1 to recall why we equip well-orders
to the subdifferentials used.

142

be as defined inM(X,Φ, ε)(f1:t−1) for each t ∈ {1, . . . , T + 1}. Finally, for every t ∈ {1, . . . , T + 1}
define

rt :=M(X,Φ, ε))(f1:t−1) and Rt :=
t∑
i=1

rt.

ThenM(X,Φ, ε) is a mirror map strategy for C which is differentiable on Rd. Moreover, for every
t ∈ {1, . . . , T + 1} we have Dt � 0, rt = 1

2‖·‖
2
Dt
, and Rt = 1

2‖·‖
2
H−1

t

. Moreover, Rt is 1-strongly

convex w.r.t. ‖·‖H−1
t

on Rd for every t ∈ {1, . . . , T + 1}.

Proof. Let t ∈ {1, . . . , T + 1}. First, note that since Φ is a meta-regularizer, by condition (6.3.ii) we
have that Dt � 0. Let us now show that

rt = 1
2‖·‖

2
Dt

and Rt = 1
2‖·‖

2
H−1

t
. (6.6)

Note that the form of rt as in (6.6) holds by the definition of [M(X,Φ, ε)](f1:t−1). Moreover, for
every x ∈ Rd we have

Rt(x) =
t∑
i=1

ri(x) =
t∑
i=1

1

2
xTDix =

1

2
xT
(t∑
i=1

(H−1
i − [i > 1]H−1

i−1)
)
x =

1

2
xTH−1

t x.

This proves (6.6). Let us now show that
(6.7)M(X,Φ, ε) is a mirror map strategy for C which is differentiable on Rd and such

that Rt is 1-strongly convex w.r.t. ‖·‖H−1
t

on E.

First, note that rt is two-times continuously differentiable (and, thus, closed) with ∇2rt(x) = Dt for
any x ∈ Rd. Since Dt � 0 by the conditions of a meta-regularizer, by Lemma 3.1.1 we conclude that
rt is convex. It only remains to show that Rt is a mirror for X. That is, we need to prove that

(i) Rt closed, proper, 1-strongly convex7 on Rd w.r.t. ‖·‖H−1
t

and differentiable on Rd,

(ii) Rd = int(domRt),

(iii) for any y ∈ Rd, the infima infx∈X BRt(x, y) and infx∈X Rt(x) are attained, and

(iv) {∇R(x) : x ∈ Rd} = Rd.

First, note that (ii) clearly holds, and since ∇Rt(x) = H−1
t x for any x ∈ Rd, we conclude that (iv)

holds since H−1
t is invertible. Moreover, Rt is two-times continuously differentiable on Rd, which

implies that Rt is proper and closed (in fact, continuous), and since ∇2Rt(x) = H−1
t � 0 for any

x ∈ Rd, by Lemma 3.1.1 we conclude that Rt is convex. Note that if Rt is strongly convex, BRy(·, y)
also is for any y ∈ Rd, and then then the infima from (iii) would be attained by Lemma 3.9.14. Thus,
it only remains to show that Ht is 1-strongly convex w.r.t. ‖·‖H−1

t
. To see that8, note that for every

7The definition of mirror map requires strict convexity, but recall that strong convexity implies strict convexity by
definition.

8One easier way to prove strong convexity of Rt is to note that ‖·‖
H−1

t
is a norm induced by the inner product

(x, y) ∈ Rd × Rd 7→ xTH−1
t y and then use Lemma 3.9.5. However, using direct computations seems less cumbersome

in this case

143

x, y ∈ Rd we have

1
2‖x− y‖

2
H−1

t
= 1

2(x− y)TH−1
t (x− y) = 1

2x
TH−1

t x+ 1
2y

TH−1
t y − xTH−1

t y

= 1
2x

TH−1
t x+−1

2y
TH−1

t y − (H−1
t y)T(x− y)

= 1
2‖x‖

2
H−1

t
+−1

2‖y‖
2
H−1

t
− (H−1

t y)T(x− y)

= Rt(x)−Rt(y)−∇Rt(y)T(x− y).

By Theorem 3.9.7 we conclude that Rt is 1-strongly convex w.r.t. ‖·‖H−1
t

, which concludes the proof
of (6.7).

With the above lemma, we have the guarantee thatM applied to a meta-regularizer and other
properly chosen parameters is indeed a mirror map. In the next theorem we prove the main result of
this section: if C := (X,F) is an OCO instance, ε > 0, and Φ: Sd → (−∞,+∞] is a meta-regularizer,
then AdaRegXΦ = AdaOMDX

M(X,Φ,ε). This theorem will allow us to derive regret bounds for AdaReg
and the Online Newton Step algorithm from the regret bounds we have for AdaOMD.

Theorem 6.2.3. Let C := (X,F) be an OCO instance such that X is a nonempty closed set and
such that each f ∈ F is a proper closed function which is subdifferentiable on X. Moreover, let
ε > 0 and Φ: Sd → (−∞,+∞] be a meta-regularizer. Finally, suppose the same well-order9 over the
sets used in the definition of AdaRegXΦ are the same as in the definition of AdaOMDX

M(X,Φ,ε). Then,
for any T ∈ N and f ∈ FT ,

AdaRegXΦ (f) = AdaOMDX
M(X,Φ,ε)(f),

and the matrix HT+1 ∈ Sd++ as defined in AdaRegXΦ (f) is equal to the matrix HT+1 ∈ Sd++ as
defined inM(X,Φ, ε)(f).

Proof. Let T ∈ N and f ∈ FT . Moreover, for each t ∈ {1, . . . , T + 1} define

Rt :=

t∑
i=1

[M(X,Φ, ε)](f1:t−1) and xt := AdaOMDX
M(X,Φ,ε)(f1:t−1).

Finally, for each t ∈ {1, . . . , T + 1} let Ht ∈ Sd++ be defined as in [M(X,Φ, ε)](f1:t−1). Note that
for every t ∈ {1, . . . , T + 1} we have that Ht is the same as the one in AdaRegXΦ (f) by definition
and since all the sets used in the definitions of the AdaReg and AdaOMD oracles are the same. Let
us prove by induction on t ∈ {1, . . . , T + 1} that

xt = AdaRegXΦ (f1:t−1), ∀t ∈ {1, . . . , T + 1}.

For t = 1, we have R1(x) = 1
2‖·‖

2
H−1

1

. Thus, the definition of AdaOMDX
M(X,Φ,ε) yields

{x1} = arg min
x∈X

R1(x) = arg min
x∈X

‖x‖H−1
1

= {AdaRegXΦ (〈〉)}.

Let t ∈ {2, . . . , T + 1}. By Lemma 6.2.2, we have that Rt = 1
2‖·‖

2
H−1

t

. With that, we have

yt := ∇Rt(xt−1)− gt−1 = H−1
t xt−1 − gt−1.

9This is only a technical assumption to assure that, if we have in both algorithms a statement such as “let
gt ∈ ∂ft(xt)”, then in both algorithms the element picked from the set ∂ft(xt) is the same.

144

By Lemma 3.8.5, the dual norm of ‖·‖H−1
t

is ‖·‖Ht , and by Theorem 3.8.2 we have R∗t = 1
2‖·‖

2
Ht
.

This together with the definition of AdaOMD(f1:t−1) yields

xt = Π
H−1

t
X (∇R∗t (yt)) = Π

H−1
t

X (Ht(H
−1
t xt−1 − gt−1))

= Π
H−1

t
X (xt−1 −Htgt−1) = AdaRegXΦ (f1:t−1).

Finally, let us now show a regret bound for the AdaReg algorithm. The proof of the next regret
bound has two key steps. The first is almost obvious given the previous theorem: use the regret
bound for AdaOMD we have proved previously (see Theorem 5.4.3). This together with the previous
theorem yields a regret bound which is arguably not very useful. The second key step in the next
proof is to use the FTL–BTL Lemma on the matrices Ht used by AdaReg to show the optimality,
in some sense, of this choice of matrices with respect to the minimization of the norms of the
subgradients. This yields a neat regret bound, whose intuition we discuss after proving the next
theorem.

Theorem 6.2.4. Let C := (X,F) be an OCO instance such that X ⊆ Rd is a nonempty closed set
and such that each f ∈ F is a proper closed function which is subdifferentiable on X. Let ε > 0 and
let Φ: Sd → (−∞,+∞] be a meta-regularizer. Let T ∈ N, let ENEMY be an enemy oracle for C,
and define

(x,f) := OCOC(AdaRegXΦ ,ENEMY, T).

For each t ∈ {1, . . . , T + 1}, let Ht ∈ Sd++ be as in the definition of AdaRegXΦ (f1:t−1) and define
Dt := H−1

t − [t > 1]H−1
t−1. Finally, let GT ∈ Sd++ be as in the definition of AdaRegXΦ (f). Then, for

any u ∈ X and for x0 := x1,

Regret(AdaRegXΦ ,f , u) ≤ 1

2

T∑
t=0

‖u− xt‖2Dt+1
+

1

2
min

H∈Sd++

(〈GT , H〉+ Φ(H)− Φ(H1)).

Proof. By Theorem 6.2.3, we have AdaRegXΦ = AdaOMDX
M(X,Φ,ε) and, in particular

Regret(AdaRegXΦ ,f , u) = Regret(AdaOMDX
M(X,Φ,ε),f , u), ∀u ∈ Rd.

Thus, it suffices to bound the right hand side of the above equation. For every t ∈ {1, . . . , T + 1},
define

rt := [M(X,Φ, ε)](f1:t−1) and Rt :=

t∑
i=1

ri.

By Lemma 6.2.2 we know that M(X,Φ, ε) is a mirror map strategy for C and that for every
t ∈ {1, . . . , T + 1} we have rt = 1

2‖·‖
2
Dt

and Rt = 1
2‖·‖

2
H−1

t

, the latter being 1-strongly convex w.r.t.

‖·‖H−1
t

on Rd. By Lemma 3.8.5 we have that the dual norm of ‖·‖H−1
t

is ‖·‖Ht . Finally, set x0 := x1

and let gt ∈ ∂ft(xt) be as in the definition of AdaOMDM(X,Φ,ε)(f) for every t ∈ [T]. Then, for every
u ∈ Rd Theorem 5.4.3 yields

Regret(AdaOMDX
M(X,Φ,ε),f , u) ≤

T+1∑
t=1

Brt(u, xt−1) +
1

2

T∑
t=1

‖gt‖2Ht+1

=
1

2

T+1∑
t=1

‖u− xt−1‖2Dt
+

1

2

T∑
t=1

‖gt‖2Ht+1
.

145

Thus, it only remains to show that

T∑
t=1

‖gt‖2Ht+1
≤ min

H∈Sd++

(〈GT , H〉+ Φ(H)− Φ(H1)). (6.8)

Let t ∈ [T]. Note that

‖gt‖2Ht+1
= gTt Ht+1gt = Tr(gTt Ht+1gt) = Tr(gtg

T
t Ht+1) = 〈gtgTt , Ht+1〉. (6.9)

Define Φ′ := Φ + εTr(·) + δ(· |Sd++). By definition ofM(X,Φ, ε), we have

Ht ∈ arg min
H∈Sd++

(t−1∑
i=1

〈gigTi , H〉+ ε〈I,H〉+ Φ(H)
)

= arg min
H∈Sd

(t−1∑
i=1

〈gigTi , H〉+ Φ′(H)
)
.

Thus, by setting ψt(H) := 〈gtgTt , H〉 for every t ∈ [T] and H ∈ Sd, we conclude that

Ht = FTRLΦ(〈ψ1, . . . , ψt−1〉), ∀t ∈ {1, . . . , T + 1}.

Therefore, the FTL–BTL Lemma (Lemma 4.9.1) together with (6.9) yields, for any H ∈ Sd++,

T∑
t=1

‖gt‖2Ht+1
=

T∑
t=1

〈gtgTt , Ht+1〉 =

T∑
t=1

ψt(Ht+1) by (6.9),

≤ Φ′(H)− Φ′(H1) +

T∑
t=1

ψt(H) by Lemma 4.9.1,

= Φ(H)− Φ(H1)− εTr(H1) + εTr(H) +

T∑
t=1

ψt(H) by the definition of Φ′,

= Φ(H)− Φ(H1)− εTr(H1) +
〈
εI +

T∑
t=1

gtg
T
t , H

〉
by the definition of ψt,

= Φ(H)− Φ(H1)− εTr(H1) + 〈GT , H〉 by the definition of GT ,
≤ Φ(H)− Φ(H1) + 〈GT , H〉 by Cor. 1.1.2 since H1 � 0.

Taking the infimum over H ∈ Sd++ on the last inequality above, which is attained since Φ is a
meta-regularizer, completes the proof of (6.8).

Let us try to understand the regret bound we have just proved for an OCO instance C := (X,F)
in a game of T ∈ N rounds against an enemy oracle ENEMY for C. Let Φ be a meta-regularizer,
ε > 0, and set

(x,f) := OCOC(PLAYER,ENEMY, T).

Finally, for each t ∈ [T] let gt ∈ ∂ft(xt) be as in the definition of AdaRegXΦ (f). The second term on
the above regret bound, as we have already discussed (see the discussion regarding (6.4) and (6.5)),
has a very nice meaning regarding the optimality of the norm which measure the sizes of the
subgradients used. Namely, by setting GT := εI +

∑T
t=1 gtg

T
t and letting H1 be as in AdaRegXΦ (f),

we have

min
H∈Sd++

(〈GT , H〉+ Φ(H)− Φ(H1)) = min
H∈Sd++

(

T∑
t=1

‖gt‖2H + εTr(H) + Φ(H)− Φ(H1)). (6.10)

146

That is, the norm in the regret bound which measures the size of the subgradients is, in some sense,
optimal: it is the matrix norm which minimizes the sum of the squared norms of the subgradients
plus a regularization term given by Φ and the trace of the matrix. That is, when choosing Φ there is
a trade-off between minimizing the norms of the subgradients and minimizing the regularization
term Φ(H)− Φ(H1) in (6.10). The terms in which Φ appears may clutter one’s intuition, but when
we look at specific choices of Φ, the intuition on (6.10) is usually stronger. For example, in the
regret bound for the AdaGrad algorithm that we study in the next section, this term becomes
min{

∑T
t=1‖gt‖2H : H ∈ Sd++,Tr(H) ≤ 1}.

Moreover, the first term of the regret bound from Theorem 6.2.4 can be seen as a measure of
stability of the choices of the matrices Ht ∈ Sd++ by AdaReg (scaled by the diameter of X) for each
t ∈ {1, . . . , T + 1}. To see that, note that if Dt := H−1

t − [t > 1]H−1
t−1 for each t ∈ {1, . . . , T + 1}

and x0 := x1, then, for any u ∈ X,

T∑
t=0

‖u− xt‖2Dt+1
=

T∑
t=0

(‖u− xt‖2H−1
t+1
− [t > 0]‖u− xt‖2H−1

t
).

If the matrices Ht and Ht+1 are similar for every t ∈ [T], then the above terms are relatively small.
We say “relatively” since this value invariably depends on the diameter θ := supx,u∈X‖x − u‖22 of
X w.r.t. the `2-norm. Thus, when picking a meta-regularizer, one wants to avoid abrupt matrix
transitions from one round to another. The next corollary shows a bound in the case where θ is
finite, which makes the first term of the regret bound arguably clearer to interpret: it is the diameter
of X times the sum of Tr(Dt) for t ∈ {1, . . . , T + 1}. In this case, it is clearer how both the diameter
of X and the stability of the choices of the matrices H1, . . . ,HT+1 affect this term simultaneously.

Lemma 6.2.5. Let A ∈ Sd+ and let v ∈ Rd. Then

vTAv ≤ ‖v‖22 Tr(A).

Proof. By the Cauchy-Schwarz inequality, we have

vTAv = Tr(vTAv) = Tr(vvTA) = 〈vvT, A〉

≤
√

Tr(vvTvvT)
√

Tr(A2) = ‖v‖22
√

Tr(A2).

Thus, it only remains tho show that
√

Tr(A2) ≤ Tr(A). Note that, for any α, β ∈ R+, we have(√
α+

√
β
)2

= α+ 2
√
αβ + β ≥ α+ β =⇒

√
α+

√
β ≥

√
α+ β.

Thus, by a simple induction we get

(d∑
i=1

ui

) 1
2 ≤

d∑
i=1

√
ui, ∀u ∈ Rd+.

Moreover, by Corollary 1.1.2 we have Tr(A2) = 1
Tλ↑(A2). Therefore,

Tr(A2)
1
2 =

(d∑
i=1

λ↑i (A
2)
) 1

2
=
(d∑
i=1

λ↑i (A)2
) 1

2 ≤
d∑
i=1

λ↑i (A) = Tr(A).

147

Corollary 6.2.6. Let C := (X,F) be an OCO instance such that X is a nonempty closed set and
such that each f ∈ F is a proper closed function which is subdifferentiable on X. Let ε > 0 and let
Φ: Sd → (−∞,+∞] be a meta-regularizer. Let T ∈ N, let ENEMY be an enemy oracle for C, and
define

(x,f) := OCOC(AdaRegXΦ ,ENEMY, T).

Moreover, let H1, HT+1 ∈ Sd++ be as in the definition of AdaRegXΦ (f). Finally, let GT ∈ Sd++ be as
in the definition of AdaRegXΦ (f) and suppose there is θ ∈ R++ such that θ ≥ {‖x− u‖22 : x, u ∈ X}.
Then, for every u ∈ X and for x0 := x1,

Regret(AdaRegXΦ ,f , u) ≤ θ

2
Tr(H−1

T+1) +
1

2
(〈GT , HT+1〉+ Φ(HT+1)− Φ(H1)).

Proof. Let u ∈ X, and, for every t ∈ {1, . . . , T + 1}, let Ht ∈ Sd++ be as in the definition of
AdaRegXΦ (f) and define Dt := H−1

t − [t > 1]H−1
t−1. By Theorem 6.2.4, we have

Regret(AdaRegXΦ ,f , u) ≤ 1

2

T∑
t=0

‖u− xt‖2Dt+1
+

1

2
min

H∈Sd++

(〈GT , H〉+ Φ(H)− Φ(H1)).

By definition we have that HT+1 attains the above minimum. Thus, it only remains to bound the
term

∑T
t=0‖u− xt‖2Dt+1

. Note that

T∑
t=0

‖u− xt‖2Dt+1
=

T∑
t=0

(u− xt)TDt+1(u− xT)

Le. 6.2.5
≤

T∑
t=0

‖u− xt‖22 Tr(Dt+1)

≤ θ
T∑
t=0

Tr(Dt+1) = θTr
(T∑
t=0

Dt+1

)
= θTr(H−1

T+1).

6.3 The AdaGrad Algorithm

In this section we describe the AdaGrad algorithm from [31]. Its idea is a generalization of the
Online Mirror Descent algorithm with adaptive step sizes (with the squared `2-norm as a mirror
map) seen on Section 6.1. For t ∈ N \ {0}, the algorithm from Section 6.1 performs at round t+ 1 a
step in the direction of minus subgradient of size O((

∑t
i=1‖gi‖2)−1/2), where gi is a subgradient of

the enemy’s functions at the player’s iterate at round i ∈ [t]. Still, making the stepsize depend only
on the norms of the subgradients might be sub-optimal.

For example, let C := (∆d,F) be an instance of the randomized prediction with expert advice
problem, where d ∈ N \ {0}. Let T ∈ N be such that T ≥ d and let ENEMY be an enemy oracle
for C which, for any i ∈ [d], plays the function x ∈ ∆d 7→ eTi x at any round t ∈ [T] such that we
have t ≡ i− 1 (mod d). That is, at each interval of d rounds each expert is assigned a penalty of 1
in exactly one round, and no penalty at all at all the other rounds of the interval. Thus, after exactly
nd rounds for any n ∈ N such that nd ≤ T , a player will have the same amount of information about
each one of the experts. Thus, one should expect the player’s iterate at this round to be close to 1

d1,

148

translating the intuition that all the experts are equal from the perspective of the player. However,
note that with the strategy from Section 6.1 the step size at round t ∈ [T] is Θ(

√
t−1). That is, even

though the amount of information revealed by the enemy about each expert is the same after each
interval of d rounds, the weights attributed to the experts at the end of each interval is not uniform,
with their weights depending on the order in which they were penalized. Intuitively this may seem
weird since the order of appearance should not matter much in a game against this enemy oracle.

The AdaGrad algorithm can be interpreted as trying to make the subgradients steps adaptive in a
more nuanced fashion. Instead of only adapting the step size based on the norm of the subgradients,
at round t the algorithm skews the subgradient with a matrix Ht built from rank-one updates based
on the subgradients of previous rounds, and then performs the subgradient step. Finally, we define a
player oracle which formally implements the Adaptive Gradient algorithm on Algorithm 6.3.

Algorithm 6.3 Definition of AdaGradX
(
〈f1, . . . , fT 〉

)
Input:

(i) A closed convex set X ⊆ E,
(ii) Convex functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]E such that ft is

subdifferentiable on X for each t ∈ [T],

(iii) Positive real numbers ε > 0 and η > 0 (usually clear from the context).
Output: xT+1 ∈ X
G0 ← εI
{x1} ← arg minx∈X‖x‖2
for t = 1 to T do

. Computations for round t+ 1
Compute gt ∈ ∂ft(xt)
Gt ← Gt−1 + gtg

T
t

xt+1 ← Π
G

1/2
t

X (xt − ηG−1/2
t gt)

return xT+1

As we have discussed, the AdaGrad algorithm can be seen as a generalization of the algorithm
from Theorem 6.1.1 with the squared `2-norm as the mirror map. In Theorem 6.1.1 the algorithm
performs, at a round t ∈ N \ {0}, a subgradient step with step size O

((∑t−1
i=1‖gi‖22

)−1/2), where
g1, . . . , gt−1 ∈ Rd are the subgradients (from the enemy’s functions) used by the player oracle on
past rounds. The AdaGrad algorithm, on the other hand, performs at round t ∈ N \ {0} a step in
the direction of the subgradient skewed by a matrix G−1/2

t−1 , where Gt−1 ∈ Sd++ is a matrix built from
rank-one updates based on the subgradients g1, . . . , gt−1 ∈ Rd of the enemy’s past functions (plus a
small multiple of the identity to ensure that Gt−1 is invertible). Additionally, the projection onto
the set X ⊆ Rd from where the player can pick its points performed by AdaGrad is skewed by the
matrix G1/2

t .
To derive a regret bound for the above algorithm, we will show that the AdaGrad algorithm

is equivalent to the AdaReg algorithm with a special (and simple) choice of meta-regularizer. An
instructive way to define our meta-regularizer Φ is to define its behavior on the eigenvalues of the
matrices10 given to Φ as input, and then to see which known matrix operation this yields (if any).
In this way, the analysis of the algorithm is greatly simplified since, for convex functions applied to
eigenvalues, we have tools to compute subgradients and, thus, check optimality conditions, as we

10Namely, given a matrix X ∈ Sd we will apply a symmetric convex function f : Rd → (−∞,+∞] on λ↑(X) and
then build a new matrix X ′ ∈ Sd from f(λ↑(X)). For details, see Section 3.7.

149

have seen on Section 3.7.
On the next lemma we look at the form and at some properties of the meta-regularizer which

yields AdaGrad.

Lemma 6.3.1. Let η > 0, define f : Rd → (−∞,+∞] by

f(x) := η2
d∑
i=1

[xi > 0]
1

xi
+ δ(x |Rd++), ∀x ∈ Rd,

and set Φ := fS . Then f is a proper closed convex function,

Φ(H) = η2 Tr(H−1), and ∇Φ(H) = −η2H−2 ∀H ∈ Sd++. (6.11)

Additionally, for every G ∈ Sd++ the infimum infH∈Sd++
(〈G,H〉 + Φ(H)) is attained by ηG−1/2.

Moreover, Φ is a meta-regularizer and for every ε > 0 and for a certain well-order over the sets
used by the oracles AdaGradX and AdaRegXΦ we have AdaGradX = AdaRegXΦ for every nonempty
closed and convex set X ⊆ Rd.

Proof. First, let us verify the f is a proper closed convex function. First of all, it is clear that f .
Define φ(α) := [α > 0]α−1 +δ(α |R++). Since φ(α)′′ = 2α−3 > 0 for every α ∈ R++, by Lemma 3.1.1
we conclude that φ is convex. Since f =

∑d
i=1 φ(xi), we conclude that f is convex. Finally, since

limα→0 φ(α) = +∞ and φ is positive throughout R, we conclude that lim infx→x̄ f(x) = +∞ = f(x̄)
for any x̄ ∈ Rd+ \ Rd++. Therefore, f is closed.

Let H ∈ Sd++, set λ := λ↑(H), and set Λ := Diag(λ). Let us first show that (6.11) holds. By the
Spectral Decomposition Theorem (Theorem 1.1.1), there is an orthogonal matrix Q ∈ Rd×d such
that H = QΛQT. Since H � 0, by Theorem 1.1.3 we know that λ > 0. Hence, Λ is invertible with
(Λ−1)i,j = [i = j]λ−1

i for every i, j ∈ [d]. Hence,

HQΛ−1QT = QΛQTQΛ−1QT = QΛΛ−1QT = QQT = I,

that is, QΛ−1QT = H−1. Finally, we have

Φ(H) = f(λ) = η2
d∑
i=1

λ−1
i = η2 Tr(Λ−1) = η2 Tr(QTQΛ−1) = η2 Tr(QΛ−1QT) = η2 Tr(H−1).

Moreover, note that ∇f(λ)i = −η2λ−2
i for every i ∈ [d]. Hence, Diag(∇f(λ)) = −η2Λ−2, and by

Corollary 3.7.5 we have

∇Φ(H) = QDiag(∇f(λ))QT = −η2QΛ−2QT = −η2(QΛ−1QT)2 = −η2H−2.

This proves (6.11). Let G ∈ Sd++. Let us now show that

{ηG−1/2} = arg min
H∈Sd++

(〈G,H〉+ Φ(H)). (6.12)

Let Ĥ ∈ Sd++. Since dom f = Rd, we have ri(dom Φ) = Sd, and since Sd++ is an open set with
nonempty interior, then NSd++

(Ĥ) = {0}. Therefore, Sd++ ∩ ri(dom Φ) is nonempty, and by Theo-
rem 3.6.2 we have

Ĥ ∈ arg min
H∈Sd++

(〈G,H〉+ Φ(H)) ⇐⇒ G+∇Φ(Ĥ) = 0
(6.11)⇐⇒ η2Ĥ−2 = G ⇐⇒ (Ĥ−1)2 =

1

η2
G

Prop. 1.1.4⇐⇒ Ĥ−1 =
1

η
G1/2 ⇐⇒ Ĥ = ηG−1/2.

150

This finishes the proof of (6.12).
Now let us show that Φ is a meta-regularizer. Let T ∈ N and g ∈ (Rd)T . Moreover, let ε > 0

and set GT−1 := εI +
∑T−1

t=1 gtg
T
t and GT := GT−1 + gT g

T
T . Condition (6.3.i) of a meta-regularizer

is satisfied by Φ since, by (6.12), we know that infH∈Sd++
(〈H,GT 〉+ Φ(H)) is attained by ηG−1/2

T .

Thus, set HT+1 := ηG
−1/2
T and HT := ηG

−1/2
T−1 . Note that

H−1
T+1 −H

−1
T = 1

η (G
1/2
T −G1/2

T−1).

Since η > 0 and GT −GT−1 = gT g
T
T � 0, by Lemma 1.1.5 we have that 1

η (G
1/2
T −G1/2

T−1) � 0. That
is, Φ satisfies condition (6.3.ii), which completes the proof that Φ is a meta-regularizer.

Last but not least, let us show that AdaGradX = AdaRegXΦ for any nonempty closed and
convex set X ⊆ Rd and any ε > 0 (recall that we already have η > 0 from the statement of the
lemma). Let X ⊆ X ⊆ Rd be a nonempty closed and convex set and let ε > 0. Moreover, Let
f := 〈f1, . . . , fT 〉 ∈ Seq((−∞,+∞]R

d
) be such that ft is subdifferentiable on X for every t ∈ [T]. Let

us show that AdaGradX(f1:t−1) = AdaRegXΦ (f1:t−1) by induction on t ∈ [T]. Set x1 := AdaRegXΦ (〈〉)
and let H1 ∈ Sd++ be as in the definition of AdaRegXΦ (〈〉). By (6.12), we know that H1 = (η/

√
ε)I.

Thus,

x1 ∈ arg min
x∈X

‖x‖H−1
1

= arg min
x∈X

xTH−1
1 x = arg min

x∈X

√
ε
η x

Tx = arg min
x∈X

‖x‖22 = arg min
x∈X

‖x‖2.

Since the squared `2-norm is strongly convex (by Lemma 3.9.5), we have that x1 is the unique
point that attains the above minima. Thus, x1 = AdaGradX(〈〉). Let t ∈ {2, . . . , T + 1}, and
let gt−1 ∈ Rd and Gt−1 ∈ Sd++ be as in the definition of xt := AdaRegXΦ (f1:t−1) (which are equal
to gt−1 and Gt−1 in the definition of AdaGradXΦ (f1:t−1) with a proper choice of well-order on the
subdifferentials used). Finally, let Ht ∈ Sd++ be as in the definition of AdaRegXΦ (f1:t−1) and set
xt−1 := AdaRegXΦ (f1:t−2) = AdaGradX(f1:t−2). Then,

xt = Π
H−1

t
X (xt−1 −Htgt−1)

(6.12)
= Π

G
1/2
t−1

X (xt−1 − ηG−1/2
t−1 gt−1) = AdaGradX(f1:t−1).

Now that we know which meta-regularizer to use to write AdaGrad as AdaReg, we can apply
the results from Section 6.2 to obtain regret bounds for AdaGrad.

Theorem 6.3.2. Let C := (X,F) be an OCO instance such that X ⊆ Rd is a nonempty closed set
and such that each f ∈ F is a proper closed function which is subdifferentiable on X. Let11 ε > 0,
let T ∈ N, let ENEMY be an enemy oracle for C, and define

(x,f) := OCOC(AdaGradX ,ENEMY, T).

Moreover, let GT ∈ Sd++ be as in the definition of AdaGradX(f), suppose there is θ ∈ R++ such
that θ ≥ sup{ ‖u− x‖22 : u, x ∈ X}, and set η :=

√
θ/2. Then,

Regret(AdaGradX ,f , X) ≤
√

2θTr(G
1/2
T).

Proof. Define f : Rd → (−∞,+∞] by f(x) := η2
∑d

i=1[xi 6= 0] 1
xi

for each x ∈ Rd, and set Φ := fS .
By Lemma 6.3.1, we have Φ(H) = η2 Tr(H−1) for any H ∈ Sd++ and AdaRegXΦ = AdaGradX .

11This ε is the needed to define AdaGrad, although it does not appear in the regret bound.

151

Thus, we only need to bound the regret of AdaRegXΦ . Let H1, HT+1 ∈ Sd++ be as in the definition
of AdaRegXΦ (f). By Lemma 6.3.1 together with the definitions of H1 and HT+1 we have

H1 = η(εI)−1/2 =
η√
ε
I and HT+1 = ηG

−1/2
T .

Thus, by Corollary 6.2.6 we have, for every u ∈ X,

Regret(AdaRegXΦ ,f , u) ≤ θ

2
Tr(H−1

T+1) +
1

2
(〈GT , HT+1〉+ Φ(HT+1)− Φ(H1))

=
θ

2η
Tr(G

1/2
T) +

1

2
(ηTr(G

1/2
T) + Φ(ηG

−1/2
T)− Φ(η√

ε
I))

=
θ

2η
Tr(G

1/2
T) +

1

2
(ηTr(G

1/2
T) + ηTr(G

1/2
T)− η

√
εTr(I))

≤ θ

2η
Tr(G

1/2
T) + ηTr(G

1/2
T)

=

√
θ

2
Tr(G

1/2
T) +

√
θ

2
Tr(G

1/2
T) =

√
2θTr(G

1/2
T).

One may have noticed that the value of ε is free to be as small as we want in the above result.
This suggests that this parameter may not be needed after all. However, if ε = 0, then the matrices
Gt in the definition of AdaGrad are not necessarily invertible anymore. To solve this one could use
the Moore-Penrose pseudo-inverse instead of the inverse of the matrices. For the sake of brevity, we
have chosen to describe only the case where all matrices are invertible (that is, the case for ε > 0).

One problem with the regret bound from Theorem 6.3.2 is that it is hard to interpret how good
it is. The intuitive meaning of Tr(G

1/2
T) is not clear, where GT ∈ Sd++ is defined as in Theorem 6.3.2.

We know that Tr(GT) is the sum of the squared `2-norms of the subgradients (plus εd, where d ∈ N
is the dimension of the problem), but interpreting Tr(G1/2) is way harder. The next proposition
sheds some light about the meaning of the above regret bound and shows how it may be as good as
the one from Section 6.1, for example.

Proposition 6.3.3 ([31, Lemma 15]). Let A ∈ Sd++. Then inf{Tr(X−1A) : X ∈ Sd++,Tr(X) = 1}
is attained by A1/2/Tr(A1/2).

With the above proposition, we have the following corollary which makes the regret bound for
AdaGrad way more palatable.

Corollary 6.3.4. Let ε > 0 and g ∈ (Rd)T for some T ∈ N. Moreover, set GT := εI +
∑T

t=1 gtg
T
t

and Sd := {X ∈ Sd+ : Tr(X) = 1}. Then

Tr(G
1/2
T) =

√√√√ min
H∈Sd∩Sd++

(
εTr(H−1) +

T∑
t=1

‖gt‖2H−1

)
.

Proof. Set S++ := Sd ∩ Sd++. By Proposition 6.3.3, we have√√√√ min
H∈S++

(
εTr(H−1) +

T∑
t=1

‖gt‖2H−1

)
=

√√√√ min
H∈S++

(
ε〈I,H−1〉+

T∑
t=1

〈gtgTt , H−1〉

)

=
√

min
H∈S++

〈GT , H−1〉 =

√(
Tr(G

1/2
T)

)2
= Tr(G

1/2
T).

152

That is, the trace in the regret of AdaGrad has value close12 to the square-root of sum of the
norms of the gradients, where the norm is the best among all norms induced by matrices H−1 with
H ∈ Sd++ in the spectraplex Sd, that is, such that Tr(H) = 1. Note that, for any g ∈ Rd, by setting
H̄ := d−1H ∈ Sd we have

‖g‖2H̄ = 1
dg

TIg = 1
d‖g‖

2
2 and Tr(H̄−1) = dTr(I) = d2. (6.13)

Thus, for ε > 0 small enough (namely, smaller than d−2), we conclude that the regret bound from
Theorem 6.3.2 as good as the one from Theorem 6.1.1.

6.4 Diagonal AdaGrad Algorithm

Although the AdaGrad algorithm from the previous section has good regret guarantees, its imple-
mentation can be quite slow. One of the reasons why Online Convex Optimization algorithms are
attractive is, besides their good regret bound guarantees, the usually low per-round computational
cost of their implementations. However, one needs at least Ω(d2) time at each round to compute
the matrices from the definition of AdaGrad, where d ∈ N is the dimension of the problem. One
solution, independently proposed by [31] and by [49], is to use a version of AdaGrad which maintains,
at each round t ∈ N \ {0}, diagonal matrices G̃t ∈ Sd++ instead of full matrices Gt ∈ Sd as in the
original definition of AdaGrad. We formally define a player oracle which implements this version of
the AdaGrad algorithm on Algorithm 6.4.

Algorithm 6.4 Definition of DiagAdaGradX
(
〈f1, . . . , fT 〉

)
Input:

(i) A nonempty closed convex set X ⊆ Rd,

(ii) Convex functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]R
d such that ft is

subdifferentiable on X for each t ∈ [T],

(iii) Real numbers ε, η > 0 (usually clear from the context).
Output: xT+1 ∈ X
Define G̃0 := εI
{x1} ← arg minx∈X‖x‖2
for t = 1 to T do

. Computations for round t+ 1
Let gt ∈ ∂ft(xt)
G̃t ← G̃t−1 + Diag(gtg

T
t)

xt+1 ← Π
G̃

1/2
t

X (xt − ηG̃−1/2
t gt)

return xT+1

By using only diagonal matrices, one may note that we can implement DiagAdaGrad with a
cost of O(d) per round (ignoring the cost of the projection). We need now to investigate if there are
good regret guarantees for this algorithm. Hopefully, we may derive regret guarantees as good as
the one for the AdaGrad algorithm from the previous section. At this point, writing this algorithm
as a version of the AdaReg algorithm becomes very useful and informative. We will show that using
the same meta-regularizer as the one used for AdaGrad restricted to diagonal matrices yields the

12We have the value of ε > 0 cluttering our intuition. Still, one can get rid of the term with ε by using pseudo-inverses.
For details, see [36]

153

Diagonal Adaptive Gradient algorithm. Not only that, this allows us to use many of the results from
the previous section as stepping stones to derive the results for this section.

Throughout the remainder of this section, we denote by Dd := {Diag(x) ∈ Sd : x ∈ Rd} the
set of d × d diagonal matrices. Moreover, we overload the Diag operator and for every A ∈ Sd
define Diag(A) := Diag(diag(A)). That is, Diag(A) is equal to the matrix A but with zeroes on its
off-diagonal entries. Let us show the form and some properties of the meta-regularizer we will use to
derive the DiagAdaGrad algorithm, proving first a simple lemma about the normal cone and the
relative interior of Dd.

Lemma 6.4.1. We have ri(Dd) = Dd and

NDd(Ã) = {A ∈ Sd : diag(A) = 0}, ∀Ã ∈ D.

Proof. First, note that for any Ã, B̃ ∈ Dd, we have (1− µ)Ã+ µB̃ ∈ D for any µ ∈ R. Thus, Dd is
an affine set and ri(Dd) = Dd.

Let Ã ∈ Dd, let A ∈ Sd, and define ā := diag(Ã). Note that 〈A,X − Ã〉 ≤ 0 for any X ∈ Dd
if and only if 〈A,Diag(x − ā)〉 ≤ 0 for any x ∈ Rd. Moreover, 〈A,Diag(x − ā)〉 ≤ 0 for every
x ∈ Rd if and only if diag(A)T(x − ā) ≤ 0 for every x ∈ Rd. That is, A ∈ NDd(Ã) if and only
if diag(A) ∈ NRd(ā) = {0}.

Lemma 6.4.2. Let η > 0, define f : Rd → (−∞,+∞] by

f(x) := η2
d∑
i=1

[xi 6= 0]
1

xi
, ∀x ∈ Rd,

and set Φ := fS + δ(· |Dd). Then,

Φ(H) = η2 Tr(H−1) + δ(H |Dd), ∀H ∈ Sd++, (6.14)

and for every G ∈ Sd++ the infimum infH∈Sd++
(〈G,H〉+ Φ(H)) is attained by η(Diag(G))−1/2. In

particular, for every ε > 0 we have DiagAdaGradX = AdaRegXΦ for every nonempty and closed set
X ⊆ Rd.

Proof. Note that (6.14) follows directly from Lemma 6.3.1. Let G ∈ Sd++. Let us show

{η(Diag(G))−1/2} = arg min
H∈Sd++

(〈G,H〉+ Φ(H)) (6.15)

Since Φ is proper and infinite outside of Dd, it is clear that the infimum can only be attained by a
matrix in Dd ∩ Sd++. Let H̄ ∈ Dd ∩ Sd++ and define ΦAdaGrad(H) := η2 Tr(H−1) for every H ∈ Sd++.
Note that Φ = ΦAdaGrad + δ(· |Dd) in this case. By Lemma 6.4.1 we have ri(Dd) = Dd. Thus, we
have (riSd++) ∩ (ri(Dd)) = Sd++ ∩Dd 6= ∅. Thus, formula for the subdifferential of the sum of convex
functions from Theorem 3.5.4 together with the differentiability of ΦAdaGrad from Lemma 6.3.1,

∂Φ(H̄) = ∇ΦAdaGrad(H̄) +NDd(H̄) = −η2H̄−2 +NDd(H̄).

Thus, by the optimality conditions from Theorem 3.6.2, H̄ attains the infimum in (6.15) if and
only if

−(GT + ∂Φ(H̄)) ∩NSd++
(H̄) 6= ∅ ⇐⇒ 0 ∈ (GT + ∂Φ(H̄)) = GT − η2H̄−2 +NDd(H̄).

154

The above holds if and only if there is A ∈ NDd(H̄) such that η2H̄−2 = G+A. Since H̄ ∈ Dd, we
have η2H̄−2 ∈ Dd and, therefore, G+A ∈ Dd. Hence, we have G+A = Diag(G+A) and H̄ attains
the infimum in (6.15) if and only if

H̄−2 =
1

η2
(G+A) =

1

η2
Diag(G+A) =

1

η2
Diag(G),

where in the last equation we have used that diag(A) = 0 by Lemma 6.4.1. Thus, H̄ attains the
infimum from (6.15) if and only if H̄ = 1

η Diag(G)−1/2, which proves (6.15).
Now let us show that Φ is a meta-regularizer. Let T ∈ N \ {0} and g ∈ (Rd)T . Moreover,

let ε > 0 and set GT−1 := εI +
∑T−1

t=1 gtg
T
t and GT := GT−1 + gT g

T
T . Condition (6.3.i) is satisfied

by Φ since by (6.12) we know that infH∈Sd++
(〈H,GT 〉+ Φ(H)) is attained by ηDiag(GT)−1/2. Set

HT+1 := ηDiag(GT)−1/2 and HT := ηDiag(GT−1)−1/2. By definition,

H−1
T+1 −H

−1
T = 1

η (Diag(GT)1/2 −Diag(GT−1)1/2).

SinceGT andGT−1 are positive semidefinite, we have that diag(GT) and diag(GT−1) are non-negative.
Moreover, since GT −GT−1 = gT g

T
T � 0, for every i ∈ [d] we

(GT)i,i = eTi GT ei ≥ eTi GT−1ei = (GT−1)i,i =⇒ (GT)i,i ≥ (GT−1)i,i =⇒ (GT)
1/2
i,i ≥ (GT−1)

1/2
i,i .

Since η > 0, we conclude that 1
η diag(GT)1/2 ≥ 1

η diag(GT−1)1/2, which proves that 1
η (Diag(GT)1/2−

Diag(GT−1)1/2) is positive semidefinite, that is, Φ satisfies condition (6.3.ii). This finishes the proof
that Φ is a meta-regularizer.

Last but not least, let us show that DiagAdaGradX = AdaRegXΦ for any ε > 0 and any closed and
convex set ∅ 6= X ⊆ Rd (recall that η > 0 is already given by the statement). Let X ⊆ Rd be a closed
convex and nonempty set, let ε > 0, and let f := 〈f1, . . . , fT 〉 ∈ Seq((−∞,+∞]R

d
) be such that the

function ft is subdifferentiable on X for every t ∈ [T]. Let us show that DiagAdaGradX(f1:t−1) =
AdaRegXΦ (f1:t−1) by induction on t ∈ [T]. Set x1 := AdaRegXΦ (〈〉) and let H1 be as in the definition
of AdaRegXΦ (〈〉). By (6.15), we know that H1 = (η/

√
ε)I. Thus,

x1 ∈ arg min
x∈X

‖x‖H−1
1

= arg min
x∈X

xTH−1
1 x = arg min

x∈X

√
ε
η x

Tx = arg min
x∈X

‖x‖2.

Since ‖·‖22 is strictly convex (see Lemma 3.9.5), the above minimizer is unique and, thus, we
have x1 = DiagAdaGradX(〈〉). Let t ∈ {2, . . . , T + 1}, and let gt−1 ∈ Rd and Gt−1 ∈ Sd++ be as in
the definition of xt := AdaRegXΦ (f1:t−1). One may note that g1, . . . , gt−1 ∈ Rd as in the definition of
DiagAdaGradXΦ (f1:t−1) matches g1, . . . , gt−1 as in the definition of AdaRegXΦ (f1:t−1) with a proper
choice of well-order on the subdifferentials used by the oracles. In this case, by defining G̃t−1 :=
εI+

∑t−1
i=1 gig

T
i as in the definition of DiagAdaGrad(f1:t−1), we have G̃t−1 = Diag(Gt−1). Finally, let

Ht be as in the definition of AdaRegXΦ (f1:t−1), set xt−1 := AdaRegXΦ (f1:t−2) = AdaGradX(f1:t−2)
(where the equation holds by induction), and define G̃ := Diag(Gt−1) = G̃t−1. Then,

xt = Π
H−1

t
X (xt−1 −Htgt−1)

(6.12)
= ΠG̃−1/2

X (xt−1 − ηG̃1/2gt−1) = AdaGradX(f1:t−1).

Finally, we are in place to prove a regret bound for the Diagonal AdaGrad algorithm.

Theorem 6.4.3. Let C := (X,F) be an OCO instance such that X is a nonempty closed set and
such that each f ∈ F is a proper closed functions which is subdifferentiable on X. Let ε > 0,

155

let T ∈ N, and let ENEMY be an enemy oracle for C. Suppose there is θ ∈ R++ such that
θ ≥ sup{ ‖u− x‖2∞ : u, x ∈ X} and set η :=

√
θ/2 for DiagAdaGrad. Finally, define

(x,f) := OCOC(DiagAdaGradX ,ENEMY, T)

and let G̃T ∈ Sd++ be as in the definition of DiagAdaGradX(f). Then

Regret(AdaRegXΦ ,f , X) ≤
√

2θTr(G̃
1/2
T).

Proof. Define f : Rd → (−∞,+∞] by f(x) := η2
∑d

i=1[xi 6= 0] 1
xi

for each x ∈ Rd and set Φ :=

fS + δ(· |Dd). By Lemma 6.4.2, we have Φ(H) = η2 Tr(H−1) + δ(H |Dd) for every H ∈ Sd++ and
AdaRegXΦ = AdaGradX if a proper well-order is equipped to the sets used by AdaRegXΦ . In this
case, we only to bound the regret of AdaRegXΦ . For each t ∈ {1, . . . , T + 1}, let Ht, Gt−1 ∈ Sd++ be
as in the definition of AdaRegXΦ (f), set G̃t−1 := Diag(Gt−1) (which matches the definition of G̃t−1

on DiagAdaGradX), define Dt := H−1
t − [t > 1]H−1

t−1, and let u ∈ Rd. Thus, by Theorem 6.2.4 with
x0 := x1 we have

Regret(AdaRegXΦ ,f , u) ≤ 1

2

T∑
t=0

‖u− xt‖2Dt+1
+

1

2
min

H∈Sd++

(〈GT , H〉+ Φ(H)− Φ(H1)). (6.16)

Let us bound each of the above terms separately. First, let us show that

T∑
t=0

‖u− xt‖2Dt+1
≤
√

2θTr(G̃
1/2
T). (6.17)

By the definition of the matrices H1, . . . ,HT+1 and by Lemma 6.4.2 we have Ht = ηG̃
−1/2
t−1 for every

t ∈ {1, . . . , T + 1}. Thus, Ht and Dt are diagonal matrices with positive diagonal entries (the latter
holds since Gt−1 � 0). Thus, for every t ∈ {1, . . . , T + 1} and any v ∈ Rd,

vTDt+1v =
d∑
i=1

v2
i (Dt+1)i,i ≤ ‖v‖2∞

d∑
i=1

(Dt+1)i,i = ‖v‖2∞Tr(Dt+1). (6.18)

Therefore, using, among other facts, that HT+1 = ηG̃
−11/2
T by Lemma 6.4.2, we have

T∑
t=0

‖u− xt‖2Dt+1
=

T∑
t=0

(u− xt)TDt+1(u− xT)

(6.18)
≤

T∑
t=0

‖u− xt‖2∞Tr(Dt+1)

≤ θ
T∑
t=0

Tr(Dt+1) = θTr
(T∑
t=0

Dt+1

)
= θTr(H−1

T+1)
Le. 6.4.2

=
θ

η
Tr(G̃

1/2
T)

=
√

2θTr(G̃
1/2
T).

This proves (6.17). Let us now show

min
H∈Sd++

(〈G̃T , H〉+ Φ(H)− Φ(H1)) ≤
√

2θTr(G̃
1/2
T). (6.19)

156

By Lemma 6.4.2, we have that the above minimum is attained by ηG̃−1/2
T and H1 = (η/

√
ε)I since,

by definition, H1 ∈ arg minH∈Sd++
(〈G̃0, H〉+ Φ(H)) and G̃0 = εI. Therefore,

min
H∈Sd++

(〈G̃T , H〉+ Φ(H)− Φ(H1)) = ηTr(G̃
1/2
T) + Φ(ηG̃

−1/2
T)− Φ(η√

ε
I)

= ηTr(G̃
1/2
T) + ηTr(G̃

1/2
T)− η

√
εTr(I)

≤ 2ηTr(G̃
1/2
T) =

√
2θTr(G̃

1/2
T),

which proves (6.19). Plugging (6.17) and (6.19) into the regret bound from (6.16) completes the
proof of the statement.

Again, one may find it hard to find any meaning on the trace in the regret bound in the above
theorem. Since the matrices used by DiagAdaGrad are diagonal, there is a simpler formula for the
trace. Namely, let ε > 0, let g ∈ (Rd)T for some T ∈ N, and define G̃T := εI +

∑T
t=1 diag(gtg

T
t).

Then, one may verify that

Tr(G̃
1/2
T) =

d∑
i=1

√√√√ε+
T∑
t=1

gt(i)2.

Still, the above formula may not be very informative. Let us prove a proposition similar to
Proposition 6.4.4 which sheds some light into the meaning of the above trace.

Proposition 6.4.4. Let A ∈ Sd++ ∩ Dd. Then inf{Tr(X−1A) : X ∈ Sd++,Tr(X) = 1} is attained
by Tr(A1/2)−1A1/2.

Proof. Define a := diag(A). Since A ∈ Dd, we have A = Diag(a). Additionally, note that

inf{ 〈X−1, A〉 : X ∈ Sd++ ∩ Dd,Tr(X) = 1} = inf{ 〈Diag(x)−1,Diag(a)〉 : x ∈ Rd++ ∩∆d}

= inf

{
d∑
i=1

ai
xi

: x ∈ Rd++ ∩∆d

}
.

Not only that, we also have that x̄ ∈ Rd++ ∩ ∆d attains the last infimum above if and only if
X := Diag(x)−1 attains the first infimum above. Define x̄ ∈ ∆d by

x̄i :=
a

1/2
i∑d

i=1 a
1/2
i

, ∀i ∈ [d].

Note that

Diag(x̄) =
1∑d

i=1 a
1/2
i

Diag(a)1/2 =
1

Tr(Diag(a)1/2)
Diag(a)1/2 =

1

Tr(A1/2)
A1/2.

Thus, to prove the statement, it suffices to show that

x̄ ∈ arg min

{
d∑
i=1

ai
xi

: x ∈ Rd++ ∩∆d

}
. (6.20)

Define the convex function c : Rd → (−∞,+∞] by

c(x) =
d∑
i=1

[xi > 0]
ai
xi

+ δ(x |Rd++), ∀x ∈ Rd.

157

First of all, note that c is closed. Indeed, c is continuous on Rd++ and, for every x̄ ∈ Rd+ \ Rd++,

lim inf
x→x̄

c(x) = +∞ = c(x̄).

Moreover, note that
(∇c(x))i = − ai

x2
i

, ∀i ∈ [d], ∀x ∈ Rd++.

Thus, for every x ∈ ∆d,

−∇c(x̄)T(x− x̄) = −(

d∑
i=1

a
1/2
i)2

1
T(x− x̄) = 0.

That is, −∇c(x̄) ∈ N∆d
(x̄). By the optimality conditions for minima of convex functions (see Theo-

rem 3.6.2), this implies that x̄ ∈ arg minx∈∆d
c(x), which is equivalent to (6.20).

Corollary 6.4.5. Let ε > 0 and g ∈ (Rd)T for some T ∈ N. Moreover, set G̃T := εI +∑T
t=1 diag(gtg

T
t) and Sd := {X ∈ Sn++ : Tr(X) = 1}. Then

Tr(G̃
1/2
T) =

√√√√ min
H∈Sd∩Dd

(
εTr(H−1) +

T∑
t=1

‖gt‖2H−1

)
.

Proof. Set H := Sd ∩ Dd. Note that if g ∈ Rd and H ∈ Dd, then ‖g‖2H = Tr(Diag(g)H Diag(g)).
Using this fact and Proposition 6.4.4, we have√√√√min

H∈H

(
εTr(H−1) +

T∑
t=1

‖gt‖2H−1

)
=

√√√√min
H∈H

(
ε〈H−1, I〉+

T∑
t=1

Tr(Diag(gt)H−1 Diag(gt))

)

=

√√√√min
H∈H

(
ε〈H−1, I〉+

T∑
t=1

〈H−1,Diag(gtgTt)〉

)

=

√
min
H∈H
〈H−1, G̃T 〉 =

√
Tr2(G̃

1/2
T)

= Tr(G̃
1/2
T).

With the above corollary, we can compare the regret bound for the Diagonal AdaGrad from
Theorem 6.4.3 with the regret bounds for the classic AdaGrad algorithm (Theorem 6.3.2) and with
the regret for the Online Mirror Descent algorithm with adaptive step size (Theorem 6.1.1). As
expected, the regret bound for AdaGrad seems to be better than the one for its diagonal version.
We can see this by comparing Corollaries 6.3.4 and 6.4.5, which show more palatable ways of writing
the traces that appear on the bounds of both algorithms. On Corollary 6.3.4, the minimum is taken
over all positive definite matrices in the spectraplex, while in the minima in above corollary the
search space is restricted to diagonal matrices. Still, the regret bound for the Diagonal AdaGrad
seems to be as good as the one for the OMD algorithm with adaptive step sizes from Theorem 6.1.1.
To see this, recall from (6.13) that we know the (scaled) `2-norm can be written as a norm induced
by d−1I, where d ∈ N \ {0} is the dimension of the problem. Thus, for a value of ε > 0 small enough
in the above corollary, we conclude that the norm chosen by the above minimum is as good as the
`2-norm if the goal is to minimize the sum of the norms of the subgradients. However, one problem
appears when trying to compare the regret bound for DiagAdaGrad with the bounds on previous
sections: the diameter θ ∈ R++ in Theorem 6.4.3 is w.r.t. the `∞-norm, while in previous sections
the `2-norm was used. Thus, more informative comparisons of the these regret bounds need more
information on the set X ⊆ Rd from where the player picks her points.

158

6.5 The Online Newton Step Algorithm

Let us look now at an OCO player oracle which attains logarithmic regret with respect to the
number of rounds in problems with some nice properties for the player. As we have discussed on
Chapter 4, if we devise a player oracle to play games where the functions played by the enemy
only need to be closed, convex, bounded, and Lipschitz continuous, then its worst-case regret is
no better than Ω(

√
T), where T ∈ N is the number of rounds (see [2] for details). Thus, we need

some additional assumptions on the functions played by the enemy if we want to devise a player
oracle which attains logarithmic regret. As we have seen in Section 4.8, if the functions played by
the enemy are all strongly convex, for example, we may attain logarithmic regret by simply using
the FTL algorithm (that is, the FTRL algorithm with no regularizer). At this point, a natural
question is: are there other assumptions on the functions played by the enemy (hopefully weaker
than strong convexity) which make it possible for a player oracle to attain logarithmic regret w.r.t.
the number of rounds? As we are going to see in this section, if the functions picked by the enemy
are guaranteed to be exp-concave, an assumption similar but slightly weaker than strong convexity,
we may devise player oracles which attain logarithmic worst-case regret.

Definition 6.5.1 (α-exp-concave functions). Let α ∈ R++. A function f : Rd → (−∞,+∞] is
α-exp-concave on a set X ⊆ Rd if the function13

x ∈ Rd 7→ e−αf(x) − δ(x |X)

is concave. If the set X is not explicitly stated, assume X = Rd.

The definition of exp-concavity is hardly interpretable by itself. Thus, both for the sake of
our understanding of this property and as tools for later use, let us prove some properties about
exp-concave functions. The first lemma we will prove shows a characterization of exp-concave
function which can be better interpreted.

To better understand the idea behind the next lemma, recall that by Lemma 3.9.5 a function
two-times continuously differentiable function14 f : Rd → R is α-strongly convex on Rd w.r.t. the
`2-norm if and only if f − α

2 ‖·‖
2
2 is convex. By Lemma 3.1.1, the latter function is convex if and

only if ∇2f(x)− αI � 0 for each x ∈ Rd, that is, ∇2f(x) � αI for every x ∈ Rd. Intuitively, this
mean that the at every x ∈ Rd function is curved in all directions. The next lemma shows a similar
characterization of exp-concavity for two-times continuously differentiable functions. Namely, it
shows that a two-times continuously differentiable function f : Rd → R is α-exp-concave if and only
if its hessian is positive definite “in the direction of its gradient”. In some sense, this means that f is
α-strongly convex w.r.t. the `2-norm (or curved) on the direction of its gradient.

Lemma 6.5.2. Let f : Rd → (−∞,+∞] and let X ⊆ dom f be a nonempty convex set such
that f + δ(· |X) is two-times continuously differentiable on X. Moreover, let α > 0. Then f is
α-exp-concave on X if and only if

∇2f(x) � α∇f(x)∇f(x)T, ∀x ∈ X.

Proof. Define h := e−αf(·) − δ(· |X). Then, for any x ∈ X we have

∇h(x) = −αe−αf(x)∇f(x) and ∇2h(x) = α2e−αf(x)∇f(x)∇f(x)T − αe−αf(x)∇2f(x).

13One may worry that we are using a function which is valued −∞ outside of X. Recall, however, that a function f
is concave if and only if −f is convex. Thus, the natural way to indicate points outside of the domain of a concave
function is to attribute −∞ to them.

14We restrict our discussion to functions which are finite everywhere only to avoid technicalities while we build
intuition.

159

By Lemma 3.1.1, h is concave if and only if 0 � ∇2h(x) for every x ∈ domh = X. The latter holds
if and only if, for every x ∈ X,

α2e−αf(x)∇f(x)∇f(x)T � αe−αf(x)∇2f(x) ⇐⇒ α∇f(x)∇f(x)T � ∇2f(x).

Let us now look at some examples of exp-concave functions for the sake of concreteness. First,
let us show that the functions from the sequential investment problem defined on Section 2.2.4 are
all exp-concave.

Proposition 6.5.3. Let r ∈ Rd++, define the convex set X := {x ∈ Rd : 1Tx > 0}, and define the
function f(x) := − ln(rTx) + δ(x |X) for every x ∈ Rd. Then f is 1-exp-concave on X.

Proof. Since x ∈ Rd 7→ rTx is two-times continuously differentiable on Rd, since α ∈ R++ 7→ ln(α)
is two-times continuously differentiable on R++, and since rTx > 0 for every x ∈ X, we conclude
that f is two-times continuously differentiable on X. Moreover, note that

∇f(x) = − 1

rTx
r, and ∇2f(x) =

1

(rTx)2
rrT ∀x ∈ X.

Therefore, for every x ∈ X,

∇2f(x)−∇f(x)∇f(x)T =
1

(rTx)2
rrT − 1

(rTx)2
rrT = 0.

Thus, by Lemma 6.5.2 we conclude that f is 1-exp-concave on X.

The next theorem, which we will use later as a tool to prove regret bounds, shows an inequality
for exp-concave functions which is similar to the inequality for strongly convex functions given
by Theorem 3.9.7. Namely, the latter theorem states that if a closed convex function f : Rd →
(−∞,+∞] is α-strongly convex and f is subdifferentiable at x ∈ X, then

f(x) ≥ f(y) + gT(x− y) +
α

2
‖x− y‖22, ∀y ∈ X,∀g ∈ ∂f(x).

The inequality we prove in the next theorem for exp-concave functions is similar to the one above.
The main difference is that instead of the squared norm, the inequality from the next theorem uses
a “local norm”15 based on the gradient of the function. Before jumping into the lemma, we need a
simple result which we prove next.

Lemma 6.5.4. For every α ∈ [−1/4, 1/4], we have

− ln(1− α) ≥ α+
1

4
α2.

Proof. For every α ∈ R define

f(α) := − ln(1− α) and h(α) := α+
1

4
α2.

Since f(0) = 0 = h(0) and since both f and h are differentiable on [−1/4, 1/4], to prove f(α) ≥ h(α)
for every α ∈ [−1/4, 1/4] it suffices to prove f ′(α) ≥ h′(α) for every α ∈ [0, 1/4] and f ′(α) ≤ h′(α)
for every α ∈ [−1/4, 0). Note that, for every α ∈ [−1/4, 1/4], since 1− α > 0 we have

f ′(α) ≥ h′(α) ⇐⇒ 1

1− α
≥ 1 +

1

2
α ⇐⇒ 2 ≥ (2 + α)(1− α)

⇐⇒ 2 ≥ 2− α− α2 ⇐⇒ α2 + α ≥ 0.

Since α2 + α ≥ 0 for every α ∈ [0, 1/4] and α2 + α ≤ 0 for every α ∈ [−1/4, 0), we are done.
15Note that it is not a norm since the matrix in the inequality is a rank-one matrix.

160

Theorem 6.5.5. Let X ⊆ Rd, let ‖·‖ be a norm on Rd, and let α ∈ R++. Let f : Rd → (−∞,+∞]
be a closed convex function which is α-exp-concave on X, ρ-Lipschitz continuous w.r.t. ‖·‖ on X, and
differentiable on X. Moreover, suppose there is θ ∈ R++ such that supx,y∈X‖x− y‖2 ≤ θ. Finally,
let β ∈ R++ be such that β ≤ 1

2 min{(4ρ
√
θ)−1, α}. Then, for any x, y ∈ X and g ∈ ∂f(x) we have

f(y) ≥ f(x) +∇f(x)T(y − x) +
β

2
(x− y)∇f(x)∇f(x)T(x− y).

Proof. Since 2β ≤ α, we have that f is 2β-exp-concave on X. Thus, h := e−2βf(·) + δ(· |X) is a
concave function. Let x, y ∈ X. Then, by the subgradient inequality,

h(y) ≤ h(x) +∇h(x)T(y − x) =⇒ e−2βf(y) ≤ e−2βf(x) − 2βe−2βf(x)∇f(x)T(y − x)

=⇒ e−2βf(y) ≤ e−2βf(x)(1− 2β∇f(x)T(y − x))

=⇒ −2βf(y) ≤ −2βf(x) + ln(1− 2β∇f(x)T(y − x))

=⇒ f(y) ≥ f(x)− 1

2β
ln(1− 2β∇f(x)T(y − x)).

(6.21)

By Theorems 3.5.5 and 3.8.4, we have ‖∇f(x)‖∗ ≤ ρ. Hence,

2β∇f(x)T(y − x) ≤ 2β‖∇f(x)‖∗‖x− y‖ ≤ 2βρ
√
θ ≤ 1

4
.

Thus, we can use Lemma 6.5.4 on (6.21), which yields

f(y) ≥ f(x)− 1

2β
ln(1− 2β∇f(x)T(y − x))

≥ f(x) +
1

2β

(
2β∇f(x)T(y − x) +

1

4
(2β∇f(x)Ty − x)2

)
= f(x) +∇f(x)T(y − x) +

β

2
(∇f(x)Ty − x)2.

Finally, let us describe the Online Newton Step (ONS) algorithm, which was first presented in [37].
We will show that, if the functions played by the enemy are guaranteed to be differentiable and
exp-concave on the set from where the player picks her choices, then the ONS algorithm’s worst-case
regret bound is logarithmic w.r.t. the number of rounds of the game. A player oracle which formally
implements the ONS algorithm is defined in Algorithm 6.5.

One may have noticed some similarities between the above algorithm and the AdaGrad algorithm
we have presented earlier in this chapter. The algorithm still maintains, at each round t ∈ N \ {0}, a
matrix constructed from rank-one updates based on the gradients of previous functions. On the
other hand, how these matrices are used on the iterate updates are slightly different.

As before, let us see how to write ONS as an instance of the AdaReg algorithm. Again, in
order to do so, we will pick a convex function on Rd and transform it into a function on symmetric
matrices by applying the function only to the eigenvalues (see Section 3.7 for details). Surprisingly,
the meta-regularizer we will use is a multiple of X ∈ Sd++ 7→ − ln detX, a barrier function deeply
connected with interior-point methods [58]. It is very interesting to see this connection, since the
ONS algorithm did not seem to be based on any of the main concepts from interior-point methods
when first proposed on [37].

Lemma 6.5.6. Let η > 0, define f : Rd → (−∞,+∞] by

f(x) := −η
d∑
i=1

[xi > 0] lnxi + δ(x |Rd+), ∀x ∈ Rd,

161

Algorithm 6.5 Definition of ONSX
(
〈f1, . . . , fT 〉

)
Input:

(i) A closed and convex set ∅ 6= X ⊆ Rd,

(ii) Convex functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]R
d such that ft is

differentiable on X for each t ∈ [T],

(iii) Real numbers η, ε > 0 (usually clear from the context).
Output: xT+1 ∈ X
Define G0 ← εI
Let {x1} ← arg minx∈X‖x‖2
for t = 1 to T do

. Computations for round t+ 1
Define Gt ← Gt−1 +∇ft(xt)∇ft(xt)T
xt+1 ← ΠGt

X (xt − ηG−1
t ∇ft(xt))

return xT+1

and set Φ := fS . Then,

Φ(H) = −η ln det(H) and ∇Φ(H) = −ηH−1, ∀H ∈ Sd++, (6.22)

and for every G ∈ Sd++ the infimum infH∈Sd++
(〈G,H〉+ Φ(H)) is attained by ηG−1. Moreover, the

function Φ is a meta-regularizer and we have ONSX = AdaRegXΦ for every nonempty closed convex
set X ⊆ Rd and for every ε > 0, where the value of η in ONS is the same as in the definition of f .

Proof. Let H ∈ Sd++ and set λ := λ↑(H). First, let us show that (6.22) holds for H. By the definition
of fS we have

fS(H) = f(λ) = −η
d∑
i=1

lnλi = −η ln

d∏
i=1

λi = −η ln det(H),

where in the last equation we used Corollary 1.1.2. Let us now check that Φ is differentiable
at H. Define Λ := Diag(λ). By the Spectral Decomposition Theorem (Theorem 1.1.1), there
is an orthogonal matrix Q ∈ Rd×d such that H = QΛQT. Since f is differentiable on Rd++, by
Corollary 3.7.5 we have that Φ is differentiable on Sd++ and that

∇Φ(H) = QDiag(∇f(λ))QT = −ηQΛ−1QT = −ηH−1.

This ends the proof of (6.22). Let G ∈ Sd++. Let us now show that

{ηG−1} = arg min
H∈Sd++

(〈H,G〉+ Φ(H)). (6.23)

Let Ĥ ∈ Sd++. By Theorem 3.6.2, Ĥ attains the above infimum if and only if

0 = G+∇Φ(Ĥ) = G− ηĤ−1 ⇐⇒ Ĥ = ηG−1.

This proves (6.23).
Let us now show that

Φ is a meta-regularizer. (6.24)

162

Let T ∈ N and g ∈ (Rd)T . Moreover, let ε > 0 and set GT−1 := εI +
∑T−1

t=1 gtg
T
t and GT := GT−1 +

gT g
T
T . Condition (6.3.i) is satisfied by Φ since, by (6.23), we know that infH∈Sd++

(H •GT + Φ(H))

is attained by ηG−1
T . Thus, set HT+1 := ηG−1

T and HT := ηG−1
T−1. Note that

H−1
T+1 −H

−1
T = 1

η (GT −GT−1) = 1
ηgT g

T
T � 0,

that is, Φ satisfies condition (6.3.ii), which finishes the proof of (6.24).
Last but not least, let us show that, AdaGradX = AdaRegXΦ for any ε > 0 and any closed

and convex set ∅ 6= X ⊆ Rd (recall that η > 0 is already given by the statement). Let f :=

〈f1, . . . , fT 〉 ∈ Seq((−∞,+∞]R
d
) be such that ft is closed, convex, and subdifferentiable on X for

every t ∈ [T]. Let us show that AdaGradX(f1:t−1) = AdaRegXΦ (f1:t−1) by induction on t ∈ [T]. Set
x1 := AdaRegXΦ (〈〉) and let H1 be as in the definition of AdaRegXΦ (〈〉). By (6.23), we know that
H1 = (η/ε)I. Thus,

x1 ∈ arg min
x∈X

‖x‖H−1
1

= arg min
x∈X

xTH−1
1 x = arg min

x∈X

ε
ηx

Tx = arg min
x∈X

‖x‖2.

Since the squared `2-norm is strictly convex (see Lemma 3.9.5), x1 is the unique minimizer of the
above minima and, thus, x1 = ONSX(〈〉). Let t ∈ {2, . . . , T+1} and define xi := AdaRegXΦ (f1:i−1) =
ONSX(f1:i−1) for every i ∈ {1, . . . , t− 1} (where the equation holds by induction). Moreover, for
every i ∈ {1, . . . , t− 1} let gi ∈ Rd and Gi ∈ Sd++ be as in the definition of xt := AdaRegXΦ (f1:t−1).
For every i ∈ {1, . . . , t − 1}, since fi is differentiable on X, by Theorem 3.5.5 we conclude that
gt−1 = ∇ft−1(xt−1). Thus, Gt−1 is the same as the one in the definition of ONSX(f1:t−1). Finally,
let Ht be as in the definition of AdaRegXΦ (f1:t−1). Then,

xt = Π
H−1

t
X (xt−1 −Htgt−1)

(6.23)
= Π

Gt−1

X (xt−1 − ηG−1
t−1gt−1) = ONSX(f1:t−1).

Finally, let us show that ONS attains logarithmic regret (w.r.t. the number of rounds) when
playing against an enemy who plays only differentiable and exp-concave functions. Before proving
the regret itself on Theorem 6.5.8, we need to prove a simple lemma to bound the eigenvalues of the
matrices Gt ∈ Sn++ which the ONS oracle builds through its iterations.

Lemma 6.5.7. Let T ∈ R+ and g1, . . . , gT ∈ Rd be such that ‖gt‖2 ≤ ρ for every t ∈ [T]. Moreover,
let ε > 0 and set G := εI +

∑T
t=1 gtg

T
t . Then, for every i ∈ [d],

λ↑i (G) ≤ ρ2T + ε and det(G) ≤ (ρ2T + ε)d.

Proof. Let i ∈ [d] and let v ∈ Rd be an eigenvector of G associated with λ↑i (G). Then,

λ↑i (G)v = Gv = εv +

T∑
t=1

gtg
T
t v.

Therefore,

λ↑i (G)‖v‖22 = ε‖v‖22 +
T∑
t=1

(gTt v)2 ≤ ε‖v‖22 +
T∑
t=1

‖gt‖22‖v‖22 ≤ ε‖v‖22 + Tρ2‖v‖22.

Dividing the above inequality by ‖v‖22 (which is nonzero since v is an eigenvector) yields the first
bound from the statement. The bound on the determinant follows directly from Corollary 1.1.2,
which shows that det(G) =

∏d
i=1 λ

↑
i (G).

163

Theorem 6.5.8. Let C := (X,F) be an OCO instance such that X ⊆ Rd is a nonempty closed
set and such that each f ∈ F is a proper closed convex function. Moreover, suppose that there
is a convex set D ⊇ X with nonempty interior such that every f ∈ F is differentiable on int(D),
α-exp-concave on D, and ρ-Lipschitz continuous on D. Suppose there is θ ∈ R++ such that
θ ≥ sup{ ‖x− u‖22 : x, u ∈ X} is finite. Define

β :=
1

2
min

{
α,

1

4ρ
√
θ

}
, η :=

1

β
, and ε :=

d

η2θ
.

Finally, let T ∈ N, let ENEMY be an enemy oracle for C, and define

(x,f) := OCOC(ONSX ,ENEMY, T).

Then,

Regret(ONSX ,f , X) ≤
(

1

α
+ ρ
√
θ

)
4d(1 + d−1 + lnT).

Proof. Define h : Rd → (−∞,+∞] by

h(x) := −η
d∑
i=1

[xi > 0] lnxi, ∀x ∈ Rd,

and set Φ := hS . By Lemma 6.5.6, we have Φ(H) = −η ln det(H) for every H ∈ Sd++ and AdaRegXΦ =
ONSX . Thus, we only need to bound the regret of AdaRegXΦ . By Theorem 3.5.5, for every t ∈ [T]
we have gt = ∇ft(xt), where gt ∈ ∂ft(xt) is as in in the definition of AdaRegXΦ (f). For each t ∈ [T]
define f̃t : Rd → (−∞,+∞] by

f̃t(x) := ∇ft(xt)Tx, ∀x ∈ Rd.

Let u ∈ X. Since ft is α-exp-concave for each t ∈ [T], by Theorem 6.5.5 we have

Regret(AdaRegXΦ ,f , u) =
T∑
t=1

(ft(xt)− ft(u)) ≤
T∑
t=1

∇ft(xt)T(xt − u)− β

2

T∑
t=1

(∇ft(xt)T(xt − u))2

=
T∑
t=1

f̃t(xt)− f̃t(u))− β

2

T∑
t=1

(∇ft(xt)T(xt − u))2

= Regret(AdaRegXΦ , f̃ , u)− β

2

T∑
t=1

(∇ft(xt)T(xt − u))2,

where in the last inequality we have used the fact that, for every t ∈ [T], we have AdaRegXΦ (f1:t−1) =
AdaRegXΦ (f̃1:t−1) since ∇f̃t(xt) = ∇ft(xt). For each t ∈ {1, . . . , T + 1}, let Ht, Gt−1 ∈ Sd++ be as in
the definition of AdaRegXΦ (f̃), and define Dt := H−1

t − [t > 1]H−1
t−1. Thus, by Theorem 6.2.4 with

x0 := x1 we have

Regret(AdaRegXΦ , f̃ , u) ≤ 1

2

T∑
t=0

‖u− xt‖2Dt+1
+

1

2
min

H∈Sd++

(〈GT , H〉+ Φ(H)− Φ(H1)).

164

Therefore,

Regret(AdaRegXΦ ,f , u) ≤ 1

2

(T∑
t=0

‖u− xt‖2Dt+1
− η

T∑
t=1

(∇ft(xt)T(xt − u))2
)

+
1

2
min

H∈Sd++

(〈GT , H〉+ Φ(H)− Φ(H1)).

(6.25)

Let us bound each of the above terms separately. By Lemma 6.5.6, we have

Ht = ηG−1
t−1 = 1

βG
−1
t−1, ∀t ∈ {1, . . . , T + 1}. (6.26)

Hence, D1 = βεI (since G0 = εI and, thus, H1 = q(βε)−1I) and Dt+1 = β(Gt − Gt−1) =
β∇ft(xt)∇ft−1(xt)

T for each t ∈ [T]. Thus,

T∑
t=0

‖xt − u‖2Dt+1
= βε‖x0 − u‖22 + β

T∑
t=1

(∇ft(xt)T(xt − u))2 ≤ βεθ + β

T∑
t=1

(∇ft(xt)T(xt − u))2

=⇒
T∑
t=0

‖xt − u‖2Dt+1
− β

T∑
t=1

(∇ft(xt)T(xt − u))2 ≤ βεθ.

Moreover,

min
H∈Sd++

(〈GT , H〉+ Φ(H)− Φ(H1))

= 〈GT , HT+1〉+ Φ(HT+1)− Φ(H1)

=
1

β
(Tr(I) + Φ(β−1G−1

T)− Φ((βε)−1I)) by (6.26),

=
1

β
(d− ln det(β−1G−1

T) + ln det((βε)−1I))

=
1

β
(d+ ln det(βGT)− ln(βε)d) since det(A−1) = det(A)−1,

=
1

β

(
d+ ln

det(βGT)

(βε)d

)
≤ 1

β

(
d+ ln

βd(ρ2T + ε)d

βdεd

)
by Lemma 6.5.7,

=
d

β

(
1 + ln

(
ρ2T

ε
+ 1

))
.

By the definition of β, we have

1

β
≤ 2

(
1

α
+ 4ρ

√
θ

)
≤ 8

(
1

α
+ ρ
√
θ

)
=⇒ 1

2β
≤ 4

(
1

α
+ ρ
√
θ

)
.

165

Plugging these inequalities into (6.25) and using the definitions of ε and η yield

Regret(ONSX ,f , u) ≤ 1

2

(
βεθ +

d

β

(
1 + ln

(
Tρ2

ε
+ 1

)))
=

1

2

(
1

β
+
d

β

(
1 + ln

(
Tβ2ρ2θ + 1

)))
=

1

2β

(
1 + d

(
1 + ln

(
T

64
+ 1

)))
≤ 1

2β
(1 + d(1 + lnT))

=
1

2β
(1 + d+ d lnT)

≤
(

1

α
+ ρ
√
θ

)
4d
(
d−1 + 1 + lnT

)
.

Different from the case of the AdaGrad algorithm, the player needs a lot of prior information
about the problem, such as the Lipschitz and exp-concavity constants, to use the right parameters
so that the above regret bound holds. In spite of this, the above regret is still impressive, since it is
an exponential improvement (w.r.t. the number of rounds) if compared to the regret of AdaGrad.

6.6 Online Gradient Descent for Strongly Convex Functions

On [33], the authors show a diagonal version of the ONS algorithm using ideas similar to the ones
used on Section 6.4 to derive the diagonal version of AdaGrad. However, in the case for diagonal
matrices, to maintain the logarithmic regret bound the functions picked by the enemy need to
satisfy an adapted form of exp-concavity. For the sake of brevity, we will not show how to derive
this algorithm. Instead, we show a result from [33] which uses a similar idea to the one used on
Section 6.4: we will constrain the meta-regularizer from the previous section to be finite only on a
specific set of matrices. However, now we will restrict the meta-regularizer to the set of multiples
of the identity matrix, i.e., the set Id := {αI ∈ Sd : α ∈ R}. Interestingly, this yields a strategy to
choose step sizes on the projected gradient descent algorithm which, if the functions played by the
enemy are all strongly convex, is guaranteed to attain logarithmic regret in the worst case. This is
preferable than the FTL algorithm from Section 4.8 since it gives an efficient algorithm, while in
the case of the FTL algorithm it is not clear how to compute it efficiently in general. Even though
one could make the regret analysis of the algorithm we will see in this section using the theorems
from Chapter 5 if one knew beforehand which step sizes to use, it is interesting to see that, in some
sense, the Online Newton Step algorithm is indeed a generalization of the Online Gradient Descent
algorithm for strongly convex functions.

The meta-regularizer which are going to use is the same as the one used in the previous section
restricted to be finite only on Id. Thus, as we have done in the previous sections, let us prove the
form and some properties of the meta-regularizer we are going to use.

Lemma 6.6.1. Let η > 0, define f : Rd → R by

f(x) := −η
d∑
i=1

[xi > 0] lnxi, ∀x ∈ Rd,

and set Φ := fS + δ(· | Id). Then,

Φ(αI) = −ηd lnα, ∀α ∈ R++, (6.27)

166

and for every G ∈ Sd++ the infimum infH∈Sd++
(〈G,H〉+ Φ(H)) is attained by

dη

Tr(G)
I.

Additionally, Φ is a meta-regularizer.

Proof. By Lemma 6.5.6, we know that fS(H) = −η ln det(H) for every H ∈ Sd++. Therefore,
Φ is infinite outside of Id and Φ(αI) = −η lnαd = −ηd lnα for α ∈ R++, which proves (6.27).
Let G ∈ Sd++. Let us show that{

dη

Tr(G)
I

}
= arg min

H∈Sd++

(〈G,H〉+ Φ(H)). (6.28)

Since Φ is proper and infinite outside of Id, the above minimum may be attained only by a
matrix in Id ∩ Sd++. Let ᾱ ∈ R++. Since Id is an affine set, we have ri(Id) = Id and, thus, we
have (ri(Id))∩ ri(Sd++) = Id ∩Sd++ 6= ∅. Hence, by the optimality conditions from Theorem 3.6.2 and
since NSd++

(ᾱI) = {0}, we have that ᾱI attains the infimum in (6.28) if and only if 0 ∈ G+ ∂Φ(ᾱI)

is nonempty. Since ri(dom fS) = Sd, by Theorem 3.5.4 we have ∂Φ(ᾱI) = ∇(fS)(ᾱI) + NId(ᾱI).
Note that

NId(ᾱI) = {A ∈ Sd : 〈A, (α− ᾱ)I〉 ≤ 0, ∀α ∈ R}
= {A ∈ Sd : (α− ᾱ) Tr(A) ≤ 0,∀α ∈ R}
= {A ∈ Sd : Tr(A) = 0}.

Moreover, by Lemma 6.5.6 we have ∇(fS)(ᾱI) = − η
ᾱI. Therefore, ᾱI attains the infimum in (6.28)

if and only if there is A ∈ Sd with Tr(A) = 0 such that

0 = G− η

ᾱ
I +A ⇐⇒ η

ᾱ
I = G+A.

Note that such a matrix A ∈ NId(ᾱI) exists if and only if η
ᾱ Tr(I) = Tr(G+ A) = Tr(G). Indeed,

note that the sufficiency is clear. To see the necessity, suppose η
ᾱ Tr(I) = Tr(G). Then, by setting

A := −G+ η
ᾱI, we have Tr(A) = Tr(G)− η

ᾱ Tr(I) = 0 by assumption and G+A = η
ᾱI. Finally, we

have
ηd

ᾱ
= Tr(G) ⇐⇒ ᾱ =

ηd

Tr(G)
.

This finishes the proof of (6.28).
Let us now show that Φ is a meta-regularizer. Let T ∈ N\{0} and g ∈ (Rd)T . Moreover, let ε > 0,

set GT−1 := εI +
∑T−1

t=1 gtg
T
t , and GT := GT−1 + gT g

T
T . Condition (6.3.i) is satisfied by Φ since

by (6.12) we know that infH∈Sd++
(〈H,GT 〉+ Φ(H)) is attained by ᾱT I, where ᾱT := ηdTr(GT)−1.

Set HT+1 := ᾱT I and HT := ᾱT−1I, where ᾱT−1 := ηdTr(GT−1)−1. Note that

H−1
T+1 −H

−1
T = I

(
1

ᾱT
− 1

ᾱT−1

)
= I

(
Tr(GT −GT−1)

ηd

)
.

Since Tr(GT − GT−1) = Tr(gT g
T
T) = ‖gT ‖22 ≥ 0, we conclude that the above matrix is positive

semidefinite. Thus, Φ satisfies condition (6.3.ii). This finishes the proof that Φ is a meta-regularizer.

167

We are in place to prove a regret bound for AdaReg using as a meta-regularizer the function Φ
from the previous lemma. Additionally, we will show that the form of its update is the same as the
one of online gradient descent, but with a special choice of step sizes.

Theorem 6.6.2. Let C := (X,F) be an OCO instance such that X ⊆ Rd is a nonempty closed
convex set and such that each f ∈ F is a proper closed convex function such that f is σ-strongly
convex on X w.r.t. ‖·‖2 and subdifferentiable on X. Moreover, suppose that there is a convex set
D with X ⊆ intD such that every function in F is ρ-Lipschitz continuous on D. Let T ∈ N, let
ENEMY be an enemy oracle for C, and define

η :=
ρ2

σd
, ε :=

ρ2

d
,

h(x) := −η
d∑
i=1

[xi > 0] lnxi, ∀x ∈ Rd,

Φ := hS + δ(· | Id),
(x,f) := OCOC(AdaRegXΦ ,ENEMY, T).

Then,

Regret(AdaRegXΦ ,f , X) ≤ ρ2

σ
(ln(T + 1) + 9).

Additionally, let gt ∈ ∂ft(xt) be as in the definition of AdaRegXΦ (f) for each t ∈ [T]. Then,

xt = Π
‖·‖2
X ([t > 1](xt−1 − αtgt−1)), ∀t ∈ [T], (6.29)

where

αt :=
ρ2

σ(ρ2 +
∑t−1

i=1‖gi‖22)
, ∀t ∈ [T].

Proof. Let us first prove the regret bound from the statement. For each t ∈ [T], define f̃t : Rd → R
by

f̃t(x) := gTt x, ∀x ∈ Rd,

and let u ∈ X. By Theorem 3.9.7, we have

Regret(AdaRegXΦ ,f , u) =

T∑
t=1

(ft(xt)− ft(u)) ≤
T∑
t=1

gTt (xt − u)− σ

2

T∑
t=1

‖xt − u‖22

=

T∑
t=1

f̃t(xt)− f̃t(u))− σ

2

T∑
t=1

‖xt − u‖22

= Regret(AdaRegXΦ , f̃ , u)− σ

2

T∑
t=1

‖xt − u‖22,

where in the last inequality we have used the fact that, for every t ∈ [T], we have AdaRegXΦ (f1:t−1) =
AdaRegXΦ (f̃1:t−1) since ∇f̃i(xi) = gi for every i ∈ [T]. For each t ∈ {1, . . . , T +1} let Ht, Gt−1 ∈ Sd++

be as in the definition of AdaRegXΦ (f̃) and define Dt := H−1
t − [t > 1]H−1

t−1. By Theorem 6.2.4 with

168

x0 := x1 we have

Regret(AdaRegXΦ , f̃ , u) ≤ 1

2

T∑
t=0

‖u− xt‖2Dt+1
+

1

2
min

H∈Sd++

(〈GT , H〉+ Φ(H)− Φ(H1))

=
1

2

T∑
t=0

‖u− xt‖2Dt+1
+

1

2
(〈GT , HT+1〉+ Φ(HT+1)− Φ(H1)),

where in the last equation we have used the definition of HT+1. Therefore,

Regret(AdaRegXΦ ,f , u) ≤ 1

2

(T∑
t=0

(‖u− xt‖2Dt+1
− σ

T∑
t=1

‖u− xt‖22

+ 〈GT , HT+1〉+ Φ(HT+1)− Φ(H1)
)
.

(6.30)

Let us prove this bound in two parts. First, let us show that

T∑
t=0

‖u− xt‖2Dt+1
− σ

T∑
t=1

‖u− xt‖22 ≤
16εd

σ
. (6.31)

Let t ∈ {1, . . . , T + 1}. Note that

Tr(Gt−1) = Tr
(
εI +

t−1∑
i=1

gig
T
i

)
= Tr(εI) +

t−1∑
i=1

Tr(gig
T
i) = εd+

t−1∑
i=1

‖gi‖22 = ρ2 +

t−1∑
i=1

‖gi‖22. (6.32)

The above equation with Lemma 6.6.1 yields

Ht =
ηd

Tr(Gt−1)
I =

ρ2

σTr(Gt−1)
I =

ρ2

σ(ρ2 +
∑t−1

i=1‖gi‖22)
I = αtI. (6.33)

Moreover, since the functions in F are all ρ-Lipschitz continuous on D and X ⊆ int(D), by
Theorem 3.8.4 we have

‖gt‖2 ≤ ρ, ∀t ∈ [T]. (6.34)

Therefore,

T∑
t=0

‖xt − u‖2Dt+1
= α−1

1 ‖x0 − u‖22 +

T∑
t=1

(α−1
t+1 − α

−1
t)‖xt − u‖22

=
σεd

ρ2
‖x0 − u‖22 +

T∑
t=1

σ‖gt‖22
ρ2

‖xt − u‖22

≤ σεd

ρ2
‖x0 − u‖22 +

T∑
t=1

σ‖xt − u‖22.

Thus, it only remains to show that ‖x0−u‖ ≤ 4ρ/σ. Since X ⊆ dom f1 due to the subdifferentiablity
of f1 on X, we have that dom f ∩X is nonempty. Since f1 and X are closed and since f1 is strongly
convex on X, by Lemma 3.9.14 there is x̄ ∈ X which attains infx∈X f1(x). Let ḡ ∈ ∂f1(x̄), which by
Theorem 3.8.4 satisfies ‖ḡ‖2 ≤ ρ since f1 is Lipschitz continuous on int(D) ⊇ X. By Theorem 3.9.7
together with the minimality of x̄ and with the fact that ‖ḡ‖2 ≤ ρ, for every x ∈ X we have

0 ≤ f1(x̄)− f1(x) ≤ ḡT(x̄− x)− σ

2
‖x̄− x‖22 ≤ ρ‖x̄− x‖2 −

σ

2
‖x̄− x‖22,

169

which implies that ‖x̄− x‖ ≤ 2ρ/σ for every x ∈ X. Thus, by the triangle inequality,

‖x0 − u‖2 ≤ ‖x0 − x̄‖2 + ‖x̄− u‖2 ≤
4ρ

σ
.

This ends the proof of (6.31). Now let us show that

〈GT , HT+1〉+ Φ(HT+1)− Φ(H1) ≤ ρ2

σ

(
1 + ln

(
Tρ2

nε
+ 1

))
. (6.35)

Note that

Tr(GT)
(6.35)

= εd+
T∑
t=1

‖gt‖22
(6.34)
≤ εd+ Tρ2 and Tr(G0) = Tr(εI) = εd.

Therefore,

〈GT , HT+1〉+ Φ(HT+1)− Φ(H1) = αT+1 Tr(GT)− ηd lnαT+1 + ηd lnα1

= αT+1 Tr(GT) + ηd ln

(
α1

αT+1

)
(6.33)

= ηd

(
1 + ln

(
Tr(GT)

Tr(G0)

))
=
ρ2

σ

(
1 + ln

(
εd+ Tρ2

εd

))
≤ ρ2

σ

(
1 + ln

(
1 +

Tρ2

εd

))
.

This proves (6.35). Plugging into (6.30) both (6.31) and (6.35) yields

Regret(AdaRegXΦ ,f , u) ≤ 1

2

(
16εd

σ
+
ρ2

σ

(
1 + ln

(
1 +

Tρ2

εd

)))
=

8εd

σ
+
ρ2

2σ

(
1 + ln

(
1 +

Tρ2

εd

))
=
ρ2

σ

(
8 +

1

2
(1 + ln(1 + T))

)
≤ ρ2

σ
(9 + ln(1 + T)).

This ends the proof of the regret bound. Finally, let us see that (6.29) holds. Let t ∈ [T]. By (6.33),
we have Ht = αtI, where αt is positive. Thus, ΠH−1

t = Π‖·‖2 for every t ∈ [T]. Moreover, using (6.33)

together with the definition of AdaRegXΦ (f) we have x1 ∈ arg minx∈X‖x‖H−1
1

= Π
H−1

1
X (0) = Π

‖·‖2
X (0)

and
xt = Π

H−1
t

X (xt−1 −Htgt−1)) = Π
‖·‖2
X (xt−1 − αtgt−1), ∀t ∈ {2, . . . , T}.

170

Chapter 7

A Genealogy of Algorithms

In the previous chapters we have presented and analyzed many algorithms for online convex
optimization. One may have noticed that, in our presentation, we often derived regret bounds for
an algorithm by showing that it is a special case of another, more general one. This technique of
analysis is not necessarily the simplest one for all the cases and is well-known, with most of the
proofs presented here based on [33, 48]. Still, it shows interesting connections among the algorithms,
revealing a kind of “genealogy” of online convex optimization algorithms. Such connections may
shed light on the reasons behind the effectiveness (or the lack thereof) of certain algorithms in
specific cases. Not only that, it may reveal interesting branches of the genealogy which were not
yet properly investigated. In this chapter, we derive and analyze classical algorithms for online
convex optimization, comment on previously derived algorithms, and discuss the connections made
throughout the text, summarizing them in a hopefully insightful way. Some algorithms that shall be
presented in this chapter may have been derived before in other portions of the text, even if the
algorithm itself was not explicitly stated. In such cases we still prove any statements we make about
the algorithm for the sake of completeness.

On Section 7.1 we discuss the online gradient descent method, first presented in [72], derive
a regret bound for it using the regret bounds from Chapter 5, and discuss the techniques used.
On Section 7.2 we derive the Exponentiated Gradient algorithm, discuss its application to the
experts’ problem (a case in which the algorithm is better known as Hedge [32] or Exponentiated
Multiplicative Weights Update Method [6]) and discuss some confusion regarding the update rule
of the iterates of the Multiplicative Weights Update Method (MWUM). On Section 7.3 we derive
the slightly more general version of the Matrix Multiplicative Weights Update Method from [43]
and prove regret bounds for this algorithm. On Section 7.4 we derive a convergence bound for the
Mirror Descent method for traditional convex optimization from the regret bounds for Online Mirror
Descent algorithms, and discuss the limitations of this technique. Finally, on Section 7.5 we take a
bird’s-eye view of the connections made throughout the text among algorithms for online convex
optimization.

7.1 Online Gradient Descent

The Online Gradient Descent (OGD) method, first proposed in [72], is one of the most well-known
methods for online convex optimization. One major reason for its fame is its inspiration on the
gradient descent method from classic convex optimization (for more information on gradient descent
methods, see [15, 55]). The reader may recall that we have already derived online gradient descent
methods with constant (Proposition 5.2.2) and adaptive (w.r.t. the subgradients) time-varying step

171

sizes (see Section 6.1 and Section 6.6). On this section we will look at the Online Gradient Descent
method with arbitrary non-increasing step sizes. The addition of time-varying step sizes makes the
proofs of regret bounds a bit more tedious, but it is informative to describe at least one algorithm
on this chapter with general step sizes. Still, for the sake of simplicity and conciseness, the next
algorithms will be presented with fixed step sizes. On Algorithm 7.1 we define an oracle which
implements the online gradient descent method with non-increasing time-varying step sizes.

Algorithm 7.1 Definition of OGDX
η

(
〈f1, . . . , fT 〉

)
Input:

(i) A closed convex set X ⊆ E,
(ii) Convex functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]E such that ft is

subdifferentiable on X for each t ∈ [T],

(iii) A non-increasing function η : N \ {0} → R++

Output: xT+1 ∈ X
Let {x1} ← arg minx∈X‖x‖2
y1 ← 0.
for t = 1 to T do

Let gt ∈ ∂ft(xt)
yt+1 ← xt − ηt+1gt
xt+1 ← Π

‖·‖2
X (yt+1)

return xT+1

Let us show that the above algorithm is a special case of the Adaptive Online Mirror Descent
algorithm from Section 5.1, and with that we derive a regret bound for OGD.

Theorem 7.1.1. Let C := (X,F) be an OCO instance such that X ⊆ E is closed and such that
each f ∈ F is proper and closed, and let η : N \ {0} → R++ be non-increasing. Then, there is a
mirror map strategy R : Seq(F)→ (−∞,+∞]E for C such that AdaOMDX

R = OGDX
η in the case

where both oracles use the same well-order on the sets they use in their definitions. In particular,
suppose there is a nonempty open convex set D ⊇ X such that f ∈ F is ρ-Lipschitz continuous
on D w.r.t. ‖·‖2 and suppose there is θ ∈ R++ such that sup{ ‖x− y‖22 : x, y ∈ X} ≤ θ. Then, if
µ : N \ {0} → R++ is given by µ1 := 1 and

µt :=
1

ρ

√
θ

2(t− 1)
, ∀t ∈ N \ {0, 1}, (7.1)

then, for any T ∈ N and any enemy oracle ENEMY for C we have

RegretT (OGDX
µ ,ENEMY, X) ≤ ρ

√
2θT .

Proof. Set R := 1
2‖·‖

2
2 and define R : Seq(F)→ (−∞,+∞]E by

R(f) :=

(
1

ηt
− [t > 1]

1

ηt−1

)
R, ∀f ∈ F t,∀t ∈ N.

Let us show that
R is a mirror map for C. (7.2)

Let t ∈ N and f ∈ F t. Since η is non-increasing, we have γt := η−1
t − [t > 1]η−1

t−1 ≥ 0. Thus,
since R is a proper closed convex function which is differentiable on E, we have that R(f) = γtR

172

is also a proper closed convex function which is differentiable on E. Moreover, note that Rt :=∑t
i=1R(f1:t−1) = η−1

t R. Since ηt > 0, by Lemma 5.2.1 (which shows properties of the scaled squared
`2-norm when used as a mirror map), we have that Rt is a (1/ηt)-strongly convex (w.r.t the `2-norm)
mirror map for X. This proves (7.2). Now, suppose OGDX

η and AdaOMDX
R use the same well-order

on the sets in their definitions. Let us show that

OGDX
η = AdaOMDX

R . (7.3)

Let T ∈ N and f ∈ FT . If T = 0, then

{OGDX
η (〈〉)} = arg min

x∈X
‖x‖2 = arg min

x∈X

1
2η1
‖x‖22 = arg min

x∈X
η−1

1 R(x) = {AdaOMDX
R(〈〉)}.

Suppose now T > 0, and set xT := OGDX
η (f1:T−1) = AdaOMDX

R(f1:T−1), where the equation holds
by induction. Set RT+1 :=

∑T+1
t=1 R(f1:t−1) as in the definition of AdaOMDX

R(f1:T−1), and let the
points yT+1, xT+1 ∈ E and gT ∈ ∂fT (xT) be as in the definition of AdaOMDX

R(f) (which matches
gT ∈ ∂fT (xT) as in OGDX

η (f) by the well-order assumption). By the definition of R, we know that
RT+1 = η−1

T+1R. Thus,

yT+1 = ∇RT+1(xT)− gT =
1

ηT+1
∇R(xT)− gT =

1

ηT+1
xT − gT .

Finally, by Lemma 5.2.1 about the squared `2-norm mirror map, we have ∇R∗T+1(y) = ηT+1y for
any y ∈ E. Therefore,

xT+1 = Π
RT+1

X (∇R∗T+1(yT+1)) = ΠR
X(ηT+1yT+1) = Π

‖·‖2
X (xT − ηT+1gT) = OGDX

η (f).

This proves (7.3).
For the regret bound, suppose there is a convex set D ⊇ X with nonempty interior such

that each f ∈ F is ρ-Lipschitz continuous on D w.r.t. ‖·‖2, suppose there is θ ∈ R++ such that
sup{ ‖x− y‖22 : x, y ∈ X} ≤ θ, and let µ : N \ {0} → (−∞,+∞] be defined as in (7.1). Let T ∈ N,
let ENEMY be an enemy oracle for C, and define

(x,f) := OCOC(OGDX
µ ,ENEMY, T).

Finally, let gt ∈ ∂ft(xt) be as in the definition of OGDX
µ (f) for each t ∈ [T] (which match gt ∈ ∂ft(xt)

as in AdaOMDX
R(f) for each t ∈ [T] in the case where both oracles use the same well-order on

the subdifferentials they use). By Theorem 3.8.4, ‖gt‖2 ≤ ρ for each t ∈ [T]. Additionally, for any
t ∈ [T] we have that

∑t
i=1R(f1:i−1) = µ−1

t R is (µ−1
t)-strongly convex w.r.t. the `2-norm since R

is 1-strongly convex w.r.t. the `2-norm. Therefore, by (7.3) together with the regret bound from

173

Theorem 5.4.3 yields, for any u ∈ X and x0 := x1,

RegretT (OGDX
µ ,ENEMY, u) = RegretT (AdaOMDX

R,ENEMY, u)

≤
T+1∑
t=1

(
1

µt
− [t > 1]

1

µt−1

)
BR(u, xt−1) +

1

2

T∑
t=1

µT+1‖gt‖22

≤ 1

2

T+1∑
t=1

(
1

µt
− [t > 1]

1

µt−1

)
‖u− xt−1‖22 +

1

2

T∑
t=1

µt+1‖gt‖22

≤ θ

2µT+1
+
ρ2

2

T∑
t=1

µt+1

=
ρ
√

2θT

2
+
ρ
√
θ

2
√

2

T∑
t=1

1√
t

Le. 4.6.2
≤ ρ

√
2θT

2
+
ρ
√
θT√
2

= ρ
√

2θT .

The above regret bound is Ω(
√
T), where T ∈ N is the number of rounds of the game. This was

expected since all the bounds derived in Chapter 5 for the case of Lipschitz continuous functions are
of same order, and since this is the best possible regret bound in the worst case [2] when considering
only Lipschitz continuous functions. Actually, it is interesting to note that the OGD oracle is
practically oblivious to any additional properties of the functions it receives as input.

For example, let C := (X,F) be an OCO instance, let T ∈ N, and let f ∈ FT be such that ft is
differentiable on X for each t ∈ [T]. Moreover, let η : N→ R++ be non-increasing and define

xt := OGDη(f1:t−1) ∀t ∈ [T].

Finally, for each t ∈ [T] define f̃t(x) := ∇ft(xt)Tx. Since ∇f̃t(xt) = ∇ft(xt) for every t ∈ [T], we
have

OGDη(f1:t−1) = OGDη(〈f̃1, . . . , f̃t−1〉), ∀t ∈ [T].

With the above equation, one may see that regardless of the functions on the sequence f being
strongly convex or not (for example), the iterates from OGD will be the same. This behavior is
distinct from the AdaFTRL oracle, for example, on which the properties of the functions (such as
strong convexity) given as input may drastically affect the iterates. In spite of the above discussion,
we are still able to prove regret bounds for online gradient descent which break the Ω(T) barrier for
some special cases, such as in Theorem 6.6.2 which shows a special case where AdaReg is an instance
of OGD for strongly convex functions which attains logarithmic regret. In such cases, one usually
needs to upper-bound the regret of the functions f1, . . . , fT by the regret against their linearized
counterparts minus some factor yielded by the additional properties of the functions f1, . . . , fT . One
may see that this is exactly what happens on Theorem 6.6.2.

7.2 Exponentiated Online Gradient Descent and Hedge

Let us now derive another classic algorithm from the online learning and online convex optimization
literature (and which we have already derived previously in the text) known as Exponentiated
Gradient algorithm [44], designed for OCO instances in which the player has to pick points in
the simplex, a common problem in online learning. An oracle which formally defines it is given
on Algorithm 7.2.

174

Algorithm 7.2 Definition of ExpOGDη

(
〈f1, . . . , fT 〉

)
Input:

(i) Convex functions f1, . . . , fT ∈ F for some T ∈ N and F ⊆ (−∞,+∞]R
d such that ft is

subdifferentiable on ∆d for each t ∈ [T],

(ii) A scalar η ∈ R++

Output: xT+1 ∈ ∆d

Let x1 ← d−1
1 and set

for t = 1 to T do
Let gt ∈ ∂ft(xt)
for i = 1 to d do

yt+1(i)← yt(i) exp(−ηgt(i))
xt+1 ← 1

‖yt+1‖1 yt+1

return xT+1

Let us now show that the exponentiated gradient algorithm is a special case of the Lazy Online
Mirror Descent algorithm from Section 5.5 with negative entropy as a mirror map. Interestingly, in
this case, eager and lazy online mirror descent are equivalent, and this is easily shown by using the
result from Section 5.6.

Theorem 7.2.1. Let F ⊆ (−∞,+∞]R
d be a set of proper closed convex functions such that each

f ∈ F is subdifferentiable on ∆d, define the OCO instance C := (∆d,F), and let η ∈ R++. Finally,
define

R(x) :=
1

η

d∑
i=1

[xi > 0]xi lnxi + δ(x |Rd+), ∀x ∈ Rd

and suppose the oracles EOMDX
R , LOMDX

R , and ExpOGDη use the same well-orders on the sets
they use in their definitions. Then EOMDX

R = LOMDX
R = ExpOGDη. In particular, suppose there

is a nonempty open convex set D ⊇ X such that each f ∈ F is ρ-Lipschitz continuous on D w.r.t.
‖·‖1. In this case, for any T ∈ N if we set

µ :=
1

ρ

√
2 ln d

T
,

then, for any enemy oracle ENEMY for C we have

RegretT (ExpOGDµ,ENEMY,∆d) ≤ ρ
√

2T ln d.

Proof. Let us show that
(7.4)R is a mirror map for ∆d which is differentiable on Rd++ and such that EOMD∆d

R =

LOMD∆d
R .

By Lemma 5.2.3, we know that R is a 1-strongly convex w.r.t ‖·‖1 on ∆d mirror map for ∆d.
Moreover, by Corollary 3.2.3 we have ri ∆d = {x ∈ Rd : ‖x‖1 = 1, xi > 0 for i ∈ [d]} = ∆d ∩ Rd++ =
∆d∩int(domR). Thus, by Theorem 5.6.1 together with the well-order assumption we have EOMDX

R =
LOMDX

R . This ends the proof of (7.4). Let us now show that

LOMDX
R (f) = ExpOGDη(f), ∀f ∈ FT ,∀T ∈ N.

Let us prove the above claim by induction on T ∈ N. So, suppose T = 0. Note that ∇R(d−1
1) =

η−1(1+
∑d

i=1 ei ln d−1) = η−1(1− ln d)1. Thus, for any x ∈ ∆d we have ∇R(d−1
1)T(x− d−1

1) = 0,

175

that is, ∇R(d−1
1) ∈ N∆d

(d−1
1). By the optimality conditions from Theorem 3.6.2 together with

the strict convexity of R, we conclude that

{LOMDX
R (〈〉)} = arg min

x∈∆d

R(x) =
{

1
d1
}

= ExpOGDη(〈〉).

Now let T ∈ N \ {0} and f ∈ FT . Define xT := LOMDX
R (f1:T−1) = ExpOGDη(f1:T−1), where the

equation holds by induction, and let yT+1 ∈ Rd be as in the definition of LOMDX
R . By an easy

induction, we have that yT+1 = −
∑T

t=1 gt. Moreover, define y′T+1 ∈ Rd++ by

y′T+1(i) := exp
(
−η

T∑
t=1

gt(i)
)
, ∀i ∈ [d].

Again by an easy induction, one may check that y′T+1 is equal to yT+1 ∈ Rd as defined in ExpOGDη(f).
Note that

∇R∗(yT+1) = ∇R∗
(
−

T∑
t=1

gt

)
=

d∑
i=1

ei exp
(
−η

T∑
t=1

gt(i)− 1
)

=

d∑
i=1

eiy
′
T+1 exp(−1) =

1

e
y′T+1.

Since ΠR
∆d

(y) = ‖y‖−1
1 y for any y ∈ Rd++ by Proposition 3.11.5, we have

LOMDX
R (f) = ΠR

X(∇R∗(yT+1)) = ΠR
X

(1

e
y′T+1

)
=

1

‖y′T+1‖1
y′T+1 = ExpOGDη(f).

This ends the proof of (7.2).
For the regret bound, suppose there is a nonempty open convex set D ⊇ X such that each f ∈ F

is ρ-Lipschitz continuous on D w.r.t. ‖·‖1. Moreover, let T ∈ N, let ENEMY be an enemy oracle
for C, and define µ as in (7.2.1). Since EOMDX

R = LOMDX
R , the regret bound from Corollary 5.4.4

for EOMDX
R directly yields

RegretT (ExpOGDη,ENEMY, X) = RegretT (EOMDX
R ,ENEMY, X) ≤ ρ

√
2T ln d. .

When the ExpOGD algorithm is used on the randomized experts’ problem, that is, against linear
functions in the class

F := {x ∈ Rd 7→ gTx : g ∈ [−1, 1]d},
the algorithm is better known as Hedge [32] or (Exponentiated) Multiplicative Weights Update
Method (MWUM) [6]. In fact, algorithms with different kinds of per-round updates of the iterates
are sometimes denoted simply as “Multiplicative Weights Update Method”. Thus, it is worth
understanding which of these different versions of the MWUM algorithm fit our genealogy.

Let η1 ∈ R++, let η2, η3 ∈ (1, 1/2], let gt ∈ [−1, 1]d, and let xt, xt+1 ∈ ∆d. There are three major
kinds of iterate updates which are said to be the iterate update rules of the Multiplicative Weights
Update Method1:

xt+1(i) := xt(i) exp(−η1gt(i)), ∀i ∈ [d], (7.5)

xt+1(i) :=

{
xt(i)(1− η2)gt(i), if gt(i) ≥ 0

xt(i)(1 + η2)−gt(i), if gt(i) < 0
∀i ∈ [d], (7.6)

xt+1(i) := xt(i)(1− η3gt(i)), ∀i ∈ [d]. (7.7)
1We are omitting the normalization factor present on all of them for the sake of simplicity.

176

The update rule derived in this section matches the one from (7.5). On [43], Satyen Kale calls by
MWUM the algorithm with iterate updates as in (7.6), while in [6] MWUM is the algorithm with
updates as in (7.7). It is important to note that on a remark after [43, Theorem 2] Kale already
says that the update on (7.7) yields (with almost the same proof) the same bounds as the updates
from (7.6) and are “easier to implement”. This comes from the facts that (1− η2)α ≤ 1− η2α for any
α ∈ [0, 1] and that (1 + η2)−α ≤ 1− η2α for any α ∈ [−1, 0), which are used in the proofs of regret
bounds on [6, 43]. Moreover, one may argue that the update rules from (7.5) and (7.7) are usually
not that different in the experts case since 1− α ≈ e−α for small values of α ∈ [0, 1]. However, it is
not clear if it is possible to obtain updates rules as in (7.6) or (7.7) from any of the more general
algorithms from the text (AdaFTRL, AdaOMD, and AdaDA). That is, these update rules seem to
be isolated in our genealogy. Not only that, on [6] the regret bounds2 they obtain with (7.5) and
(7.7) are slightly different, and in some of the applications they look at, using (7.7) leads to sharper
results. Thus, it would be very interesting to discover a way (if any) to obtain the update rule (7.7)
from AdaFTRL, AdaOMD, or AdaDA.

7.3 Matrix Multiplicative Weights Update Method

In this section, let us derive the Matrix Multiplicative Weights Update Method (MMWUM), an
algorithm proposed3 by Kale [43] with many application such as solving some kinds of semidefinite
programs [7, 43] and graph sparsification [3, 20, 43]. The MMWUM algorithm relies on exponential
updates similar to the ones from the previous section. Not surprisingly, we will need to define matrix
exponentials. Thus, let us first define and describe some properties of the matrix exponential (and
of the matrix logarithm).

Define the matrix exponential function exp: Sd → Sd by

exp(X) :=
∞∑
k=0

1

k!
Xk, ∀X ∈ Sd.

A natural question is whether the above series converges for any symmetric matrix since, otherwise,
the above definition would not make much sense as it is. Fortunately, this is exactly the case.

Proposition 7.3.1 ([34, Proposition 2.1]). For every X ∈ Sd the series

∞∑
k=0

1

k!
Xk

converges and exp(·) is a continuous function on Sd.

It is easy to see that the exponential of diagonal matrix A ∈ Sd is simply a diagonal matrix
with the diagonal entries exponentiated. However, for general symmetric matrices, matters get
complicated. Known rules which hold for the function α ∈ R 7→ eα, such as eα+β = eαeβ for any
α, β ∈ R, do not always hold in the case for matrices. The following proposition summarizes the
main properties of the matrix exponential.

2The regret bound for the Hedge algorithm from [6, Theorem 2.3] is slightly different and sharper than ours. This
regret bound can be seen as using “local norms” to measure the subgradients instead of fixed norms. For details and
for a proof of a regret bound for Hedge using local norms, see [67, Section 2.8].

3Other versions of the same algorithm had already been proposed previously. Thus, it is not accurate to say that
Kale was the first to propose this method. For historical details, see [43].

177

Proposition 7.3.2. [34, Proposition 2.3] Let X,Y ∈ Sd. Then,

(i) exp(0) = I,

(ii) exp(X) is invertible and exp(X)−1 = exp(−X),

(iii) for any α, β ∈ R, we have exp((α+ β)X) = exp(αX) exp(βX),

(iv) if XY = Y X (i.e., X and Y commute), then exp(X + Y) = exp(X) exp(Y) = exp(Y) exp(X),

(v) if U ∈ Rd×d is invertible, then exp(UXU−1) = U exp(X)U−1.

Now that we have the notion of matrix exponential, we may properly define the notion of matrix
logarithm.

Theorem 7.3.3 ([34, Theorem 2.17]). For every X ∈ Sd++ there is an unique symmetric matrix
lnX ∈ Sd such that X = exp(lnX). Conversely, for every X ∈ Sd we have exp(X) � 0.

For every X ∈ Sd++, the logarithm of X is the unique matrix lnX ∈ Sd such that exp(lnX) = X.
The above theorem guarantees the existence of the logarithm of positive definite matrices. However,
we have not yet seen ways to write the exponential and the logarithm in ways which are easier to
handle and manipulate in proofs. The following corollary gives us a way to look at the exponential
and the logarithm of a matrix as functions which simply act on the eigenvalues of the matrix.

Corollary 7.3.4. Let X ∈ Sd and let Q ∈ Rd×d be an orthogonal matrix such that X =
QDiag(λ↑(X))QT. Then exp(X) = QDiag(µ)QT where µ ∈ Rd++ is given by

µi := eλ
↑
i (X), ∀i ∈ [d].

Moreover, if X � 0, then lnX = QDiag(ω)QT, where ω ∈ Rd is given by

ωi := lnλ↑i (X), ∀i ∈ [d].

Proof. Define λ := λ↑(X). Since µi = exp(λi) for each i ∈ [d], we have exp(Diag(λ)) = Diag(µ) by
the definition of exp(·). Moreover, by Proposition 7.3.2 item (iv) we have

exp(QDiag(λ)QT) = Q exp(Diag(λ))QT = QDiag(µ)QT.

Suppose X � 0 and define Y := QDiag(ω)QT. By lnX = Y . Note that exp(ωi) = exp(lnλi) = λi.
Therefore, exp(Diag(ω)) = Diag(λ). Again by Proposition 7.3.2 item (iv), we have

exp(QDiag(ω)QT) = Q exp(Diag(ω))QT = QDiag(λ)QT = X.

That is, exp(Y) = X and, thus, lnX = Y .

Last but not least, let us show a property of matrix logarithms which shall be useful later on.
We skip the statement/proof of more properties about matrix logarithms for the sake of conciseness.

Corollary 7.3.5. Let X ∈ Sd++ and α ∈ R++. Then

ln(αX) = lnX + (lnα)I.

178

Proof. Define λ := λ↑(X). By the Spectral Decomposition Theorem (Theorem 1.1.1), there is an
orthogonal matrix Q ∈ Rd×d such that X = QDiag(λ)QT. Define ω ∈ Rd by ωi := ln(λi) for each
i ∈ [d]. Since ln(αλi) = ln(α) + ln(λi) for each i ∈ [d], by Corollary 7.3.4 we have ln(Diag(αλ)) =
ln(α)I + Diag(ω). Therefore,

ln(αX) = Q ln(Diag(αλ))QT = Q
(
(lnα)I + Diag(ω)

)
QT = (lnα)I + Diag(ω).

Finally, we are able to define the Matrix Multiplicative Weights Update Method formally. We
define a player oracle which formally implements this algorithm on Algorithm 7.3.

Algorithm 7.3 Definition of MMWUMη

(
〈f1, . . . , fT 〉

)
Input:

(i) Convex functions f1, . . . , fT : Sd → (−∞,+∞] for some T ∈ N such that ft is subdifferentiable
on Sd for each t ∈ [T],

(ii) A scalar η ∈ R++

Output: XT+1 ∈ Sd
Set X1 ← 1

dI ∈ Sd++

for t = 1 to T do
Let Gt ∈ ∂ft(Xt)
Yt+1 ← exp(−η

∑t
j=1Gj)

Xt+1 ← 1
Tr(Yt+1)Yt+1

return XT+1

Interestingly, we can derive Algorithm 7.3 from the Lazy Online Mirror Descent algorithm
from Section 5.5 using as a mirror map a matrix analogous of the negative entropy used to derive
the Exponentiated Gradient algorithm. Interestingly, in the matricial case, the negative entropy is
strongly convex with a kind of `1-norm for symmetric matrices: the Shatten `1-norm.

Formally, the norm ‖·‖S(1) : Sd → (−∞,+∞] given by

‖X‖S(1) := ‖λ↑(X)‖1, ∀X ∈ Sd,

is known as the Shatten `1-norm. As expected, the results we shall derive will depend on the
norm dual to the Shatten `1-norm. The next lemma shows that such a dual norm is the operator
norm induced by the `2-norm on Rd.

Lemma 7.3.6. The dual norm of ‖·‖S(1) on Sd is the operator norm ‖·‖2.

Proof. Let ‖·‖S(1),∗ be the dual norm of ‖·‖S(1). By Theorem 3.8.2, we have that (1
2‖·‖

2
S(1))

∗ =
1
2‖·‖

2
S(1),∗. Note that

4 ‖·‖S(1) = (‖·‖1)S , where ‖·‖1 is the `1-norm on Rd. Moreover, by Theorem 3.7.2
we have (fS)∗ = (f∗)S for any proper and symmetric function f : Rd → (−∞,+∞]. Thus,

(1
2‖·‖

2
S(1))

∗ = ((1
2‖·‖

2
1)∗)S = (1

2‖·‖
2
∞)S = 1

2‖·‖
2
2,

where the second equation holds by Lemma 3.8.3 and in the last equation we have used Lemma 3.8.6,
which says that ‖A‖2 = ‖λ↑(A)‖∞.

The next theorem, due to Ben-Tal and Nemirovski [14], shows that the matrix negative entropy
is strongly convex on the spectraplex Sd := {X ∈ Sd+ : Tr(X) = 1} w.r.t. to the Shatten `1-norm.

4Recall from Section 3.7 that, for any symmetric function f : Rd → (−∞,+∞] we define fS(X) := f(λ↑(X)) for
every X ∈ Sd.

179

Theorem 7.3.7 ([14, Section 6.2]). Define R : Sd → (−∞,+∞] by

R(X) :=
d∑
i=1

[λ↑i (X) > 0]λ↑i (X) lnλ↑i (X) + δ(X | Sd+), ∀X ∈ Sd.

Then R is (1/2)-strongly convex on Sd w.r.t. ‖·‖S(1).

Let us now show some properties of the negative matrix entropy which will be useful when
deriving regret bounds for the MMWUM algorithm.

Lemma 7.3.8. Let η ∈ R++ and define R : Sd → (−∞,+∞] by

R(X) :=
1

η

d∑
i=1

[λ↑i (X) > 0]λ↑i (X) lnλ↑i (X) + δ(X |Sd+), ∀X ∈ Sd.

Then,

(i) R is a proper closed strictly convex function,

(ii) ∇R(X) = η−1(I + lnX) for every X ∈ Sd++,

(iii) ΠR
Sd(X) = 1

Tr(X)X for every X ∈ Sd++,

(iv) R∗(X∗) = 1
η

∑d
i=1 exp(ηλ↑i (X

∗)− 1) = Tr(exp(ηX∗ − I)) for every X∗ ∈ Sd,

(v) ∇R∗(X∗) = exp(ηX∗ − I) for every X∗ ∈ Sd++.

Proof. Let us prove (i). Define r(x) :=
∑d

i=1[xi > 0]xi lnxi + δ(· |Rd+) for every x ∈ Rd and
set r′ := η−1r. Note that R = (r′)S . By Lemma 5.2.3, we know that r′ is a mirror map for ∆d.
In particular, r′ is a proper closed strictly convex function. Thus, by Corollary 3.7.3 we have that
(r′)S = R is a proper closed convex function. Additionally, strict convexity of R follows directly from
the strict convexity of r′, finishing the proof of (i).

For (ii), note that ∇r′(x) = η−1(1 +
∑d

i=1 ei lnxi) for every x ∈ Rd++. Thus, (ii) follows
from Corollary 3.7.5.

For (iii), we need only apply the optimality conditions for Bregman projections from Lemma 3.11.4.
Namely, let X ∈ Sd++ and define X̄ := Tr(X)−1X. Lemma 3.11.4, X̄ = ΠR

X(X) if and only
if ∇R(X̄)−∇R(X) ∈ NSd(X̄). Note that, for every Y ∈ Sd,

〈∇R(X̄)−∇R(X), Y − X̄〉 = 1
η 〈ln X̄ − lnX,Y − X̄〉

Cor. 7.3.5
= 1

η 〈lnX − ln(Tr(X))I − lnX,Y − X̄〉

= − 1
η ln(Tr(X)) Tr(Y − X̄)

= − 1
η ln(Tr(X))(1− 1) = 0.

That is, ∇R(X̄)−∇R(X) ∈ NSd(X̄).
Let us now prove (iv). Let X∗ ∈ Sd. Recall that R = (r′)S = (r′)S . By Theorem 3.7.2,

R∗ = ((r′)∗)Sd . By Proposition 3.4.4 together with, we have (r′)∗(x∗) = 1
η

∑d
i=1 exp(ηx∗i − 1), which

proves (iv).
Finally, (v) follows from Corollary 3.7.5 together with the fact that ∇r′(x∗)i = eηx

∗
i−1 for

every i ∈ [d].

180

Before jumping to the regret bound, let us show that the matrix negative entropy is indeed a
mirror map for the spectraplex.

Proposition 7.3.9. Let η ∈ R++ and define R : Sd → (−∞,+∞] by

R(X) :=
1

η

d∑
i=1

[λ↑i (X) > 0]λ↑i (X) lnλ↑i (X) + δ(X |Sd+), ∀X ∈ Sd,

Then R is a mirror map for Sd which is differentiable on Sd++.

Proof. From Lemma 7.3.8, we already know that

• R is closed, convex, and strictly convex from (i),

• R is differentiable on Sd++ from (ii),

• for any Y ∈ Sd++, the infimum infX∈Sd BR(X,Y) is attained by a matrix in Sd++ from (iii).

Thus, it only remains to shows that

{∇R(X) : X ∈ Sd++} = Sd.

LetX∗ ∈ Sd. By Lemma 7.3.8, ∇R∗(X∗) = exp(ηX∗−I), which is positive definite by Corollary 7.3.4.
Thus, R is differentiable at ∇R∗(X∗). Moreover, by Corollary 3.5.6 we have ∇R(∇R∗(X∗)) = X∗.
That is, for every X∗ ∈ Sd++ there is Y := ∇R∗(X∗) ∈ Sd++ such that ∇R(Y) = X∗.

Finally, we are in place to prove a regret bound for the MMWUM algorithm. We first show that
MMWUM is equivalent to the LOMD algorithm with mirror map the matrix negative entropy (with
a scaling factor). The regret bound for the MMWUM method follows easily from the regret bound
for LOMD from Corollary 5.5.3.

Theorem 7.3.10. Let F ⊆ (−∞,+∞]S
d be such that each f ∈ F is subdifferentiable on Sd, define

the OCO instance C := (Sd,F), and let η ∈ R++. Moreover, define

R(X) :=
d∑
i=1

[λ↑i (X) > 0]λ↑i (X) lnλ↑i (X) + δ(X | Sd+), ∀X ∈ Sd,

set R′ := 1
ηR, and suppose LOMDSdR′ and MMWUMη use the same well-orders on the subdifferentials

in their definitions. Then LOMDSdR′ = MMWUMη. In particular, suppose there is a nonempty open
convex set D ⊇ Sd such that each f ∈ F is ρ-Lipschitz continuous on D w.r.t. ‖·‖S(1). In this case,
for any T ∈ N \ {0}, if we define

µ :=

√
ln d

ρ
√
T

and R′′ :=
1

µ
R, (7.8)

then, for any enemy oracle ENEMY for C we have

RegretT (MMWUMµ,ENEMY,∆d) ≤ 2ρ
√
T ln d

181

Proof. Define for every X ∈ Sd++. By Proposition 7.3.9, R is a mirror map for Sd. Let us now show
that LOMDSdR′ = MMWUMη. Using Lemma 7.3.8 we have, for any Y ∈ Sd,

−〈∇R′(1
dI), Y − 1

dI〉 = − 1

ηd
〈I + ln I − (ln d)I, Y − 1

dI〉 = −1− ln d

ηd
〈I, Y − 1

dI〉 = 0.

That is, −∇R′(1
dI) ∈ NSd(1

dI). Thus, by the optimality conditions from Theorem 3.6.2 together
with the strict convexity of R′ we have

{LOMDX
R′(〈〉)} = arg min

X∈Sd
R′(X) = {1

dI} = {MMWUMη(〈〉)}. (7.9)

Let T ∈ N be such that T > 0 and let f ∈ FT . Moreover, for each t ∈ [T] define Xt :=
LOMDX

R′(f1:t−1) = MMWUMη(f1:t−1) (where the equation holds by induction), and let Gt ∈ ∂ft(Xt)
be as gt in the definition of XT+1 := LOMDX

R′(f) (which matches Gt as in the definition of
MMWUMη(f) due to the well-order assumption). Finally, let YT+1 := −

∑T
t=1Gt (which matches

the definition of yT+1 in LOMDX
R′(f)). Note that

∇R′∗(YT+1) = exp
(
−η

T∑
t=1

Gt − I
)

= exp
(
−η

T∑
t=1

Gt

)
exp(−I) =

1

e
exp
(
−η

T∑
t=1

Gt

)
,

where the second equation holds by Proposition 7.3.2 since −I commutes with −η
∑T

t=1Gt. Thus,

XT+1 = ΠR′
X (∇R′∗(YT+1)) = Tr

(
exp
(
−η

T∑
t=1

Gt

))−1
exp
(
−η

T∑
t=1

Gt

)
= MMWUMη(f).

This completes the proof that LOMDX
R′ = MMWUMη.

For the regret bound, suppose there is a convex set D ⊇ Sd with nonempty interior such that
each f ∈ F is ρ-Lipschitz continuous on D w.r.t. ‖·‖S(1). Moreover, let T ∈ N \ {0}, define µ and
R′′ as in (7.8), and let ENEMY be an enemy oracle for C. By Theorem 7.3.7, R is (1/2)-strongly
convex on Sd w.r.t. ‖·‖S(1). Moreover, for every U ∈ Sd, since λ↑(U) ≥ 0 and 1Tλ↑(U) = Tr(U) = 1

we have lnλ↑i (U) ≤ 0 for each i ∈ [d], which implies R(U) ≤ 0. Moreover, from (7.9) we have that

inf
X∈Sd

R(X) = R(1
dI) =

1

d

d∑
i=1

ln

(
1

d

)
= − ln d.

Therefore, sup{R(U)−R(X) : U,X ∈ Sd} ≤ ln d. Finally, by setting θ := ln d and σ := 1/2 we have

R′′ =
1

µ
R =

ρ
√
T√

ln d
R =

ρ
√
T√

2σ ln d
R =

ρ
√
T√

2σθ
R

Hence, by the regret bound for LOMDX
R′′ from Corollary 5.5.3 we have

RegretT (MMWUMη,ENEMY,Sd) = RegretT (LOMDX
R′′ ,ENEMY,Sd)

≤ ρ
√

2θT

σ
= 2ρ

√
(ln d)T .

182

7.4 Offline Algorithms

As one may have already noticed, there are major similarities between some OCO algorithms and
some classic optimization methods such as gradient or mirror descent methods. Thus, one may
wonder whether we can use OCO algorithms in classic (convex) optimization. In methods for classic
optimization which rely only on first-order information (values and subgradients of the function we
are looking at), we are usually interested in finding a point with approximates the infimum with
a fixed precision5. That is, given a single proper convex function f : E→ (−∞,+∞], a nonempty
closed convex set X ⊆ E, and a precision ε > 0, we want to find a point x̄ ∈ X such that

f(x̄)− inf
x∈X

f(x) ≤ ε.

In such cases, we are interested in the number of iterations/rounds needed to obtain a precision
of ε > 0.

It turns out that we can indeed recover the classic Mirror Descent algorithm from classic convex
optimization (see [4, 13, 18] for details about the classic mirror descent algorithm and historical
references). Moreover, we can obtain convergence guarantees almost directly from the sub-linear
regret bounds we have for Online Mirror Descent algorithms. On Algorithm 7.4 we define a
function/oracle which implements the Mirror Descent algorithm for convex optimization.

Algorithm 7.4 Definition of MDX
R

(
f, T

)
Input:

(i) Number of steps T > 0,

(ii) A nonempty closed convex set X ⊆ E,
(iii) A closed convex function f : E→ (−∞,+∞] such that f is subdifferentiable on X,

(iv) A mirror map R : E→ (−∞,+∞] for X.
Output: xT ∈ X
{x1} ← arg minx∈X R(x).
for t = 1 to T − 1 do

Let gt ∈ ∂f(xt)
yt+1 ← ∇R(xt)− gt
xt+1 ← ΠR

X(∇R∗(yt+1))

return 1
T

∑T
t=1 xt

Given a proper convex function f : E → (−∞,+∞], a nonempty closed convex set X ⊆ E, a
mirror map R for X, and a number of iterations T ∈ N, the above algorithm performs T rounds of
the (online) mirror descent algorithm, and returns the average of its iterates. In the next theorem we
show a convergence bound for the algorithm from Algorithm 7.4. Interestingly, the proof is almost a
direct application of the convexity of f together with the regret bound for the EOMD algorithm
from Corollary 5.4.4.

Theorem 7.4.1. Let X ⊆ E be convex and closed, let f : E→ (−∞,+∞] be a proper closed convex
function which is subdifferentiable on X, and let R be a mirror map for X. Moreover, let ‖·‖ be a
norm on E such that

5It is worth noting that this is not the only goal optimization methods focus on. For example, some methods on
finding a point whose euclidean distance with a global minimizer is as small as we want.

183

• f is ρ-Lipschitz continuous w.r.t. ‖·‖ on a nonempty open convex set D ⊇ X, and

• R is σ-strongly convex w.r.t. ‖·‖ on X.

Finally, suppose there is θ ∈ R++ such that sup{R(u)−R(x) : u ∈ X,x ∈ X ∩ domR} ≤ θ, and
suppose infx∈X f(x) is attained. Then, by setting

η :=

√
2σθ

ρ
√
T

and R′ :=
1

η
R,

for any T ∈ N with T ≥ ρ22θ
σε2

we have

f(MDX
R′(f, T))−min

x∈X
f(x) ≤ ε.

Proof. Let T ∈ N \ {0} and for every t ∈ N define f (t) := 〈f, . . . , f〉 ∈ {f}t. For each t ∈ [T] equip
to the subdifferentials used on the definition of EOMDX

R′(f
(t−1)) the same well-order used on the

subdifferentials on the definition of EOMDX
R′(f

(t−1)). Moreover, define xt := EOMDX
R′(f

(t−1)). In
this way, we have

1

T

∑
t=1

xt = MDX
R′(f, T).

Finally, let x̄ ∈ X attain infx∈X f(x). Using the regret bound from Corollary 5.4.4 for EOMDX
R′ and

the convexity of f , we have

f(MDX
R′(f, T))− f(x̄) = f

(1

T

T∑
t=1

xt

)
− T

T
f(x̄) ≤ 1

T

(T∑
t=1

(f(xt)− f(x∗))
)

=
1

T
Regret(EOMDX

R′ ,f
(T), x∗) ≤ ρ

√
2θ

σT
.

Thus, if ε > 0 and T ≥ ρ22θ
ε2

, then we have that f(MDX
R′(f, T))− f(x̄) ≤ ε.

The above result recovers the traditional convergence bounds for mirror descent (see, for exam-
ple, [18, Theorem 4.2]). Indeed, from the above proof one may see that from any OCO algorithm with
a O(
√
T) regret bound (where T is the number of rounds of the game) we may derive an algorithm for

classic convex optimization (by computing the average of the iterates) which converges to a solution
with a precision of ε > 0 in roughly O(1

ε2
) iterations. As we have already seen, using the squared

`2-norm as a mirror map yields the (sub)gradient descent method, and the convergence rate of O(1
ε2

)
matches the known convergence rates for the subgradient descent method [18, Theorem 3.2]. However,
it is known that gradient descent for strongly smooth functions, for example, converges (with properly
chosen step sizes) to a solution of precision ε > 0 in O(1

ε) rounds [18, Theorem 3.3]. If we were to
derive such a convergence rate using a proof method similar to the one from Theorem 7.4.1, it seems
we would need to have a regret bound of O(1) w.r.t. the number of rounds since the convergence
rate we get is O(RT /T), where RT is the regret of the algorithm on a game with T ∈ N \ {0} rounds.
Thus, it seems that trying to obtain convergence rates for convex optimization methods directly
from regret bounds for their online counter parts has major limitations.

184

PrimalDual

(previous round)

Cor. 5.4.4

Thm. 7.1.1

Thm. 6.6.2

Prop. 5.2.2

Thm. 7.4.1

Thm. 7.2.1

Thm. 7.2.1

Thm. 7.3.10

T
hm

.5
.6

.1

Cor. 5.5.3

Thm. 5.5.1

Thm. 5.4.2

Cor. 4.5.3

Thm. 6.5.8

Thm. 6.3.2

Thm. 6.4.3

Thm. 6.2.3

Figure 7.1: A graphic representation of the connections among algorithms described throughout the
text.

7.5 A Genealogy

On Figure 7.1 we present a schematic representation of the connections drawn among algorithms
throughout the text. On the figure, an arrow from an algorithm A to B means that B can be written
as a special case of A.

From Figure 7.1 it is clear that we can trace back all the algorithms present on the figure to
the AdaFTRL algorithm. This fact is also reflected on the regret proofs we have done throughout
the text, which had as their fundamental building blocks the lemmas from Section 4.3. As we have
commented previously, proving regret bounds mainly based on these lemmas and on equivalences
between player oracles, as we have done throughout the text, is not always the simplest and cleanest
proof technique. For example, the connections between AdaOMD and AdaFTRL and the regret
bounds yielded by these connections shown in Section 5.4 had quite technical and tiresome proofs.

On the other hand, this way of analysis revealed interesting intuition and facts about OCO
algorithms. Maybe the result which most benefited from writing algorithms as special cases of others
was the proof of equivalence between the EOMD and LOMD algorithms for some special kinds of
mirror maps. As we have seen on Section 5.6, writing both algorithms as special cases of FTRL

185

makes almost obvious some simple sufficient conditions for them to be equivalent.
Another interesting connection revealed by this type of analysis is to that AdaGrad and ONS

are special cases of the AdaReg algorithm and that their proofs of convergence can be unified in a
very interesting fashion, a fact which was not clear at first in spite of the similarities between the
AdaGrad and ONS algorithms. Not only that, we have seen that the ONS algorithm is a special
case of the AdaReg algorithm with the function X ∈ Sd++ 7→ − ln det(X) as a meta-regularizer,
where the latter is a well-known function used in interior-point methods [58]. Finally, we have seen
on Section 6.6 how, in some sense, ONS can be seen as a generalization6 of the online gradient
descent for strongly convex functions.

Moreover, even though the cornerstone algorithm of the genealogy is the AdaFTRL algorithm, we
can see that all algorithms are closer to Online Mirror Descent methods. This is probably due to the
simpler (and usually easier to implement) iterate update rule of the Online Mirror Descent algorithms.
Still, we have seen in the text that writing these algorithms in the format of the AdaFTRL algorithm
can be extremely useful for deriving regret bounds and relationships among algorithms.

Finally, this bird’s-eye view of the connections among OCO algorithms helps us see some
interesting paths for future investigation. For example, throughout the text we relied on strong
convexity of the functions played by the enemy or of the regularizers/mirror maps used to derive
interesting regret bounds. One interesting alternative, first proposed by [1], is to use self-concordant
barriers from the theory of interior-point methods [58] as regularizers on the FTRL oracle. It
would be interesting if we could come up with a lemma analogous to Lemma 4.3.2 for the case of
self-concordant barriers instead of strongly-convex functions. Moreover, their focus is on the bandit
setting (that is, the case with limited feedback) against linear functions. Thus, it would also be
interesting to see the effects of self-concordant barriers in other cases.

Another interesting path of investigation are second-order methods for OCO. In spite of its name,
the Online Newton Step algorithm does not use the Hessians of the functions to skew the gradient
steps, using instead a matrix built purely from rank-one updates based on the gradients used in
the past. Thus, there is no real online counterpart for the Newton’s method algorithm for convex
optimization (see [15, Section 6.2] for a brief and introductory description of the Newton’s method).
Thus, investigating algorithms which use the Hessians of the enemy’s functions may yield interesting
algorithms, or discovering that such second-order algorithms would be no better than first-order
ones might also shed some light on the limits of the OCO framework.

6Although there is no arrow from ONS to OGD in Figure 7.1, the meta-regularizers used on Theorem 6.5.8 for
ONS and on Theorem 6.6.2 for OGD are almost the same, with the distinction that the meta-regularizer for OGD is
restricted to multiples of the identity matrix.

186

References

[1] J. D. Abernethy, E. Hazan, and A. Rakhlin. “Interior-point methods for full-information and
bandit online learning”. In: IEEE Trans. Inform. Theory 58.7 (2012), pages 4164–4175. url:
https://doi.org/10.1109/TIT.2012.2192096 (cited on page 186).

[2] J. D. Abernethy, P. Bartlett, A. Rakhlin, and A. Tewari. “Optimal Strategies and Minimax
Lower Bounds for Online Convex Games”. In: UCB/EECS-2008-19 (February 2008). url:
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-19.pdf (cited on
pages 96, 105, 159, 174).

[3] Z. Allen-Zhu, Z. Liao, and L. Orecchia. “Spectral sparsification and regret minimization beyond
matrix multiplicative updates [extended abstract]”. In: STOC’15—Proceedings of the 2015
ACM Symposium on Theory of Computing. ACM, New York, 2015, pages 237–245 (cited on
pages 4, 131, 132, 177).

[4] Z. Allen-Zhu and L. Orecchia. “Linear Coupling: An Ultimate Unification of Gradient and
Mirror Descent”. Version 5. In: (November 2016). arXiv: 1407.1537 [cs.DS]. url: https:
//arxiv.org/abs/1407.1537 (cited on page 183).

[5] R. Arora, O. Dekel, and A. Tewari. “Online Bandit Learning against an Adaptive Adversary:
from Regret to Policy Regret”. In: Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. 2012. url: http:
//icml.cc/2012/papers/749.pdf (cited on pages 38–40).

[6] S. Arora, E. Hazan, and S. Kale. “The multiplicative weights update method: a meta-algorithm
and applications”. In: Theory Comput. 8 (2012), pages 121–164 (cited on pages 16, 114, 171,
176, 177).

[7] S. Arora and S. Kale. “A combinatorial, primal-dual approach to semidefinite programs
[extended abstract]”. In: STOC’07—Proceedings of the 39th Annual ACM Symposium on
Theory of Computing. ACM, New York, 2007, pages 227–236. url: https://doi.org/10.
1145/1250790.1250823 (cited on pages 4, 177).

[8] R. B. Ash. Probability and measure theory. Second. With contributions by Catherine Doléans-
Dade. Harcourt/Academic Press, Burlington, MA, 2000, pages xii+516 (cited on page 7).

[9] M. F. Atiyah. Duality in Mathematics and Physics. 2007. url: http://www.iecl.univ-
lorraine.fr/~Wolfgang.Bertram/Atiyah-Duality.pdf (cited on pages 48, 50).

[10] J.-Y. Audibert and S. Bubeck. “Regret bounds and minimax policies under partial monitoring”.
In: J. Mach. Learn. Res. 11 (2010), pages 2785–2836 (cited on page 37).

[11] N. Bansal and A. Gupta. “Potential-Function Proofs for First-Order Methods”. In: (December
2017). arXiv: 1712.04581 [cs.LG]. url: http://arxiv.org/abs/1712.04581 (cited on
page 123).

187

https://doi.org/10.1109/TIT.2012.2192096
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-19.pdf
https://arxiv.org/abs/1407.1537
https://arxiv.org/abs/1407.1537
https://arxiv.org/abs/1407.1537
http://icml.cc/2012/papers/749.pdf
http://icml.cc/2012/papers/749.pdf
https://doi.org/10.1145/1250790.1250823
https://doi.org/10.1145/1250790.1250823
http://www.iecl.univ-lorraine.fr/~Wolfgang.Bertram/Atiyah-Duality.pdf
http://www.iecl.univ-lorraine.fr/~Wolfgang.Bertram/Atiyah-Duality.pdf
https://arxiv.org/abs/1712.04581
http://arxiv.org/abs/1712.04581

[12] B. Barak, M. Hardt, and S. Kale. “The uniform hardcore lemma via approximate Bregman
projections”. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, Philadelphia, PA, 2009, pages 1193–1200 (cited on page 4).

[13] A. Beck and M. Teboulle. “Mirror descent and nonlinear projected subgradient methods for
convex optimization”. In: Oper. Res. Lett. 31.3 (2003), pages 167–175. url: https://doi.org/
10.1016/S0167-6377(02)00231-6 (cited on pages 108, 112, 115, 183).

[14] A. Ben-Tal and A. Nemirovski. “Non-Euclidean restricted memory level method for large-
scale convex optimization”. In: Math. Program. 102.3, Ser. A (2005), pages 407–456. url:
https://doi.org/10.1007/s10107-004-0553-4 (cited on pages 179, 180).

[15] A. Ben-Tal and A. Nemirovski. Optimization III. 2013. url: http://www2.isye.gatech.edu/
~nemirovs/OPTIII_LectureNotes2015.pdf (cited on pages 41, 43, 171, 186).

[16] D. P. Bertsekas. Convex analysis and optimization. With Angelia Nedić and Asuman E.
Ozdaglar. Athena Scientific, Belmont, MA, 2003, pages xvi+534 (cited on page 64).

[17] J. M. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization. Second. Volume 3.
CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Theory and examples.
Springer, New York, 2006, pages xii+310. url: https://doi.org/10.1007/978-0-387-
31256-9 (cited on pages 41, 58, 59).

[18] S. Bubeck. “Convex Optimization: Algorithms and Complexity”. In: Foundations and Trends in
Machine Learning 8.3-4 (2015), pages 231–357. url: https://doi.org/10.1561/2200000050
(cited on pages 4, 41, 108, 109, 183, 184).

[19] S. Bubeck. Introduction to Online Optimization. Princeton University, December 14, 2011.
url: http://www.cse.iitd.ac.in/~naveen/courses/CSL866/BubeckLectureNotes.pdf
(cited on pages 3, 4, 10, 12, 18, 75, 108, 112).

[20] M. K. de Carli Silva, N. J. A. Harvey, and C. M. Sato. Sparse Sums of Positive Semidefinite
Matrices. October 2011. arXiv: 1107.0088 [cs.DM]. url: http://arxiv.org/abs/1107.0088
(cited on pages 4, 177).

[21] N. Cesa-Bianchi, A. Conconi, and C. Gentile. “On the generalization ability of on-line learning
algorithms”. In: IEEE Trans. Inform. Theory 50.9 (2004), pages 2050–2057. url: https:
//doi.org/10.1109/TIT.2004.833339 (cited on pages 25, 26).

[22] N. Cesa-Bianchi, O. Dekel, and O. Shamir. “Online Learning with Switching Costs and Other
Adaptive Adversaries”. In: Advances in Neural Information Processing Systems 26. Edited
by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger. Curran
Associates, Inc., 2013, pages 1160–1168. url: http://papers.nips.cc/paper/5151-online-
learning- with- switching- costs- and- other- adaptive- adversaries.pdf (cited on
page 40).

[23] N. Cesa-Bianchi and C. Gentile. “Improved risk tail bounds for on-line algorithms”. In: Advances
in Neural Information Processing Systems 18 [Neural Information Processing Systems, NIPS
2005, December 5-8, 2005, Vancouver, British Columbia, Canada]. 2005, pages 195–202. url:
http://papers.nips.cc/paper/2839- improved- risk- tail- bounds- for- on- line-
algorithms (cited on page 26).

[24] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press,
2006 (cited on pages 10, 16, 20, 22, 37, 38, 40, 75).

188

https://doi.org/10.1016/S0167-6377(02)00231-6
https://doi.org/10.1016/S0167-6377(02)00231-6
https://doi.org/10.1007/s10107-004-0553-4
http://www2.isye.gatech.edu/~nemirovs/OPTIII_LectureNotes2015.pdf
http://www2.isye.gatech.edu/~nemirovs/OPTIII_LectureNotes2015.pdf
https://doi.org/10.1007/978-0-387-31256-9
https://doi.org/10.1007/978-0-387-31256-9
https://doi.org/10.1561/2200000050
http://www.cse.iitd.ac.in/~naveen/courses/CSL866/BubeckLectureNotes.pdf
https://arxiv.org/abs/1107.0088
http://arxiv.org/abs/1107.0088
https://doi.org/10.1109/TIT.2004.833339
https://doi.org/10.1109/TIT.2004.833339
http://papers.nips.cc/paper/5151-online-learning-with-switching-costs-and-other-adaptive-adversaries.pdf
http://papers.nips.cc/paper/5151-online-learning-with-switching-costs-and-other-adaptive-adversaries.pdf
http://papers.nips.cc/paper/2839-improved-risk-tail-bounds-for-on-line-algorithms
http://papers.nips.cc/paper/2839-improved-risk-tail-bounds-for-on-line-algorithms

[25] P. Christiano, J. A. Kelner, A. Mądry, D. A. Spielman, and S.-H. Teng. “Electrical flows,
Laplacian systems, and faster approximation of maximum flow in undirected graphs”. In:
STOC’11—Proceedings of the 43rd ACM Symposium on Theory of Computing. ACM, 2011,
pages 273–281. STOC Best Paper Award (cited on page 4).

[26] T. M. Cover. “Behavior of sequential predictors of binary sequences”. In: Trans. Fourth Prague
Conf. on Information Theory, Statistical Decision Functions, Random Processes (Prague,
1965). Academia, Prague, 1967, pages 263–272 (cited on pages 3, 22).

[27] T. M. Cover. “Universal portfolios”. In: Math. Finance 1.1 (1991), pages 1–29. url: https:
//doi.org/10.1111/j.1467-9965.1991.tb00002.x (cited on page 19).

[28] V. Dani and T. P. Hayes. “Robbing the bandit: less regret in online geometric optimiza-
tion against an adaptive adversary”. In: Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms. ACM, New York, 2006, pages 937–943. url: https:
//doi.org/10.1145/1109557.1109660 (cited on page 37).

[29] O. Dekel. “From Online to Batch Learning with Cutoff-Averaging”. In: Advances in Neural
Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on
Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 8-11,
2008. 2008, pages 377–384. url: http://papers.nips.cc/paper/3514-from-online-to-
batch-learning-with-cutoff-averaging (cited on page 26).

[30] O. Dekel and Y. Singer. “Data-Driven Online to Batch Conversions”. In: Advances in Neural
Information Processing Systems 18 [Neural Information Processing Systems, NIPS 2005,
December 5-8, 2005, Vancouver, British Columbia, Canada]. 2005, pages 267–274. url: http:
//papers.nips.cc/paper/2775-data-driven-online-to-batch-conversions (cited on
page 26).

[31] J. Duchi, E. Hazan, and Y. Singer. “Adaptive subgradient methods for online learning and
stochastic optimization”. In: J. Mach. Learn. Res. 12 (2011), pages 2121–2159 (cited on
pages 134, 135, 139, 148, 152, 153).

[32] Y. Freund and R. E. Schapire. “A decision-theoretic generalization of on-line learning and
an application to boosting”. In: J. Comput. System Sci. 55.1, part 2 (1997). Second Annual
European Conference on Computational Learning Theory (EuroCOLT ’95) (Barcelona, 1995),
pages 119–139. url: https://doi.org/10.1006/jcss.1997.1504 (cited on pages 114, 171,
176).

[33] V. Gupta, T. Koren, and Y. Singer. A Unified Approach to Adaptive Regularization in Online
and Stochastic Optimization. June 2017. arXiv: 1706.06569 [cs.LG]. url: http://arxiv.
org/abs/1706.06569 (cited on pages 4, 134, 140–142, 166, 171).

[34] B. Hall. Lie groups, Lie algebras, and representations. Second. Volume 222. Graduate Texts
in Mathematics. An elementary introduction. Springer, Cham, 2015, pages xiv+449. url:
https://doi.org/10.1007/978-3-319-13467-3 (cited on pages 177, 178).

[35] P. R. Halmos. Measure Theory. D. Van Nostrand Company, Inc., New York, N. Y., 1950,
pages xi+304 (cited on page 7).

[36] E. Hazan. “Introduction to online convex optimization”. In: Foundations and Trends R© in
Optimization 2.3-4 (2016), pages 157–325. url: http : / / ocobook . cs . princeton . edu /
OCObook.pdf (cited on pages 3, 4, 10, 12, 38, 112, 153).

189

https://doi.org/10.1111/j.1467-9965.1991.tb00002.x
https://doi.org/10.1111/j.1467-9965.1991.tb00002.x
https://doi.org/10.1145/1109557.1109660
https://doi.org/10.1145/1109557.1109660
http://papers.nips.cc/paper/3514-from-online-to-batch-learning-with-cutoff-averaging
http://papers.nips.cc/paper/3514-from-online-to-batch-learning-with-cutoff-averaging
http://papers.nips.cc/paper/2775-data-driven-online-to-batch-conversions
http://papers.nips.cc/paper/2775-data-driven-online-to-batch-conversions
https://doi.org/10.1006/jcss.1997.1504
https://arxiv.org/abs/1706.06569
http://arxiv.org/abs/1706.06569
http://arxiv.org/abs/1706.06569
https://doi.org/10.1007/978-3-319-13467-3
http://ocobook.cs.princeton.edu/OCObook.pdf
http://ocobook.cs.princeton.edu/OCObook.pdf

[37] E. Hazan, A. Kalai, S. Kale, and A. Agarwal. “Logarithmic regret algorithms for online convex
optimization”. In: Learning theory. Volume 4005. Lecture Notes in Comput. Sci. Springer, Berlin,
2006, pages 499–513. url: https://doi.org/10.1007/11776420_37 (cited on pages 134, 135,
140, 161).

[38] S. C. H. Hoi, D. Sahoo, J. Lu, and P. Zhao. Online Learning: A Comprehensive Survey.
February 2018. arXiv: 1802.02871 [cs.LG]. url: http://arxiv.org/abs/1802.02871 (cited
on page 12).

[39] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, 1990. xiv+561
(cited on pages 9, 63).

[40] R. Jain, Z. Ji, S. Upadhyay, and J. Watrous. “QIP = PSPACE”. In: STOC’10—Proceedings
of the 2010 ACM International Symposium on Theory of Computing. ACM, New York, 2010,
pages 573–581 (cited on page 4).

[41] S. M. Kakade, S. Shalev-Shwartz, and A. Tewari. “Regularization techniques for learning with
matrices”. In: J. Mach. Learn. Res. 13 (2012), pages 1865–1890 (cited on page 73).

[42] A. Kalai and S. Vempala. “Efficient algorithms for online decision problems”. In: J. Comput.
System Sci. 71.3 (2005), pages 291–307. url: http://dx.doi.org/10.1016/j.jcss.2004.10.
016 (cited on pages 78, 84, 106).

[43] S. Kale. “Efficient Algorithms Using The Multiplicative Weights Update Method”. PhD thesis.
Princeton University, 2007 (cited on pages 171, 177).

[44] J. Kivinen and M. K. Warmuth. “Exponentiated gradient versus gradient descent for linear
predictors”. In: Inform. and Comput. 132.1 (1997), pages 1–63. url: https://doi.org/10.
1006/inco.1996.2612 (cited on page 174).

[45] A. S. Lewis. “Convex analysis on the Hermitian matrices”. In: SIAM J. Optim. 6.1 (1996),
pages 164–177. url: https://doi.org/10.1137/0806009 (cited on page 57).

[46] N. Littlestone. “From on-line to batch learning”. In: Proceedings of the Second Annual Workshop
on Computational Learning Theory (Santa Cruz, CA, 1989). Morgan Kaufmann, San Mateo,
CA, 1989, pages 269–284 (cited on pages 25, 26).

[47] N. Littlestone. “Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold
Algorithm (Extended Abstract)”. In: 28th Annual Symposium on Foundations of Computer
Science, Los Angeles, California, USA, 27-29 October 1987. 1987, pages 68–77. url: https:
//doi.org/10.1109/SFCS.1987.37 (cited on page 12).

[48] H. B. McMahan. “A survey of algorithms and analysis for adaptive online learning”. In: J.
Mach. Learn. Res. 18 (2017), Paper No. 90, 50 (cited on pages 4, 78, 84, 86, 88, 108, 123, 171).

[49] H. B. McMahan and M. J. Streeter. “Adaptive Bound Optimization for Online Convex
Optimization”. In: (February 2010). arXiv: 1002.4908 [cs.LG]. url: https://arxiv.org/
abs/1002.4908 (cited on page 153).

[50] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA, 2012, pages xii+412 (cited
on pages 3, 12, 13, 22, 24).

[51] J.-J. Moreau. “Fonctions convexes duales et points proximaux dans un espace hilbertien”. In:
C. R. Acad. Sci. Paris 255 (1962), pages 2897–2899 (cited on page 115).

[52] J.-J. Moreau. “Inf-convolution des fonctions numériques sur un espace vectoriel”. In: C. R.
Acad. Sci. Paris 256 (1963), pages 5047–5049 (cited on page 115).

190

https://doi.org/10.1007/11776420_37
https://arxiv.org/abs/1802.02871
http://arxiv.org/abs/1802.02871
http://dx.doi.org/10.1016/j.jcss.2004.10.016
http://dx.doi.org/10.1016/j.jcss.2004.10.016
https://doi.org/10.1006/inco.1996.2612
https://doi.org/10.1006/inco.1996.2612
https://doi.org/10.1137/0806009
https://doi.org/10.1109/SFCS.1987.37
https://doi.org/10.1109/SFCS.1987.37
https://arxiv.org/abs/1002.4908
https://arxiv.org/abs/1002.4908
https://arxiv.org/abs/1002.4908

[53] J.-J. Moreau. “Propriétés des applications “prox””. In: C. R. Acad. Sci. Paris 256 (1963),
pages 1069–1071 (cited on page 115).

[54] A. S. Nemirovsky and D. B. a. Yudin. Problem complexity and method efficiency in optimization.
A Wiley-Interscience Publication. Translated from the Russian and with a preface by E. R.
Dawson, Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, Inc., New
York, 1983, pages xv+388 (cited on pages 108, 109).

[55] Y. Nesterov. Introductory lectures on convex optimization. A basic course. Volume 87. Applied
Optimization. Kluwer Academic Publishers, Boston, MA, 2004, pages xviii+236. url: http:
//dx.doi.org/10.1007/978-1-4419-8853-9 (cited on pages 41, 72, 171).

[56] Y. Nesterov. “Primal-dual subgradient methods for convex problems”. In: Math. Program. 120.1,
Ser. B (2009), pages 221–259. url: https://doi.org/10.1007/s10107-007-0149-x (cited
on page 126).

[57] N. Parikh and S. Boyd. “Proximal Algorithms”. In: Foundations and Trends R© in Optimization
1.3 (2014), pages 127–239. url: http://dx.doi.org/10.1561/2400000003 (cited on pages 108,
115, 116).

[58] J. Renegar. A mathematical view of interior-point methods in convex optimization. MPS/SIAM
Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2001, pages viii+117. url:
https://doi.org/10.1137/1.9780898718812 (cited on pages 161, 186).

[59] R. T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Reprint of the 1970
original, Princeton Paperbacks. Princeton, NJ: Princeton University Press, 1997, pages xviii+451
(cited on pages 41–48, 50, 52–55, 57, 71).

[60] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Volume 317. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, 1998, pages xiv+733. url: https://doi.org/10.1007/978-3-642-02431-3
(cited on pages 68, 115).

[61] R. T. Rockafellar. “Convex Functions and Dual Eextremum Problems”. PhD thesis. Harvard
University, Cambridge, Massachusets, 1963 (cited on page 115).

[62] F. Rosenblatt. The perceptron: A theory of statistical separability in cognitive systems. Cornell
Aeronautical Laboratory, Inc., Rep. No. VG-1196-G-1. U.S. Department of Commerce, Office
of Technical Services, PB 151247, 1958, pages xii+262 (cited on page 12).

[63] F. Rosenblatt. Two theorems of statistical separability in the perceptron. Cornell Aeronautical
Laboratory, Inc., Rep. No. VG-1196-G-2. U.S. Department of Commerce, Office of Technical
Services, PB 151247 S, 1958, pages iii+42 (cited on page 12).

[64] W. Rudin. Principles of mathematical analysis. Third. International Series in Pure and Applied
Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976, pages x+342
(cited on page 71).

[65] W. Rudin. Real and complex analysis. Third. McGraw-Hill Book Co., New York, 1987,
pages xiv+416 (cited on page 6).

[66] R. E. Schapire. “The Strength of Weak Learnability (Extended Abstract)”. In: 30th Annual
Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October - 1 November 1989. IEEE Computer Society, 1989, pages 28–33. url:
https://doi.org/10.1109/SFCS.1989.63451 (cited on page 17).

191

http://dx.doi.org/10.1007/978-1-4419-8853-9
http://dx.doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/s10107-007-0149-x
http://dx.doi.org/10.1561/2400000003
https://doi.org/10.1137/1.9780898718812
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1109/SFCS.1989.63451

[67] S. Shalev-Shwartz. “Online Learning and Online Convex Optimization”. In: Foundations and
Trends R© in Machine Learning 4.2 (2011), pages 107–194. url: http://dx.doi.org/10.1561/
2200000018 (cited on pages 3, 4, 10, 12, 13, 15, 38, 62, 78, 98, 108, 177).

[68] S. Shalev-Shwartz. “Online Learning: Theory, Algorithms, and Applications”. PhD thesis. The
Hebrew University of Jerusalem, 2007 (cited on pages 3, 10, 69, 78).

[69] S. Shalev-Shwartz and Y. Singer. “A primal-dual perspective of online learning algorithms”. In:
Machine Learning 69.2-3 (2007), pages 115–142. url: http://dx.doi.org/10.1007/s10994-
007-5014-x (cited on pages 4, 31, 78).

[70] L. G. Valiant. “A Theory of the Learnable”. In: Commun. ACM 27.11 (1984), pages 1134–1142.
url: http://doi.acm.org/10.1145/1968.1972 (cited on page 24).

[71] V. Vapnik. “An overview of statistical learning theory”. In: IEEE Trans. Neural Networks 10.5
(1999), pages 988–999. url: https://doi.org/10.1109/72.788640 (cited on pages 3, 10, 22).

[72] M. Zinkevich. “Online Convex Programming and Generalized Infinitesimal Gradient Ascent”.
In: Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003),
August 21-24, 2003, Washington, DC, USA. 2003, pages 928–936. url: http://www.aaai.
org/Library/ICML/2003/icml03-120.php (cited on pages 112, 171).

192

http://dx.doi.org/10.1561/2200000018
http://dx.doi.org/10.1561/2200000018
http://dx.doi.org/10.1007/s10994-007-5014-x
http://dx.doi.org/10.1007/s10994-007-5014-x
http://doi.acm.org/10.1145/1968.1972
https://doi.org/10.1109/72.788640
http://www.aaai.org/Library/ICML/2003/icml03-120.php
http://www.aaai.org/Library/ICML/2003/icml03-120.php

	Introduction and Preliminaries
	Notation and Preliminaries
	Sequences
	Probability
	Linear Algebra Results

	Online Learning and Online Convex Optimization
	The Online Learning Setting
	Examples of Online Learning Problems
	Online Classification
	Prediction with Expert Advice
	Online Regression
	Sequential Investment

	Loss Minimization Impossibility and Regret
	Relation of Online Learning with Statistical Learning
	Online Convex Optimization
	From Online Learning to Online Convex Optimization
	Surrogate Loss Functions
	Randomization

	A Closer Look at Regret

	Convex Analysis, Optimization, and Duality Theory
	Convex Sets and Functions
	Topological Properties of Convex Sets and Functions
	Hyperplane Separation and Duality
	Fenchel Conjugate
	Subgradients
	Optimality Conditions
	Convex Spectral Functions
	Norms
	Strong Convexity
	Strong Convexity and Smoothness Duality
	Bregman Divergence and Projection

	The Follow The Regularized Leader Algorithm
	The Follow the Leader and Follow the Regularized Leader Algorithms
	The Adaptive FTRL Algorithm
	Fundamental Lemmas for Regret Bounds
	Regret Bounds for the Adaptive FTRL Algorithm
	The Classical FTRL Algorithm
	Regularization Regardless of the Number of Rounds
	An Adaptive Proximal Example
	Logarithmic Regret Against Strongly Convex Functions
	Follow the Leader–Be the Leader Lemma

	The Online Mirror Descent Algorithm
	Adaptive Online Mirror Descent
	Non-Adaptive Online Mirror Descent and Examples
	OMD Connection to Proximal Operators
	OMD Connection with FTRL and Regret Bounds
	Dual Averaging or Lazy Online Mirror Descent
	When Lazy and Eager OMD are Equivalent

	Adaptive Regularization
	A First Example: Adaptive Online Gradient Descent
	The AdaReg Algorithm
	The AdaGrad Algorithm
	Diagonal AdaGrad Algorithm
	The Online Newton Step Algorithm
	Online Gradient Descent for Strongly Convex Functions

	A Genealogy of Algorithms
	Online Gradient Descent
	Exponentiated Online Gradient Descent and Hedge
	Matrix Multiplicative Weights Update Method
	Offline Algorithms
	A Genealogy

	References

