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Abstract

We study the main, high-level ingredients of the nearly-linear time Laplacian solver of Spielman and Teng
and their application to finding an approximately maximum flow in a graph in almost-linear time. We start
with basic tools from linear algebra, such as properties of symmetric and positive semidefinite matrices, as
well as the Moore-Penrose pseudoinverse. We then move to the Laplacian matrix of a graph and some of
its applications, such as computing the number of spanning trees (the so-called Matrix Tree Theorem) and
approximating the sparse cuts of a graph.

Next we describe the well-known Conjugate Gradient Method, an iterative algorithm to approximate a
solution to a linear system, and use this method with preconditioning to construct an efficient Laplacian
solver. In the end, we describe an algorithm to find an approximately maximum flow in undirected graphs
in almost-linear time with the help of nearly-linear Laplacian solvers and the multiplicative weights update
method.

While the main algorithms covered here are not the fastest known, they contain the majority of the
ingredients and tools from the latter.
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Chapter 1

Introduction

The idea to call an algorithm efficient if its running time is asymptotically bounded by a polynomial
in the input size was first introduced by Edmonds [6] and Cobham [5] in 1965. Since then, this concept
was broadly adopted by researchers and algorithm designers. Recently, the problem of processing data sets
so large that the use of traditional tools is impractical is becoming more and more important. When it is
necessary to handle such data sets, which are usually called Big Data, the use of algorithms with quadratic
running time is already impractical. Moreover, when seeking efficiency, one may be willing to accept an
approximate answer if such an answer can be obtained quickly (or at all). This is one of the motivations
behind research in the development of nearly-linear time algorithms, that is, algorithms with input size m that
run in time O(m logcm) for some positive constant c. In this context we use the Õ (read soft-O) notation,
that is, we say that an algorithm runs in time Õ(f(m)) if it runs in time O(f(m) logcm) for some positive
constant c.

A major breakthrough in the area of nearly-linear time algorithms was Spielman and Teng’s Laplacian
solver [13]. This algorithm solves a linear system of the form Lx = b, where L is the Laplacian matrix of
a graph G, in time Õ(m log(1/ε)), where m is the number of edges of G and ε > 0 is the error tolerance.
Graph-theoretic ideas such as sparsifiers and low-stretch spanning trees, together with ideas and tools
from numerical linear algebra, like preconditioning and the Conjugate Gradient method, are used in the
construction of this algorithm. Following their work, many researchers have developed more efficient and
simpler solvers [4, 8, 9, 10], bringing the running time down to O(m log3 n), where n is the number of vertices
of the graph.

Nearly-linear time Laplacian solvers, with the aid of tools from numerical linear algebra and spectral
graph theory, have been used as a subroutine in almost linear time algorithms for a host of combinatorial
problems. This “Laplacian paradigm”, as proposed by Teng [15], is motivating research in algorithms that
joins linear algebra and graph theory. Moreover, many classical problems with known exact algorithms close
to the best possible running time in the traditional model are being revisited with the goal of developing
almost linear time approximation algorithms for them.

One of these revisited problems is that of finding a maximum flow in a graph with capacities on its edges.
This is one of the oldest and most studied problems in combinatorial optimization, and many algorithms to
other problems solve maximum flow problem instances as a subroutine. Although the maximum flow problem
has efficient algorithms that find an exact solution, they have a natural running-time barrier in the general
case of Ω(mn) time (see [7]), which may be prohibitively expensive for massive instances of the problem.

In this monograph, we study the basic properties of the Laplacian matrix of a graph, many of the core
ideas used in Spielman and Teng’s solver, and later, we describe its applications to the maximum flow problem.
In Chapter 2, we recall fundamental properties of symmetric and positive semidefinite matrices. In Chapter 3,
we define the Laplacian matrix of a graph and study many of its properties and applications. In Chapter 4,
we describe the Conjugate Gradient method, a famous iterative algorithm for solving linear systems. We
also look into an application of this method in Chapter 5, where we state Spielman and Teng’s fundamental
result, describe preconditioning, and construct a Õ(m4/3 log 1/ε) Laplacian solver. In Chapter 6, we present
the algorithm from [3] that approximately solves the maximum flow problem in time Õ(m3/2ε−5/2) using
electrical flows, Laplacian solvers, and the multiplicative weights update method.

1



Chapter 2

Preliminaries

2.1 Basic Notation and Definitions
This section contains basic definitions and notation that will be used throughout the remainder of the

text. The reader may skip this section and refer back to it when the need arises.
The set of natural numbers is denoted by N, the set of integer numbers by Z, the set of rational

numbers by Q, the set of real numbers by R, and the set of complex numbers by C. Let S ∈ {Z,Q,R},
and define S+ := { s ∈ S : s ≥ 0} and S++ := { s ∈ S : s > 0}. Define [n] := {1, . . . , n} for each n ∈ N.
Throughout this text we will use Minkowski’s notation, that is, if S is a set and f : S →W is a function, we
define f(S) := { f(s) : s ∈ S}. For example, [n]− 1 = {0, 1, . . . , n− 1}.

The Iverson bracket of a predicate P is defined by

[P ] =
{

1 if P is true,
0 otherwise.

Moreover, when P is false, we consider that [P ] is strongly zero, that is, the whole expression multiplied by [P ]
is zero, even if there are invalid operations in the expression following the Iverson bracket. One example of a
case like that is the expression [x 6= 0]1/x for x ∈ R, which we take to mean 0 when x = 0. Throughout this
text,

V denotes an arbitrary finite set,

unless stated otherwise (one may think of it as being a set of vertices of a graph, which shall be defined
later). A partition of a set V is a collection S of nonempty subsets of V such that S ∩ T = ∅ for every
distinct S, T ∈ S, and ⋃

S∈S
S = V.

Define
(
V
k

)
:= {S ⊆ V : |S| = k} for every k ∈ N.

The set of all functions from a set X to a set Y is denoted by Y X , and if X = [n], we abbreviate
this notation to Y n. Let f : X → R be a function. The support of f is supp(f) := { v ∈ V : f(v) 6= 0}.
Let S ⊆ X. The restriction of f to S is denoted by f�S , and x∗ ∈ S is a global minimizer of f over S
if f(x∗) ≤ f(x) for every x ∈ S. Define

arg max
x∈S

f(x) := {x ∈ S : f(x) ≥ f(y) ∀y ∈ S},

and
arg min
x∈S

f(x) := {x ∈ S : f(x) ≤ f(y) ∀y ∈ S}.

Although arg minx∈S f(x) is a set, if
∣∣arg minx∈S f(x)

∣∣ = 1, we may write y = arg minx∈S f(x) instead
of y ∈ arg minx∈S f(x). Analogously for arg maxx∈S f(x).
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The big-O notation is an important tool to help us talk about the running time and space consumption of
algorithms, as well as the asymptotic growth of some functions. Let g : R→ R be a function. Define

O(g(x)) := { f : R→ R : there are x0 ∈ R and M ∈ R+ such that f(x) ≤Mg(x) for every x ≥ x0}.

Similarly, define

Ω(g(x)) := { f : R→ R : there are x0 ∈ R and M ∈ R+ such that f(x) ≥Mg(x) for every x ≥ x0}.

An important definition for this text which is not so well known as the classic Big-O definitions is the soft-O
notation, defined by

Õ(g(x)) :=
∞⋃
k=0

O(g(x) logk g(x)),

that is, the soft-O notation “hides” the logarithmic terms.
We assume that the reader is familiarized with the definition of a vector space, and we denote the

dimension of a vector space V by dim(V ). If V is a real vector space, the span of a finite set S ⊆ V is the
subspace

span(S) :=
{∑
s∈S

css ∈ V : c ∈ RS
}
.

An inner product on a vector space V over R is a function 〈·, ·〉 : V × V → R such that

(i) 〈x, x〉 ≥ 0 for every x ∈ V , where equality holds if and only if x = 0;

(ii) 〈x, y〉 = 〈y, x〉 for every x, y ∈ V ;

(iii) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 for every α, β ∈ R and every x, y, z ∈ R.

Let S ⊆ V , where V is a vector space equipped with a inner product 〈·, ·〉. Define the orthogonal
complement of S by

S⊥ := { v ∈ V : 〈v, s〉 = 0 for each s ∈ S}.

A norm on a vector space V over R is a function ‖·‖ : V → R+ such that

(i) ‖x‖ ≥ 0 for every x ∈ V , where equality holds if and only if x = 0;

(ii) ‖αx‖ = |α|‖x‖ for every x ∈ V and α ∈ R;

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ V .

This last item is known as the triangle inequality. We note that every inner product 〈·, ·〉 on a real vector
spacer V induces a norm given by

‖x‖ := 〈x, x〉1/2, ∀x ∈ V.

Let V and W be finite sets. The vector space of V ×W matrices with real entries is denoted by RV×W .
We assume that the reader has a good knowledge about matrices. Let A ∈ RV×W . The rank of A is the
dimension of the vector space spanned by the columns of A, and is denoted by rank(A). A known result
from basic linear algebra that we may use it that the dimension of the vector space spanned by the columns
of A is also rank(A). The transpose of A is denoted by AT . For each v ∈ V and w ∈W , the entry in line v
and column w of A is denoted by Av,w. Denote the identity matrix of appropriate size by I. Let S ⊆ V and
let T ⊆W . Note that A is a function A : V ×W → R. A submatrix of A is a restriction of A as a function.
We will denote by A[S, T ] the restriction A : S × T → R. We abbreviate A[S] := A[S, S]. Define S := [m] \ S.
If S = {i}, we may write i instead of {i}. Let A ∈ Rn×n and let i, j ∈ [n]. The (ij)-principal minor of A
is A[i, j]. For each A ∈ RV×W , define the sets

Im(A) := {x ∈ RV : x = Ay for some y ∈W} and Null(A) := { y ∈ RW : Ay = 0},

which we call, respectively, the image and the null space of A. Let P ∈ RV×V . The matrix P is
a projection matrix or a projector if P 2 = P . The matrix P is an orthogonal projector if it is a
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projector and P = PT . Note that if P is a projector, then Pv = v for every v ∈ Im(P ). We say the the
matrix P is a projector onto some subspace S of RV if S = Im(P ). Note that if P is an orthogonal projector,
then Null(P ) = Im(P )⊥. Moreover, one can show that the orthogonal projector onto a subspace S is unique,
which we denote by ProjS .

A vector is a V × [1] matrix. We identify RV×[1] with RV , and we equip RV with the euclidean (or
standard) inner-product, which is defined by

〈x, y〉 = xT y ∀x, y ∈ RV .

If x ∈ RV and v ∈ V , the v-th entry of x is denoted by xv. We note that functions of one variable can be
seen as vectors, and that the notation of vectors and functions will be used interchangeably. We denote by 1
the vector of appropriate size with ones in all its coordinates. Let i ∈ V and define ei ∈ RV by (ei)j := [i = j]
for each j ∈ V . The set where a vector ei lies in will not be explicitly stated when it is clear from context.
If 〈·, ·〉 is an inner-product on a real vector space V , then a set S ⊆ V is orthogonal (with respect to 〈·, ·〉)
if 〈u, v〉 = 0 for every distinct u, v ∈ S. When the inner-product is not explicitly stated, we assume it to
be the euclidean inner-product. A subset of a vector space is orthonormal if it is orthogonal and each
of its elements has norm 1. The Hadamard product x � y ∈ RV of two vectors x, y ∈ RV is defined
by (x � y)i := xiyi for every i ∈ V . Let f ∈ RV . Define sgn: RV → {±1}V by sgn(f)i := (−1)[fi<0] for
each i ∈ V .

Theorem 2.1. If A ∈ Rm×n, then Im(A) = Null(AT )⊥.

Proof. First, let us show that
Im(A) ⊆ Null(AT )⊥. (2.1)

Let x ∈ Im(A). By definition of Im(A), there is y ∈ Rn such that x = Ay. Hence, for each z ∈ Null(AT ),

〈x, z〉 = 〈Ay, z〉 = (Ay)T z = yTAT z = yT 0 = 0.

This ends the proof of (2.1). Let us now prove that

Null(AT )⊥ ⊆ Im(A). (2.2)

We have that (2.2) holds if and only if Im(A)⊥ ⊆ Null(AT )⊥⊥, and the later set is Null(AT ). Let z ∈ Im(A)⊥.
For every y ∈ Rn, since Ay ∈ Im(A), we have

0 = 〈z,Ay〉 = zTAy = (AT z)T y = 〈AT z, y〉.

Since this holds for every y ∈ Rn, we conclude that AT z = 0. Hence, z ∈ Null(AT ).

Whenever it is possible (and convenient), we will use Householder’s convention:

• greek letters for scalars, e.g. α, β ∈ R;

• lower case letters for vectors, e.g. x, y ∈ Rn;

• upper case letters for matrices, e.g. A,B ∈ Rn×n.

The function diag : RV×V → RV extracts the diagonal of a matrix, and Diag : RV → RV×V is defined
by Diag(x)i,j := [i = j]xi for every x ∈ RV and i, j ∈ V . For each S ⊆ V , define 1S ∈ {0, 1}V by (1S)i :=
[i ∈ S] for every i ∈ V . A relation which is simple but of fundamental importance for the text is that, for
any A ∈ RV×V and any x ∈ RV , we have

xTAx =
∑
i∈V

∑
j∈V

xiAi,jxj .

If A = Diag(y) for some y ∈ RV , we have

xT Diag(y)x =
∑
i∈V

x2
i yi.
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Graphs are one of the objects of major interest throughout this text. A (simple) graph is an ordered
triple G = (V,E, ψ), where V and E are disjoint sets and ψ : E →

(
V
2
)
is a injective function. The elements

of V and E are the vertices and the edges of G, respectively, and ψ is the incidence function of G. An
edge e ∈ E is incident to a vertex i ∈ V if i ∈ ψ(e). We say that i, j ∈ V are adjacent if ψ(e) = {i, j}
for some e ∈ E. For a graph G, its vertex set is denoted by V (G), its edge set by E(G), and its incidence
function by ψG. A multigraph is an ordered triple G = (V,E, ψ) which is defined in a similar way to graphs,
but the incidence function goes from E to

(
V
2
)
∪
(
V
1
)
, and it does not need to be injective. Moreover, most

of the definitions for graphs may be adapted for multigraphs, and any differences will be explicitly stated.
If G is a multigraph, then e ∈ E(G) is a loop if |ψG(e)| = 1. Often it will be more convenient to say that a
graph G is an ordered pair (V,E) where E := {ψ(e) : e ∈ E} (which is a multiset in the case of a multigraph).
Moreover, we may write ij ∈ E instead of {i, j} ∈ E. A digraph is an ordered triple D = (V,A, ψ) defined
in a similar way to a graph, but the incidence function ψ goes from A to V × V , and the elements of A are
the arcs of D, which is denoted by A(D). Often it will be more convenient to say that a digraph D is an
ordered pair (V,A), where A := {ψ(a) : a ∈ A(D)} is a multiset. If G = (V,E), ψ is a graph and S ⊆ V is a
set, then the cut (associated with S) is the set of edges

δ(S) := { e ∈ E : ψ(e) = ij with i ∈ S and j ∈ V \ S}.

Moreover, if D = (V,A, ψ) is a digraph, S ⊆ V , and S := V \ S, then define the sets

δin(S) := { a ∈ A : ψ(a) ∈ S × S} and δout(S) := { a ∈ A : ψ(a) ∈ S × S}.

An orientation of a graph G = (V,E, ψ) is a digraph #»

G = (V,E, ψ′) such that for every e ∈ E we have
that ψ′(e) = (i, j) or ψ′(e) = (j, i), where {i, j} = ψ(e). A weighted graph is a quadruple G = (V,E, ψ,w)
where (V,E, ψ) is a graph and w ∈ RE++ is a vector of weights on the edges of G. A weighted digraph is
defined analogously.

Let G = (V,E, ψ) be a graph. The degree (or valency) degG(i) of a vertex i ∈ V is the number of
edges incident to i. The neighborhood NG(i) of i ∈ V is the subset of vertices of G which are adjacent
to i. The subscript may be omitted when it is clear from context. We define ∆(G) := maxi∈V degG(i).
The graph G is regular if degG = ∆(G)1. A subgraph H = (V ′, E′, φ) of G is a graph such that V ′ ⊆
V , E′ ⊆ E and φ = ψ �E′ . The subgraph of G induced by S ⊆ V is the graph G[S] := (S,E′, ψ �E′),
where E′ := { e ∈ E : ψ(e) ⊆ S}. Let S ⊆ V and define G − S := G[V \ S]. We may write G − i
instead of G − {i}. Let D = (V,E, φ) be a digraph. A walk (from v0 to vk) in G (resp., in D) is a
sequence P = (v0, f1, v1, f2, . . . , fk, vk) where vi ∈ V for each i ∈ {0} ∪ [k] and, for every i ∈ [k], we
have ψ(fi) = vi−1vi (resp., ψ(fi) = (vi−1, vi)). The endpoints of P are v0 and vk. We may omit the
edges in a walk when G (resp. D) is simple, thus writing P = (v0, v1, . . . , vk). The length |P | of a
walk P = (v0, f1, v1, f2, . . . , fk, vk) is k. A trail is a walk with no repeated edges. A path is a walk with no
repeated vertices. A walk is closed if its endpoints are equal. A circuit is a closed trail with no repeated
vertices (besides its endpoints). Let D = (V,A) be a digraph and let v0, vk ∈ V . A walk is directed if
it is a walk in a digraph. If P is a walk (or a directed walk), we denote by V (P ) the set of vertices in P
and by E(P ) the set of edges in P (or by A(P ) the set of arcs in P in the directed case). A graph G is
connected if there is a walk in G with endpoints i and j for every i, j ∈ V (G). A component of a graph G
is a maximal connected subgraph of G. A graph (or digraph) is acyclic if it has no circuits (or directed
circuits for digraphs). A tree is a connected acyclic graph, and a vertex of degree 1 in a tree is a leaf. The
distance between two distinct vertices in a graph is the minimum length of a path between these two vertices.
Let G = (V,E, ψ) be a graph. A subset of vertices S ⊆ V is independent if for every i, j ∈ S, there is
no e ∈ E such that ψ(e) = ij. A bipartition of a graph G is a partition of V (G) into two independent sets.
A graph is bipartite if it has a bipartition.

Lemma 2.2. For each x ∈ R,
ex ≥ 1 + x.

Proof. Let us divide the proof in three cases. For x ≤ −1 the statement is trivially true. Suppose that x ≥ 0.
By definition,

ex =
∞∑
i=0

xi

i! .
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Since x ≥ 0, each term of this series is nonnegative. Hence,

ex =
∞∑
i=0

xi

i! = 1 + x+
∞∑
i=2

xi

i! ≥ 1 + x.

Suppose now that −1 < x < 0 and define y := −x. Hence, 0 < y < 1 and

ex = e−y =
∞∑
i=0

(−y)i

i! .

It is easy to see that the terms of this alternating serie decreases in modulus since 0 < y < 1. Hence,
∞∑
i=2

(−y)i

i! ≥ 0 =⇒ e−y = 1− y +
∞∑
i=2

(−y)i

i! ≥ 1− y.

2.2 Data Structures
We describe here data structures to represent some of the objects used in the algorithms described in this

text. The claims we use about the running time of many operations are valid using these data structures
(but one may use other data structure with similar running times). We will make it explicit when a result
depends on the data structures of this section. We will use arrays with indexes starting at 1.

To represent graphs and digraphs, we use adjacency lists. Let G = (V,E) be a graph, and set m := |E|
and n := |V |. To store a graph G = (V,E), for each i ∈ V we maintain a linked list of the vertices j ∈ V such
that ij ∈ E. It takes time O(m+ n) to construct this data structure, and it takes time O(m) to traverse all
the edges in this data structure. Moreover, depth-first search and breadth-first search run in time O(m+ n)
on graphs represented by adjacency lists. To store a digraph D = (V,A), for each i ∈ V we maintain a linked
list of the vertices j ∈ V such that (i, j) ∈ A.

Most of the matrices we manipulate in this text are sparse, that is, most of the entries of the matrix are
zero. On these cases, storing the matrix in a 2-dimesional array will have many entries with zeros, which
is inefficient for many reasons. We can improve this by exploiting the sparsity of the matrix by using a
special data structure to store these matrices called Compressed Sparse Row (CSR). To store a sparse
matrix A ∈ Rm×n with k ∈ N nonzero entries, this data structure uses three arrays VA,RA, and CA defined
in the following way:

• VA has size k and, for each i ∈ [k], VA[i] stores the i-th nonzero entry of A in a left-to-right top-to-bottom
order;

• RA has size k + 1 and is defined recursively as follows

– RA[1] := 0;
– RA[i] := RA[i− 1] + zi−1 for each i ∈ [k+ 1] \ {1}, where zi ∈ N is the number of nonzero elements

on the i-th row of A.

• CA has size k and, for each i ∈ [k], CA[i] stores the index of the column of the i-th nonzero entry of A
in a left-to-right top-to-bottom order.

This way, for each i ∈ [k] we will have that
(2.3)VA[RA[i] + 1, . . . ,RA[i+ 1]] are the nonzero elements of the i-th row of A,

and the index of the column of the entry stored in VA[i] is CA[i]. For example, for the matrix

A :=


0 0 0 0
0 1 0 2
0 0 6 0
4 0 0 0

 ,
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its representation with the CSR data structure would be

VA =
(
1 2 6 4

)
, RA =

(
0 0 2 3 4

)
, CA =

(
2 4 3 1

)
.

To left-multiply a vector (represented by an array) by a matrix represented by CSR, one just iterates through
the rows of the matrix using (2.3), and since we have access to the indices of the columns of each element,
we can easily do the inner product of this row with a vector. Hence, this data structure allow us to do left
matrix-vector multiplication in time O(max{k,m}). Moreover, if A is a triangular matrix, it is easy to see
how to solve a system of the type Ax = b in O(max{k,m}) through backwards or forward substitution.

2.3 Spectral Decomposition of Symmetric Matrices
Let A ∈ RV×V , and set n := |V |. The eigenvalues of A are the n roots of the polynomial

λ 7→ det(λI −A).

A nonzero vector v ∈ RV such that Av = λv for some eigenvalue λ of A is called an eigenvector of A
associated to λ. The matrix A is symmetric if A = AT , and we denote the set of all real symmetric
V × V matrices by SV . It can be proved that if A ∈ SV , then all the eigenvalues of A are real. The
function λ↓ : SV → R|V | extracts all the eigenvalues of a matrix in non-increasing order. The function λ↑ is
defined analogously with non-decreasing order. Define λmax := λ↓1 and λmin := λ↑1. An interesting property is
that, for any matrices A ∈ Rm×n and B ∈ Rn×m, the eigenvalues of AB are the same of BA, except maybe
for the multiplicity of the eigenvalue 0. We will now prove this result in the case of square matrices.

Proposition 2.3. Let A ∈ Rn×n be a matrix. Then there exists a sequence (Ak)∞k=0 of invertible matrices
in Rn×n distinct from A such that limk→∞Ak = A.

Proof. Let p(λ) = det((1− λ)A+ λI). Note that p(λ) is a polynomial in λ of degree at most n, so p(λ) has
at most n real roots. Let r be the smallest positive real root of p(λ) if one exists, otherwise define r := 1. Let

Ak :=
(

1− r

k + 2

)
A+ r

k + 2I ∀k ∈ N.

Note that r/(k + 2) ∈ (0, r) for all k ∈ N. Therefore,

p

(
r

k + 2

)
6= 0 ∀k ∈ N.

Hence, Ak is invertible of all k ∈ N. Moreover,

lim
k→∞

Ak = A.

Lemma 2.4. If A,B ∈ Rn×n, then AB and BA have the same eigenvalues.

Proof. Let (Bk)∞k=0 be a sequence of invertible matrices as in Proposition 2.3 that converges to B, let k ∈ N,
and let t ∈ C. Then

det(ABk − tI) = det(ABk − tB−1
k Bk) = det((A− tB−1

k )Bk) = det(A− tB−1
k ) det(Bk)

= det(Bk(A− tB−1
k )) = det(BkA− tI).

Hence, det(ABk − tI) = det(BkA − tI). Since the determinant of a matrix is in fact a polynomial in the
entries of A, it is then a continuous function. Hence, we find that

det(AB − tI) = lim
k→∞

det(ABk − tI) = lim
k→∞

det(BkA− tI) = det(BA− tI).
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A matrix Q ∈ RV×W with |V | = |W | is orthogonal if QTQ = I. Note that if a matrix Q is orthogonal,
then its columns form a orthonormal set. Moreover, the trace Tr : RV×V → R is defined by

Tr(A) =
∑
i∈V

Aii, ∀A ∈ RV×V .

Let A ∈ RV×W and B ∈ RW×V . The fact that

Tr(AB) =
∑
i∈V

∑
j∈W

Ai,jBj,i =
∑
j∈W

∑
i∈V

Bj,iAi,j = Tr(BA)

may be used without mention. We state the following theorem without proof.

Theorem 2.5 (Spectral Decomposition). If A ∈ Sn, then there exists an orthogonal matrix Q ∈ Rn×n such
that A = QDiag(λ↓(A))QT . In particular, there exists an orthonormal basis {q1, . . . , qn} of Rn such that
A =

∑n
i=1 λ

↓
i (A)qiqTi .

Corollary 2.6. If A ∈ Sn, then Tr(A) = 1
Tλ↓(A) and det(A) =

∏n
i=1 λ

↓
i (A).

Proof. By Theorem 2.5, we have A = QDiag(λ↓(A))QT , for some orthogonal matrix Q ∈ Rn×n. Hence,

Tr(A) = Tr(QDiag(λ↓(A))QT ) = Tr(Diag(λ↓(A))QTQ) = Tr(Diag(λ↓(A))) = 1
Tλ↓(A)

and

det(A) = det(QDiag(λ↓(A))QT ) = det(Q) det(Diag(λ↓(A))) det(QT )

= det(Diag(λ↓(A))) det(QQT ) = det(Diag(λ↓(A))) =
n∏
i=1

λ↓i (A).

Corollary 2.7. If A ∈ Sn, then

λmax(A) = max
x∈Rn\{0}

xTAx

xTx
and λmin(A) = min

x∈Rn\{0}

xTAx

xTx
. (2.4)

Proof. Let Q ∈ Rn×n be an orthogonal matrix as in Theorem 2.5 and let x ∈ Rn \ {0}. Then x = Qc
for c := QTx. Therefore,

xTAx = xTQDiag(λ↓(A))QTx = cT Diag(λ↓(A))c. (2.5)

Moreover,

cT Diag(λ↓(A))c =
n∑
i=1

λ↓i (A)c2i ≤ λmax(A)
n∑
i=1

c2i = λmax(A)cT c = λmax(A)xTQTQx = λmax(A)xTx (2.6)

with equality if c = e1, i.e. x = Qe1. Analogously,

cT Diag(λ↓(A))c ≥ λmin(A)xTx, (2.7)

with equality if c = en, that is, if x = Qen. Hence,

λmin(A)xTx
(2.7)
≤ cT Diag(λ↓(A))c

(2.6)
≤ λmax(A)xTx, (2.8)

where the second inequality holds with equality for x = Qe1, and the first inequality holds with equality
for x = Qen. Therefore, (2.8) together with (2.5) yields

λmin(A) ≤ xTAx

xTx
≤ λmax(A), (2.9)

where equality holds in the cases cited above.
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A generalization of the above corollary is the following theorem, which we state without proof.

Theorem 2.8. Let A ∈ Sn. If {q1, · · · , qn} is an orthonormal set such that qi is an eigenvector of A associated
with λ↑i (A) for each i ∈ [n], then for every k ∈ [n],

λ↑k(A) = min
{
vTAv

vT v
: v ∈ Rn \ {0}, vT qi = 0 ∀i ∈ [k − 1]

}
= max

{
vTAv

vT v
: v ∈ Rn \ {0}, vT qi = 0 ∀i ∈ [n] \ [k]

}
.

The operator norm of A ∈ Rm×n is

‖A‖2 := max
‖x‖≤1

‖Ax‖. (2.10)

Corollary 2.9. If A ∈ Sn, then ‖A‖2 = max{|λmax(A)|, |λmin(A)|}.

Proof. Note that the maximum in (2.10) is attained by a unit vector. Let Q ∈ Rn×n be an orthogonal matrix
as in Theorem 2.5. Then,

‖A‖22 = max
‖x‖=1

‖Ax‖2 = max
‖x‖=1

‖QDiag(λ↓(A))QTx‖2

≤ max
‖x‖=1

‖Q‖22‖Diag(λ↓(A))‖22‖Q
T ‖22‖x‖

2 = ‖Diag(λ↓(A))‖22

= max
‖y‖=1

yT Diag(λ↓(A))2y = max
y∈Rn\{0}

yT Diag(λ↓(A))2y

yT y

= λmax(Diag(λ↓(A))2) = max{λmin(A)2, λmax(A)2}.

Therefore,
‖A‖2 ≤ max{|λmin(A)|, |λmax(A)|}.

It only remains to show that ‖A‖2 ≥ max{|λmin(A)|, |λmax(A)|}. Let qmin, qmax ∈ Rn be unit eigenvectors
associated, respectively, with the eigenvalues λmin(A) and λmax(A). Then,

‖Aqmin‖ = |λmin(A)| and ‖Aqmax‖ = |λmax(A)|.

A matrix A ∈ Sn is semidefinite if xTAx ≥ 0 for every x ∈ Rn or if xTAx ≤ 0 for every x ∈ Rn. A
matrix A is indefinite if it is not semidefinite. If xTAx ≥ 0 for every x ∈ Rn \ {0}, then A is positive
semidefinite. Similarly, if xTAx ≤ 0 for every x ∈ Rn \ {0}, then A is negative semidefinite. In the case
where the inequalities are strict the matrix A is positive definite or negative definite, respectively. For
every A,B ∈ Sn, we write A � B or A � B if A−B is positive semidefinite or positive definite, respectively.
Denote by Sn+ the set of positive semidefinite matrix in Sn. Similarly, denote by Sn++ the set of the positive
definite matrices on Sn. We may use the next proposition without mentioning it.

Proposition 2.10. Let X ∈ Sn and let L ∈ Rm×n. If X � 0, then LXLT � 0. Moreover, if m = n and L is
non-singular, then LXLT � 0 implies that X � 0.

Proof. If X � 0, then for every h ∈ Rm we have that

hTLXLTh = (LTh)X(LTh) ≥ 0.

Using what we just proved, if m = n and L is non-singular, then LXLT implies that X = L−1LXLT (LT )−1 �
0.

Let A ∈ Sn+. A matrix A1/2 ∈ Sn+ is a square root of A if (A1/2)2 = A. The next proposition shows that
such a matrix is unique, and it shows how to construct it from the spectral decomposition of the matrix.

Proposition 2.11. Let A ∈ Sn+. Then A has a unique square root matrix A1/2 ∈ Sn+. Moreover, if A =
QDiag(λ↓(A))QT , where Q ∈ Rn×n is an orthogonal matrix, then A1/2 = QDiag(µ)QT , where µ ∈ Rn is
defined by µi := λ↓i (A)1/2 for each i ∈ [n], and Im(A) = Im(A1/2).
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Proof. Let Q ∈ Rn×n be an orthogonal matrix such that A = QDiag(λ↓(A))QT , and define qi := Qei
for each i ∈ [n]. Let Λ := {λ↓i (A) : i ∈ [n]}, and let Q(λ) := { qi : i ∈ [n] and Aqi = λqi} for each λ ∈ Λ.
Define Pλ =

∑
q∈Q(λ) qq

T for each λ ∈ Λ. Note that Pλ is the orthogonal projector onto the subspace spanned
by the eigenvectors of A associated with λ ∈ Λ. Hence,

A = QDiag(λ↓(A))QT =
n∑
i=1

λ↓i (A)qiqTi =
∑
λ∈Λ

λPλ.

Moreover, define µ ∈ Rn by µi := λ↓i (A)1/2 for each i ∈ [n]. Then,

A1/2 = QDiag(µ)QT =
n∑
i=1

λ↓i (A)1/2qiq
T
i =

∑
λ∈Λ

λ1/2Pλ.

Let us show that
(2.11)if B ∈ Sn+ is such that B2 = A, then B =

∑
λ∈Λ λ

1/2Pλ.
Let B ∈ Sn+ be such that B2 = A, and let x ∈ Rn be an eigenvector of B associated with an eigenvalue µ ∈ R+
of B. Note that Ax = B2x = µ2x. Hence, if x ∈ Rn is an eigenvector of B associated with the eigenvalue µ ∈
R+, then x is an eigenvector of A associated with the eigenvalue µ2. Hence, for each i ∈ [n],

Null(λ↓i (B)I −B) ⊆ Null(λ↓i (B)2I −A). (2.12)

Let us show that
equality holds in (2.12) for every i ∈ [n]. (2.13)

For each i ∈ [n], define Li := Null(λ↓i (B)I −B) and Ri := Null(λ↓i (B)2I −A). Since A and B are symmetric,
we have that if i, j ∈ [n] are distinct, x ∈ Li, and y ∈ Lj , then xT y = 0. Analogously, we have that if i, j ∈ [n]
are distinct, x ∈ Ri, and y ∈ Rj , then xT y = 0. Hence,

Li ⊆ L⊥j and Ri ⊆ R⊥j , for every distinct i, j ∈ [n]. (2.14)

By Theorem 2.5, there is a basis {u1, . . . , un} of Rn such that, for each i ∈ [n], there is j ∈ [n] such
that ui ∈ Lj . Hence,

(2.15)if x ∈ Rn, then there are l1, . . . , ln ∈ Rn such that li ∈ Li for each i ∈ [n], and x =
∑n
i=1 li.

Suppose there is x ∈ Rj \ {0} such that x 6∈ Lj for some j ∈ [n]. We may suppose that x ∈ L⊥j since we may
take the orthogonal projection of x onto L⊥j , and such a projection is not zero since x 6∈ Lj . By (2.15), there
are l1, . . . , ln ∈ Rn such that li ∈ Li for each i ∈ [n], and x =

∑n
i=1 li. Since x ∈ Ł⊥j , we have that

0 = lTj x =
n∑
i=1

lTj li = ‖lj‖2 =⇒ lj = 0.

Since x 6= 0, there is k ∈ [n] \ {j} such that lk 6= 0. Since lk ∈ Lk ⊆ Rk ⊆ R⊥j by (2.14), and since x ∈ Rj ,
we have that

0 = lTk x =
n∑
i=1

lTk li = ‖lk‖2 6= 0,

a contradiction. This ends the proof of (2.13). Hence, for each i ∈ [n], we have λ↓i (B)2 = λ↓i (A) and
since λ↓(B) ≥ 0, we conclude that λ↓i (B) = λ↓i (A)1/2 for each i ∈ [n]. Therefore, for each λ ∈ Λ, we
have Bq = λ1/2q for every q ∈ Q(λ). Since {q1, . . . , qn} is a basis of Rn, this ends the proof of (2.11).

Proposition 2.12. If A ∈ Sn+ and x ∈ Rn, then x ∈ Null(A) if and only if xTAx = 0.

Proof. If x ∈ Null(A), it is clear that xTAx = 0. Suppose now that xTAx = 0. Then,

0 = xTAx = ‖A1/2x‖2 =⇒ A1/2x = 0 =⇒ Ax = 0 =⇒ x ∈ Null(A).
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Theorem 2.13. Let X ∈ Sn. Then the following are equivalent:

(i) X � 0;

(ii) λ↓(X) ≥ 0;

(iii) There are m ∈ N, a vector µ ∈ Rm+ , and {h1, . . . , hm} ⊆ Rn such that X =
∑m
i=1 µihih

T
i ;

(iv) There are m ∈ N and B ∈ Rn×m such that X = BBT ;

(v) For each S ∈ Sn+, it holds that Tr(XS) ≥ 0.

Proof. [(i) ⇒ (ii)]: Since X � 0, we have hTXh ≥ 0 for every h ∈ Rn. Hence, by Corollary 2.7, we have
that λmin(X) ≥ 0.

[(ii) ⇒ (iii)]: Follows immediately from Theorem 2.5.
[(iii) ⇒ (iv)]: Define H ∈ Rn×m such that Hei := µ

1/2
i hi for every i ∈ [m]. Then,

X =
m∑
i=1

µihih
T
i =

m∑
i=1

Hei
(
Hei

)T
= H

( m∑
i=1

eie
T
i

)
HT = HHT .

[(iv) ⇒ (i)]: Note that for every h ∈ Rn,

hTXh = hTBBTh = ‖BTh‖2 ≥ 0.

At this point, we know that properties (i)–(iv) are equivalent.
[(iii) ⇒ (v)]: For every S ∈ Sn+,

Tr(XS) = Tr
( m∑
i=1

µihih
T
i S
)

=
m∑
i=1

µi Tr(hihTi S) =
m∑
i=1

µi Tr(hTi Shi) =
m∑
i=1

µih
T
i Shi ≥ 0.

[(v) ⇒ (i)]: Let y ∈ Rn. Since we already showed that properties (i) and (iv) are equivalent, then yyT is
positive semidefinite. Hence,

0 ≤ Tr(XyyT ) = Tr(yTXy) = yTXy.

Lemma 2.14. Let M ∈ Rm×n be a block matrix such that

M =
(
A B
C D

)
,

where A,B,C and D are matrices of appropriate size, and A is invertible. Then, det(M) = det(A) det(D −
CA−1B).

Proof. Note that

M =
(

I 0
CA−1 I

)(
A 0
0 D − CA−1B

)(
I A−1B
0 I

)
.

Taking the determinant on both sides of the equation yields det(M) = det(A) det(D − CA−1B).

Lemma 2.15 (Schur Complement Lemma). Let X ∈ Sm, let U ∈ Rm×n and let T ∈ Sn++. Then

M :=
(
T UT

U X

)
� 0 ⇐⇒ X � UT−1UT .

Moreover, we have that M � 0 if and only if X � UT−1UT .
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Proof. Note that (
I 0

UT−1 I

)(
T 0
0 X − UT−1UT

)(
I T−1UT

0 I

)
= M. (2.16)

Let k := m+ n, let L ∈ Rk×k be the lower triangular matrix on the left of (2.16) and let D ∈ Sk be the block
diagonal matrix on the middle of (2.16). Note that

L−1 =
(

I 0
−UT−1 I

)
.

Hence, by Proposition 2.10, we have that M = LDLT � 0 if and only if D � 0. Since T � 0, we can
conclude that D � 0 if and only if X − UT−1UT � 0. In particular, we have that D � 0 if and only
if X − UT−1UT � 0.

Proposition 2.16. Let A ∈ Sn be a matrix, and let r := rank(A). Then, there are S ⊆ [n] with |S| = r,
and R ∈ RS×S such that rank(A[S]) = r, and

A =
(
I
RT

)
A[S]

(
I R

)
.

Proof. Since rank(A) = r, there is S ⊆ [n] with |S| = r such that {Aei : i ∈ S} is linearly independent,
and S is a maximal set with such property. Hence, A[[n], S] has full rank, and for every j ∈ S, we have
that {Aei : i ∈ S} ∪ {Aej} is linearly dependent. Hence, there is R ∈ RS×S such that, for each j ∈ S,

A[[n], S]Rej = Aej .

Hence, we have A[[n], S]R = A[[n], S],. In particular, A[S]R = A[S, S] and A[S, S]R = A[S]. Since A is
symmetric, we have that

A[S, S] = A[S, S]T = RTA[S]T = RTA[S].

Hence,
A[S] = A[S, S]R = RTA[S]R.

Therefore,

A =
(
A[S] A[S, S]
A[S, S] A[S]

)
=
(

A[S] A[S]R
RTA[S] RTA[S]R

)
=
(
I
RT

)
A[S]

(
I R

)
.

Theorem 2.17. If X ∈ Sn, then

(i) X � 0 if and only if det(X[{1, . . . , i}]) > 0 for each i ∈ [n];

(ii) X � 0 if and only if det(X[S]) ≥ 0 for each S ⊆ [n].

Proof. Let X ∈ Sn. Let us first show that
(2.17)If X � 0, then X[S] � 0 for every S ⊆ [n]. In particular, if X � 0, then X[S] � 0 for

every S ⊆ [n].
Suppose X � 0, let y ∈ RS \ {0}, and define z ∈ Rn by

zi := [i ∈ S]yi, ∀i ∈ [n].

Hence,
yTX[S]y = zTXz ≥ 0,

where the above inequality is strict if X � 0. This ends the proof of (2.17). Let us now prove (i).
Suppose X � 0, and let k ∈ [n]. By (2.17), we know that X[{1, . . . , k}] � 0. Then, by Theorem 2.13, we

have λ↓(X[{1, . . . , k}]) > 0. Hence, by Corollary 2.6 we have det(X[{1, . . . , k}]) =
∏n
i=1 λ

↓
i (X[{1, . . . , k}]) > 0.

Suppose now that det(X[{1, . . . , k}]) > 0 for each k ∈ [n]. If n = 1, the statement is trivial. Hence,
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suppose n > 1. Define A := X[{1, . . . , n − 1}], let u ∈ Rn−1 be the restriction of Xei to [n − 1], and
define α := Xnn. Then,

X =
(
A u
uT α

)
.

Since det(A) = det(X[{1, . . . , n − 1}) > 0, we have that A is non-singular. By Lemma 2.14, we know
that det(X) = det(A)(α− uTA−1u). Since det(X) and det(A) are positive, we have that α− uTA−1u > 0.
By Lemma 2.15, we have that X � 0 if and only if α − uTA−1u > 0. Hence, X � 0. This ends the proof
of (i). Let us now prove (ii).

Suppose that X � 0 and let S ⊆ [n]. By Theorem 2.13, we have λ↓(X[S]) ≥ 0. Hence, by Corollary 2.6 we
have det(X[S]) =

∏n
i=1 λ

↓
i (X[S]) ≥ 0. Suppose now that det(X[S]) ≥ 0 for each S ⊆ [n]. By Proposition 2.16,

there are S∗ ⊆ [n] and R ∈ RS×S such that X[S∗] has full rank, and

X =
(
I
RT

)
X[S∗]

(
I R

)
.

Hence, if X[S∗] � 0, by Proposition 2.10 we conclude that X � 0. Hence, it suffices to show that
(2.18)if A ∈ Sk is such that det(A[S]) ≥ 0 for each S ⊆ [k], and A has full rank, then A � 0.

Let A ∈ Sk be as in the above claim. Let us prove (2.18) by induction on k. If k = 1, then A ∈ R. Hence,
since det(A) ≥ 0, and since A has full rank, we conclude that A > 0. Suppose now that k > 1. Define(

B x
xT α

)
:= X[S∗], (2.19)

where B ∈ Sk−1, x ∈ Rk−1, and α ∈ R. Since A has full rank and det(A) ≥ 0, we know that

det(A) > 0. (2.20)

Let us show that
α > 0. (2.21)

First of all, note that 0 ≤ det(A[{k}]) = Ak,k = α. Moreover, for each i ∈ [k − 1], we have

0 ≤ det(A[{i, k}]) = det
(
Bi,i xi
xi α

)
= αBi,i − x2

i =⇒ x2
i ≤ αBi,i.

Hence, if α = 0, then x = 0, a contradiction since A has full rank. This ends the proof of (2.21). Hence, by
Lemma 2.14,

0
(2.20)
< det(A) = α det(B − 1

αxx
T ).

This together with (2.21) imply that det(B − 1
αxx

T ) is positive. Hence, B − 1
αxx

T has full rank. Moreover,
by Lemma 2.14, for each J ⊆ [k − 1],

det((B − 1
αxx

T )[J ]) = 1
α

det(A[J ∪ {k}]) ≥ 0.

Hence, by the induction hypothesis, B − 1
αxx

T � 0, and by Lemma 2.15 we conclude that X[S∗] � 0, ending
the proof of (2.18).

One consequence of the above theorem is that
(2.22)if a matrix A ∈ Sn+ is such that Ai,i = 0 for some i ∈ [n], then Aei = (eTi A)T = 0.

To see that, suppose there is i ∈ [n] such that Ai,i = 0 and let j ∈ [n] \ {i}. Then

0 ≤ det(A[{i, j}]) = det
(

0 Ai,j
Aj,i Aj,j

)
= −A2

i,j =⇒ Ai,j = 0.

We may use the above remark without referencing it.
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Theorem 2.18. Let A ∈ Sn+. Define

LA :=


1 if n = 1,(

[α > 0] 0T

[α > 0] 1
αu LB̃

)
if A =

(
α uT

u B

)
and B̃ := B − [α > 0] 1

αuu
T .

and define

DA :=


A1,1 if A is 1× 1,(
α 0T

0 DB̃

)
if A =

(
α uT

u B

)
and B̃ := B − [α > 0] 1

αuu
T .

Then A = LADAL
T
A.

Proof. Let us prove the above statement by induction on n. If n = 1, we have that LADAL
T
A = A1,1 = A.

Suppose that n > 1 and that

A =
(
α uT

u B

)
,

where u ∈ R[n]\{1} and B ∈ S[n]\{1}. Define B̃ := B − [α > 0] 1
αuu

T . We have

LADAL
T
A =

(
[α > 0] 0T

[α > 0] 1
αu LB̃

)(
α 0T
0 DB̃

)(
[α > 0] [α > 0] 1

αu
T

0 LB̃

)
=
(

[α > 0]α 0T
[α > 0]u LB̃DB̃

)(
[α > 0] [α > 0] 1

αu
T

0 LB̃

)
=
(

[α > 0]α [α > 0]uT
[α > 0]u [α > 0] 1

αuu
T + LB̃DB̃L

T
B̃

)
.

By the induction hypothesis, we have that LB̃DB̃L
T
B̃

= B̃. Thus,

[α > 0] 1
αuu

T + LB̃DB̃L
T
B̃

= B.

Moreover, since A � 0 we have that if α = 0, then u = 0. Hence u = [α > 0]u. Therefore, the result
follows.

Corollary 2.19 (Cholesky Decomposition). If A ∈ Sn+, then there is L̃ ∈ Rn×n lower triangular such that
A = L̃L̃T .

Proof. By Theorem 2.18 there are D ∈ Sn+ diagonal and L ∈ Rn×n lower triangular such that A = LDLT .
Note that if L̃ := LD1/2, then A = L̃L̃T . Moreover, since L is lower triangular and D1/2 is diagonal, we have
that L̃ is lower triangular, and the theorem follows.

2.4 Moore-Penrose Pseudoinverse
A (Moore-Penrose) pseudoinverse of A ∈ Rm×n is a matrix A† ∈ Rn×m such that:

(i) AA†A = A,

(ii) A†AA† = A†,

(iii) AA† and A†A are symmetric.

Note that if A is non-singular, then A−1 is a pseudoinverse of A. Moreover, one may verify that (AT )† = (A†)T .
Hence, we may write AT† instead of (AT )† without worrying about the order of the symbols.

Proposition 2.20. Every matrix A ∈ Rm×n has at most one pseudoinverse.
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Proof. Let B,C ∈ Rn×m be pseudoinverses of A. Then

AB = (AB)T = BTAT = BT (ACA)T = BTATCTAT = (AB)T (AC)T = ABAC = AC.

Analogously, BA = CA. Therefore,

B = BAB = CAB = CAC = C.

Proposition 2.21. Let A ∈ Rm×n and let B ∈ Rn×m. Then

(AB)† = B†A† (2.23)

if at least one of the following holds:

(1) ATA = I ;

(2) BBT = I ;

(3) B = AT .

In particular, we have that (AAT )† = AT†A†.

Proof. If (1) holds, then one can verify that A† = AT . Let us show that, in this case, (2.23) holds. Using the
properties of the pseudoinverse of B, we have

(AB)(B†A†)(AB) = ABB†ATAB = ABB†B
(i)= AB

and
(B†A†)(AB)(B†A†) = B†ATABB†A† = B†BB†A†

(ii)= B†A†.

Let us now show that ABB†A† is symmetric. We have

(ABB†A†)T = (ABB†AT )T = A(BB†)TAT (iii)= ABB†AT = ABB†A†.

Analogously, B†A†AB is symmetric. Hence, (2.23) holds in this case. The proof is analogous in the case on
which (2) holds. Let us analyze now the case which (3) holds. In this case, we have

(AAT )(AT†A†)(AAT ) = A(A†A)TA†AAT (iii)= AA†AA†AAT
(i)= AA†AAT

(i)= AAT .

With a similar proof, one can verify that (AT†A†)(AAT )(AT†A†) = AT†A†. Let us show that AATAT†A† is
symmetric. We have

(AAT )(AT†A†) = A(A†A)TA† (iii)= AA†AA†
(i)= AA†,

and since AA† is symmetric by the property (iii) of the pseudoinverse of A, we conclude that AATAT†A† is
symmetric. Analogously, AT†A†AAT is symmetric. Therefore, (2.23) holds in this case.

Theorem 2.22. If A ∈ Sn, then there is an unique pseudoinverse A† of A and it is given by

A† = QDiag(µ)QT , (2.24)

where Q ∈ Rn×n is an orthogonal matrix, and µ ∈ Rn is defined by

µi := [λ↓i (A) 6= 0]λ↓i (A)−1, ∀i ∈ [n].

Proof. Uniqueness follows from Proposition 2.20. Hence, it only remains to show that A† as defined in (2.24)
satisfies the properties of a pseudoinverse of A.

Suppose that Q = I. In this case, properties (i) and (ii) are easily verified using the fact that, for
any x, y ∈ Rn, Diag(x) Diag(y) = Diag(x� y). To show that property (iii) holds, it suffices to use the fact
that the product of diagonal matrices is also diagonal. Therefore,

Diag(λ↓(A))† = Diag(µ).

For the general case where Q is any orthogonal matrix, using Proposition 2.21 we have that

(QDiag(λ↓(A))QT )† = (Diag(λ↓(A))QT )†Q† = (QT )†Diag(λ↓(A))†QT = QDiag(µ)QT .
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With the above theorem, one may note that if A ∈ Sn+, then (A1/2)† = (A†)1/2. Hence, we may write A†1/2
without worrying about the order of the operators.

Proposition 2.23. If A ∈ Rm×n, then AA† = ProjIm(A) and A†A = ProjIm(AT ).

Proof. Let P := AA†. By property (iii) of a pseudoinverse, PT = P . Moreover, by property (ii),

P 2 = AA†AA† = AA† = P.

Hence, the matrix P is an orthogonal projector. Clearly Im(P ) ⊆ Im(A). Let us show that Im(A) ⊆ Im(P ).
Let v ∈ Im(A). By definition, there is x ∈ Rn such that v = Ax. Then,

Pv = AA†v = AA†Ax = Ax = v.

Hence, we have that v ∈ Im(P ). Therefore, we conclude that Im(P ) = Im(A). Thus, the matrix P is the
orthogonal projector onto Im(A). Let us now prove that A†A is the orthogonal projector onto Im(AT ).

By property (iii) of the definition of a pseudoinverse, we know that A†A is symmetric. Hence,

A†A = (A†A)T = AT (AT )†.

Since we already proved that AT (AT )† is the orthogonal projector onto Im(AT ), the result follows.

Theorem 2.22 gives a way to compute the pseudoinverse of symmetric matrices. The next proposition
shows how to reduce the computation the pseudoinverse of an arbitrary matrix to the symmetric case.

Proposition 2.24. If A ∈ Rm×n, then A† = AT (AAT )†.

Proof. Define B := AT (AAT )†. To prove that A† = B, it suffices to show that B satisfies the properties of
the pseudoinverse of A. To see that property (i) holds, note that

ABA = AAT (AAT )†A = ProjIm(AAT )A.

To prove that ProjIm(AAT )A = A, it suffices to show that

Im(AAT ) = Im(A). (2.25)

Clearly, Im(AAT ) ⊆ Im(A). Let x ∈ Im(A). Hence, there is y ∈ Null(A)⊥ such that x = Ay. By Theorem 2.1,
we have Null(A)⊥ = Im(AT ). Hence, there is y′ ∈ Rm such that y = AT y′. Hence, x = AAT y′, and we
conclude that x ∈ Im(AAT ). This ends the proof of (2.25). Let us now prove that property (ii) holds for B.
Note that,

BAB = AT (AAT )†AAT (AAT )† (ii)= AT (AAT )† = B.

This ends the proof of (ii) for B. It only remains to prove that (iii) holds for B. We have,

(BA)T = (AT (AAT )†A)T = AT ((AAT )†)TA = AT ((AAT )T )†A = AT (AAT )†A = BA.

Moreover, since AB = AAT (AAT )†, we have that AB is symmetric by property (iii) of the pseudoinverse
of AAT . This ends the proof of (iii) for B.

Proposition 2.25. If A ∈ Rm×n, then Null(A†) = Null(AT ) and Im(A†) = Im(AT ).

Proof. Let Q := A†A. By Proposition 2.23, the matrix Q is an orthogonal projector onto Im(AT ).
Since Im(Q) = Im(AT ), to prove Im(A†) = Im(AT ) it suffices to show Im(A†) = Im(Q).

By definition of Q, we have Im(Q) ⊆ Im(A†). Moreover, we have

QA† = A†AA† = A† =⇒ Im(A†) ⊆ Im(Q).

Therefore, we conclude that Im(A†) = Im(Q) = Im(AT ). This, together with Theorem 2.1, implies

(Null(A†))⊥ = Im(AT†) = Im(A) = (Null(AT ))⊥ =⇒ Null(A†) = Null(AT ).
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Theorem 2.26. Let A,B ∈ Sn+ be such that A � B and rank(A) = rank(B). Then B† � A†.

Proof. Let us first show that
Im(A) = Im(B). (2.26)

To show (2.26), let us show that
Null(A) ⊆ Null(B). (2.27)

Note that if there is x ∈ Null(A) \Null(B), by Proposition 2.12 we have xTBx > 0. Hence,

xTBx > 0 = xTAx,

what is a contradiction, since A � B. This ends the proof of (2.27). Hence, by Theorem 2.1, we have Im(B) ⊆
Im(A). This fact together with rank(A) = rank(B) imply (2.26).

By Proposition 2.11, Im(B) = Im(B1/2). Thus, by Proposition 2.23 and by the uniqueness of the
orthogonal projector, we have B†1/2B1/2 = ProjIm(B) = B1/2B†1/2. Hence,

ProjIm(B) = Proj2Im(B) = B†1/2B1/2B1/2B†1/2 = B†1/2BB†1/2 � B†1/2AB†1/2. (2.28)

Let r := rank(A) = rank(B). Then, (2.28) implies that 1 ≤ λ↓r(B†1/2AB†1/2). By Lemma 2.4, the eigenvalues
of B†1/2AB†1/2 = (B†1/2A1/2)(A1/2B†1/2) are the same as the ones of (A1/2B†1/2)(B†1/2A1/2) = A1/2B†A1/2.
Therefore,

1 ≤ λ↓r(A1/2B†A1/2), (2.29)

thus,
ProjIm(A1/2B†A1/2) � A1/2B†A1/2. (2.30)

Let us show that
Im(A1/2B†A1/2) = Im(A). (2.31)

By Proposition 2.11,
Im(A) = Im(A1/2). (2.32)

Hence, Im(A1/2B†A1/2) ⊆ Im(A). Moreover, by Proposition 2.25,

Im(B†) = Im(B) (2.26)= Im(A) = Im(A†). (2.33)

Let x ∈ Im(A). By (2.32), there is y ∈ Im(A) = Im(A1/2) such that x = A1/2y. By (2.33), there
is y′ ∈ Im(A1/2) = Im(B†) such that y = B†y′. Again by (2.33), there is y′′ ∈ Im(B†) = Im(A1/2) such
that y′ = A1/2y′′. Hence, x = A1/2B†A1/2y′′. We conclude that Im(A) ⊆ Im(B1/2A†B1/2). This ends the
proof of (2.31). Hence, ProjIm(A) = ProjIm(B1/2A†B1/2). This fact together with (2.30) implies that

ProjIm(A) � A1/2B†A1/2. (2.34)

By Proposition 2.23, A†1/2A1/2 = ProjIm(A) = A1/2A†1/2. Hence, by Proposition 2.10,

A† = A†1/2 ProjIm(A)A
†1/2

(2.34)
� A†1/2A1/2B†A1/2A†1/2 = ProjIm(A)B

† ProjIm(A)
(2.33)= B†.

Proposition 2.27. If A ∈ Rm×n and b ∈ Im(A) ⊆ Rm, then

A†b = arg min{ ‖x‖ : x ∈ Rn, Ax = b}.

Proof. Define x∗ := A†b, and let y ∈ Rn be such that Ay = b. Such y exists since b ∈ Im(A). Let us show
that

If y 6= x∗, then ‖y‖ > ‖x∗‖. (2.35)

By Proposition 2.23,
Ax∗ = AA†b = ProjIm(A) b = b.
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Therefore,
0 = Ay − b = A(y − x∗). (2.36)

Using the above equation with the properties of the pseudoinverse, we have

(x∗)T (y − x∗) = bT (A†)T (y − x∗) = bT (A†AA†)T (y − x∗)
= bT ((A†A)TA†)T (y − x∗) = bT (ATAT†A†)T (y − x∗)

= bT (A†)TA†A(y − x∗) (2.36)= 0.

Therefore (y − x∗) ⊥ x∗. Thus,

‖y‖2 = ‖y − x∗ + x∗‖2 = ‖x∗‖2 + ‖y − x∗‖2 ≥ ‖x∗‖2,

where equality holds if, and only if, y = x∗. This ends the proof of (2.35).

2.5 The Spectrum of the Adjacency Matrix
The adjacency matrix of a graph G = (V,E) is the matrix AG ∈ SV such that (AG)i,j := [ij ∈ E] for

every i, j ∈ V .

Theorem 2.28. If G is a graph, then
‖AG‖2 ≤ ∆(G), (2.37)

and equality holds if and only if some component of G is regular with valency ∆(G).

Proof. First, let us show (2.37). By Corollary 2.9, we know that ‖AG‖2 = max{|λmax(AG)|, |λmin(AG)|}.
Hence, it suffices to bound the maximum absolute value of the eigenvalues of AG. Let x ∈ RV be an
eigenvector of AG with associated eigenvalue λ. If j ∈ arg maxi∈V |xi|, then

|λ||xj | = |(Ax)j | =
∣∣∣ ∑
i∈N(j)

xi

∣∣∣ ≤ ∑
i∈N(j)

|xi| ≤ deg(j)|xj | ≤ ∆(G)|xj |. (2.38)

Note that,
(2.39)if j ∈ arg maxi∈V |xi|, then equality holds in (2.38) if and only if all the entries of x�N(j)

have the same sign, N(j) ⊆ arg maxi∈V |xi| and deg(j) = ∆(G).
Hence, we have that |λ| ≤ ∆(G). This concludes the proof of (2.37).

Suppose now that G has a component H that is regular with degree ∆(G), and set G′ := G − V (H).
Then,

AG1V (H) =
(
AH 0
0 AG′

)(
1

0

)
=
(

∆(H)1
0

)
= ∆(G)1V (H).

To prove the other side of the implication, suppose that ‖A‖2 = ∆(G). Let k ∈ R := arg maxi∈V |xi|.
Let H be a component of G such that k ∈ V (H). Suppose there exists i ∈ V (H) \R, and choose such i
with minimum distance to k. Clearly i 6= k. Let (v0, . . . , v`) be a path of minimum length in H from v0 = i
to v` = k. Such a path exists since H is connected. By our choice of i, we have that j := v1 ∈ R. By (2.39),
it follows that i ∈ N(j) ⊆ R, which is a contradiction.

Theorem 2.29. If G is a bipartite graph and λ ∈ R, then λ is an eigenvalue of AG if and only if −λ also is.

Proof. Let {X,Y } be a bipartition of G. Then

AG =
(

0 M
MT 0

)
,

where M ∈ RX×Y . Let
v =

(
x
y

)
∈ RV \ {0}
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be such that AGv = λv, where x ∈ RX and y ∈ RY . Therefore,(
λx
λy

)
= AGv =

(
0 M
MT 0

)(
x
y

)
=
(
My
MTx

)
.

Define
u :=

(
x
−y

)
.

Then,

AGu =
(

0 M
MT 0

)(
x
−y

)
=
(
−My
MTx

)
=
(
−λx
λy

)
= −λu

Thus, we have that −λ is also an eigenvalue of AG.

2.6 Incidence Matrices
The incidence matrix BD ∈ RV×A of a digraph D = (V,A) is defined by

(BD)i,a :=


1, if a = (i, j) for some j ∈ V,
−1, if a = (j, i) for some j ∈ V,
0, otherwise,

∀(i, a) ∈ V ×A. (2.40)

It is easy to verify that BDe(i,j) = ei − ej for every (i, j) ∈ A. Hence,

BD =
∑

(i,j)∈A

(ei − ej)eT(i,j).

Proposition 2.30. If D = (V,A) is a digraph, then Null(BTD) is the linear subspace spanned by

{1V (C) : C is a component of D}. (2.41)

Proof. If C is a component of D and (i, j) ∈ A, then (ei − ej)T1V (C) = 0, so

BTD1V (C) =
∑

(i,j)∈A

e(i,j)(ei − ej)T1V (C) = 0.

Hence, span{1V (C) : C is a component of G} ⊆ Null(BTD).
Let x ∈ Null(BTD), and let i, j ∈ V be vertices of the same component C of G. Let (v0, . . . , v`) be a path

in C from v0 = i to v` = j. Note that

0 = (BTDx)(r,s) = xr − xs =⇒ xr = xs ∀(r, s) ∈ A.

Thus, we have that x(v0) = x(v1) = · · · = x(v`). Therefore, for every component of G its vertices will have
the same value in x. Thus, x is in the subspace spanned by (2.41).
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Chapter 3

The Graph Laplacian

The Laplacian of a graph G = (V,E) is the function LG : RE → SV such that

LG(w) =
∑
ij∈E

wijLij , ∀w ∈ RE ,

where Lij := (ei − ej)(ei − ej)T for ij ∈ E. Note that LG := LG(1) = Diag(deg)−AG. A Laplacian system
is any system of equations of the form Lx = b, where L is the Laplacian of a graph.

Proposition 3.1. If #»

G = (V,A) is an orientation of a graph G = (V,E) and w ∈ RE , then LG(w) =
B #»
G

Diag(w)BT#»
G
.

Proof. We have

B #»
G Diag(w)BT#»

G
= B #»

G

( ∑
(i,j)∈A

wije(i,j)e
T
(i,j)

)
BT#»
G

=
∑

(i,j)∈A

wijB #»
Ge(i,j)

(
B #»
Ge(i,j)

)T
=

∑
(i,j)∈A

wij(ei − ej)(ei − ej)T

=
∑
ij∈E

wij(ei − ej)(ei − ej)T = LG(w).

Corollary 3.2. Let G = (V,E) be a graph and w ∈ RE++. Then LG(w) � 0, and Null(LG(w)) is the subspace
spanned by {1V (C) : C is a component of G}.

Proof. Let #»

G = (V,A) be an orientation of G. By Proposition 3.1 we have that LG(w) = B #»
G

Diag(w)BT#»
G
.

Define ba := B #»
Gea for each a ∈ A. Then

LG(w) = B #»
G

Diag(w)BT#»
G

= B #»
G

( ∑
(i,j)∈A

wije(i,j)e
T
(i,j)

)
BT#»
G

=
∑

(i,j)∈A

wijb(i,j)b
T
(i,j).

Therefore, by Theorem 2.13, we have that LG(w) � 0. Let us now show that Null(LG(w)) is the subspace
spanned by {1V (C) : C is a component of G}.

By Proposition 2.12, for every x ∈ RV , we have LG(w)x = 0 if and only if xTLG(w)x = 0. Since

xTLG(w)x = xTB #»
G Diag(w)BT#»

G
x = ‖Diag(w)1/2BT#»

G
x‖22,

and Diag(w)1/2 is nonsingular, then LG(w)x = 0 if and only if BT#»
G
x = 0. The result now follows from

Proposition 2.30.
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Proposition 3.3. If G = (V,E) is a graph, then ‖LG‖2 ≤ 2∆(G). In particular, λmax(LG) ≤ 2∆(G).

Proof. By Corollary 2.9 and since LG � 0, we know that ‖LG‖2 = λmax(LG). Hence, using Corollary 2.7,

λmax(LG) = max
x∈RV \{0}

xTLGx

xTx
≤ max
x∈RV \{0}

xT Diag(deg)x
xTx

− min
x∈RV \{0}

xTAGx

xTx

= ∆(G)− λmin(AG) ≤ ∆(G) + ‖AG‖2.

By Theorem 2.28, we have that ‖AG‖2 ≤ ∆(G). Hence,

‖LG‖ ≤ ∆(G) + ‖AG‖2 ≤ 2∆(G).

3.1 Flows in Graphs
Let D = (V,A) be a digraph and let s, t ∈ V be distinct. An (s, t)-flow in D is a function f : A → R+

that obeys the flow-conservation constraints, that is,∑
a∈δout(v)

fa −
∑

a∈δin(v)

fa = 0 ∀v ∈ V \ {s, t},

and that
|f | :=

∑
a∈δout(s)

fa −
∑

a∈δin(t)

fa ≥ 0.

The value of an (s, t)-flow f is |f |, and the vertices s and t are, respectively, the source and the sink of f .
A unit (s, t)-flow is an (s, t)-flow of value 1. We may omit the vertices (s, t) when they are clear from context
or when it is not necessary to know these vertices. A circulation is a flow of value 0. Note that we can also
write the flow-conservation constraints as follows

BDf = |f |(es − et). (3.1)

Let G = (V,E) be a graph and let s, t ∈ V be distinct. Fix an orientation #»

G of G. An (s, t)-flow in G
(with respect to the orientation #»

G) is a function f : E → R such that

B #»
Gf = |f |(es − et).

We may omit the fixed orientation of the graph which the flow is associated with when it is clear from
context or when it is not important to explicitly name it. Note that, differently from the directed case,
we allow edges to have negative flow in this case. Let f be an (s, t)-flow in a graph with respect to an
orientation #»

G and let a = (u, v) ∈ A( #»

G). Intuitively, if fa ≥ 0, one should interpret that the flow of a is
going from u to v. Similarly, if fa < 0, then the flow of a is going from v to u. To formalize this intuition,
define the sets A+ := { (u, v) ∈ A : f(u, v) ≥ 0} and A− := { (u, v) ∈ V × V : (v, u) ∈ A \A+}. Define the
orientation #»

G′ := (V,A+ ∪A−), and define f ′ := Diag(sgn(f))f . One can note that f ′ is an (s, t)-flow in the
digraph #»

G′. We call such a orientation #»

G′ an induced orientation of G (with respect to the flow f). The
reader may notice that many propositions about flows in digraphs can be extended to graphs by taking care
of the signs of the flow component wise.

Proposition 3.4. Let D = (V,A) be a digraph and let f ∈ RA+. Then f is an (s, t)-flow in D if and only if
there is a collection of directed circuits C in D, a collection of directed (s, t)-paths P in D with |C|+ |P| ≤ |A|,
vectors b ∈ RC+ and d ∈ RP+ with ‖d‖1 = |f | such that

f =
∑
C∈C

b(C)1C +
∑
P∈P

d(P )1P . (3.2)

Moreover, let G = (V,E) be a graph and let f ∈ RE . Then f is an (s, t)-flow in G if and only if there
is a collection of circuits C in G, a collection of (s, t)-paths P in G with |C| + |P| ≤ |E|, vectors b ∈ RC+
and d ∈ RP+ with ‖d‖1 = |f | such that

f = Diag(sgn(f))
∑
C∈C

b(C)1C +
∑
P∈P

d(P )1P .
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Proof. Suppose that there is a collection of directed circuits C in D and a collection of directed (s, t)-paths P
in D with |C| + |P| ≤ |A|, and vectors b ∈ RC+ and d ∈ RP+ such that (3.2) holds. Let us show that f is
an (s, t)-flow of value ‖d‖1. It is easy to see that if C ∈ C and P ∈ P, then 1A(C) is a circulation in D
and 1A(P ) is an (s, t)-flow in D of value 1. Hence,

BDf =
∑
C∈C

b(C)BD1C +
∑
P∈P

d(P )BD1P = 0 +
∑
P∈P

d(P )(es − et) = ‖d‖1(es − et).

Suppose now that f is an (s, t)-flow in D of value α. We will prove the statement by induction on |supp(f)|.
If |supp(f)| = 0, the statement holds trivially. Suppose |supp(f)| > 0. Define Ds := (V, supp(f)) and suppose
there is a directed circuit C in Ds. Define β := min{ fa : a ∈ A(C)} > 0, and set f ′ := f − β1A(C). Note
that |supp(f ′)| < |supp(f)| by the choice of β. It is easy to see that 1A(C) is a circulation in D. Hence,

BDf
′ = BDf − βBD1A(C) = BDf = α(es − et).

Therefore, f ′ is an (s, t)-flow in D, and the statement follows by the induction hypothesis.
Let us now analyze the case on which there are no directed circuits in Ds. Let P = (v0, · · · , vk) be a

maximal path in Ds, where vi ∈ V for each i ∈ [k]. Let us prove that

P is an (s, t)-path. (3.3)

Suppose that v0 6∈ {s, t}. Since there are no circuits inDs, and since P is maximal, we conclude that δin(v0) = ∅
in Ds, but this would violate the flow-conservation constraints. Hence, v0 ∈ {s, t}. Similarly, vk ∈ {s, t}.
Hence,

(3.4)if P is a maximal path in Ds and Ds has no circuits, then P is either a directed (s, t)-path
or a directed (t, s)-path.

Suppose that P is a (t, s)-path. In this case, if δout(s) = ∅ in Ds, then |f | < 0, a contradiction. Hence,
let a ∈ δout(s) in Ds, and let P ′ be a maximal path in Ds such that a ∈ P ′. By (3.4), we have that P ′ is
an (s, t)-path. Since P is an (t, s)-path in Ds and P ′ is an (s, t)-path in Ds, this means that there is a directed
circuit in Ds, a contradiction. This ends the proof of (3.3). Hence, define β := min{ fa : a ∈ A(P )} > 0.
Define f ′ := f − β1A(P ). Note that |supp(f ′)| < |supp(f)| by the choice of β. It is easy to note that 1A(P ) is
an (s, t)-flow in D. Hence,

BDf
′ = BDf − βBD1A(P ) = (α− β)(es − et).

If α ≥ β, then f ′ is an (s, t)-flow in D of value α− β, and the statement follows by the induction hypothesis.
Hence, it only remains to show that

α ≥ β. (3.5)

Suppose that β > α. Since P is an (s, t)-path, there is a ∈ δout(s) ∩A(P ). Hence, fa ≥ β by the definition
of β. Moreover, since β > α, there must be a ∈ δin(s) in Ds, otherwise |f | = α would be at least β. Let P ′
be a maximal path such that a ∈ A(P ′). Since we are in the case where there are no circuits in Ds, we have
that P ′ is a (t, s)-path by (3.4). Since P ′ is an (t, s)-path in Ds and P is an (s, t)-path in Ds, there must be
a directed circuit in Ds, a contradiction. This ends the proof of (3.5). The undirected case follows from the
directed case from the definition of induced orientation.

3.2 Electrical Flows
If f is a flow in a weighted graph G = (V,E, r), then the energy of f (with respect to r) is

E(f) := fT Diag(r)f.

Let G be a weighted graph with weights r ∈ RE++. An (s, t)-flow f of value α ∈ R+ in G is electrical if f
minimizes the energy over all the (s, t)-flows of value α in G. We say that r defines the resistances on the
edges for the electrical flow f .
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Proposition 3.5. Let G = (V,E, r) be a weighted graph and let f ∈ RE be an electrical (s, t)-flow in G
of value α ∈ R++. Then there is a collection of (s, t)-paths P in G with |P| ≤ |E| and a vector b ∈ RP+
with ‖f‖∞ ≤ ‖b‖1 = α such that

f = Diag(sgn(f))
∑
P∈P

b(P )1E(P ). (3.6)

Proof. Let #»

G be an induced orientation of G with respect to the flow f , and define g := Diag(sgn(f)) f. Note
that, for any (s, t)-flow f ′ in G and any vector u ∈ {±1}V , we have

E(f ′) = E(Diag(u)f ′).

Hence, it suffices to prove that if g has minimum energy among the (s, t)-flows of value α in #»

G, then there is
a collection of directed (s, t)-paths P in #»

G with |P| ≤ |E| and a vector b ∈ RP+ with ‖b‖1 = α such that

g =
∑
P∈P

b(P )1A(P ). (3.7)

By Proposition 3.4, there is a collection of directed circuits C in #»

G, a collection of (s, t)-paths P in #»

G
with |C|+ |P| ≤ |E|, vectors b ∈ RP and d ∈ RC with ‖b‖1 = α such that

g =
∑
C∈C

d(C)1A(C) +
∑
P∈P

b(P )1A(P ). (3.8)

Suppose that C 6= ∅, let C ∈ C be fixed and define g′ := g − d(C)1A(C). Note that d(C)1A(C) is a circulation
in #»

G. Hence,
B #»
Gg
′ = B #»

Gg − d(C)B #»
G1A(C) = B #»

Gg = α.

Therefore, g′ is an (s, t)-flow in #»

G of value α. By (3.8), we have

g′ =
∑

C∈C\{C}

d(C)1A(C) +
∑
P∈P

b(P )1A(P ).

Hence, g′ ≥ 0. Moreover, since d(C) > 0, we have that g′a < ga for each a ∈ A(C). Therefore E(g′) < E(g), a
contradiction. This ends the proof of equation (3.7). Let us now prove that

‖g‖∞ ≤ ‖b‖1 = α.

By (3.6), for each a ∈ A( #»

G),
ga =

∑
P∈P

[a ∈ P]b(P ) ≤ ‖b‖1 = α.

Theorem 3.6. Let G = (V,E, r) be a connected weighted graph, let s, t ∈ V be distinct, let f∗ ∈ RE be an
electrical (s, t)-flow in G of value α ∈ R+, and let c ∈ RE++ be defined by ce := r−1

e for each e ∈ E. Then f∗
is unique, and for every v ∈ LG(c)†(es − et) + span{1},

f∗ = αDiag(c)BT#»
G
v. (3.9)

In particular, if f1 is the unit electric (s, t)-flow in G, then, for every α ∈ R+ we have that αf1 is the
electrical (s, t)-flow of value α.

Proof. Let Fs,t be the set of all (s, t)-flows in G of value α ∈ R+. Let f ∈ Fs,t, and let R := Diag(r). Note
that

E(f) = fTRf = (R1/2f)TR1/2f = ‖R1/2f‖22.
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Hence,

arg min{ E(f) : f ∈ Fs,t} = arg min{ ‖R1/2f‖22 : f ∈ Fs,t}
= arg min{ ‖R1/2f‖22 : B #»

Gf = α(es − et)}
= R−1/2 arg min{ ‖g‖22 : B #»

GR
−1/2g = α(es − et)},

where in the last equation we made the change of variables g := R1/2f . By Proposition 2.27, the solution of
minimum norm of the system

B #»
GR
−1/2g = α(es − et)

is g∗ := α(B #»
GR
−1/2)†(es − et). By Proposition 2.24, we have A† = AT (AAT )† for any A ∈ Rm×n. Hence,

(B #»
GR
−1/2)† = (B #»

GR
−1/2)T

(
B #»
GR
−1/2(B #»

GR
−1/2)T

)†
= R−1/2BT#»

G

(
B #»
GR
−1/2R−1/2BT#»

G

)†
= R−1/2BT#»

G

(
B #»
G Diag(c)BT#»

G

)† = R−1/2BT#»
G
LG(c)†,

where in the last equation we used Proposition 3.1. Therefore, we have g∗ = αR−1/2BT#»
G
LG(w)†(es − et).

Since we made the change of variables g = R1/2f , we have

f∗ = R−1/2g∗ = αR−1BT#»
G
LG(c)†(es − et) = αDiag(c)BT#»

G
LG(c)†(es − et).

Moreover, since G is connected, by Proposition 2.30 we have Null(BTG) = span{1}. Therefore, for every β ∈ R,

f∗ = αDiag(c)−1BT#»
G

(LG(c)†(es − et) + β1).

Let v ∈ LG(c)†(es − et) + span{1}. In particular, if f1 is the unit electrical (s, t)-flow in G, we have f1 =
Diag(c)BT#»

G
v. Hence,

f∗ = αDiag(c)BT#»
G
v = αf1.

Let G be a weighted graph with weights r ∈ RE++, let
#»

G be a fixed orientation of G, and let f be the
electrical (s, t)-flow in G with respect to the orientation #»

G. We say that a vector v ∈ RV as in the above
theorem is a vector of vertex potentials (with respect to the flow f and the vector r). Define c ∈ RE such
that ce := 1/re for each e ∈ E. Suppose that f is a unit electrical (s, t)-flow in G, and let v ∈ RV be vertex
potentials of f . Hence, Proposition 3.1 together with equations (3.1) and (3.9) yield

LG(c)v = B #»
G Diag(c)BT#»

G
v = B #»

Gf = (es − et). (3.10)

This means that vertex potentials can be obtained by solving a Laplacian system. Moreover, by Theorem 3.6,
the electrical (s, t)-flow of value α ∈ R+ in G is simply αf . Hence, it suffices to know how to compute the
unit electrical flow in a graph to compute a electrical flow of an arbitrary value.

There is a physical intuition behind the language used in this section. Although it is not essential to
understand this intuition for a good comprehension of the remaining of the section, the reader may find it
useful as a memory aid for the definitions about electrical flows. For a moment, imagine that a weighted
graph G = (V,E, r) is a representation of an electrical network. Each edge e ∈ E represents a resistor with
resistance re and each vertex represents a node (or junction) of the circuit. The (s, t)-flow f represents the
currents passing through the resistors when connecting s and t to the poles of an external current source.
With that in mind, one can note that (3.9) is equivalent to Ohm’s law [17], that states

(3.11)The current through a resistor between two nodes is directly proportional to the potential
difference across the two nodes,

Moreover, the flow-conservation constraints are equivalent to Kirchhoff’s current law [17], which states
(3.12)At any node in an electrical circuit, the sum of currents flowing into that node is equal to

the sum of currents flowing out of that node.
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Let G = (V,E, r) be a weighted graph, let s, t ∈ V be distinct, and let c ∈ RE be given by ce := 1/re for
each e ∈ E. The effective resistance of s and t (with respect to r) is

Rs,teff (r) = (es − et)TLG(c)†(es − et).

We may omit the superscript whenever the vertices s, t are clear from context (usually they will be the source
and sink of a flow).

Proposition 3.7. If G is a weighted graph with weights r ∈ RE++ and f is the unit electrical (s, t)-flow in G,
then

Rs,teff (r) = E(f).

Proof. Define c ∈ RE by ce := 1/re for each e ∈ E. Let v ∈ RV be vertex potentials of f , and let #»

G be an
orientation of G for which f is a flow in G with respect to the orientation #»

G. Then, using the property (i) of
the pseudoinverse of LG(c),

E(f) = fT Diag(r)f = vTB #»
G Diag(r)−1 Diag(r) Diag(r)−1BT#»

G
v

= vTB #»
G Diag(c)BT#»

G
v = vTLG(c)v (i)= vTLG(c)LG(c)†LG(c)v

= (LG(c)v)TLG(c)†LG(c)v (3.10)= (es − et)TLG(c)†(es − et) = Rs,teff (r).

Proposition 3.8 (Rayleigh Monotonicity). If G = (V,E) is a graph, s, t ∈ V are distinct, and r, r′ ∈ RE++
are such that r ≥ r′, then

Rs,teff (r) ≥ Rs,teff (r′).

Proof. Define c, c′ ∈ RE by ce := 1/re and c′e := 1/r′e for every e ∈ E. Note that c′ ≥ c ≥ 0. Hence, LG(c′) �
LG(c) � 0, and by Theorem 2.26,

(es − et)TLG(c)†(es − et) ≥ (es − et)TLG(c′)†(es − et).

3.3 Counting Spanning Trees
Lemma 3.9 (Matrix determinant lemma). If A ∈ Rn×n is invertible and u, v ∈ Rn, then

det(A+ uvT ) = det(A)(1 + vTA−1u).

Proof. Let

R :=
(
A −u
vT 1

)
.

Since A is invertible, the matrix R has both a block LDU decomposition and a block UDL decomposition,
that is, (

I 0
vTA−1 1

)(
A 0
0 1 + vTA−1u

)(
I −A−1u
0 1

)
= R =

(
I −u
0 1

)(
A+ uvT 0

0 1

)(
I 0
vT 1

)
.

The result now follows by taking the determinant of both sides of the equation.

The adjugate matrix adj(A) of A has entries defined by

adj(A)i,j := (−1)i+j det
(
A[j, i]

)
, ∀i, j ∈ [n],

where we recall that, for each S ⊆ V , we have S := V \S, and if S = {i}, we may write i instead of {i}. Using
the Laplace expansion to calculate the determinant of a matrix, one may verify that A adj(A) = det(A)I.
Therefore, if A is invertible we have that adj(A) = det(A)A−1.

Lemma 3.10. If A ∈ Rn×n and u, v ∈ Rn, then

det(A+ uvT ) = det(A) + vT adj(A)u.

25



Proof. Let (Ak)∞k=0 be a sequence of invertible matrices as in Theorem 2.3 that converges to A. By Lemma 3.9,
for each i ∈ N we have

det(Ai + uvT ) = det(Ai)(1 + vTA−1
i u) = det(Ai) + vT det(Ai)A−1

i u

= det(Ai) + vT adj(Ai)u.

Since the determinant of a matrix is a continuous function, we can take limit on both sides. Hence, the result
follows.

Let G = (V,E, ψ) be a multigraph. Define τ(G) as the number of spanning trees of G. Note that if G is
not connected, then τ(G) = 0. Let e ∈ E. Define G \ e := (V,E \ {e}, ψ′), where ψ′ is the restriction of ψ
to E \ {e}. Let S ⊆ V . The multigraph G/S := (V ′, E, ψ′) is the multigraph with the subset of vertices S
contracted, where V ′ := (V \ S) ∪ {S} and

ψ′(f) :=


ψ(f) if ψ(f) ∩ S = ∅,
{S} if ψ(f) ⊆ S,
{k, S} if ψ(f) \ S = {k},

∀f ∈ E.

If e ∈ E(G), the multigraph G/e := (G \ e)/ψG(e) is the multigraph with the edge e contracted.

Proposition 3.11. If G is a multigraph with |E(G)| ≥ 1, and e ∈ E(G) is not a loop, then

τ(G) = τ(G \ e) + τ(G/e).

Although we do not give a formal proof of the above proposition, which would be unnecessarily long to
formalize, we give a sketch of the proof. Let G be a multigraph, and let e ∈ E be a non-loop edge. To see
that the above proposition holds, note that the set of spanning trees of G that do not contain e is the set of
spanning trees of G \ e. In a similar way, for every spanning tree T of G that contains e, the tree T/e is a
spanning tree of G/e. The converse also holds, that is, for every spanning tree of G/e we can construct a
spanning tree of G that contains e.

Theorem 3.12 (Matrix Tree Theorem). Let G = (V,E) be a multigraph with |V | ≥ 2. If i ∈ V , then

τ(G) = det
(
LG[i]

)
. (3.13)

Proof. Let G = (V,E) be a counterexample that minimizes |V |+ |E|. Let i ∈ V , and let G′ := G− i. If i is
isolated, then LG[i] = LG′ . Since 1 ∈ Null(LG′), we have that LG′ is singular, and det(LG′) = 0 = τ(G). So
suppose that i is not isolated. Let e = ij ∈ E for some j ∈ V \ {i}. Then,

det(LG[i]) = det(LG\e[i] + Le[i])) = det(LG\e[i] + eje
T
j ).

By Lemma 3.10,

det(LG\e[i] + eje
T
j ) = det(LG\e[i]) + eTj adj(LG\e[i])ej

= det(LG\e[i]) +
(
adj(LG\e[i])

)
j,j

= det(LG\e[i]) + det
(
LG\e[{i, j}]

)
.

Let k := ψG(e) ∈ V (G/e). One may verify that

LG\e[{i, j}] = LG/e[k].

Equation (3.13) holds for G \ e and G/e since both of these multigraphs are not counterexamples. By
Proposition 3.11,

det
(
LG[i]

)
= det

(
LG\e[i]

)
+ det

(
LG/e[k]

)
= τ(G \ e) + τ(G/e) = τ(G).
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3.4 Sparse Cuts
Let G = (V,E) be a graph and let S ⊆ V . The volume of S is vol(S) :=

∑
i∈S deg(i). Moreover,

define vol(G) := vol(V ) = 2|E|. The sparsity Φ(S) of the cut associated with S is

Φ(S) := |δ(S)|
min{vol(S), vol(S)}

,

where we consider Φ(S) =∞ if the denominator is zero. The sparsity of G is

Φ(G) := min
∅6=S(V

Φ(S).

The relaxed sparsity h(S) of S is

h(S) := |δ(S)|
vol(S) · vol(S)

· vol(G),

where we consider h(S) =∞ if the denominator is zero. The relaxed sparsity of G is

h(G) := min
∅6=S(V

h(S).

Proposition 3.13. Let G = (V,E) be a graph and let S ⊆ V . Then Φ(S) ≤ h(S) ≤ 2Φ(S). In particu-
lar, Φ(G) ≤ h(G) ≤ 2Φ(G).

Proof. For each S ⊆ V , note that

vol(G) ≥ max{vol(S), vol
(
S
)
} ≥ vol(G)

2
and that

max{vol(S), vol(S)} ·min{vol(S), vol(S)} = vol(S) · vol(S).
Therefore,

Φ(S) = |δ(S)|
min{vol(S), vol(S)}

= |δ(S)|max{vol(S), vol(S)}
vol(S) vol

(
S
) ≤ |δ(S)| vol(G)

vol(S) vol
(
S
) = h(S),

and
h(S) = |δ(S)| vol(G)

vol(S) vol
(
S
) ≤ |δ(S)|2 max{vol(S), vol(S)}

vol(S) vol
(
S
) = 2Φ(S).

Let G = (V,E) be a graph. Define ν : E → [0, 1] to be the uniform probability mass function over E, so

ν(e) := 1
|E|

, ∀e ∈ E.

Define µ : V → [0, 1] to be a probability mass function over V such that

µ(i) := deg(i)
vol(G) = deg(i)

2|E| , ∀i ∈ V.

Moreover, we recall that if p : Ω → [0, 1] is a probability mass function, then the expected value of a
random variable X : Ω→ R over p is

EX∼p(X) :=
∑
v∈Ω

X(v)p(v).

Theorem 3.14. If G = (V,E) is a graph, then

h(G) = min
x∈{0,1}V \{0,1}

Eij∼ν [(xi − xj)2]
E(i,j)∼µ×µ[(xi − xj)2] .
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Proof. Let S ⊆ V . Note that (1S(i) − 1S(j))2 = 1 if and only if (i, j) ∈ S × V \ S or (i, j) ∈ V \ S × S.
Therefore,

Eij∼ν [(1S(i)− 1S(j))2] = Eij∼ν
[
[(i, j) ∈ (S × V \ S) ∪ (V \ S × S)]

]
= |δ(S)|
|E|

= ν(δ(S))

and

E(i,j)∼µ×µ[(1S(i)− 1S(j))2] = P(i,j)∼µ×µ[(1S(i)− 1S(j))2 = 1]
= P(i,j)∼µ×µ[i ∈ S, j ∈ V \ S] + P(i,j)∼µ×µ[i ∈ V \ S, j ∈ S]
= 2Pi∼µ[i ∈ S]Pi∼µ[i ∈ V \ S] = 2µ(S)µ(V \ S).

Hence,

h(S) = |δ(S)| vol(G)
vol(S) vol(V \ S) = 2|E|

2|E|
|δ(S)|2|E|

vol(S) vol(V \ S) = ν(δ(S))
2µ(S)µ(V \ S) = Eij∼ν [(1S(i)− 1S(j))2]

E(i,j)∼µ×µ[(1S(i)− 1S(j))2] .

Notice that {0, 1}V \ {0,1} = {1S : ∅ 6= S ( V }. Therefore,

h(G) = min
∅6=S(V

Eij∼ν [(1S(i)− 1S(j))2]
E(i,j)∼µ×µ[(1S(i)− 1S(j))2] = min

x∈{0,1}V \{0,1}

Eij∼ν [(xi − xj)2]
E(i,j)∼µ×µ[(xi − xj)2] .

Let G = (V,E) be a graph. The real sparsity of G is

hR(G) := inf
x∈RV \span({1})

Eij∼ν [(xi − xj)2]
E(i,j)∼µ×µ[(xi − xj)2] .

If G has no isolated vertices, then the normalized Laplacian of G is the matrix

L̃G := Diag(degG)− 1
2LG Diag(degG)− 1

2 .

Theorem 3.15. If G is a graph, then λ↑2(L̃G) = hR(G).

Proof. Let G = (V,E) and let x ∈ RV . If x′ = x+ α1 for some α ∈ R, then

Eij∼ν [(xi − xj)2]
E(i,j)∼µ×µ[(xi − xj)2] = Eij∼ν [((xi + α1)− (xj + α1))2]

E(i,j)∼µ×µ[((xi + α1)− (xj + α1))2] =
Eij∼ν [(x′i − x′j)2]

E(i,j)∼µ×µ[(x′i − x′j)2] .

Hence, if f(x) denotes the argument of the infimum in (3.4),

hR(G) = inf
{
f(x) : x ∈ RV \ span({1})

}
= inf

{
f(x) : α ∈ R, y ∈ RV \ span({1}), x = y + α1

}
= inf

{
f(x) : y ∈ RV \ span({1}), x = y − Ei∼µ[yi]1

}
= inf

{
f(x) : x ∈ RV \ span({1}),Ei∼µ[xi] = 0

}
= inf

{
f(x) : x ∈ RV \ span({1}), 〈x,degG〉 = 0

}
.

Furthermore, for every x ∈ RV such that 〈x, degG〉 = 0,

E(i,j)∼µ×µ[(xi − xj)2] = E(i,j)∼µ×µ[x2
i + x2

j − 2xixj ]
= Ei∼µ[xi]2 + Ej∼µ[xj ]2 − 2E(i,j)∼µ×µ[xixj ]
= 2Ei∼µ[xi]2 − 2Ei∼µ[xi]Ej∼µ[xj ]

= 2Ei∼µ[xi]2 =
2
∑
i∈V deg(i)x2

i

vol(G)

= 2xT Diag(degG)x
vol(G) .
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Moreover,

Eij∼ν [(xi − xj)2] =
∑
ij∈E(xi − xj)2

|E|
= 2xTLGx

vol(G) .

Therefore,

hR(G) = inf
x∈RV \span({1})
〈x,degG〉=0

xTLGx

xT Diag(degG)x.

Let D := Diag(degG) and let y := D
1
2x. Hence,

hR(G) = inf
x∈RV \span({1})
〈x,degG〉=0

xTLGx

xTDx
= inf
y∈RV \span({D1/2

1})
〈D−1/2y,degG〉=0

(D− 1
2 y)TLG(D− 1

2 y)
(D− 1

2 y)TD(D− 1
2 y)

= inf
y∈RV \span({1})
〈y,D−1/2 degG〉=0

yTD−
1
2LGD

− 1
2 y

yT y
= inf
y∈RV \span({1})
〈y,D1/2

1〉=0

yT L̃Gy

yT y
.

It is easy to verify that D1/2
1 ∈ Null(L̃G). So λmin(L̃G) = 0, and by Theorem 2.8 we have that

inf
y∈RV \span({1})
〈y,D−1/2

1〉=0

yT L̃Gy

yT y
= λ↑2(L̃G).

Let G = (V,E) be a graph. The above theorem together with Proposition 3.13 implies that

λ↑2(L̃G)
2 ≤ Φ(G).

A natural question that arises is how small can λ↑2(L̃G) get when compared to Φ(G). If λ↑2(L̃G) gets too small
in some cases, it is of no use as an approximation to the sparsity of the graph. Luckily, there is a lower bound
of λ↑2(L̃G) when comparing it to the sparsity, known as Cheeger’s inequality. Although we do not prove it
since this is not the focus of this text, we state the result for the sake of completeness.

Theorem 3.16 ([16]). If G = (V,E) is a graph, then

λ↑2(L̃G)
2 ≤ Φ(G) ≤ 2

√
λ↑2(L̃G).
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Chapter 4

The Conjugate Gradient Method

Solving a linear system is a fundamental and important task, and it is an essential subroutine in many
algorithms in computer science. Sometimes, solving a linear system with direct methods, i.e. methods that
find an exact solution in a finite number of operations, may be prohibitively expensive due to the size of the
matrix. Moreover, one may be willing to accept an approximate solution if it can be obtained efficiently.

In this chapter we describe the Conjugate Gradient method, which is an improvement over the Gradient
Descent technique when applied to solving an important class of linear systems. This is an iterative algorithm,
meaning that at each iteration we have a candidate solution, and its error decreases as the algorithm executes
more iterations. We shall see that the number of iterations required to find a solution with accuracy ε depends
only on ln(1/ε) and on the square root of the condition number of the matrix. Moreover, each iteration runs
in time proportional to the number of non-zero entries of the matrix. In Chapter 5 we will use the Conjugate
Gradient method to construct a very efficient approximate solver for Laplacian systems.

4.1 Improving Gradient Descent
Gradient Descent is a widely known iterative method to approximately minimize a smooth func-

tion f : Rn → R. The method starts with a given point x0 ∈ Rn and, for t ∈ N \ {0}, it iteratively
computes

xt := xt−1 − ηt∇f(xt−1), (4.1)
where ηt ∈ R+ is the step size at iteration t chosen according to some rule. The idea of the method is that f
decreases most rapidly at a point x ∈ Rn in the direction −∇f(x). Depending on the function f it may even
be possible to compute ηt that maximizes the decrease f(xt−1)− f(xt) at iteration t ∈ N \ {0}.

Suppose now that we want to solve the linear system of equations Ax = b, where A ∈ Sn+ and b ∈ Im(A).
Let

f(x) := 1
2x

TAx− bTx, ∀x ∈ Rn. (4.2)
The next proposition shows that even when b ∈ Rn is not necessarily in Im(A), it is enough to minimize f
over Im(A) to find the minimum norm solution of Ax = b.
Proposition 4.1. Let A ∈ Sn+, let b ∈ Rn and let f be defined as in (4.2). Then every point in A†b+ Null(A)
is a global minimizer of f . In particular, A†b is the unique global minimizer of f over Im(A).
Proof. Let x∗ := A†b. Then, for every d ∈ Rn,

f(x∗ + d) = 1
2 (x∗ + d)TA(x∗ + d)− (x∗ + d)T b

= 1
2
(
(x∗)TAx∗ + 2dTAx∗ + dTAd

)
− (x∗)T b− dT b

= 1
2 (x∗)TAx∗ − (x∗)T b+ dTAx∗ − dT b+ 1

2d
TAd

= f(x∗) + dT b− dT b+ 1
2d
TAd

= f(x∗) + 1
2d
TAd ≥ f(x∗),

with equality if and only if d ∈ Null(A).
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Suppose that b ∈ Im(A). Note that ∇f(x) = Ax − b ∈ Im(A). Hence, if we pick an initial point x0 in
the image of A, then by equation (4.1) we have that every iterate xt is also in the image of A. Therefore,
choosing such a initial point causes gradient descent to minimize f over the image of A. Hence, we can
solve Ax = b using gradient descent in this case. However, we shall improve this method.

Let A ∈ Rn×n and let b ∈ Rn. For each t ∈ N \ {0}, the t-th Krylov subspace (generated by A and b) is

Kt(A, b) := span{A0b, A1b, . . . , At−1b},

and define K0(A, b) := {0}. For every t ∈ N the residual (at iteration t) is rt := A(x∗ − xt) = −∇f(xt),
where x∗ := A†b. Note that Kt(A, b) ⊆ Im(A) if b ∈ Im(A). Moreover, note that for every i ∈ N,

Ki(A, b) ⊆ Ki+1(A, b).

Proposition 4.2. Let A ∈ Sn+, let b ∈ Im(A), and let x0 ∈ Rn. Define f as in (4.2) and define

xt := xt−1 − ηt∇f(xt−1), ∀t ∈ N \ {0},

where ηt ∈ R for each t ∈ N \ {0}. Then xt ∈ x0 +Kt(A, r0) for each t ∈ N, where r0 is the residual.

Proof. Let rt be the residual at the t-th iteration. Let us prove that

rt ∈ Kt+1(A, r0) ∀t ∈ N (4.3)

by induction on t. For t = 0, we have rt = r0 ∈ span{r0} = K1(A, r0). Let t ∈ N \ {0}. Define x∗ := A†b.
Note that

rt = A(x∗ − xt) = A(x∗ − xt−1)− ηtArt−1 = rt−1 − ηtArt−1.

By the induction hypothesis rt−1 ∈ Kt(A, r0) ⊆ Kt+1(A, r0), therefore Art−1 ∈ AKt(A, r0) ⊆ Kt+1(A, r0).
Thus rt ∈ Kt+1(A, r0). This concludes the proof of (4.3).

Let t ∈ N. By induction, we have

xt = x0 +
t−1∑
i=0

ηi+1ri.

Hence, by (4.3) we conclude that xt ∈ x0 +Kt(A, r0) for every t ∈ N.

Proposition 4.2 shows that the search space in the first t iterations is the affine space x0 +Kt(A, r0). In
an ideal scenario, we would like xt to minimize f over this affine space. But this need not be the case, and
this leads us to an idea of how to improve gradient descent. Namely, at iteration t, we will find a minimizer
of f over x0 +Kt(A, r0). This is the main idea behind the Conjugate Gradient method.

Suppose we have a set {p1, . . . , pt} ⊆ Rn such that {p1 . . . , pi} is a basis of Ki(A, r0) for each i ∈ [t] and

f
(
x0 +

t∑
i=1

cipi

)
− f(x0) =

t∑
i=1

(f(x0 + cipi)− f(x0)) ∀c ∈ Rt, (4.4)

that is, the function f is separable over {p1, . . . , pt}. Let i ∈ [t− 1] and let xi ∈ x0 +Ki(A, r0) be a minimizer
of f over x0 +Ki(A, r0). We can write xi − x0 with respect to the basis {p1, . . . , pi}, that is, there is c ∈ Ri
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such that xi = x0 +
∑i
j=1 cjpj . Therefore, using the separability property in (4.4),

min{ f(x)− f(x0) : x ∈ x0 +Ki+1(A, r0)}

= min
b∈Ri+1

(
f
(
x0 +

i+1∑
j=1

bjpj

)
− f(x0)

)

= min
b∈Ri+1

i+1∑
j=1

(f(x0 + bjpj)− f(x0))

= min
b∈Ri

i∑
j=1

(f(x0 + bjpj)− f(x0)) + min
α∈R

(
f(x0 + αpi+1)− f(x0)

)

= min
b∈Ri

(
f
(
x0 +

i∑
j=1

bjpj

)
− f(x0)

)
+ min
α∈R

(
f(x0 + αpi+1)− f(x0)

)
= min{ f(x)− f(x0) : x ∈ x0 +Ki(A, r0)}+ min

α∈R

(
f(x0 + αpi+1)− f(x0)

)
= f(xi)− f(x0) + min

α∈R

(
f(x0 + αpi+1)− f(x0)

)
.

This means that if we have a minimizer of f over x0 +Ki(A, r0), then it is enough to solve the one-dimensional
problem minα∈R f(x0 + αpi+1) to find a minimizer of f over x0 + Ki+1(A, r0). Hence, in this case it is
possible to solve minx∈x0+Kt(A,r0) f(x) iteratively. The idea of the Conjugate Gradient method is that, at
iteration t ∈ N, the method has a minimizer of f over x ∈ x0 +Kt−1(A, r0), as well as a basis of x0 +Kt(A, r0)
that satisfies the separability property in (4.4). With this information, the method efficiently computes
a minimizer of f over x0 + Kt(A, r0), as well as a basis of x0 + Kt+1(A, r0) that satisfies the separability
property in (4.4). We will see that a minimizer of f over x0 +Kt(A, r0) is an approximate solution to the
linear system Ax = b, with the error decreasing as t approximates n. Hence, every iteration of the Conjugate
Gradient method has an approximate solution to the linear system Ax = b. We will see that, if x0, b ∈ Im(A)
then xn is an exact solution of Ax = b.

Throughout the remainder of the chapter, we will use A ∈ Sn+, a vector b ∈ Im(A), the function

f(x) := 1
2x

TAx− xT b,

and x∗ := A†b. Any exceptions on the use of this notation, if they exist, will be clearly stated.

4.2 The Gram-Schmidt Method and Krylov subspaces
Theorem 4.3 (Gram-Schmidt Method). Let V be a vector space over R. Let {v1, . . . , vk} ⊆ V be linearly
independent and let 〈·, ·〉 be an inner-product on V . Define w1, . . . , wk ∈ V , in this order, by the formula

wi := vi −
i−1∑
j=1

〈vi, wj〉
〈wj , wj〉

wj ∀i ∈ [k]. (4.5)

Then for every i ∈ [k] the set {w1, . . . , wi} is an orthogonal basis of span{v1, · · · , vi} with respect to 〈·, ·〉.

Proof. Our proof is by induction on i. For i = 1 the statement holds since v1 = w1. Let r ∈ [k] \ {1}. Let us
first show that

{w1, . . . , wr−1, vr} is linearly independent. (4.6)

Let b ∈ Rr be such that
r−1∑
i=1

biwi + brvr = 0.
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Let us show that b = 0. If br = 0, we have that b = 0 since {w1, . . . , wr−1} is linearly independent by induction
hypothesis. Hence, suppose that br 6= 0. In this case, vr ∈ span{w1, . . . , wr−1} = span{v1, . . . , vr−1}, where
the equality follows by induction hypothesis. Hence vr ∈ span{v1, . . . , vr−1}, which is a contradiction
since {v1, . . . , vr} is linearly independent. Therefore, b = 0. This concludes the proof of (4.6). For
every i ∈ [r − 1], notice that

〈wr, wi〉 =
〈
vr −

r−1∑
j=1

〈vr, wj〉
〈wj , wj〉

wj , wi

〉

= 〈vr, wi〉 −
r−1∑
j=1

〈vr, wj〉
〈wj , wj〉

〈wj , wi〉

= 〈vr, wi〉 −
〈vr, wi〉
〈wi, wi〉

〈wi, wi〉 Since 〈wj , wi〉 = 0 if i 6= j.

= 〈vr, wi〉 − 〈vr, wi〉 = 0.

Therefore, the set {w1, . . . , wr} is orthogonal by induction hypothesis and dim(span{w1, . . . , wr}) = r. It
only remains to prove that

span{v1, . . . , vr} = span{w1, . . . , wr}. (4.7)

By equation (4.5), we know that vr ∈ span{w1, . . . , wr}. Moreover, using the induction hypothesis we
have that vi ∈ span{w1, . . . , wi} for every i ∈ [r − 1]. Therefore span{v1, . . . , vr} ⊆ span{w1, . . . , wr}, but
since {v1, . . . , vr} is a linearly independent set, we have that dim(span{v1, . . . , vr}) = dim(span{w1, . . . , wr}).
This ends the proof of (4.7).

Define 〈·, ·〉A : Rn × Rn → R as

〈x, y〉A := xTAy, ∀x, y ∈ Rn.

Since A is symmetric, 〈x, y〉A = 〈y, x〉A. If x, y, z ∈ Im(A) and α ∈ R, it is easy to see that 〈α(x+ y), z〉 =
α〈x, z〉 + α〈y, z〉. Moreover, if x ∈ Im(A), then 〈x, x〉A ≥ 0 since A is positive semidefinite, and by
Proposition 2.12, equality holds if end only if x ∈ Im(A) ∩Null(A) = {0}. Hence, 〈·, ·〉A is an inner-product
on Im(A). A set S ⊆ Im(A) is A-orthogonal if it is orthogonal with respect to 〈·, ·〉A. Therefore, if we have
a basis of Kt(A, b), we can A-orthogonalize it using the Gram-Schmidt method with 〈·, ·〉A.

Lemma 4.4. Let A ∈ Sn+, let b ∈ Rn, and let {w1, . . . , wk} ⊆ Rn such that span{w1, . . . , wi} = Ki(A, b) for
every i ∈ [k]. Then Kk+1(A, b) = span{w1, . . . , wk, Awk}.

Proof. If i ∈ [k − 1], then wi ∈ Ki(A, b). Hence,

Awi ∈ AKi(A, b) ⊆ Ki+1(A, b) = span{w1, . . . , wi+1} ⊆ span{w1, . . . , wk}, ∀i ∈ [k − 1] (4.8)

Since span{w1, . . . , wk} = Kk(A, b), we have span{w1, . . . , wk, A
kb} = Kk+1(A, b). Hence,

Akb = A(Ak−1b) ∈ AKk(A, b) = A span{w1, . . . , wk} = span{Aw1, . . . , Awk} ⊆ span{w1, . . . , wk, Awk},

where in the last inequality we used (4.8). Thus, Akb ∈ span{w1, . . . , wk, Awk}. Hence, Kk+1(A, b) ⊆
span{w1, . . . , wk, Awk}. Note that Awk ∈ Kk+1(A, b). Since wi ∈ Ki(A, b) for every i ∈ [k], we have
that span{w1, . . . , wk, Awk} ⊆ Kk+1(A, b). Therefore, span{w1, . . . , wk, Awk} = Kk+1(A, b).

Corollary 4.5. Let A ∈ Sn+ and b ∈ Im(A) be such that {A0b, A1b, . . . , At−1b} ⊆ Im(A) is linearly
independent. Set w1 := b and define w2, . . . , wt ∈ Im(A), in this order, by the formula

wi+1 := Awi −
〈Awi, wi〉A
〈wi, wi〉A

wi − [i ≥ 2]
〈Awi, wi−1〉A
〈wi−1, wi−1〉A

wi−1 ∀i ∈ [t− 1].

Then for each i ∈ [t] the set {w1, . . . , wi} is an A-orthogonal basis of Ki(A, b).
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Proof. Our proof is by induction on t. If t = 1, the statement clearly holds. Let t > 1. By the induction
hypothesis,

{w1, . . . , wi} is an A-orthogonal basis of Ki(A, b) for every i ∈ [t− 1]. (4.9)
Hence, by Lemma 4.4,

span{w1, . . . , wt−1, Awt−1} = Kt(A, b). (4.10)
Moreover, dim(Kt(A, b)) = t since {A0b, A1b, . . . , At−1b} is linearly independent. Hence, dim(Kt(A, b)) = t
and (4.10) imply that {w1, . . . , wt−1, Awt−1} is linearly independent. We are in position now to apply
Theorem 4.3. Define

w′i := wi −
t−1∑
j=1

〈wi, wj〉A
〈wj , wj〉A

wj , ∀i ∈ [t],

and

w′t := Awt−1 −
t−1∑
j=1

〈Awt−1, wj〉A
〈wj , wj〉A

wj .

By Theorem 4.3, we have that {w′1, . . . , w′i} is an A-orthogonal basis of Ki(A, b) for every i ∈ [t]. It is easy to
see that (4.9) implies that w′i = wi for every i ∈ [t− 1]. Thus, we will be done once we prove that w′t = wt.

Let j ∈ [t − 3]. Note that Awj ∈ AKj(A, b) ⊆ Kj+1(A, b) = span{w1, . . . , wj+1}. Hence, there are
scalars α1, . . . , αj+1 ∈ R such that Awj =

∑j+1
i=1 αiwi. Moreover, we have 〈wt−1, wi〉A = 0 for every i ∈ [t−2]

by (4.9). Therefore,

〈Awt−1, wj〉A = wTt−1A
TAwj =

j+1∑
i=1

wTt−1Aαiwi =
j+1∑
i=1

αi〈wt−1, wi〉A = 0.

Note that in the second equation we used the crucial property that A = AT . Hence,

w′ = Awt−1−
t−1∑
j=1

〈Awt−1, wj〉A
〈wj , wj〉A

wj = Awt−1−
〈Awt−1, wt−1〉A
〈wt−1, wt−1〉A

wt−1− [t ≥ 3]
〈Awt−1, wt−2〉A
〈wt−2, wt−2〉A

wt−2 = wt.

Proposition 4.6. Let A ∈ Sn+, let b ∈ Im(A), and let f be defined as in (4.2). Let {p1, . . . , pt} ⊆ Rn be
an A-orthogonal set, let x0 ∈ Rn and let c ∈ Rt. Then

f
(
x0 +

t∑
i=1

cipi

)
− f(x0) =

t∑
i=1

(f(x0 + cipi)− f(x0)).

Proof. We have

f
(
x0 +

t∑
i=1

cipi

)
− f(x0) = 1

2

(
x0 +

t∑
i=1

cipi

)T
A
(
x0 +

t∑
i=1

cipi

)
−
(
x0 +

t∑
i=1

cipi

)T
b− 1

2x
T
0 Ax0 + xT0 b

=
t∑
i=1

cip
T
i Ax0 + 1

2

( t∑
i=1

cipi

)T
A
( t∑
i=1

cipi

)
−

t∑
i=1

cip
T
i b

=
t∑
i=1

cip
T
i Ax0 + 1

2

t∑
i=1

(cipi)TA(cipi)−
t∑
i=1

cip
T
i b

=
t∑
i=1

(
cip

T
i Ax0 + 1

2 (cipi)TA(cipi)− cipTi b+ 1
2x

T
0 Ax0 − 1

2x
T
0 Ax0 + xT0 b− xT0 b

)
=

t∑
i=1

( 1
2 (x0 + cipi)TA(x0 + cipi)− (x0 + cipi)T b− 1

2x
T
0 Ax0 + xT0 b

)
=

t∑
i=1

(f(x0 + cipi)− f(x0)).
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4.3 The Conjugate Gradient Iteration
Proposition 4.7. Let A ∈ Sn+, let b, d ∈ Im(A) with d 6= 0, and let x0 ∈ Rn. Let f be defined as in (4.2).
Define the function

g(α) := f(x0 + αd)− f(x0) ∀α ∈ R.
Then

arg min
α∈R

g(α) = dT r0

dTAd
,

where r0 is the residual at iteration 0.

Proof. For each α ∈ R we have

g(α) = f(x0 + αd)− f(x0)
= 1

2
(
(x0 + αd)TA(x0 + αd)

)
− (x0 + αd)T b− 1

2x
T
0 Ax0 + xT0 b

= α2

2 dTAd+ αdTAx0 − αdT b = α2

2 dTAd− αdT (b−Ax0)

= α2

2 dTAd− αdT r0

Proposition 2.12, dTAd = 0 if and only if d ∈ Null(A). Hence, since d ∈ Im(A) \ {0} and A � 0, we
have dTAd > 0. Therefore, g is a quadratic function of α and the coefficient of α2 is positive. Thus, the
unique minimizer of g is dT r0

dTAd
.

Proposition 4.8. Let A ∈ Sn+ and let x0, b ∈ Im(A). Let T ∈ N and let {w1, . . . , wT } ⊆ Rn be
an A-orthogonal set such that {w1, . . . , wt} is a basis of Kt(A, r0) for each t ∈ [T ], where r0 is the residual.
Define x1, . . . , xT , in this order, by the formula

xt := xt−1 + ηtwt ∀t ∈ [T ],

where
ηt := wTt r0

〈wt, wt〉A
.

Then xt is a global minimizer of f over x0 +Kt(A, r0) for each t ∈ {0, . . . , T}.

Proof. Let g(x) := f(x) − f(x0). Note that x ∈ Rn is a global minimizer of f if and only if x is a global
minimizer of g since x0 is fixed. Therefore, to prove that xt is a global minimizer of f over x0 +Kt(A, r0) for
each t ∈ [T ], it suffices to prove that xt is a global minimizer of g over Kt(A, r0) for each t ∈ [T ].

For t = 0 the statement follows trivially. Let t ≥ 1. Then

min{ g(x) : x ∈ x0 +Kt(A, r0)}
= min{ f(x)− f(x0) : x ∈ x0 +Kt(A, r0)}

= min
b∈Rt

f
(
x0 +

t∑
i=1

biwi

)
− f(x0)

= min
b∈Rt−1

f
(
x0 +

t−1∑
i=1

biwi

)
− f(x0) + min

β∈R
f(x0 + βwt)− f(x0) by Prop. 4.6

= f(xt−1)− f(x0) + min
β∈R

f(x0 + βwt)− f(x0) by induction hypothesis

= f(xt−1 − x0 + x0)− f(x0) + f(x0 + ηtwt)− f(x0) by Prop. 4.7

Note that xt−1 ∈ x0 + Kt−1(A, r0) by the induction hypothesis. Hence, we can write xt−1 − x0 in
the A-orthonormal basis {w1, . . . , wt−1}. Therefore, by Proposition 4.6, we have

f(xt−1 − x0 + x0)− f(x0) + f(x0 + ηtwt)− f(x0) = f(xt−1 − x0 + ηtwt + x0)− f(x0)
= f(xt−1 + ηtwt)− f(x0)
= f(xt)− f(x0) = g(xt).
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Lemma 4.9. Let A ∈ Sn+, let b, x0 ∈ Im(A), let r0 := b − Ax0 be the residual and let t ∈ N \ {0}.
If {A0r0, A

1r0, . . . , A
t−1r0} is linearly dependent, then A†b ∈ x0 +Kt−1(A, r0).

Proof. Suppose that {A0r0, A
1r0, . . . , A

t−1r0} is linearly dependent. Then there is c ∈ R[t]−1 \ {0} such that
t−1∑
i=0

ciA
ir0 = 0. (4.11)

Let k := min{ i ∈ [t]− 1 : ci 6= 0}. Then,

ckA
kr0 = −

t−1∑
i=k+1

ciA
ir0 =⇒ Akr0 = −

t−1∑
i=k+1

ci
ck
Air0. (4.12)

By Proposition 2.23, we know that A†A is the orthogonal projector onto Im(A). Hence, since r0 ∈ Im(A),
left-multiplying the rightmost equation in (4.12) by (A†)k+1 yields

A†r0 =
t−1∑
i=k+1

ci
ck
Ai−(k+1)r0 ∈ Kt−1(A, r0).

Note that A†r0 = A†b− x0. Hence, A†b ∈ x0 +Kt−1(A, r0).

Algorithm 4.1 The Conjugate Gradient method
Input: A matrix A ∈ Sn+, vectors b, x0 ∈ Im(A), and T ∈ N.
Output: A global minimizer of f over x0 +KT (A, r0).
r0 ← b−Ax0
p0 ← r0
for t = 0 to T − 1 do

if Axt = b then return xt
ηt+1 ← pT

t r0
‖pt‖2

A

xt+1 ← xt + ηt+1pt
pt+1 ← Apt −

〈Apt,pt〉A
〈pt,pt〉A

pt − [t ≥ 1] 〈Apt,pt−1〉A
〈pt−1,pt−1〉A

pt−1
return xT

The pseudocode for the Conjugate Gradient method is given in Algorithm 4.1. Let us show the correctness
of this algorithm by arguing that, at the beginning of iteration t ∈ N of the for-loop in Algorithm 4.1, the
following invariants hold:
(i) {p0, . . . , pt} is an A-orthogonal basis of Kt+1(A, r0);

(ii) xt is a global minimizer of f over x0 +Kt(A, r0).
For t = 0, both invariants hold trivially. Suppose that these invariants hold at the beginning of iteration t for
some t ∈ N. Let us argue that, if the algorithm does not terminate, the invariants still hold at the beginning
of iteration t+ 1.

If {A0r0, . . . , A
tr0} is linearly dependent, it follows from Lemma 4.9 that A†b ∈ x0 + Kt(A, r0). By

invariant (ii), we have that xt is a global minimizer of f over x0 +Kt(A, r0). Hence, xt = A†b in this case,
and the algorithm terminates. Suppose now that {A0r0, . . . , A

tr0} is linearly independent. By Corollary 4.5,
the set {p0, . . . , pt, pt+1} is an A-orthogonal basis of Kt+2(A, b). Moreover, invariants (i) and (ii), together
with Proposition 4.8, imply that xt+1 is a global minimizer of f over x0 +Kt(A, r0). Therefore, invariants (i)
and (ii) hold in the beginning of iteration t+ 1. Let us analyze the running time of Algorithm 4.1.

At each iteration, the algorithm makes a constant number of left-multiplications of vectors in Im(A) by A,
besides a constant number of dot products in Rn. Therefore, if tA is the time it takes to left-multiply a
vector in Im(A) by A, then Conjugate Gradient runs in time O(T (tA + n)). It is important to notice that we
use x0 = 0 in Section 4.5. This is done to simplify our analysis of Conjugate Gradient, and this choice does
not affect the asymptotic worst-case running time of the Method, neither its correctness.

It remains now to study the speed of convergence of the Conjugate Gradient method. That is, given t ∈ N,
how well the iterate xt approximates a solution to the linear system Ax = b.
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4.4 Error Analysis with Polynomials
Let R[λ] be the set of all the polynomials on the indeterminate λ with real coefficients and let R[λ]≤t ⊂ R[λ]

be the set of all polynomials of the indeterminate λ of degree at most t ∈ N. If t ∈ N, c ∈ R0∪[t], and p ∈ R[λ]≤t
is such that

p(λ) =
t∑
i=0

ciλ
i,

then

p(A) :=
t∑
i=0

ciA
i.

Let
Qt := { 1− λp(λ) : p ∈ R[λ]≤t−1}

be the set of polynomials of degree at most t that evaluate to 1 at 0, where t ∈ N with t ≥ 1. Recall
that x∗ := A†b and that f : Rn → R is given by

f(x) := 1
2x

TAx− xT b,

where A ∈ Sn and b ∈ Im(A). Let y ∈ Rn. Note that

f(y)− f(x∗) = 1
2y
TAy − yT b− 1

2 (x∗)TAx∗ + (x∗)T b
= 1

2y
TAy − yTAx∗ + 1

2 (x∗)TAx∗

= 1
2 (yTAy − 2yTAx∗ + (x∗)TAx∗)

= 1
2 (y − x∗)TA(y − x∗) = 1

2‖y − x
∗‖2A.

(4.13)

Lemma 4.10. If A ∈ Sn+ and p ∈ R[λ], then

‖p(A)v‖2A ≤ ‖v‖
2
A · max

i∈[rank(A)]
p
(
λ↓i (A)

)2
∀v ∈ Im(A).

Proof. Define Λ := Diag(λ↓(A)). By the spectral decomposition theorem (see Theorem 2.5), there is an
orthogonal matrix Q ∈ Rn×n such that A = QΛQT . Note that p(A) = Qp(Λ)QT . Moreover, it is easy
to see that a polynomial applied to a diagonal matrix yields a diagonal matrix. Hence, p(Λ) is diagonal.
Let v ∈ Im(A) and define c := QT v. We have

‖p(A)v‖2A = ‖Qp(Λ)QT v‖2A = vTQp(Λ)QTQΛQTQp(Λ)QT v

= vTQΛp(Λ)2QT v = cTΛp(Λ)2c =
n∑
j=1

c2jλ
↓
j (A)p(λ↓j (A))2

=
rank(A)∑
j=1

c2jλ
↓
j (A)p(λ↓j (A))2 ≤ max

i∈[rank(A)]
p(λ↓i (A))2

rank(A)∑
j=1

c2jλ
↓
j (A)

= cTΛc max
i∈[rank(A)]

p(λ↓i (A))2 = vTQΛQT v max
i∈[rank(A)]

p(λ↓i (A))2

= vTAv max
i∈[rank(A)]

p(λ↓i (A))2 = ‖v‖2A max
i∈[rank(A)]

p(λ↓i (A))2,

where in the fourth equation we used that diagonal matrices commute.

Theorem 4.11. Let A ∈ Sn+ and let b, x0 ∈ Im(A). Let x∗ = A†b and let r0 be the residual. Let f be defined
as in (4.2) and define

xt := arg min{ f(x) : x ∈ x0 +Kt(A, r0)}. (4.14)
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Then

‖xt − x∗‖2A ≤ (f(x0)− f(x∗)) min
q∈Qt

max
i∈[rank(A)]

2q(λ↓i (A))2

≤ (f(x0)− f(x∗)) min
q∈Qt

max{ 2q2(λ) : λ ∈ [λ+
min, λmax]},

where λ+
min := λ↓rank(A)(A) and λmax := λmax(A). In particular, if x0 = 0, then

‖xt − x∗‖2A ≤ ‖x
∗‖2A min

q∈Qt

max
i∈[rank(A)]

|q(λ↓i (A))|2

≤ ‖x∗‖2A min
q∈Qt

max{ q(λ)2 : λ ∈ [λ+
min, λmax]}.

Proof. If {A0r0, A
1r0, . . . , A

t−1r0} is linearly dependent, by Lemma 4.9 we have that x∗ ∈ x0 +Kt−1(A, r0) ⊆
x0 +Kt(A, r0). Hence, ‖xt − x∗‖2A = 0 and the statement clearly holds in this case.

Suppose now that {A0r0, A
1r0, . . . , A

t−1r0} is linearly independent. Thus, the map y : c ∈ Rt 7→
x0 +

∑t−1
i=0 ci+1A

ir0 ∈ x0 +Kt(A, r0) is a bijection. Moreover, define

pd(λ) =
t−1∑
i=0

di+1λ
i, ∀d ∈ Rt.

Note that p : Rt → R[λ]≤t−1 is also a bijection. Hence, p ◦ y−1 is a bijection from x0 +Kt(A, r0) to R[λ]≤t−1.
Let c ∈ Rt. Then

yc = x0 + pc(A)r0 = x0 + pc(A)A(x∗ − x0).

Let qc(λ) := 1− λpc(λ). Note that q is a bijection from Rt to Qt. Moreover,

yc − x∗ = x0 + pc(A)A(x∗ − x0)− x∗ = (x0 − x∗)− pc(A)A(x0 − x∗)
= (I − pc(A)A)(x0 − x∗) = qc(A)(x0 − x∗).

By equation (4.13), we know that ‖w − x∗‖2A = 2(f(w) − f(x∗)) for each w ∈ Rn. By definition, xt is a
minimizer of f over x0 +Kt(A, r0). Hence,

‖xt − x∗‖2A = 2(f(xt)− f(x∗)) = min
w∈x0+Kt(A,r0)

2(f(w)− f(x∗)) = min
w∈x0+Kt(A,r0)

‖w − x∗‖2A.

Therefore,

‖xt − x∗‖2A = min
w∈x0+Kt(A,r0)

‖w − x∗‖2A by definition of xt

= min
c∈Rt
‖yc − x∗‖2A using the bijection y

= min
z∈Qt

‖z(A)(x0 − x∗)‖2A. using the bijection q

Lemma 4.10 applied to the above equation yields

‖xt − x∗‖2A ≤ min
q∈Qt

max
i∈[rank(A)]

|q(λ↓i (A))|2‖x0 − x∗‖2A

= min
q∈Qt

max
i∈[rank(A)]

|q(λ↓i (A))|22(f(x0)− f(x∗))

≤ min
q∈Qt

max
λ∈[λ+

min,λmax]
|q(λ)|22(f(x0)− f(x∗)).

Corollary 4.12. Let A ∈ Sn+, let b, x0 ∈ Im(A), and let r0 be the residual. Let f be defined as in (4.2).
Then,

arg min{ f(x) : x ∈ x0 +Krank(A)(A, r0)} = A†b. (4.15)
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Proof. Set k := rank(A) and define q ∈ Qk by

q(λ) :=
k∏
i=1

(
1− λ

λ↓i (A)

)
.

Set x∗ := arg min{ f(x) : x ∈ x0 +Krank(A)(A, r0)}. Note that λ↓i (A) is a root of q for every i ∈ [k]. By
Theorem 4.11,

‖x∗ −A†b‖2A ≤ max
i∈[rank(A)]

2
∣∣q(λ↓i (A)

)∣∣2(f(x0)− f(x∗)) = 0.

4.5 Improving the Analysis with Chebyshev Polynomials
For d ∈ N, the degree-d Chebyshev polynomial (of the first kind) Td ∈ R[λ]≤d is defined by

Td(λ) :=


1, if d = 0,
λ, if d = 1,
2λTd−1(λ)− Td−2(λ), if d ≥ 2.

Proposition 4.13. If θ ∈ [−π/2, π/2] and d ∈ N, then Td(cos θ) = cos(dθ).

Proof. Our proof is by induction on d ∈ N. By definition, if d = 0, then T0(cos θ) = 1 = cos(0) = cos(0θ),
and if d = 1, then T1(cos θ) = cos(θ).

Let d ≥ 1. Let us prove that Td+1(cos θ) = cos((d+ 1)θ). We have

cos((d+ 1)θ) = cos θ cos(dθ)− sin(dθ) sin θ,
cos((d− 1)θ) = cos θ cos(dθ) + sin(dθ) sin θ.

Therefore,

Td+1(cos θ) = 2 cos θ Td(cos θ)− Td−1(cos θ) = 2 cos θ cos(dθ)− cos((d− 1)θ)
= 2 cos θ cos(dθ)− cos θ cos(dθ)− sin(dθ) sin(θ)
= cos θ cos(dθ)− sin(dθ) sin(θ) = cos((d+ 1)θ).

Lemma 4.14. For every λ ∈ R with |λ| ≥ 1 and for every d ∈ N,

Td(λ) = 1
2

((
λ+

√
λ2 − 1

)d
+
(
λ−

√
λ2 − 1

)d)
.

Proof. Let λ ∈ R be such that |λ| ≥ 1 and let µ := λ+
√
λ2 − 1. Note that

µ(λ−
√
λ2 − 1) = λ2 − λ2 + 1 = 1.

Therefore, µ−1 = λ−
√
λ2 − 1. Hence, to prove the statement of the lemma is equivalent to prove that

Td(λ) = 1
2 (µd + µ−d) ∀d ∈ N.

Let us prove the above claim by induction on d. For the base cases where d ∈ {0, 1}, we have 1
2 (µ0 + µ0) =

1 = T0(λ) and 1
2 (µ+ µ−1) = λ = T1(λ).

Let d > 1. Note that
µ2 = λ2 + 2λ

√
λ2 − 1 + λ2 − 1 = 2λµ− 1.

Similarly, we have µ−2 = 2λµ−1 − 1. Therefore,

Td(λ) = 2λTd−1(λ)− Td−2(λ) = 2λ1
2(µd−1 + µ−(d−1))− 1

2(µd−2 + µ−(d−2))

= 1
2

(
µd−2(2λµ− 1) + y−(d−2)(2λµ−1 − 1)

)
= 1

2
(
µd + µ−d

)
.
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Let d ∈ N and let α, β ∈ R++ be such that α < β. Define the polynomial

Qα,β,d(λ) :=
Td

(
β+α−2λ
β−α

)
Td

(
β+α
β−α

) .

Note that Qα,β,d ∈ Qd. Since β+α
β−α > 1, by Lemma 4.14 we have that

Td

(
β + α

β − α

)
> 0, ∀k ∈ N. (4.16)

Lemma 4.15. If α, β ∈ R++ are such that α < β, then for every d ∈ N,

Qα,β,d(λ) ≤ 2
(√

β/α− 1√
β/α+ 1

)d
∀λ ∈ [α, β].

In particular, let A ∈ Sn+ be such that λ+
min := λ↓rank(A)(A) < λmax := λmax(A). Then, for every d ∈ N,

Qλ+
min,λmax,d

(λ) ≤ 2
(√

κ+(A)− 1√
κ+(A) + 1

)d
∀λ ∈ [λ+

min, λmax],

where κ+(A) := λmax/λ
+
min.

Proof. Note that for every λ ∈ [α, β],
β + α− 2λ
β − α

∈ [−1, 1].

Let d ∈ N. Thus, by Proposition 4.13,

Tt

(
β + α− 2λ
β − α

)
∈ [−1, 1].

Let κ := β/α. Therefore, using Lemma 4.14, for every λ ∈ [α, β],

Qα,b,d(λ) =
Td

(
β+α−2λ
β−α

)
Td

(
β+α
β−α

) (4.16)
≤ Td

(
β + α

β − α

)−1

= Td

(
κ+ 1
κ− 1

)−1
= 2
((√

κ+ 1√
κ− 1

)d
+
(√

κ− 1√
κ+ 1

)d)−1

≤ 2
(√

κ+ 1√
κ− 1

)−d
= 2
(√

κ− 1√
κ+ 1

)d
,

where in the last inequality we used the fact that
(√

κ−1√
κ+1

)t
≥ 0.

Corollary 4.16. Let A ∈ Sn+ be such that λ↓rank(A)(A) < λmax(A), let b ∈ Im(A), let ε > 0, and let x∗ = A†b.
Let f be defined as in (4.2) and define

xt := arg min
x∈Kt(A,b)

f(x) (4.17)

for every t ∈ N. Then
‖xt − x∗‖2A ≤ 2ε‖x∗‖2A

for every t ≥
√
κ+(A)

2 ln 2/ε, where κ+(A) := λmax(A)/λ↓rank(A)(A).
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Proof. Let λ+
min := λ↓rank(A)(A), let λmax := λmax(A), and let κ := κ+(A). Since Qλ+

min,λmax,t
(x) ∈ Qt, by

Theorem 4.11 we have that

‖xt − x∗‖2A ≤ ‖x
∗‖2A min

q∈Qt

max
λ∈[λ+

min,λmax]
q(λ)2 ≤ ‖x∗‖2A max

λ∈[λ+
min,λmax]

Qλ+
min,λmax,t

(λ)2.

Using Lemma 4.15 and Lemma 2.2, we get that

‖xt − x∗‖2A ≤ ‖x
∗‖2A max

λ∈[λ+
min,λmax]

Qλ+
min,λmax,t

(λ)2

≤ 2‖x∗‖2A
(√

κ− 1√
κ+ 1

)2t

≤ 2‖x∗‖2A
(

1− 1√
κ

)2t

≤ 2‖x∗‖2A exp
(
− 2t√

κ

)
≤ ε‖x∗‖2A.

Corollary 4.17. Let A ∈ Sn+, let b ∈ Im(A), let ε > 0, and let x∗ = A†b. Let f be defined as in (4.2) and
define

xt := arg min
x∈Kt(A,b)

f(x) (4.18)

for every t ∈ N. If there are α, β ∈ R++ with α < β such that all but c eigenvalues of A are in [α, β] ∪ {0},
and the remaining c eigenvalues are all greater than β, then

‖xt − x∗‖2A ≤ ε‖x
∗‖2A

for every t ≥ c+
√
β/α

2 ln 2
ε .

Proof. Let λ1, . . . , λc ∈ (β,+∞) be the eigenvalues of A that are not in [α, β]∪ {0} and let r ∈ N. Define the
polynomial

qr(λ) = Qα,β,r(λ)
c∏
i=1

(
1− λ

λi

)
.

Notice that qr(λ) ∈ Qr+c. Moreover,
qr(λi) = 0, ∀i ∈ [c]. (4.19)

Let κ := β/α. Note that
c∏
i=1

(
1− λ

λi

)
≤ 1, ∀λ ∈ [α, β] ∪ {0}.

Hence, we have
qr(λ) ≤ Qα,β,r(λ), ∀λ ∈ [α, β] ∪ {0}. (4.20)

Therefore, if r :=
√
κ

2 ln 2/ε, then qr ∈ Qr+c. Hence, by Theorem 4.11, for every t ≥ r + c we have

‖xt − x∗‖2A ≤ ‖x
∗‖2A min

q∈Qt

max
i∈[rank(A)]

q(λ↓i (A))2
(4.19)
≤ ‖x∗‖2A min

q∈Qt

max
λ∈[α,β]

q(λ)2

≤ ‖x∗‖2A max
λ∈[α,β]

|qr(λ)|2
(4.20)
≤ ‖x∗‖2A max

λ∈[α,β]
Qα,β,r(λ)2

Le. 4.15
≤ 2‖x∗‖2A

(√
κ− 1√
κ+ 1

)2r

≤ 2‖x∗‖2A
(

1− 1√
κ

)2r

Le. 2.2
≤ 2‖x∗‖2A exp

(
− 2r√

κ

)
≤ ε‖x∗‖2A.

Theorem 4.18. Let A ∈ Sn+ such that λ↓rank(A)(A) ≥ 1 and Tr(A) ≤ τ ∈ R++. Let b ∈ Im(A), let ε > 0,
and let x∗ = A†b. Let f be defined as in (4.2) and define

xt := arg min
x∈Kt(A,b)

f(x) (4.21)
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for t ∈ N. Then
‖xt − x∗‖2A ≤ ε‖x

∗‖2A
for every t ≥ τ1/3(1 + ln 1/ε).

Proof. By Theorem 2.6, we know that Tr(A) is the sum of the eigenvalues of A. Therefore, it is easy to see
that for any β ∈ R++, the number of eigenvalues that are greater than β is at most Tr(A)/β. Hence, if we
set β := τ2/3, at most Tr(A)1/3 of the eigenvalues of A will be outside the range [1, τ2/3]. Let c be the number
of eigenvalues of A that are not in the range [1, τ2/3]. Hence, by Corollary 4.17, we have ‖xt−x∗‖2A ≤ ε‖x∗‖

2
A

for t ≥ c+
√
τ2/3 ln 1/ε. Since c ≤ Tr(A)1/3 ≤ τ1/3, the result follows.
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Chapter 5

Fast Laplacian Solvers

Many interesting algorithms for graph problems, including the algorithm for the maximum flow problem
that we study in Chapter 6, use a solver for a Laplacian system as a subroutine. Spielman and Teng described
in seminal work [11, 12, 13, 14] the first nearly-linear time solver for Laplacian systems. We state their result
in the following theorem.

Theorem 5.1. There is an algorithm that takes as input

• a weighted connected graph G = (V,E,w);

• a vector b ∈ RV such that b ⊥ 1;

• a value ε > 0,

and computes as output x ∈ RV such that∥∥x− L†b∥∥
L
≤ ε‖L†b‖L,

where L := LG(w). This algorithm runs in time Õ(m log(1/ε)), where m := |E|.

The algorithm constructed by Spielman and Teng is intricate, makes use of complex graph-theoretic
structures, and the power of logn hidden by the soft-O notation is quite large, but their solver opened
the floodgates. Following their work, many authors were able to simplify and improve the algorithm of
Theorem 5.1 (see [4, 8, 9]), and research for simpler Laplacian solvers is still active. One recent development in
the area is due to Kyng and Sachdeva [10], who constructed a simple nearly-linear time Laplacian solver based
purely on random sampling, not depending on any graph-theoretic construction. Moreover, fast Laplacian
solvers have been used in the development of very efficient algorithms for a host of combinatorial problems
(see [15]).

Although we shall not prove Theorem 5.1, in this chapter we describe a Õ(m4/3 log(1/ε)) Laplacian solver.
This solver already has quite a respectable running time, and its construction contains many ideas used in
the solver of Spielman and Teng.

5.1 Preconditioning
Let A ∈ Rm×n and let b ∈ Im(A). Usually, the time it takes to solve the system Ax = b with iterative

methods depends on some properties of the matrix A such as its condition number. The idea of preconditioning
is to build a matrix M ∈ Rm×m such that applying an iterative method to the system MAx = Mb is
considerably faster than applying the same method to the original system. Moreover, constructing a solution
to the system Ax = b from a solution to the system MAx = Mb should be efficient. We call the matrix M
a preconditioner of the system Ax = b. In this section, we will focus on preconditioners that decrease the
condition number of the matrix.

Note that A† is an excellent preconditioner for Ax = b, but computing it exactly boils down to solving
the system itself. Moreover, the main operation that depends on A in many iterative algorithms, such as
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the Conjugate Gradient method or the Power Method, is left-multiplying A by a vector in its image. Hence,
a preconditioner M such that it is time-consuming to left-multiply it by a vector may make an iterative
algorithm slower. Therefore, when choosing a preconditioner of a linear system, there are trade-offs involving
the time it takes to compute it, the time it takes to apply it to a vector (by left-multiplying it), and the
decrease it yields on the condition number of the system.

A problem that one may be concerned is that, if A ∈ Sn, preconditioning the system Ax = b may not
preserve the symmetry of the matrix A. This is a problem in some cases, as in the Conjugate Gradient
method, which depends in a fundamental way on the symmetry of the matrix A. In this case, we may choose
a preconditioner M ∈ Sn+. This implies, by Theorem 2.13, that there exists E ∈ Rn×n such that M = EET .
In this case, we will precondition the system Ax = b by considering the system EAET = b. Hence, we will
first show that we can obtain an approximate solution to the system Ax = b from an approximate solution
to EAET = b when some conditions are met. In the next section, we will show how this preconditioning
affects the condition number of the matrix, specially when considering the case of preconditioning a Laplacian
system.

Lemma 5.2. Let A,B ∈ Sn+ be such that Null(A) = Null(B), and let E ∈ Rn×n be such that B = EET .
Define W := E†AET†. Then Im(E) = Im(B), and Im(ET ) = Im(W ).

Proof. First, let us prove that Im(E) = Im(B). Let x ∈ Rn. Note that

x ∈ Null(B) Prop. 2.12⇐⇒ xTBx = 0 ⇐⇒ xTEETx = 0 ⇐⇒ ‖ETx‖2 = 0 ⇐⇒ x ∈ Null(ET ).

Hence, Null(B) = Null(ET ), and by Theorem (2.1), we have Im(B) = Im(E). This yields

Im(ET†) Prop. 2.25= Im(E) = Im(B) = Im(A). (5.1)

Let us now prove that Null(W ) = Null(E). Let x ∈ Rn. Since A � 0, we have W � 0. Hence,

x ∈ Null(W ) Prop. 2.12⇐⇒ xTWx = 0 ⇐⇒ xTE†AET†x = 0 Prop. 2.12⇐⇒ ET†x ∈ Null(A).

By (5.1), we have ET†x ∈ Im(A). Therefore, ET†x ∈ Null(A) ∩ Im(A) = {0}. This is the case if and only
if x ∈ Null(ET†), and by Proposition 2.25 we have x ∈ Null(E). Hence, Null(W ) = Null(E). Theorem 2.1
implies that Im(W ) = Im(ET ).

Theorem 5.3. Let A,B ∈ Sn+ be such that Null(A) = Null(B). Let E ∈ Rn×n be such that B = EET , and
define W := E†AET†. Define φ : y ∈ Im(W ) 7→ ET†y ∈ Im(A). Then

〈x, y〉W = 〈φ(x), φ(y)〉A, ∀x, y ∈ Im(W ).

In particular, let b ∈ Im(A) and let ε > 0. If, for each y ∈ Rn,

‖y∗ − y‖W ≤ ε‖y
∗‖W ,

where y∗ := W †E†b, then
‖x∗ − φ(y)‖A ≤ ε‖x

∗‖A,
where x∗ := A†b.

Proof. By Theorem 2.1, since Null(A) = Null(B), we have Im(B) = Im(A). By Proposition 2.25, we
have Im(ET†) = Im(E), and by Lemma 5.2 we have Im(E) = Im(B) = Im(A). Therefore,

Im(E) = Im(B) = Im(A). (5.2)

Let x, y ∈ Im(W ). We have

〈φ(x), φ(y)〉A = φ(x)TAφ(y) = xTE†AET†y = xTWy = 〈x, y〉W .

In particular,

‖y∗ − y‖2W ≤ ε‖y
∗‖2W ⇐⇒ ‖φ(y∗)− φ(y)‖2A = ‖φ(y∗ − y)‖2A ≤ ε‖φ(y∗)‖2A.
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Therefore, it only remains to show that φ(y∗) = x∗. By Proposition 2.23 and by (5.2),

AA† = EE† = ProjIm(A) . (5.3)

Moreover, by Propositions 2.23 and 2.25,

W †W is an orthogonal projector onto Im(W †) = Im(W ) = Im(E†). (5.4)

Therefore,

φ(y∗) = ET†y∗ = ET†W †E†b

(5.3)= ET†W †E†AA†b
(5.3)= ET†W †E†A(EE†)TA†b

= ET†W †E†AET†ETA†b = ET†W †WETA†b

(5.4)= ET†ETA†b = (EE†)TA†b
(5.3)= A†b = x∗.

5.2 A Fast Solver
For every A ∈ SV we define the weighted graph G(A) := (V,E,w), where

E :=
{
ij ∈

(
V

2

)
: Ai,j 6= 0

}
,

and (w)ij := Ai,j for every ij ∈ E. A permutation matrix is an orthogonal matrix with entries in {0, 1}.
Given a bijection σ : V → V , define the permutation matrix Pσ ∈ {0, 1}V×V by

Pσei := eσ(i), ∀i ∈ V.

Proposition 5.4. If A ∈ Sn+ is such that G(A) is a tree, then there are a lower triangular matrix L ∈ Rn×n
with at most 2n non-zero entries and a bijection σ : [n]→ [n] such that PσAPTσ = LLT . Moreover, we can
compute the matrix L and a the bijection σ : [n]→ [n] in time O(m), where m := |E(G(A))|, using the data
structures from Section 2.2.

Proof. Let σ : [n]→ [n] be a permutation such that, for each i ∈ [n], σ(i) is a leaf in G− {σ(1), . . . , σ(i− 1)}.
Such a permutation can be found easily in linear time using depth-first search. Hence, each i ∈ [n] is a
leaf in G

(
(PσAPTσ )[[n] \ [i− 1]]

)
. For simplicity, we may assume that Pσ = I. Let L ∈ Rn×n be a lower

triangular matrix and let D ∈ Sn+ be a diagonal as in Theorem 2.18 such that A = LDLT . Since A = L̃L̃T ,
where L̃ := (LD1/2) is lower triangular and has the same number of nonzero elements as L, it suffices to
prove that

(5.5)the matrix L has n− 1 nonzero off-diagonal elements and can be computed in O(n) time.
Let us first prove that L has n− 1 nonzero off-diagonal entries by induction on n. For n = 1 the statement

clearly holds. Suppose that n > 1. Let α ∈ R+, let i ∈ NG(A)(1) ⊆ [n] \ {1} be the only neighbor of 1, and
let B ∈ S[n]\{1}

+ be such that

A =
(
α eTi
ei B

)
.

Let B̃ := B − [α > 0] 1
αeie

T
i ∈ R[n]\{1}. Note that B̃ can be computed in constant time, since eieTi has only

one nonzero entry. By Theorem 2.18,

L =
(

[α > 0] 0
[α > 0] 1

αei L̃

)
, (5.6)

where L̃ ∈ R([n]\{1})×([n]\{1}) is a lower triangular matrix and D̃ ∈ S[n]\{1}
+ is a diagonal matrix such

that B̃ = L̃D̃L̃T . Note that G(B̃) = G(A)− 1, and since 1 is a leaf in G(A), we have that G(B̃) is a tree.

45



Moreover, E(G(B̃)) = E(G(A)) \ {1i}. Hence, the property that j ∈ [n] \ {1} is a leaf in G(B̃)[[n− 1] \ [j]] is
preserved. Therefore, by the induction hypothesis, the matrix L̃ has n − 2 nonzero off-diagonal elements.
Hence, by equation (5.6), we conclude that L has n− 1 nonzero entries. It only remains to show that the
matrix L can be computed in O(n) time.

We can compute L recursively by the definitions in Theorem 2.18. Since we can find i ∈ NG(1) and
compute L̃ in constant time, each recursive call takes constant time to be computed. At each recursive call,
the dimension of the matrix we have to process decreases by 1. Hence, we make a total of n recursive calls,
and thus we can compute L in O(n) time.

Let G = (V,E,w) be a weighted graph, and let T be a spanning tree of G. For every ij ∈ E, let T (i, j) be
the unique path between i and j in T . For every e = ij ∈ E, the stretch of e (with respect to T and w) is

stT (e) := we
∑

f∈E(T (i,j))

1
wf

.

We also define stT (G) :=
∑
e∈E stT (e). We will use the following theorem without proof.

Theorem 5.5 ([1]). There is an algorithm that takes as input a connected weighted graph G, and computes
as output a spanning tree T of G such that stT (G) ∈ O(m logn log logn(log log logn)3), where n := |V (G)|
and m := |E(G)|, and runs in time Õ(m).

Lemma 5.6. If A ∈ Sn and B ∈ Rn×n are such that Null(A) = Null(B), then λ↑(A) = λ↑(BAB†).

Proof. By Theorem 2.1, we know that

Im(A) = Null(A)⊥ = Null(B)⊥ = Im(BT ).

Hence, B†B is an orthogonal projector onto Im(A) by Proposition 2.23. Therefore, B†BA = A, and the
statement follows from Lemma 2.4.

Lemma 5.7. If A,B ∈ Sn+ and A � B, then all nonzero eigenvalues of B†A are at least 1.

Proof. Set W := (B†)1/2A(B†)1/2. First, let us prove that

W has the same eigenvalues of B†A. (5.7)

By Lemma 5.6, the matrix W has the same eigenvalues of (B†)1/2WB1/2. Note that

(B†)1/2WB1/2 = (B†)1/2(B†)1/2A(B†)1/2B1/2 = B†A(B1/2)†B1/2 = B†A,

where we used in the last equation Proposition 2.23, which states that (B1/2)†B1/2 is the orthogonal projector
onto Im(B1/2) = Im(B) and that

Im(B) ⊆ Im(A). (5.8)

To see that the above claim holds, suppose there is x ∈ Null(A) \ Null(B). Then, by Proposition 2.12, we
have xTBx > 0. Hence,

xTBx > 0 = xTAx,

what is a contradiction since A � B. This ends the proof of (5.8), and therefore ends the proof of (5.7).
Thus, it suffices to show that

λ↓rank(W )(W ) ≥ 1.

By Theorem 2.22, one can verify that (B†)1/2B1/2 = (B†B)1/2. Hence, using that A � B, we have

W = (B†)1/2A(B†)1/2 � (B†)1/2B(B†)1/2 = (B†)1/2B1/2B1/2(B†)1/2 = (B†B)1/2(BB†)1/2 = BB†,

where in the last equation we used that

BB† = (BB†)T = BT†BT = B†B,
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where in the first equation we used property (iii) of the pseudoinverse, and in the last equation we used
that B is symmetric. Let x ∈ Im(W ) be an eigenvector of W associated with λ(W )↓rank(W ). By Propo-
sition 2.25, Im(B†) = Im(B). Since W = (B†)1/2A(B†)1/2, we have Im(W ) ⊆ Im(B†). By Proposi-
tion 2.25, Im(B†) = Im(B). Hence, ProjIm(B) x = x. By Proposition 2.23, we have that BB† = ProjIm(B).
Therefore,

λ‖x‖2 = xTWx ≥ xTBB†x == xT ProjIm(B) x = ‖x‖2 =⇒ λ ≥ 1.

Lemma 5.8. Let T be a weighted tree with weights r ∈ RE++. If s, t ∈ V (T ) are distinct, and P is the
unique (s, t)-path in T , then

Rs,teff (r) =
∑

e∈E(P )

re.

Proof. Let f be the unit electrical (s, t)-flow in T . By Theorem 3.7, we have Rs,teff (r) = E(f). By Proposition 3.4,
we can write Diag(sgn(f))f as a linear combination of incidence vectors of (s, t)-paths. Since P is the
unique (s, t)-path in T , we have Diag(sgn(f))f = |f |1E(P ) = 1E(P ). Then,

Rs,teff (r) = E(f) = fT Diag(r)f = Diag(sgn(f))2fT Diag(r)f
= (Diag(f)f)T Diag(r) Diag(f)f = 1

T
E(P ) Diag(r)1E(P )

=
∑

e∈E(P )

re.

Proposition 5.9. If G is a weighted graph with weights w ∈ RE++, and T is a spanning tree of G, then

Tr
(
LT (w)†LG(w)

)
= stT (G).

Proof. We have

Tr
(
LT (w)†LG(w)

)
=

∑
ij∈E(G)

wij Tr
(
LT (w)†(ei − ej)(ei − ej)T

)
=

∑
ij∈E(G)

wij(ei − ej)TLT (w)†(ei − ej).

Note that (ei−ej)TLT (w)†(ei−ej) is, by definition, the effective resistance of ij in T with edge weights r ∈ RE
such that re := 1/we for each e ∈ E. For every ij ∈ E(G), let T (i, j) be the unique (i, j)-path in T . Then,
by Lemma 5.8,

Tr
(
LT (w)†LG(w)

)
=

∑
ij∈E(G)

wij(ei − ej)TLT (w)†(ei − ej) =
∑

ij∈E(G)

(
wij

∑
e∈E(T (i,j))

1
we

)
= stT (G).

Theorem 5.10. There is an algorithm that takes as input

• a weighted connected graph G = (V,E,w);

• a vector b ∈ RV such that b ⊥ 1;

• a value ε > 0,

and computes as output x ∈ RV such that∥∥x− L†b∥∥
L
≤ ε‖L†b‖L,

where L := LG(w). This algorithm runs in time Õ(m4/3 log(1/ε)) using the data structures from Section 2.2,
where m := |E|.

Proof. Set n := |V | and let T be a spanning tree of G such that stT (G) ∈ Õ(m). Such a spanning
tree exists and can be computed in Õ(m) time by Theorem 5.5. By Proposition 5.4, there are a lower
triangular matrix E ∈ RV×V with at most 2n nonzero off-diagonal entries and a bijection σ : V → V such
that PσLT (w)PTσ = EET . Moreover, this proposition states that the matrix E and the permutation that
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corresponds to the action of P can computed in O(m) time. Since we can fix any permutation of the
vertices, suppose that P = I. Define W := E†LG(w)ET†. The idea now is to approximately solve the
system Wy = E†b using the Conjugate Gradient method. Before invoking this method, we need to show that

λ↓rank(W )(W ) ≥ 1 and Tr(W ) = stT (G). (5.9)

By Lemma 5.6, we have that the eigenvalues of W are the same of E†WE = LT (w)†LG(w), and by
Lemma 5.7, we have that all nonzero eigenvalues of LT (w)†LG(w) are at least 1. Hence, λ↓rank(W )(W ) ≥ 1.
Moreover, note that

Tr(W ) = Tr(E†LG(w)ET†) = Tr(ET†E†LG(w)) Prop. 2.21= Tr((EET )†LG(w)) = Tr(LT (w)†LG(w)) = stT (G),

where in the last equation we used Proposition 5.9. This ends the proof of (5.9).
Hence, by Proposition 4.8 and by Theorem 4.18, after ω := stT (G)1/3(1+ln 1/ε) iterations of the Conjugate

Gradient method on the system Wy = E†b, it yields y ∈ RV such that

‖y∗ − y‖W ≤ ε‖y
∗‖W ,

where y∗ := W †E†b. Define x := ET†y. By Theorem 5.3, we have that

‖x∗ − x‖LG(w) ≤ ε‖x
∗‖LG(w),

where x∗ := LG(w)†b.
It only remains to show that

(5.10)the execution of the Conjugate Gradient method (CGM) to find a solution to the
system Wy = E†b takes time Õ(m4/3 log 1/ε).

In each iteration, the CGM computes a constant number of matrix-vector multiplications of W with a vector
in Kt(W,E†b) ⊆ Im(W ) for some t ∈ N. Therefore, let us first show that

(5.11)it takes time O(m) to compute Wv for any v ∈ Im(W ).
Since E†LG(w)ET†, left-multiplying a vector v ∈ Im(W ) by W can be broken down into three steps. First,
one needs to left-multiply v by ET†. By Lemma 5.2, we have that Im(W ) = Im(ET ). Therefore,

r := ET†p =⇒ ET r = ETET†p = p,

where in the last equation we used that ETET† is an orthogonal projector onto Im(ET ). Hence, to calculate r
it suffices to solve a linear system on ET . Since E has at most 2n nonzero entries and is lower triangular,
solving this system takes O(n) time. Next, to compute LG(w)(ET†v) we need time O(m). This is due to
the fact that LG(w) is a sparse matrix with O(m) nonzero entries. Finally, to calculate E†(LG(w)ET v), by
Lemma 5.2, we have that Im(LG(w)) = Im(LT (w)) = Im(E). Since LG(w)ET†v ∈ Im(LG(w)) = Im(E), we
only have to solve a linear system over the matrix E. Since E has at most 2n nonzero entries and is lower
triangular, solving this system takes O(n) time. This ends the proof of (5.11).

Hence, by (5.11), each iteration of the CGM takes time O(m). Since we execute ω = stT (G)1/3(1 + ln 1/ε)
iterations of the CGM, and using the fact that stT (G) ∈ Õ(m), we have that the CGM, in this case, takes
time O(mω) = Õ(m4/3 log 1/ε). This ends the proof of (5.10), and the theorem follows.
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Chapter 6

Maximum Flow in Graphs using
Electrical Flows

In this chapter we describe the algorithm from [3], which computes an approximately maximum flow
in a graph in a quite respectable running time with the aid of nearly-linear time Laplacian solvers. Not
only that, but its general idea is also is relatively simple. Intuitively, it uses electrical flows, which do not
necessarily satisfy the capacity constraints, as approximations to flows of some desired value that respect the
edge capacities. The basic idea is to first compute an electrical flow with some initial resistances on the edges
of the graph. Since an electrical flow may not respect the edge capacities, we modify the resistances over the
edges, penalizing edges on which there is too much flow compared to their capacities, and then repeat the
process. We compute these multiple electrical flows and combine them with the aid of the Multiplicative
Weights Update Method [2]. Intuitively, this method is a meta-algorithm that takes an algorithm which
solves a given problem very crudely and, by repeatedly calling this crude algorithm with new parameters, it
computes a good approximate solution to the problem. After computing sufficiently many electrical flows, we
will be able to compute a feasible flow whose value is close to the desired one. Since computing electrical
flows exactly is costly, we only compute electrical flows approximately.

In Section 6.1, we study how to compute an approximately electrical flow, that is, a flow that has almost
minimum energy, in nearly-linear time by using a nearly-linear time Laplacian solver. In Section 6.2, we
describe how to use approximately electrical flows as crude approximations to feasible (s, t)-flows of a target
value α ∈ R+, and use such approximately electrical flows in the Multiplicative Weights Update Method
to compute a flow of value close to α in time Õ(m3/2ε−5/2). In Section 6.3, we show how to compute
an approximately maximum flow via binary search using the algorithm from the preceding section as a
subroutine.

6.1 Computing Approximately Electrical Flows
Recall from Section 3.2 that one can find an electrical (s, t)-flow in a graph G by solving a Laplacian

system, which yields the vertex potentials of the unit electrical flow of the graph. By Theorem 5.1, we can
find an approximate solution to a Laplacian system in nearly-linear time, and hence we may approximately
find these vertex potentials in nearly-linear time. The problem that arises is that the vector induced by this
approximate solution may not be an (s, t)-flow, i.e. it need not satisfy the flow conservation constraints. In
this section, we will show how to round in nearly-linear time the vector induced by the approximate vertex
potentials to an (s, t)-flow with almost minimum energy.

Let G = (V,E, r) be a weighted graph. Let s, t ∈ V be distinct and let f∗ ∈ RE be the unit electri-
cal (s, t)-flow in G (see Section 3.2 for the definition of electrical flow). Let δ ∈ R+. An (s, t)-flow f in G
is δ-approximately electrical if E(f) ≤ (1 + δ)E(|f |f∗).

In the next lemma we describe an algorithm that rounds a given vector to a flow in the graph. This
algorithm will be used in the main theorem of this section to round the non-flow induced by the vertex
potentials that forms an approximate solution of a Laplacian system.
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Lemma 6.1. There is an algorithm that takes as input

• a weighted connected graph G = (V,E, r),

• distinct vertices s, t ∈ V ,

• a target flow value α ∈ R+,

• an orientation #»

G of G,

• a vector f̂ ∈ RE+,

and computes as output an (s, t)-flow f of G with respect to #»

G of value α ∈ R+ such that

‖f̂ − f‖∞ ≤ n‖iext − α(es − et)‖∞,

where n := |V | and
iext := B #»

G f̂ .

Moreover, this algorithm runs in time O(m) when using the data structures from Section 2.2, where m := |E|.

Proof. Let us show how to compute ∆f ∈ RE such that

B #»
G∆f = α(es − et)− iext =: d,

so that f := f̂ + ∆f satisfies B #»
Gf = α(es − et). Note that

1
T d = α1T (es − et)− 1T iext = α1T (es − et)− 1TB #»

G f̂ = 0,

where in the last equation we used that 1 ∈ Null(BT#»
G

) by Proposition 2.30. Let T = (V, F ) be a spanning tree
of G and let #»

T be an orientation of T such that A( #»

T ) ⊆ A( #»

G). Such a spanning tree can be found in O(m)
by a depth-first search. Actually,

(6.1)one can easily compute a spanning tree T of G and a function ψ : [n] → V in O(m)
time such that ψ(i) is a leaf in the tree T [{ψ(i), ψ(i+ 1), . . . , ψ(n)}] by using depth-first
search.

If there is g ∈ RF such that B #»
T g = d, then defining ∆f ∈ RE by ∆fe := [e ∈ F ]ge for every e ∈ E

yields B #»
G∆f = B #»

T g = d. Hence, it suffices to prove the following claim:
(6.2)Let T = (V, F ) be a spanning tree of G with orientation #»

T and let d ∈ RV be such
that 1T d = 0. Then we can compute g ∈ RF such that B #»

T g = d in time O(n).
First of all, note that

If n = 1, then d = 1
T d = 0 and g = 0 satisfies the claim. Suppose that n > 1. Let v ∈ V be a leaf

in T , let {u} := NT (v) and define V ′ := V \ {v}. Let T ′ := T − v and let
# »

T ′ := #»

T − v. Define d′ ∈ RV ′ by
setting d′i := di + [i = u]dv for each i ∈ V ′. Hence,

d+ dv(eu − ev) =
(

0
d′

)
∈ RV . (6.3)

Note that
1
T d′ = 1

T

(
0
d′

)
= 1

T d+ 1
T (eu − ev)dv = 0

Hence, d′ ⊥ 1, and we can recursively compute g′ ∈ RE(T ′)
+ such that B #»

T ′
g′ = d′. Let a ∈ A( #»

T ) be the only
arc incident to v in #»

T . Extend g′ ∈ RE(T ′)
+ to g ∈ RE(T )

+ by setting

guv := (−1)[a∈δin(v)]dv. (6.4)
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Therefore,

B #»
T g = B #»

T

(
(−1)[a∈δin(v)]dv

g′

)
= B #»

T ea(−1)[a∈δin(v)]dv +
(

0
B #»

T ′
g′

)
= (−1)[a∈δin(v)](ev − eu)(−1)[a∈δin(v)]dv +

(
0
d′

)
= (ev − eu)dv +

(
0
d′

)
(6.3)= d.

One may note that it is possible to perform the calculations from (6.4) during the depth first search from (6.1)
(more specifically, one may perform the calculation from (6.4) when ending visiting a vertex). Hence, the
algorithm takes a constant amount of computation for each node during the depth-first search. Hence, we
conclude the the algorithm runs in time O(m).

We will now prove some bounds on the energy of an electrical flow, which will be useful in the proof of
the main theorem of this section.

Lemma 6.2. Let G = (V,E, r) be a weighted connected graph such that re ∈ [1, ω] for each e ∈ E,
set m := |E|, and let s, t ∈ V be distinct. If f is the electrical (s, t)-flow in G of value α ∈ R+, then

α2

m
≤ E(f) ≤ α2ωm.

Proof. Let us first prove that
E(f) ≤ α2ωm. (6.5)

Note that
E(f) =

∑
e∈E

f2
e re ≤ ω

∑
e∈E

f2
e ≤ ‖f‖

2
∞ωm.

Hence, to prove (6.5), it suffices to prove that

‖f‖∞ ≤ α. (6.6)

By Proposition 3.5, there is a collection P of (s, t)-paths in G with |P| ≤ |E| and a vector c ∈ RP+ with ‖c‖1 = α
such that

f = Diag(sgn(f))
∑
P∈P

c(P )1E(P ).

Hence, for every e ∈ E,
|fe| =

∑
P∈P

[e ∈ E(P )]c(P ) ≤ ‖c‖1 = α,

i.e., ‖f‖∞ ≤ α. This ends the proof of (6.6), and thus that of (6.5).
Let us now prove that

α2

m
≤ E(f). (6.7)

Let f1 be the unit electrical (s, t)-flow in G. By Theorem 3.6, αf1 = f , and hence E(f) = α2E(f1). Moreover,
by Proposition 3.7, E(f1) = Rs,teff (r). Hence, to prove (6.7), it suffices to show that

1
m
≤ Rs,teff (r).

By Proposition 3.3, we have λmax(LG) ≤ 2∆(G) ≤ 2m. Hence, by Proposition 3.8 and Theorem 2.8,

Rs,teff (r) ≥ Rs,teff (1) = (es − et)TL†G(es − et) ≥ 2λ↑2(L†G) = 2
λ↓1(LG)

≥ 1
m
.
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Theorem 6.3. There is an algorithm that takes as input

• a connected weighted graph G = (V,E, r),

• an orientation #»

G of G,

• distinct vertices s, t ∈ V ,

• scalars α ∈ R+ and δ ∈ (0, 1],

and computes a δ-approximately electrical (s, t)-flow with respect to #»

G of value α in G. Moreover, the
algorithm runs in time Õ(m logω/δ), where ω := κ(Diag(r)) and m := |E|.

Proof. Define rmin := min{ re : e ∈ E}. By Theorem 3.6, if f is an δ-approximately electrical (s, t)-flow
of value α in G with weights given by ( 1

rmin
)r, then (rmin)f is an δ-approximately electrical (s, t)-flow of

value α in G. Hence, we may assume that re ∈ [1, ω]. Define c ∈ RE where ce := 1/re for each e ∈ E,
define L := LG(c) and let v := αL†(es − et). Let ε > 0 and let v̂ ∈ RV be such that

‖v̂ − v‖L ≤ ε‖v‖L.

By Theorem 5.1 we can compute such a vector in time Õ(m log 1/ε). By Theorem 3.6, if we define

f := Diag(c)BT#»
G
v, (6.8)

then f is the electrical (s, t)-flow of value α in G. Moreover, define

f̂ := Diag(c)BT#»
G
v̂.

Note that

E(f) = fT Diag(c)−1f
(6.8)= vTB #»

G Diag(c) Diag(c)−1 Diag(c)BT#»
G
v = vTLv = ‖v‖2L.

Similarly, E(f̂) = ‖v̂‖2L. Hence, using these facts and the triangle inequality,

‖v̂‖L ≤ ‖v‖L + ‖v̂ − v‖L ≤ (1 + ε)‖v‖L
=⇒ E(f̂) ≤ (1 + ε)2E(f).

(6.9)

Note that f̂ is not necessarily an (s, t)-flow, since it may not satisfy the flow conservation constraints. Define

iext := BT#»
G
f̂ = Lv̂,

set n := |V | and let η := ‖iext − α(es − et)‖∞. By Lemma 6.1, given f̂ we may compute an (s, t)-flow f̃ in G
of value α such that

‖f̂ − f̃‖∞ ≤ nη.

Let us show that
(6.10)the flow f̃ is a δ-approximately electrical (s, t)-flow if ε ≤ δ/32n4m3/2ω.

By Proposition 3.3, we have ‖L‖2 ≤ 2n. Moreover, by Proposition 2.11, λmax(L1/2) = λmax(L)1/2. Thus,
since L � 0 and by Corollary 2.9, we have

‖L1/2‖2 = λmax(L1/2) = λmax(L)1/2 = ‖L‖1/22 ≤ 2n. (6.11)

Hence,

η ≤ ‖iext − α(es − et)‖2 = ‖Lv̂ − Lv‖2
≤ ‖L1/2‖2‖L

1/2(v̂ − v)‖2 = ‖L1/2‖2‖v̂ − v‖L
(6.11)
≤ 2nε

√
E(f).

(6.12)
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By Proposition 3.5, ‖f̃‖∞ ≤ α. By the triangle inequality,

‖f̂‖∞ ≤ ‖f̃‖∞ + ‖f̂ − f̃‖ ≤ α+ nη. (6.13)

Therefore,

E(f̃) =
∑
e∈E

ref̃
2
e ≤

∑
e∈E

re(f̂e + nη)2 = E(f̂) + 2nη
∑
e∈E

ref̂e + n2η2
∑
e∈E

re

(6.13)
≤ E(f̂) + (2nη(α+ nη) + n2η2)

∑
e∈E

re = E(f̂) + (2nηα+ 3n2η2)
∑
e∈E

re

≤ E(f̂) + (2nηα+ 3n2η2)mω.

(6.14)

Note that
2nηα

(6.12)
≤ 2nα

(
2nε
√
E(f)

)
= 4αn2ε

√
E(f) ≤ 4n2εE(f)

√
m, (6.15)

where in the last inequality we used the fact that α ≤
√
E(f)m, which is a consequence of Lemma 6.2.

Moreover, since δ ≤ 1 and our hypothesis in (6.10), we have ε ≤ 1, and thus,

3n2η2
(6.12)
≤ 3n2

(
2nε
√
E(f)

)2
= 12n4ε2E(f) ≤ 12n4εE(f). (6.16)

Hence,

E(f̃) ≤ E(f̂) + (2nηα+ n2η2)mω by (6.14)
≤ E(f̂) +

(
4n2ε

√
m+ 12n4ε

)
E(f)mω by (6.15) and (6.16)

≤
(

(1 + ε2) + 4εn2m3/2ω + 12n4εmω
)
E(f) Since E(f̂) ≤ (1 + ε)2E(f) by (6.9)

≤
(

(1 + ε2) + 16εn4m3/2ω
)
E(f).

Thus, if
ε ≤ δ

2(16n4m3/2ω)
,

then, using that δ ≤ 1,

E(f̃) ≤
(

(1 + ε2) + δ

2

)
E(f) ≤

((
1 + δ

8

)2
+ δ

2

)
E(f) =

(
1 + δ

4 +
(
δ

8

)2
+ δ

2

)
E(f)

≤
(

1 + δ

4 + δ

8 + δ

2

)
E(f) =

(
1 + 7δ

8

)
E(f) ≤ (1 + δ)E(f).

This ends the proof of (6.10). It only remains to calculate the running time of the algorithm. We can
compute v̂ using the algorithm from Theorem 5.1, which runs in time Õ(m log 1/ε) = Õ(m logω/δ). Since
the algorithm of Lemma 6.1, which was used to compute f̃ from f̂ , runs in time O(m), the whole algorithm
runs in time Õ(m logω/δ).

6.2 Multiplicative Weights Update Method
In this section, we describe how to apply the Multiplicative Weights Update Method (see [2]) to the problem

of finding a feasible flow in a graph with value close to some target value. We first define an (ε, ρ)-oracle,
which is, informally, a black box that returns a flow in a graph which is close to being feasible. These oracles
will be used as a source of crude approximations to feasible flows to be used by the Multiplicative Weights
Update method. Then, we show how to construct such an oracle by using the algorithm from Section 6.1
to compute approximately electrical flows. Next, we describe the application of the Multiplicative Weights
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Update method, which computes a feasible flow by repeatedly calling an (ε, ρ)-oracle. Finally, we show then
that using the oracle built using the algorithm from Section 6.1 in the Multiplicative Weights Update Method
yields an efficient algorithm for finding a feasible flow in a graph with value close to some target value.

Let G = (V,E) be a graph, let s, t ∈ V be distinct, and let u ∈ RE++. The capacity of e ∈ E is ue.
Let f be an (s, t)-flow in G. The flow f is feasible (with respect to u) if |fe| ≤ ue for every e ∈ E. The
congestion of an edge e ∈ E in f (with respect to the capacities u) is

congf (e) := |fe|
ue

.

Note that f is a feasible flow in G if and only if congf (e) ≤ 1 for every e ∈ E.
Let G = (V,E,w) be a weighted graph with capacities u ∈ RE++, let ε > 0, let α ∈ R+, and let ρ ∈ R++.

If s, t ∈ V are distinct, an (s, t)-flow f in G is (ε, ρ)-quasi-feasible if
(i) wT congf ≤ (1 + ε)‖w‖1, and

(ii) ‖congf‖∞ ≤ ρ.
An (ε, ρ)-oracle is an algorithm which takes as input a weighted graph G = (V,E,w) with edge capacities u ∈
RE++, distinct s, t ∈ V , and a target value α ∈ R+, then
• if α ≤ OPT, where OPT ∈ R+ is the value of a maximum (s, t)-flow in G, then the algorithm returns

an (ε, ρ)-quasi-feasible (s, t)-flow f of G of value α;

• otherwise, the algorithm either returns an (ε, ρ)-quasi-feasible (s, t)-flow f of G of value α, or it fails.

Algorithm 6.1 (ε, 3
√
m/ε)-oracle

Input: A weighted connected graph G = (V,E,w) with capacities u ∈ RE+, a value α ∈ R+, and s, t ∈ V
distinct.

Output: An (ε, 3
√
m/ε)-quasi-feasible (s, t)-flow of G if the algorithm does not fail, where m := |E|.

Set re ← 1
u2

e

(
we + ε‖w‖1

3m

)
for each e ∈ E

Compute an (ε/3)-approximately electrical (s, t)-flow f̄ of value α on (V,E, r) using the algorithm from
Theorem 6.3.
if E(f̄) ≥ (1 + ε)‖w‖1 then return fail
else return f̄

Let us analyze the running time of Algorithm 6.1 for a fixed ε > 0. Let G = (V,E,w) be a weighted
graph with capacities u ∈ RE+, let α ∈ R+, and let r ∈ RE++ be defined as in Algorithm 6.1. Define m := |E|.
The computation done by Algorithm 6.1 consists of finding an (ε/3)-approximately electrical (s, t)-flow
in G′ := (V,E, r) by using the algorithm from Theorem 6.3, besides some calculations that can be done
in time O(m). By Theorem 6.3, we can compute an (ε/3)-approximately electrical (s, t)-flow in G′ in
time Õ(m logω/ε), where ω := κ(Diag(r)). Let U := κ(Diag(u)), and let e, f ∈ E. By the definition of r, we
have

re
rf
≤ U2 3mwe + ε‖w‖1

3mwf + ε‖w‖1
≤ U2 3m‖w‖1 + ε‖w‖1

ε‖w‖1
≤ U2

(
3m
ε

+ 1
)
≤ 6mU2

ε
.

Hence, ω ≤ 6mU2/ε. Thus, Algorithm 6.1 runs in time Õ(m logU/ε). The next proposition shows that
Algorithm 6.3 is an (ε, 3

√
m/ε)-oracle.

Proposition 6.4. Let G = (V,E,w) be a weighted connected graph with edge capacities u ∈ RE++, and
let s, t ∈ V be distinct. Let OPT ∈ RE be the value of a maximum (s, t)-flow in G, let α ∈ R++ and let f
be an (ε/3)-approximately electrical (s, t)-flow of value α in the graph (V,E, r) for some ε with 0 < ε ≤ 1,
where r ∈ RE+ is defined by

re := u−2
e

(
we +

ε‖w‖1
3m

)
, ∀e ∈ E.

If E(f) ≤ (1 + ε)‖w‖1, then f is an (ε, 3
√
m/ε)-quasi-feasible (s, t)-flow in G of value α, where m := |E|.

Moreover, if |f | ≤ OPT, then E(f) ≤ (1 + ε)‖w‖1.
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Proof. Let f∗ be a maximum (s, t)-flow in G with respect to the capacities u. Since f∗ is feasible, we
have congf∗(e) ≤ 1 for every e ∈ E. Hence,

E(f∗) =
∑
e∈E

1
u2
e

(
we +

ε‖w‖1
3m

)
(f∗e )2 =

∑
e∈E

(
we +

ε‖w‖1
3m

)
(congf∗(e))2

≤
∑
e∈E

(
we +

ε‖w‖1
3m

)
= ‖w‖1

(
1 + ε

3

)
.

(6.17)

Suppose that
α ≤ OPT . (6.18)

Let f̃ be an electrical (s, t)-flow in G′ := (V,E, r) of value α. By Theorem 3.6, (OPT /α)f̃ is an electrical (s, t)-
flow in G′ of value OPT. Moreover, by the definition of electrical flow, we have that E((OPT /α)f̃) ≤ E(f∗).
Hence,

E(f) ≤
(

1 + ε

3

)
E(f̃)

(6.18)
≤

(
1 + ε

3

)(OPT
α

)2
E(f̃) =

(
1 + ε

3

)
E
(

OPT
α

f̃

)
≤
(

1 + ε

3

)
E(f∗)

≤
(

1 + ε

3

)2
‖w‖1 =

(
1 + 2ε

3 +
(ε

3

)2
)
‖w‖1 ≤

(
1 + 2ε

3 + ε

3

)
‖w‖1 = (1 + ε)‖w‖1.

It remains to prove that, if E(f) ≤ (1 + ε)‖w‖1, then f is an (ε, 3
√
m/ε)-quasi-feasible (s, t)-flow in G of

value α. Since E(f) ≤ (1 + ε)‖w‖1, we have

(1 + ε)‖w‖1 ≥ E(f) =
∑
e∈E

1
u2
e

(
we +

ε‖w‖1
3m

)
(fe)2 =

∑
e∈E

(
we +

ε‖w‖1
3m

)
(congf (e))2. (6.19)

By construction, we know that |f | = α. Let us prove that

wT congf ≤ (1 + ε)‖w‖1. (6.20)

From (6.19), we have ∑
e∈E

we congf (e)2 ≤ (1 + ε)‖w‖1.

Hence, by the Cauchy-Schwarz inequality,

(wT congf )2 ≤ ‖w‖1
(∑
e∈E

we congf (e)2
)
≤ (1 + ε)‖w‖21

=⇒ wT congf ≤
√

1 + ε‖w‖1 < (1 + ε)‖w‖1.

This ends the proof of (6.20). It only remains to prove that

‖congf‖∞ ≤ 3
√
m

ε
.

Let e ∈ E. From (6.19), we have
ε‖w‖1

3m congf (e)2 ≤ (1 + ε)‖w‖1.

Hence,

congf (e) ≤
√

(1 + ε)3m
ε

≤ 3
√
m

ε
.

The above proposition proves correctness of Algorithm 6.1. Hence, for any fixed ε > 0, Algorithm 6.1 is
an (ε, 3

√
m/ε)-oracle, where m is the number of edges of the graph received as input by the oracle. The

following corollary summarizes what we have just proved.
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Algorithm 6.2 Multiplicative Weights Update Method
Input: A connected graph G = (V,E) with capacities u ∈ RE+, vertices s, t ∈ V , an (ε, ρ)-oracle O
with 0 < ε ≤ 1/3, and α ∈ R+.

Output: If the algorithm does not fail, it returns a feasible (s, t)-flow of G of value at least (1− 3ε)α.
m← |E|
w0 ← 1 ∈ RE and N ← 2ρ lnm

ε2 .
for i = 1 to N do

Query O with input the graph (V,E,wi−1) with capacities u and target value α.
if O fails then return fail
Let f i be the (s, t)-flow returned by O.
for all e ∈ E do

wie ← wi−1
e

(
1 + ε

ρ congfi(e)
)

return f̄ ← (1−ε)2

(1+ε)N
∑N
i=1 fi

Corollary 6.5. Let ε > 0 be fixed. Then there is an (ε, 3
√
m/ε)-oracle such that, when given as input a

weighted connected graph G = (V,E,w) with capacities u ∈ RE++, and distinct vertices s, t ∈ V , it runs in
time Õ(m logU/ε), where m := |E|, and U := κ(Diag(u)).

In Algorithm 6.2 we present the pseudo-code for the Multiplicative Weights Update routine. At each itera-
tion of Algorithm 6.2, we make a call to the (ε, ρ)-oracle and update the weights of the graph. Since the algo-
rithm executes N = (2ρ lnm)ε−2 iterations, we conclude that Algorithm 6.2 runs in time Õ(ρε−2 max{m, tO}),
where tO is the running time of the (ε, ρ)-oracle and m is the number of edges of the input graph. Note that
we may suppose tO ∈ Ω(m) since the (ε, ρ)-oracle needs Ω(m) time to read its input. Let us now prove the
correctness of the algorithm.

Lemma 6.6. If ε > 0 and x ∈ [0, 1], then

exp((1− ε)εx) ≤ 1 + εx.

Proof. Let x ∈ [0, 1], and let ε > 0. If ε ≥ 1, then (1 − ε)εx ≤ 0, and hence, exp((1 − ε)εx) ≤ 1 ≤ 1 + εx.
Suppose that ε < 1. By definition, we have

exp((1− ε)εx) =
∞∑
i=0

((1− ε)εx)i

i! = 1 + εx− ε2x+
∞∑
i=2

((1− ε)εx)i

i! .

Hence,

exp((1− ε)εx) ≤ 1 + εx ⇐⇒
∞∑
i=2

((1− ε)εx)i

i! ≤ ε2x.

If x = 0, the statement clearly holds. Suppose that x > 0. Then
∞∑
i=2

((1− ε)εx)i

i! ≤ ε2x ⇐⇒
∞∑
i=2

(1− ε)iεi−2xi−1

i! ≤ 1

Note that
∞∑
i=2

(1− ε)iεi−2xi−1

i! ≤
∞∑
i=2

(1− ε)iεi−2xi−1.

Since the right hand side of the above inequality is a geometric series with ratio (1− ε)εx < 1, we have
∞∑
i=2

(1− ε)iεi−2xi−1 = (1− ε)2x

1− (1− ε)εx = (1− ε)2x

1− εx+ ε2x
≤ (1− ε)2x

(1− ε+ ε2)x

= (1− ε)2

(1− ε+ ε2) = (1− ε)2

(1− ε)2 + ε
< 1.
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Theorem 6.7. Let G = (V,E) be a connected graph with edge capacities u ∈ RE++, and let s, t ∈ V be
distinct. Let ε > 0, let ρ ∈ R++ and define w0 := 1 ∈ RE++. Let α ∈ R+ and, for each i ∈ N \ {0}, define
the vectors f i ∈ RE and wi ∈ RE++ in order such that f i is an (ε, ρ)-quasi-feasible (s, t)-flow of value α
in (V,E,wi−1), and wi is given by the formula

wie := wi−1
e

(
1 + ε

ρ congfi(e)
)
, ∀e ∈ E.

Define

f̄ = (1− ε)2

(1 + ε)N

N∑
i=1

f i, (6.21)

where N := 2ρ lnm/ε2, and m := |E|. Then, f̄ is a feasible (s, t)-flow of G with edge capacities u such
that |f̄ | ≥ (1− 3ε)α.

Proof. Let us first prove that,

‖wi+1‖1 ≤ ‖w
i‖1 exp

(
(1 + ε)ε

ρ

)
≤ m exp

(
i(1 + ε)ε

ρ

)
, ∀i ∈ N. (6.22)

For every i ∈ N, we have

‖wi+1‖1 =
∑
e∈E

wi+1
e =

∑
e∈E

wie

(
1 + ε

ρ
congfi+1(e)

)
= ‖wi‖1 + ε

ρ

∑
e∈E

wie congfi+1(e)

≤ ‖wi‖1

(
1 + (1 + ε)ε

ρ

)
Le. 2.2
≤ ‖wi‖1 exp

(
(1 + ε)ε

ρ

)
,

where in the first inequality we used property (i) from the definition of an (ε, ρ)-quasi-feasible (s, t)-flow. The
second inequality from (6.22) follows by induction on i ∈ N since ‖w0‖1 = ‖1‖1 = m. This ends the proof
of (6.22).

Let us now prove that, if e ∈ E, then

wie ≥ exp
( (1− ε)ε

ρ

i+1∑
j=1

congfi(e)
)
, ∀i ∈ N. (6.23)

Let e ∈ E. It is easy to verify by induction on i ∈ N that

wi+1
e =

i+1∏
j=1

(
1 + ε

ρ congfj (e)
)
.

By Lemma 6.6, for each i ∈ N,

wi+1
e =

i+1∏
j=1

(
1 + ε

ρ congfj (e)
)
≥ exp

( (1− ε)ε
ρ

i+1∑
j=1

congfi(e)
)
.

This ends the proof of (6.23). We are now in position to prove (6.21).
Let e ∈ E. By (6.23) and (6.22), we have

m exp
(
N(1 + ε)ε

ρ

)
≥ ‖wN+1‖1 ≥ w

N+1
e ≥ wNe ≥ exp

( (1− ε)ε
ρ

N∑
j=1

congfj (e)
)

≥ exp
(
N(1 + ε)ε
(1− ε)ρ congf̄ (e)

)
.

Hence,
congf̄ (e) ≤ 1− ε+ (1− ε)ρ lnm

(1 + ε)εN = 1− ε+ ε(1− ε)
2(1 + ε) ≤ 1.
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Therefore, f̄ is feasible in G with edge capacities u. Moreover, since |f i| = α for every i ∈ N, we have

|f̄ | = (1− ε)2

(1 + ε)N

N∑
i=1
|f i| = (1− ε)2

1 + ε
α = 1 + ε− 3ε+ ε2

1 + ε
α >

1 + ε− 3ε
1 + ε

α ≥ (1− 3ε)α.

The above Theorem proves the correctness of Algorithm 6.2. Moreover, as already discussed, the running
time of the algorithm is Õ(ρε−2tO), where tO is the running time of the (ε, ρ)-oracle given as input to
Algorithm 6.2. The following corollary summarizes what we have proved.

Corollary 6.8. There is an algorithm that takes as input:

• a connected graph G = (V,E) with edge capacities u ∈ RE ,

• distinct vertices s, t ∈ V ,

• a target flow value α ≥ 0,

• a value 0 < ε ≤ 1/3,

• an (ε, ρ)-oracle with running time O(tO),

and, if α ≤ OPT, it computes as output a feasible (s, t)-flow in G with respect to the capacities u of value
at least (1− 3ε)α, where OPT is the value of a maximum (s, t)-flow in G. Otherwise, it either outputs an
feasible (s, t)-flow in G with respect to the capacities u of value at least (1− 3ε)α, or it fails. Moreover, this
algorithm runs in time Õ(ρε−2tO), where m := |E|.

6.3 Calculating an Approximately Maximum Flow
Let G = (V,E) be a graph with capacities u ∈ RE++, let s, t ∈ V be distinct, and let f be an (s, t)-flow

in G. The flow f is maximum (with respect to u) if it is feasible and has maximum value. If δ ∈ R+, then f
is δ-approximately maximum (with respect to u) if it is feasible and |f | ≥ δOPT, where OPT ∈ R+ is
the value of a maximum (s, t)-flow in G.

It only remains to show how to use the algorithm from the previous section to find, for a given ε > 0,
a (1− ε)-approximately maximum flow in a graph. The idea is to use binary search in the range of possible
flow values, using as search condition for each target flow value the success or failure of the algorithm from
Section 6.2. This will approximate the value of the maximum flow since the latter algorithm only fails for
values greater than the optimum value, and when the algorithm succeeds, it yields a feasible flow of value not
far from the one supplied. A problem that arises is that, if the sizes of the capacities are not bounded by a
polynomial in the input size, neither is the maximum value of a feasible flow in G. In this section, we will
show how to modify the input in a way which will not affect the value of a maximum flow by much so the
graph has capacities bounded by a polynomial on the number of edges in the graph and on the inverse of the
error tolerance supplied. Then, we describe our application of binary search to the approximately maximum
flow problem.

Let G = (V,E) be a graph with capacities u ∈ RE++. The bottleneck of a path P in G (with respect to
the capacities u) is min{ue : e ∈ E(P )}.

Proposition 6.9. Let D = (V,A) be a connected digraph with capacities u ∈ RA++, and let s, t ∈ V be
distinct. If there is a feasible (s, t)-flow of value α ∈ R+ in D, then there is a feasible (s, t)-flow f in D, a
collection P of (s, t)-paths in D with |P| ≤ |A|, and a vector c ∈ RP+ with ‖c‖1 = α such that

f =
∑
P∈P

c(P )1E(P ). (6.24)

Moreover, let G = (V,E) be a connected graph with capacities u ∈ RE++, and let s, t ∈ V be distinct. If
there is a feasible (s, t)-flow of value α ∈ R+ in G, then there is a feasible (s, t)-flow f in G, a collection P of
(s, t)-paths in G with |P| ≤ |E|, and a vector c ∈ RP+ with ‖c‖1 = α such that

f = Diag(sgn(f))
∑
P∈P

c(P )1E(P ). (6.25)
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In particular, if β ∈ R++ is the value of the maximum bottleneck of an (s, t)-path in G, then ‖c‖1 ≤ mβ.

Proof. Let f be a feasible (s, t)-flow of value α in G, and let D = (V,A) be the induced orientation of G with
respect to f . Define g := Diag(sgn(f))f . By the definition of induced orientation, g is an (s, t)-flow in D of
value α. Hence, proving the directed case of the statement yields the undirected case directly.

By Proposition 3.4, there is a collection of directed circuits C in D, a collection of directed (s, t)-paths P
in D with |C|+ |D| ≤ |A|, vectors b ∈ RC+ and d ∈ RP+ with ‖d‖1 = α such that

g =
∑
C∈C

b(C)1A(C) +
∑
P∈P

d(P )1A(P ).

Define
g′ :=

∑
P∈P

d(P )1A(P ).

By Proposition 3.4, g′ is an (s, t)-flow in D of value ‖d‖1 = α. Hence, Diag(sgn(f))g′ is an (s, t)-flow in G of
value α.

Let β ∈ R++ be the maximum bottleneck of an (s, t)-path in G. By the definition of maximum bottleneck,
and since every directed (s, t)-path in D is an (s, t)-path in G, for every P ∈ P, there is a ∈ A(P ) such
that ua ≤ β. Hence, if there is P ′ ∈ P such that c(P ) > β, then g′a > β for each a ∈ A(P ), which is a
contradiction since g′ is a feasible flow. Therefore, ‖d‖1 ≤ mβ.

Proposition 6.10. Let G = (V,E) be a connected graph with capacities u ∈ RE++, let 0 < ε ≤ 1, and
let s, t ∈ V be distinct. Then there is a spanning connected subgraph G′ = (V,E′) of G and capacities u′ ∈ RE′

such that

(i) 1 ≤ u′e ≤ 2m2/ε for each e ∈ E′, where m := |E|,

(ii) if f ′ ∈ RE′ is an (1−ε/2)-approximately maximum (s, t)-flow of G′, then f is an (1−ε/2)-approximately
maximum (s, t)-flow of G, where f ∈ RE is defined by fe := [e ∈ E′]f ′e for every e ∈ E.

Moreover, the graph G′ and the capacities u′ can be computed in time O(m+ n logn), where n := |V |.

Proof. Let OPT be the value of a maximum (s, t)-flow in G and let β ∈ R be the maximum bottleneck of
an (s, t)-path in G with respect to the capacities u. The value of β can be computed in time O(m logn)
by computing a spanning tree T of maximum weight in G, and then computing the bottleneck of the
unique (s, t)-path P in T . By Proposition 3.4, we have that β1A(P ) is an (s, t)-flow in G of value β. Moreover,
by Proposition 6.9, there is a maximum (s, t)-flow f in G such that OPT = |f | ≤ mβ and

‖f‖∞ ≤ mβ. (6.26)

Thus, we have
β ≤ OPT ≤ mβ. (6.27)

Define u′ ∈ RE by

u′e :=
{
mβ if ue > mβ,

ue otherwise,
∀e ∈ E.

It is easy to note that the value of a maximum flow in G with capacities u′ is no greater then OPT. In the
other hand, by (6.26) the flow f is feasible in G with capacities u′. Hence the value of a maximum flow in G
with capacities u′ is OPT. Define F := { e ∈ E : ue < εβ

2m} and define E′ := E \ F . Moreover, define the
graph G′ := (V,E′) and let u′′ ∈ RE′++ be the restriction of u′ to E′. Let us show that

(6.28)the value of a maximum flow in G′ with capacities u′′ is at least OPT−εβ/2.
To see this, let C and P be collections, and let b ∈ RC and d ∈ RP+ be vectors as in Proposition 3.4 such that

f = Diag(sgn(f))
∑
C∈C

b(C)1C +
∑
P∈P

d(P )1P .
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Note that, for each e ∈ E, we have |fe| ≤ d(P ) for every P ∈ P with E(P ) 3 e. Hence, since f is feasible,

d(P ) ≤ εβ

2m, ∀P ∈ P with E(P ) ∩ F 6= ∅. (6.29)

Define P ′ := {P ∈ P : E(P ) ∩ F = ∅} and C′ := {C ∈ C : E(C) ∩ F = ∅}. Hence, by (6.29),∑
P∈P′

d(P )′ ≥
∑
P∈P

d(P )− εβ

2 = ‖d‖1 −
εβ

2 = OPT−εβ2 .

Hence, by Proposition 3.4, we have that

f ′ := Diag(sgn(f))
∑
C∈C′

b(C)1C +
∑
P∈P′

d(P )1P

is a feasible flow (with respect to u′) of value at least OPT−εβ/2. By construction, we have f ′e = 0 for
each e ∈ F . Hence, restricting f ′ to E′ yields a feasible flow of value at least OPT−εβ/2 in G′ with
capacities u′′. This ends the proof of (6.28).

Let OPT′ be the value of a maximum flow in G′ with capacities u′′. By (6.28),

α′ ≥ OPT−εβ2
(6.27)
≥

(
1− ε

2

)
OPT ≥ 0,

where in the lest inequality we used that ε ≤ 1 and that OPT ≥ 0. Let f ′ be a (1 − ε/2)-approximately
maximum (s, t)-flow in G′ with capacities u′′. Note that we may extend f ′ to a feasible (s, t)-flow in G with
capacities u by setting to 0 the flow on the edges of E \ E′. Moreover,

|f ′| ≥
(

1− ε

2

)
OPT′

(6.3)
≥
(

1− ε

2

)2
OPT ≥ (1− ε) OPT .

Hence, if we have a (1− ε/2)-approximately maximum (s, t)-flow in G′ with capacities u′′, we can extend this
flow to a (1− ε)-approximately maximum (s, t)-flow in G with capacities u. It only remains now to construct
capacities that obey the bound from (i).

Let u′′min := min{u′′e : e ∈ E′}. It is easy to see that a flow f is feasible in G′ with capacities u′′ if and
only if (u′′min)−1f is feasible in G′ with capacities (u′′min)−1u′′. Since max{u′′e : e ∈ E′} ≤ mβ by construction,
we have

1 ≤ u′′minu
′′
e ≤ mβ, ∀e ∈ E′.

Hence, the graph G′ equipped with capacities (u′′min)−1u′′ satisfies the properties (i) and (ii) from the
statement.

In Algorithm 6.3 we present the pseudocode to compute a (1− ε/2)-approximately maximum (s, t)-flow
in a graph computed by Proposition 6.10. Let us analyze its running time. Let the graph G = (V,E) with
capacities u, vertices s, t ∈ V and error tolerance ε > 0 be the input to Algorithm 6.3. Define δ := ε/12.
The (δ, 3

√
m/δ)-oracle used in Algorithm 6.3 runs in time Õ(m log(1/ε)) by Corollary 6.5 since 1 ≤ ue ≤ 2m2/ε

for every e ∈ E. Hence, by Corollary 6.8, the algorithm O used in Algorithm 6.3 runs in time Õ(m3/2ε−5/2).
Moreover, since Algorithm 6.3 makes O(logm/ε) calls to O, we conclude that it runs in time Õ(m3/2ε−5/2).

For the correctness of the algorithm, let us show that, at the beginning of each iteration, the following
invariant holds:

(6.30)Let O be the algorithm from Corollary 6.8. Then when O receives as input the graph G
with capacities u, distinct vertices s, t ∈ V , error tolerance δ ∈ R+, and target flow
value α ∈ R+, it fails if α = r, and it succeeds if α = l.

Let OPT ∈ R+ be the value of a maximum (s, t)-flow in G. In the first iteration l = 0, and hence O
trivially succeeds in this case. Moreover, since ue ≤ 2m2/ε for each e ∈ E, by the flow decomposition result
from Proposition 6.9, we have OPT ≤ 2m3/ε. Moreover, suppose O succeeds when given as input αf . By
Corollary 6.8, O returns a feasible (s, t)-flow of value at least (1 − 3δ)r. However, notice that in the first
iteration we have

r >
2m3

ε(1− 3δ) =⇒ (1− 3δ)r > 2m3

ε
≥ OPT,
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Algorithm 6.3 Binary Search with MWU
Input: An error tolerance ε > 0, a connected graph G = (V,E) with capacities u ∈ RE++ such that 1 ≤ ue ≤

2m2/ε, and distinct vertices s, t ∈ V , where m := |E|.
Output: An approximately (1− ε/2)-approximately maximum (s, t)-flow of G with capacities u.
m← |E|
l← 0 and r ← 2m3

ε(1−3δ) + 1
δ ← ε/12
Let O be the algorithm from Corollary 6.8 using a (δ, 3

√
m/δ)-oracle from Corollary 6.5.

repeat
α← (l + r)/2
Query O with the graph G, capacities u, error tolerance δ and target flow value value α.
if O fails then r ← α
else

Let f be the resulting (s, t)-flow returned by O
l← α

until r − l ≤ ε/4
return f

which is a contradiction. Hence, O fails in this case. It is easy to see that (6.30) still holds in the following
iterations of Algorithm 6.3. The following lemma completes the proof of the correctness of the algorithm.

Lemma 6.11. Let G = (V,E) be a connected graph with capacities u ∈ RE++ with u ≥ 1, let s, t ∈ V be
distinct, and let ε > 0. Define δ := ε/12 and let O be the algorithm from Corollary 6.8 using a (δ, 3

√
m/δ)-

oracle from Corollary 6.5. Let l, r ∈ R+ such that l ≤ r and that r − l ≤ ε/4. We have that f is
an (1− ε/2)-approximately maximum (s, t)-flow in G if the following property holds:

(6.31)when O receives as input the graph G with capacities u, vertices s, t, error tolerance δ
and target flow value α ∈ R+, it fails if α = r, and it succeeds if α = l, returning
an (s, t)-flow f in the latter case.

Proof. Let OPT ∈ R+ be the value of a maximum (s, t)-flow in G. By Corollary 6.8, we know that r ≥ OPT
since O fails when receives as input the graph G with capacities u, vertices s, t, error value δ and target flow
value r. Moreover, since u ≥ 1, and since G is connected, by Proposition 3.4 there is a feasible flow of value 1.
Thus, OPT ≥ 1. Hence,

ε

4 ≥ r − l ≥ OPT−l =⇒ l ≥ OPT−ε4 ≥ OPT
(

1− ε

4

)
.

Moreover, by Corollary 6.8, we have |f | ≥ (1− 3δ)l = (1− ε/4)l. Therefore,

|f | ≥
(

1− ε

4

)
l ≥

(
1− ε

4

)2
OPT ≥

(
1− ε

2

)
OPT .

Theorem 6.12. There is an algorithm that takes as input

• a connected graph G = (V,E),

• edge capacities u ∈ RE ,

• distinct vertices s, t ∈ V ,

• a value 0 < ε ≤ 2/3,

and computes as output a (1− ε)-approximately maximum (s, t)-flow in G with respect to the capacities u.
Moreover, this algorithm runs in time Õ(m3/2ε−5/2).

61



Proof. By Proposition 6.10, to compute an (1− ε)-approximately maximum (s, t)-flow in G with capacities u,
it suffices to compute an (1− ε/2)-approximately maximum (s, t)-flow in a subgraph G′ = (V,E′) with edge
capacities u′ ∈ RE′++ such that

max
{
ue
uf

: e, f ∈ E′
}
≤ 2m2

ε
. (6.32)

Moreover, we can computeG′ and the capacities u′ in timeO(m+n logn). To compute an (1−ε/2)-approximately
maximum (s, t)-flow in the graph G′ with capacities u′, we can use Algorithm 6.3, which is correct by
Lemma 6.11, and runs in time Õ(m3/2ε−5/2).
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