Almost Linear Time Algorithms
for Flows in Graphs

VICTOR S. PORTELLA

SUPERVISOR: MARCEL K. DE CARLI SILVA

February 21, 2017

This work is partially supported by Sdo Paulo Research Foundation (FAPESP) grant n°® 2015/24747-3

Abstract

We study the main, high-level ingredients of the nearly-linear time Laplacian solver of Spielman and Teng
and their application to finding an approximately maximum flow in a graph in almost-linear time. We start
with basic tools from linear algebra, such as properties of symmetric and positive semidefinite matrices, as
well as the Moore-Penrose pseudoinverse. We then move to the Laplacian matrix of a graph and some of
its applications, such as computing the number of spanning trees (the so-called Matrix Tree Theorem) and
approximating the sparse cuts of a graph.

Next we describe the well-known Conjugate Gradient Method, an iterative algorithm to approximate a
solution to a linear system, and use this method with preconditioning to construct an efficient Laplacian
solver. In the end, we describe an algorithm to find an approximately maximum flow in undirected graphs
in almost-linear time with the help of nearly-linear Laplacian solvers and the multiplicative weights update
method.

While the main algorithms covered here are not the fastest known, they contain the majority of the
ingredients and tools from the latter.

Contents

1 Introduction

2 Preliminaries

2.1 Basic Notation and Definitions
2.2 Data Structures L e
2.3 Spectral Decomposition of Symmetric Matrices oL
2.4 Moore-Penrose Pseudoinverse e
2.5 The Spectrum of the Adjacency Matrix
2.6 Incidence Matrices

3 The Graph Laplacian

3.1 Flowsin Graphs e
3.2 Electrical Flows e
3.3 Counting Spanning Trees L e
3.4 Sparse Cuts L e
4 The Conjugate Gradient Method
4.1 Improving Gradient Descent e
4.2 The Gram-Schmidt Method and Krylov subspaces
4.3 The Conjugate Gradient Iteration
4.4 FError Analysis with Polynomials o
4.5 TImproving the Analysis with Chebyshev Polynomials
5 Fast Laplacian Solvers
5.1 Preconditioning e
5.2 A Fast Solver e
6 Maximum Flow in Graphs using Electrical Flows
6.1 Computing Approximately Electrical Flows
6.2 Multiplicative Weights Update Method
6.3 Calculating an Approximately Maximum Flow
References

20
21
22
25
27

30
30
32
35
37
39

43
43
45

49
49
53
58

63

Chapter 1

Introduction

The idea to call an algorithm efficient if its running time is asymptotically bounded by a polynomial
in the input size was first introduced by Edmonds [6] and Cobham [5] in 1965. Since then, this concept
was broadly adopted by researchers and algorithm designers. Recently, the problem of processing data sets
so large that the use of traditional tools is impractical is becoming more and more important. When it is
necessary to handle such data sets, which are usually called Big Data, the use of algorithms with quadratic
running time is already impractical. Moreover, when seeking efficiency, one may be willing to accept an
approximate answer if such an answer can be obtained quickly (or at all). This is one of the motivations
behind research in the development of nearly-linear time algorithms, that is, algorithms with input size m that
run in time O(m log®m) for some positive constant ¢. In this context we use the O (read soft-O) notation,
that is, we say that an algorithm runs in time O(f(m)) if it runs in time O(f(m)log®m) for some positive
constant c.

A major breakthrough in the area of nearly-linear time algorithms was Spielman and Teng’s Laplacian
solver [13]. This algorithm solves a linear system of the form Lx = b, where L is the Laplacian matrix of
a graph G, in time O(mlog(1/¢)), where m is the number of edges of G and € > 0 is the error tolerance.
Graph-theoretic ideas such as sparsifiers and low-stretch spanning trees, together with ideas and tools
from numerical linear algebra, like preconditioning and the Conjugate Gradient method, are used in the
construction of this algorithm. Following their work, many researchers have developed more efficient and
simpler solvers [4, 8, 9, 10], bringing the running time down to O(m log® n), where n is the number of vertices
of the graph.

Nearly-linear time Laplacian solvers, with the aid of tools from numerical linear algebra and spectral
graph theory, have been used as a subroutine in almost linear time algorithms for a host of combinatorial
problems. This “Laplacian paradigm”, as proposed by Teng [15], is motivating research in algorithms that
joins linear algebra and graph theory. Moreover, many classical problems with known exact algorithms close
to the best possible running time in the traditional model are being revisited with the goal of developing
almost linear time approximation algorithms for them.

One of these revisited problems is that of finding a maximum flow in a graph with capacities on its edges.
This is one of the oldest and most studied problems in combinatorial optimization, and many algorithms to
other problems solve maximum flow problem instances as a subroutine. Although the maximum flow problem
has efficient algorithms that find an exact solution, they have a natural running-time barrier in the general
case of Q(mn) time (see [7]), which may be prohibitively expensive for massive instances of the problem.

In this monograph, we study the basic properties of the Laplacian matrix of a graph, many of the core
ideas used in Spielman and Teng’s solver, and later, we describe its applications to the maximum flow problem.
In Chapter 2, we recall fundamental properties of symmetric and positive semidefinite matrices. In Chapter 3,
we define the Laplacian matrix of a graph and study many of its properties and applications. In Chapter 4,
we describe the Conjugate Gradient method, a famous iterative algorithm for solving linear systems. We
also look into an application of this method in Chapter 5, where we state Spielman and Teng’s fundamental
result, describe preconditioning, and construct a O(m4/ 3log 1/¢) Laplacian solver. In Chapter 6, we present
the algorithm from [3] that approximately solves the maximum flow problem in time O(m3/2¢~5/2) using
electrical flows, Laplacian solvers, and the multiplicative weights update method.

Chapter 2

Preliminaries

2.1 Basic Notation and Definitions

This section contains basic definitions and notation that will be used throughout the remainder of the
text. The reader may skip this section and refer back to it when the need arises.

The set of natural numbers is denoted by N, the set of integer numbers by Z, the set of rational
numbers by Q, the set of real numbers by R, and the set of complex numbers by C. Let S € {Z,Q, R},
and define Sy = {s€S:5>0} and S;; = {s€S:s5>0}. Define [n] = {1,...,n} for each n € N.
Throughout this text we will use Minkowski’s notation, that is, if S is a set and f: S — W is a function, we
define f(S) :={ f(s): s € S}. For example, [n] —1={0,1,...,n —1}.

The Iverson bracket of a predicate P is defined by

P = {1 if Pis jcrue,
0 otherwise.
Moreover, when P is false, we consider that [P] is strongly zero, that is, the whole expression multiplied by [P]
is zero, even if there are invalid operations in the expression following the Iverson bracket. One example of a
case like that is the expression [z # 0]1/z for 2 € R, which we take to mean 0 when 2 = 0. Throughout this
text,
V' denotes an arbitrary finite set,

unless stated otherwise (one may think of it as being a set of vertices of a graph, which shall be defined
later). A partition of a set V is a collection S of nonempty subsets of V' such that SNT = @ for every
distinct S, T € S, and

Us=w

Ses

Define (Z) ={SCV:|S|=k} for every k € N.

The set of all functions from a set X to a set Y is denoted by YX, and if X = [n], we abbreviate
this notation to Y. Let f: X — R be a function. The support of f is supp(f) == {v €V : f(v) # 0}.
Let S C X. The restriction of f to S is denoted by f[g, and z* € S is a global minimizer of f over S
if f(z*) < f(z) for every x € S. Define

argmax f(z) == {z € §: f(x) > f(y) Vy € S},

zes
and
argmin f(z) ={x € S: f(z) < f(y) Yy € S}.
€S
Although argmin, g f(z) is a set, if [argmin,cg f(z)| = 1, we may write y = argmin, g f() instead

of y € argmin g f(z). Analogously for argmax, g f(z).

The big-O notation is an important tool to help us talk about the running time and space consumption of
algorithms, as well as the asymptotic growth of some functions. Let g: R — R be a function. Define

O(g(z)) ={f: R — R: there are zp € R and M € R, such that f(z) < Mg(z) for every x > x¢}.
Similarly, define
Qg(z)) ={f: R — R: there are o € R and M € R} such that f(z) > Mg(z) for every = > z¢}.

An important definition for this text which is not so well known as the classic Big-O definitions is the soft-O
notation, defined by

O(g(x)) = [O(g(x) log" g(x)),
k=0

that is, the soft-O notation “hides” the logarithmic terms.

We assume that the reader is familiarized with the definition of a vector space, and we denote the
dimension of a vector space V by dim(V'). If V is a real vector space, the span of a finite set S C V is the
subspace

span(S) = {chs eV:ce RS}.

ses

An inner product on a vector space V over R is a function (-,-): V x V — R such that
(i) (x,z) > 0 for every = € V, where equality holds if and only if x = 0;
(i) (z,y) = (y,z) for every x,y € V;

(iii) (ax + By, z) = alx, 2) + B{y, 2) for every o, f € R and every z,y,z € R.

Let S C V, where V is a vector space equipped with a inner product (-,-). Define the orthogonal
complement of S by
St :={veV:(vs)=0for each s € S}.

A norm on a vector space V over R is a function ||-||: V' — R, such that
(i) ||lz|| > 0 for every z € V, where equality holds if and only if 2 = 0;
(ii) ||ezx|| = |a|||z|| for every x € V and « € R;

(i) e+ gl < 12l + ly] for every z,y € V.

This last item is known as the triangle inequality. We note that every inner product (-, -) on a real vector
spacer V induces a norm given by
el = (z,2)"%, Ve eV

Let V and W be finite sets. The vector space of V x W matrices with real entries is denoted by RV*W.

We assume that the reader has a good knowledge about matrices. Let A € RV*W . The rank of A is the
dimension of the vector space spanned by the columns of A, and is denoted by rank(A). A known result
from basic linear algebra that we may use it that the dimension of the vector space spanned by the columns
of A is also rank(A). The transpose of A is denoted by AT. For each v € V and w € W, the entry in line v
and column w of A is denoted by A, ... Denote the identity matrix of appropriate size by I. Let S C V and
let T'C W. Note that A is a function A : V x W — R. A submatrix of A is a restriction of A as a function.
We will denote by A[S, T the restriction A : S x T'— R. We abbreviate A[S] := A[S, S]. Define S := [m]\ S.
If S = {i}, we may write i instead of {i}. Let A € R"*" and let 4, € [n]. The (ij)-principal minor of A
is A[i,j]. For each A € RV*W define the sets

Im(A) = {z € RY : x = Ay for some y € W} and Null(A) == {y ¢ RY : Ay =0},

which we call, respectively, the image and the null space of A. Let P € RV*Y. The matrix P is
a projection matrix or a projector if P2 = P. The matrix P is an orthogonal projector if it is a

projector and P = PT. Note that if P is a projector, then Pv = v for every v € Im(P). We say the the
matrix P is a projector onto some subspace S of RV if S = Im(P). Note that if P is an orthogonal projector,
then Null(P) = Im(P)~+. Moreover, one can show that the orthogonal projector onto a subspace S is unique,
which we denote by Projg.

A vector is a V x [1] matrix. We identify RV*[! with RV, and we equip RY with the euclidean (or
standard) inner-product, which is defined by

(z.y)=2"y Vx,yeRY.

If € RY and v € V, the v-th entry of x is denoted by x,. We note that functions of one variable can be
seen as vectors, and that the notation of vectors and functions will be used interchangeably. We denote by 1
the vector of appropriate size with ones in all its coordinates. Let i € V and define ¢; € RY by (e;); = [i = j]
for each j € V. The set where a vector e; lies in will not be explicitly stated when it is clear from context.
If (-,-) is an inner-product on a real vector space V, then a set S C V is orthogonal (with respect to (-, -))
if (u,v) = 0 for every distinct u,v € S. When the inner-product is not explicitly stated, we assume it to
be the euclidean inner-product. A subset of a vector space is orthonormal if it is orthogonal and each
of its elements has norm 1. The Hadamard product =z ® y € RY of two vectors =,y € RY is defined
by (z ®y); = zsy; for every i € V. Let f € RY. Define sgn: RV — {£1}V by sgn(f); == (=1)Mi<% for
eachi e V.

Theorem 2.1. If A € R™*", then Im(A) = Null(AT)*.

Proof. First, let us show that
Im(A) C Null(4T)*. (2.1)

Let z € Im(A). By definition of Im(A), there is y € R™ such that z = Ay. Hence, for each z € Null(AT),
(x,2) = (Ay,2) = (Ay) T2z = yT ATz = yT0 = 0.
This ends the proof of (2.1). Let us now prove that
Null(AT)+ C Im(A). (2.2)

We have that (2.2) holds if and only if Im(A)+ C Null(AT)1+, and the later set is Null(AT). Let z € Tm(A)*.
For every y € R"™, since Ay € Im(A), we have

0= (z,Ay) = 2T Ay = (AT2)Ty = (AT 2,y).
Since this holds for every y € R™, we conclude that ATz = 0. Hence, z € Null(AT). O
Whenever it is possible (and convenient), we will use Householder’s convention:
e greek letters for scalars, e.g. o, 8 € R;
e lower case letters for vectors, e.g. z,y € R™;
e upper case letters for matrices, e.g. A, B € R"*",

The function diag: RV*Y — RY extracts the diagonal of a matrix, and Diag: R — R"*V is defined
by Diag(x); ; = [i = jlz; for every x € RV and 4,7 € V. For each S C V, define 1g € {0,1}V by (1g); :=
[i € S] for every i € V. A relation which is simple but of fundamental importance for the text is that, for
any A € RV*V and any z € RV, we have

J?TAJ? = Z Z xiAi,jxj-

i€V jev
If A = Diag(y) for some y € R, we have

o Diag(y)r =Y aly;.
eV

Graphs are one of the objects of major interest throughout this text. A (simple) graph is an ordered
triple G = (V, E, 1), where V and E are disjoint sets and ¢: E — (‘2/) is a injective function. The elements
of V and E are the vertices and the edges of G, respectively, and v is the incidence function of G. An
edge e € F is incident to a vertex i € V if i € ¢(e). We say that 4,j € V are adjacent if ¢¥(e) = {i,5}
for some e € E. For a graph G, its vertex set is denoted by V(G), its edge set by E(G), and its incidence
function by ¥¢. A multigraph is an ordered triple G = (V, E,v) which is defined in a similar way to graphs,
but the incidence function goes from F to (‘2/) U (‘1/), and it does not need to be injective. Moreover, most
of the definitions for graphs may be adapted for multigraphs, and any differences will be explicitly stated.
If G is a multigraph, then e € E(G) is a loop if |pg(e)| = 1. Often it will be more convenient to say that a
graph G is an ordered pair (V, E) where E == {4(e) : e € E} (which is a multiset in the case of a multigraph).
Moreover, we may write ij € F instead of {¢,j} € E. A digraph is an ordered triple D = (V, A,) defined
in a similar way to a graph, but the incidence function v goes from A to V' x V, and the elements of A are
the arcs of D, which is denoted by A(D). Often it will be more convenient to say that a digraph D is an
ordered pair (V, A), where A := {4(a) : a € A(D)} is a multiset. If G = (V, E),) is a graph and S C V is a
set, then the cut (associated with S) is the set of edges

§(S)={e€E:y(e)=ij withie Sand j € V\ S}
Moreover, if D = (V, A,) is a digraph, S C V, and S := V' \ S, then define the sets
§(S)={acA:¢(a)eSxS} and 5o (S) ={a€ A:(a) € S xS}

An orientation of a graph G = (V, E,v) is a digraph G = (V, E,¢') such that for every e € E we have
that ¢'(e) = (i,7) or ¥'(e) = (4,1), where {i,j} = ¥(e). A weighted graph is a quadruple G = (V, E, ¢, w)
where (V, E,) is a graph and w € Rﬂ_ is a vector of weights on the edges of G. A weighted digraph is
defined analogously.

Let G = (V, E,v) be a graph. The degree (or valency) deg.(i) of a vertex ¢ € V is the number of
edges incident to i. The neighborhood Ng (i) of i € V' is the subset of vertices of G which are adjacent
to ¢. The subscript may be omitted when it is clear from context. We define A(G) = max;cy degq (7).
The graph G is regular if deg = A(G)1. A subgraph H = (V' E’, ¢) of G is a graph such that V' C
V, E' C E and ¢ = ¢ |g. The subgraph of G induced by S C V is the graph G[S] = (S, FE ¢ |g/),
where E' == {e€ E:¢y(e) CS}. Let S C V and define G — S = G[V \ S]. We may write G — ¢
instead of G — {i}. Let D = (V,E,¢) be a digraph. A walk (from vy to vg) in G (resp., in D) is a
sequence P = (vg, f1,v1, f2,..., fr,vr) where v; € V for each i € {0} U [k] and, for every i € [k], we
have ¥(f;) = vi—1v; (resp., ¥(f;) = (v;—1,v;)). The endpoints of P are vy and vy. We may omit the
edges in a walk when G (resp. D) is simple, thus writing P = (vp,v1,...,v;). The length |P| of a
walk P = (vo, f1,v1, fa,- -, fx, Ug) i k. A trail is a walk with no repeated edges. A path is a walk with no
repeated vertices. A walk is closed if its endpoints are equal. A circuit is a closed trail with no repeated
vertices (besides its endpoints). Let D = (V, A) be a digraph and let vg, v, € V. A walk is directed if
it is a walk in a digraph. If P is a walk (or a directed walk), we denote by V' (P) the set of vertices in P
and by E(P) the set of edges in P (or by A(P) the set of arcs in P in the directed case). A graph G is
connected if there is a walk in G with endpoints ¢ and j for every i, j € V(G). A component of a graph G
is a maximal connected subgraph of G. A graph (or digraph) is acyclic if it has no circuits (or directed
circuits for digraphs). A tree is a connected acyclic graph, and a vertex of degree 1 in a tree is a leaf. The
distance between two distinct vertices in a graph is the minimum length of a path between these two vertices.
Let G = (V, E,¢) be a graph. A subset of vertices S C V is independent if for every ¢,j € S, there is
no e € E such that ¢(e) = ij. A bipartition of a graph G is a partition of V(G) into two independent sets.
A graph is bipartite if it has a bipartition.

Lemma 2.2. For each z € R,
e’ >1+x.

Proof. Let us divide the proof in three cases. For x < —1 the statement is trivially true. Suppose that = > 0.

By definition,
o
=3
il
i=0

(@21

Since x > 0, each term of this series is nonnegative. Hence,

O i i
T __ D .
efg z'71+x+g >14x
i=0 =2

It is easy to see that the terms of this alternating serie decreases in modulus since 0 < y < 1. Hence,

> e

1=2

i

x [
20:>e*y=1—y+z(_ﬁ) >1—y. O
i=2 ’

2.2 Data Structures

We describe here data structures to represent some of the objects used in the algorithms described in this
text. The claims we use about the running time of many operations are valid using these data structures
(but one may use other data structure with similar running times). We will make it explicit when a result
depends on the data structures of this section. We will use arrays with indexes starting at 1.

To represent graphs and digraphs, we use adjacency lists. Let G = (V| E) be a graph, and set m = |E|
and n := |V|. To store a graph G = (V, E), for each i € V we maintain a linked list of the vertices 7 € V such
that ij € E. It takes time O(m + n) to construct this data structure, and it takes time O(m) to traverse all
the edges in this data structure. Moreover, depth-first search and breadth-first search run in time O(m + n)
on graphs represented by adjacency lists. To store a digraph D = (V, A), for each ¢ € V we maintain a linked
list of the vertices j € V such that (i,j) € A.

Most of the matrices we manipulate in this text are sparse, that is, most of the entries of the matrix are
zero. On these cases, storing the matrix in a 2-dimesional array will have many entries with zeros, which
is inefficient for many reasons. We can improve this by exploiting the sparsity of the matrix by using a
special data structure to store these matrices called Compressed Sparse Row (CSR). To store a sparse
matrix A € R™*™ with k € N nonzero entries, this data structure uses three arrays VA, RA, and CA defined
in the following way:

e VA hassize k and, for each ¢ € [k], VA[i] stores the i-th nonzero entry of A in a left-to-right top-to-bottom
order;

e RA has size k + 1 and is defined recursively as follows

— RA[l] == 0;
— RA[i] == RA[i — 1]+ #;_; for each i € [k+ 1]\ {1}, where z; € N is the number of nonzero elements
on the i-th row of A.

e CA has size k and, for each i € [k], CAJi] stores the index of the column of the i-th nonzero entry of A

in a left-to-right top-to-bottom order.

This way, for each ¢ € [k] we will have that
VA[RA[i]) +1,..., RA[i + 1]] are the nonzero elements of the i-th row of A, (2.3)

and the index of the column of the entry stored in VA[i] is CA[é]. For example, for the matrix

b

I
B~ o oo
co = o
oo oo
=R=N N

its representation with the CSR data structure would be
VA=(1 2 6 4), RA=(0 0 2 3 4), CA=(2 4 3 1).

To left-multiply a vector (represented by an array) by a matrix represented by CSR, one just iterates through
the rows of the matrix using (2.3), and since we have access to the indices of the columns of each element,
we can easily do the inner product of this row with a vector. Hence, this data structure allow us to do left
matrix-vector multiplication in time O(max{k, m}). Moreover, if A is a triangular matrix, it is easy to see
how to solve a system of the type Az = b in O(max{k, m}) through backwards or forward substitution.

2.3 Spectral Decomposition of Symmetric Matrices
Let A € RV*YV and set n := |V|. The eigenvalues of A are the n roots of the polynomial
A det(A — A).

A nonzero vector v € R such that Av = \v for some eigenvalue A of A is called an eigenvector of A
associated to A. The matrix A is symmetric if A = AT, and we denote the set of all real symmetric
V x V matrices by SV. It can be proved that if A € SV, then all the eigenvalues of A are real. The
function At: SV — RIVI extracts all the eigenvalues of a matrix in non-increasing order. The function AT is
defined analogously with non-decreasing order. Define A\, =)\f and Apin =)\I. An interesting property is
that, for any matrices A € R™*™ and B € R"*™, the eigenvalues of AB are the same of BA, except maybe
for the multiplicity of the eigenvalue 0. We will now prove this result in the case of square matrices.

Proposition 2.3. Let A € R"*" be a matrix. Then there exists a sequence (Ay),, of invertible matrices
in R™*"™ distinct from A such that limy_,o, Ar = A.

Proof. Let p(\) = det((1 — A\)A + AI). Note that p()) is a polynomial in A of degree at most n, so p(\) has

at most n real roots. Let r be the smallest positive real root of p(\) if one exists, otherwise define r := 1. Let

T T
Ap=(1- " Va+ "1 .
k (k+2> tiia!l VkEN

Note that r/(k + 2) € (0,r) for all k£ € N. Therefore,

r

Hence, Ay, is invertible of all £ € N. Moreover,

k—o0

Lemma 2.4. If A, B € R" "™ then AB and BA have the same eigenvalues.

Proof. Let (Bk);io be a sequence of invertible matrices as in Proposition 2.3 that converges to B, let k € N,
and let ¢t € C. Then

det(ABy — tI) = det(ABy, — tB; ' By) = det((A — tB, ") By,) = det(A — tB;, ") det(By,)
= det(By(A — tB; ")) = det(ByA — tI).

Hence, det(ABy, — tI) = det(BrA — tI). Since the determinant of a matrix is in fact a polynomial in the
entries of A, it is then a continuous function. Hence, we find that

det(AB —tI) = klim det(ABy —tI) = klim det(BrA —tI) = det(BA — tI). O
—00 —00

A matrix Q € RV*W with |V| = |W] is orthogonal if QT @Q = I. Note that if a matrix @ is orthogonal,
then its columns form a orthonormal set. Moreover, the trace Tr : RV*Y — R is defined by

Tr(A)=> Au, VARV

eV

Let A € RV*W and B € R"W*V. The fact that

TI‘(AB) = Z Z Ai,ij,i = Z ZBj7iAi»j = TI‘(BA)

i€V jEW JEW icV
may be used without mention. We state the following theorem without proof.

Theorem 2.5 (Spectral Decomposition). If A € S™, then there exists an orthogonal matrix @ € R™*" such
that A = Q Diag(A(A))QT. In particular, there exists an orthonormal basis {q1,...,q,} of R™ such that

A=Y N (Al

Corollary 2.6. If A € S”, then Tr(A) = 17A}(A) and det(A) = [T/, A\ (A).

Proof. By Theorem 2.5, we have A = Q Diag(A*(A))QT, for some orthogonal matrix Q € R"*". Hence,
Tr(A) = Tr(Q Diag(A*(4))Q") = Tr(Diag(A*(4))Q" Q) = Tr(Diag(X*(4))) = 17 X*(4)

and

det(A) = det(Q Diag(AM(A))QT) = det(Q) det(Diag(A*(A))) det(QT)

= det(Diag(A*(A))) det(QQ") = det(Diag(A*(A))) = [[A1 (4). O
i=1

Corollary 2.7. If A € S*, then

TA TA
Amax(4) = max r o and Amin(4) = min JCTJ
zeR\{0} zTz

2.4
zerRm\{0} zTx (24)

Proof. Let @ € R™™™ be an orthogonal matrix as in Theorem 2.5 and let x € R™ \ {0}. Then z = Qc
for ¢ :== QT x. Therefore,
2T Ax = 27 Q Diag(\M(A) QT = ¢ Diag(\H(A))e. (2.5)

Moreover,

n

¢ Diag(A\H(A))e = Zn: X(A)e] < Amax(A) D€ = Amax(A)e" ¢ = Anax (A" QT Qr = Amax(A)z"z (2.6)
i=1

i=1
with equality if ¢ = ey, i.e. © = Qe;. Analogously,
T Diag(M(A))e > Apin(A)z Tz, (2.7)

with equality if ¢ = e,, that is, if x = Qe,. Hence,

s @D (2.6) -
Amin(A)z'z < ¢ Dlag()\i(A))c < Amax(A)z” 2, (2.8)

where the second inequality holds with equality for © = Qe;, and the first inequality holds with equality
for x = Qe,. Therefore, (2.8) together with (2.5) yields

2T Ax

Ty

Amin(14) S S Amax(A)a (29)

where equality holds in the cases cited above. O

A generalization of the above corollary is the following theorem, which we state without proof.

Theorem 2.8. Let A € S™. If {¢1,- - , gn} is an orthonormal set such that g; is an eigenvector of A associated
with)\?(A) for each i € [n], then for every k € [n],

TA
)\E(A) = min{ UvTvv cv e R"\ {0}, vTg; =0Vie k- 1]}

v Av " T .
:max{ Ty v e R\ {0},v qi:0Vz€[n]\[k‘]}.
The operator norm of A € R™*" is

|Ally == max ||Az||. (2.10)

llzll <1
Corollary 2.9. If A € S”, then ||A||; = max{|Amax(A)], [Amin(A4)}.

Proof. Note that the maximum in (2.10) is attained by a unit vector. Let @ € R™*™ be an orthogonal matrix
as in Theorem 2.5. Then,

1All3 = ﬁfb}lﬂflfclf = max |Q Diag(A(4))Q" ||

< max [|Q[|3|Diag(A*(A) [511QT I3 l2]|* = [[Diag(A*(4))]5

—l=l=t

" Diag(A(4))%y
= max 4y Diag(M(A))2y = max y
e s (A% yeR™\ {0} yTy

= Amax(Diag(AH(A))?) = max{Amin(A4)%, Amax(4)?}.

Therefore,
[[Ally < max{[Amin(A)]; [Amax(A)[}-

It only remains to show that || Ay > max{|Amin(A4)], | Amax(A)|}. Let gmin, gmax € R™ be unit eigenvectors
associated, respectively, with the eigenvalues Apin(A) and Apax(A). Then,

[Agmin| = Amin (A and [Agmax|| = [Amax(A)]- N

A matrix A € S” is semidefinite if z7 Az > 0 for every z € R” or if 7 Az < 0 for every z € R™. A
matrix A is indefinite if it is not semidefinite. If 27 Az > 0 for every € R™ \ {0}, then A is positive
semidefinite. Similarly, if 27 Az < 0 for every z € R™ \ {0}, then A is negative semidefinite. In the case
where the inequalities are strict the matrix A is positive definite or negative definite, respectively. For
every A, B € S, we write A = Bor A > B if A— B is positive semidefinite or positive definite, respectively.
Denote by S the set of positive semidefinite matrix in S”. Similarly, denote by S} | the set of the positive
definite matrices on S™. We may use the next proposition without mentioning it.

Proposition 2.10. Let X € S® and let L € R™*™. If X *= 0, then LXLT > 0. Moreover, if m = n and L is
non-singular, then LXL” > 0 implies that X > 0.

Proof. If X = 0, then for every h € R™ we have that
RTLXLTh = (LTh)X(LTh) > 0.

Using what we just proved, if m = n and L is non-singular, then LX LT implies that X = L~'LXLT(LT)~! =
0. O

Let A € ST. A matrix AY/2 € S” is a square root of A if (41/2)2 = A. The next proposition shows that
such a matrix is unique, and it shows how to construct it from the spectral decomposition of the matrix.

Proposition 2.11. Let A € S7. Then A has a unique square root matrix A2 ¢ S%. Moreover, if A =
Q Diag(M(A))QT, where Q € R™*" is an orthogonal matrix, then A'/? = Q Diag(1)Q”, where y € R" is
defined by p; == AY(A)'/2 for each i € [n], and Im(A) = Im(A'/?).

Proof. Let @ € R™ ™ be an orthogonal matrix such that A = @ Diag(M(A4))QT, and define ¢; = Qe;
for each i € [n]. Let A = {X'(A): i€ [n]}, and let Q(\) := {¢ : i € [n] and Ag; = Ag;} for each A € A.
Define Py, = > gea(\) qq™ for each A € A. Note that Py is the orthogonal projector onto the subspace spanned
by the eigenvectors of A associated with A € A. Hence,

A= QDiag(\(4))Q" = Z X(A)giq! = Z APy
i=1 XEA

Moreover, define i € R™ by ;== XY (A)'/2 for each i € [n]. Then,

A2 = QDiag(p)Q" =Y A\ (A)2qiq] =D AN/?Py.
i=1 AEA
Let us show that
if B € ST is such that B> = A, then B=3,_, A\/2P,. (2.11)

Let B € St be such that B? = A, and let z € R™ be an eigenvector of B associated with an eigenvalue u € R
of B. Note that Az = B%?xz = p?z. Hence, if z € R™ is an eigenvector of B associated with the eigenvalue p €
R, then x is an eigenvector of A associated with the eigenvalue u?. Hence, for each i € [n],

Null(\}(B)I — B) C Null(A\}(B)?I — A). (2.12)

Let us show that

equality holds in (2.12) for every ¢ € [n]. (2.13)
For each i € [n], define L; := Null(/\j(B)I —B) and R; == Null()\j(B)QI — A). Since A and B are symmetric,
we have that if 4, j € [n] are distinct, x € L;, and y € L;, then 27y = 0. Analogously, we have that if i, j € [n]
are distinct, x € R;, and y € R;, then Ty = 0. Hence,

L; C LjL and R; C RjL, for every distinct 4, j € [n]. (2.14)
By Theorem 2.5, there is a basis {uy,...,u,} of R™ such that, for each i € [n], there is j € [n] such
that u; € L;. Hence,

if z € R", then there are l,...,l,, € R" such that [; € L; foreachi € [n], and x =) . | ;. (2.15)

Suppose there is € R; \ {0} such that « ¢ L; for some j € [n]. We may suppose that = € Lj- since we may
take the orthogonal projection of x onto Lj-, and such a projection is not zero since « ¢ L;. By (2.15), there
are l1,...,l, € R" such that I; € L; for each i € [n], and . = > ; ;. Since x € le, we have that

0=1z=> Ul =|i|> = 1;=0.
i=1

Since # 0, there is k € [n] \ {j} such that [, # 0. Since Iy € Ly C Ry € R by (2.14), and since z € R;,

we have that .

0="0z=> I{li=|k|*#0,

i=1

a contradiction. This ends the proof of (2.13). Hence, for each i € [n], we have)\f(B)2 = /\Z-i(A) and
since A (B) > 0, we conclude that AY(B) = AY(A)Y/2 for each i € [n]. Therefore, for each A € A, we
have Bq = \'/2q for every ¢ € Q(\). Since {q1,...,¢,} is a basis of R", this ends the proof of (2.11). O

Proposition 2.12. If A € §7 and z € R™, then z € Null(4) if and only if 27 Az = 0.

Proof. If z € Null(A), it is clear that 27 Az = 0. Suppose now that 27 Az = 0. Then,

0=aTAz =||AV?2]? = A2 =0 = Az =0 = z € Null(A). O

10

Theorem 2.13. Let X € S”. Then the following are equivalent:
(i) X = 0;

)

(i) MH(X) > 0;

(iii) There are m € N, a vector u € R7", and {h1, ..., hy} C R™ such that X = Y1, pu;h;hl
)
)

117

(iv) There are m € N and B € R"*™ such that X = BBT;

(v

Proof. [(i) = (ii)]: Since X = 0, we have hT Xh > 0 for every h € R™. Hence, by Corollary 2.7, we have
that Apin(X) > 0.
[(ii) = (iii)]: Follows immediately from Theorem 2.5.

J:
nxm . /2 y
[(ili) = (iv)]: Define H € R™*™ such that He; := M; h; for every i € [m]. Then,

=1 =1
m

_ H(Z eief)HT — HHT.
=1

[(iv) = (i)]: Note that for every h € R™,

For each S € S, it holds that Tr(X.S) > 0.

KW' Xh=hT"BBTh =|BTh|* > 0.

At this point, we know that properties (i)—(iv) are equivalent.
[(iii) = (v)]: For every S € S%,

Tr(XS) = Tr(i uihihiTS) - im Tr(h:hTS) = ijm Tr(hT Shy) = iuih?Shi > 0.
1=1 =1 =1 =1

[(v) = (i)]: Let y € R™. Since we already showed that properties (i) and (iv) are equivalent, then yy”
positive semidefinite. Hence,
0 < Tr(Xyy") = Tr(y" Xy) = y" Xy. O

Lemma 2.14. Let M € R™*™ be a block matrix such that

A B

v=(& D),
where A, B,C and D are matrices of appropriate size, and A is invertible. Then, det(M) = det(A) det(D —
CA™1B).
Proof. Note that
M= I 0\ (A 0 I A'B
—\c4a t 1J\0 D-CA'B)\0O 1 ’

Taking the determinant on both sides of the equation yields det(M) = det(A) det(D — CA~!B). O

Lemma 2.15 (Schur Complement Lemma). Let X € S™, let U € R™*™ and let T' € S’ . Then

_ (T UT 1T
M._<U X)tO(z»XtUT U*.

Moreover, we have that M > 0 if and only if X = UT~'UT.

11

Proof. Note that
I 0\ (T 0 I 177'U7"
<UT_1 I) (0 X—UT‘lUT> <0 1) =M. (2.16)

Let k :== m +n, let L € R¥** be the lower triangular matrix on the left of (2.16) and let D € S* be the block
diagonal matrix on the middle of (2.16). Note that

(I o0
L (—UT—1 1)

Hence, by Proposition 2.10, we have that M = LDLT > 0 if and only if D = 0. Since T > 0, we can
conclude that D = 0 if and only if X — UT~'UT > 0. In particular, we have that D = 0 if and only
it X —UT~'UT ~ 0. O
Proposition 2.16. Let A € S" be a matrix, and let r := rank(A). Then, there are S C [n] with |S| =,
and R € R%*S such that rank(A[S]) = r, and

A:(é)ﬂﬂu R).

Proof. Since rank(A) = r, there is S C [n] with |[S| = r such that { Ae; : i € S} is linearly independent,
and S is a maximal set with such property. Hence, A[[n],] has full rank, and for every j € S, we have
that { Ae; : i € S} U {Ae;} is linearly dependent. Hence, there is R € RS* such that, for each j € S,

Al[n], S]Re; = Ae;.

Hence, we have A[[n], S]R = Al[n], S],. In particular, A[S|R = A[S,S] and A[S,S]R = A[S]. Since A is
symmetric, we have that
A[S, S] = A[S, S]T = RTA[S]" = RT A[S)].

Hence, _ _
A[S] = A[S, S]R = RT A[S]R.

(s) -l) -

Theorem 2.17. If X € S”, then

Therefore,

(i) X > 0if and only if det(X[{1,...,4}]) > 0 for each i € [n];
(ii) X = 0 if and only if det(X[S]) > 0 for each S C [n].

Proof. Let X € S™. Let us first show that

If X = 0, then X[S] > 0 for every S C [n]. In particular, if X > 0, then X[S] > 0 for (2.17)
every S C [n].

Suppose X = 0, let y € R%\ {0}, and define z € R” by
zi = [i € Sy, Vi € [n].

Hence,
yI'X[Sly=2"Xz2>0,

where the above inequality is strict if X = 0. This ends the proof of (2.17). Let us now prove (i).

Suppose X > 0, and let k € [n]. By (2.17), we know that X[{1,...,k}] = 0. Then, by Theorem 2.13, we
have A (X[{1,...,k}]) > 0. Hence, by Corollary 2.6 we have det(X[{1,...,k}]) = [T/, A(X[{1,...,k}]) > 0.
Suppose now that det(X[{1,...,k}]) > O for each k € [n]. If n = 1, the statement is trivial. Hence,

12

suppose n > 1. Define A == X[{1,...,n — 1}], let w € R"~! be the restriction of Xe; to [n — 1], and
define o := X,,,,. Then,
A wu
x=(r 1)

Since det(A) = det(X[{1,...,n — 1}) > 0, we have that A is non-singular. By Lemma 2.14, we know
that det(X) = det(A)(a — uT A~'u). Since det(X) and det(A) are positive, we have that a —u” A= u > 0.
By Lemma 2.15, we have that X > 0 if and only if o — u” A~ u > 0. Hence, X = 0. This ends the proof
of (i). Let us now prove (ii).

Suppose that X = 0 and let S C [n]. By Theorem 2.13, we have A*(X[S]) > 0. Hence, by Corollary 2.6 we
have det(X[S]) = [}, AH(X[S]) > 0. Suppose now that det(X[S]) > 0 for each S C [n]. By Proposition 2.16,
there are S* C [n] and R € R°*“ such that X[S*] has full rank, and

X = (RIT> XS (I R).

Hence, if X[S*] > 0, by Proposition 2.10 we conclude that X > 0. Hence, it suffices to show that
if A € SF is such that det(A[S]) > 0 for each S C [k], and A has full rank, then A = 0. (2.18)

Let A € S¥ be as in the above claim. Let us prove (2.18) by induction on k. If k£ = 1, then A € R. Hence,
since det(A) > 0, and since A has full rank, we conclude that A > 0. Suppose now that k > 1. Define

(f; 2) = X[S"], (2.19)
where B € S¥~!, z € R¥~!, and o € R. Since A has full rank and det(A) > 0, we know that
det(A) > 0. (2.20)
Let us show that
a>0. (2.21)

First of all, note that 0 < det(A[{k}]) = Akr = a. Moreover, for each i € [k — 1], we have

0 < det(A[{i, k}]) = det (Biji i’) =aB;,;, — 1} = 27 <abB;;.
Hence, if @ = 0, then « = 0, a contradiction since A has full rank. This ends the proof of (2.21). Hence, by

Lemma 2.14,
(2.20) L
0 < det(A) = adet(B - jxx”).

This together with (2.21) imply that det(B — Lxz”) is positive. Hence, B — 2zz” has full rank. Moreover,
by Lemma 2.14, for each J C [k — 1],

det((B — Laa™)[J]) = édet(A[J U {k}]) > 0.

Hence, by the induction hypothesis, B — émxT > 0, and by Lemma 2.15 we conclude that X[S*] > 0, ending
the proof of (2.18). O

One consequence of the above theorem is that
if a matrix A € S} is such that A;; = 0 for some i € [n], then Ae; = (el A)T = 0. (2.22)
To see that, suppose there is ¢ € [n] such that A4;; =0 and let j € [n] \ {i}. Then

0 Ai’j

0 < det(A[{i, j}]) = det (A ")Agj — A, =0

Jyi 7,3

We may use the above remark without referencing it.

13

Theorem 2.18. Let A € S}. Define

1 ifn=1,
Ly = T T _
A o> 0] 0 ifA=("" and B := B — [a > 0] tuu”
[a>0]Lu Lg u B @
and define
Al,l if Ais 1 x 1,
Dy = T T N
A o 0 ifA= " " and B = B — [a > 0] 2uuT.
0 DB u B @

Then A = LADALa.

Proof. Let us prove the above statement by induction on n. If n = 1, we have that LyDaL% = A;; = A.
Suppose that n > 1 and that
a u”
A= (u B’

where u € RPN} and B € S\, Define B := B — [a > 0]2uu”. We have
r_ ([a>0 07\ [(a 0T [[@a>0] [a>0]LdT
LaDalL <a>o;u Lsz)\0 Dj 0 Ly

[a > 0]
_ (o> 0] S)T~ [a > 0] [a>011 ul
({[a > O]F LBDB)[£> (()) S)

a>0lu [a>0tuu” + LgDgLt
By the induction hypothesis, we have that LzD B’Lg = B. Thus,
[a>0)tuwu” + LyDsL% = B.

Moreover, since A > 0 we have that if & = 0, then v = 0. Hence u = [@ > 0Ju. Therefore, the result
follows. O

Corollary 2.19 (Cholesky Decomposition). If A € S}, then there is L € R™" lower triangular such that
A=LL".

Proof. By Theorem 2.18 there are D € S'} diagonal and L € R"*" lower triangular such that A = LDLT.
Note that if L == LD'2 then A = LLT. Moreover, since L is lower triangular and D'/? is diagonal, we have
that L is lower triangular, and the theorem follows. O

2.4 Moore-Penrose Pseudoinverse
A (Moore-Penrose) pseudoinverse of A € R™*" is a matrix AT € R"*™ such that:
(i) AATA = A,
(i) ATAA = At
(ili) AAT and ATA are symmetric.

Note that if A is non-singular, then A~ is a pseudoinverse of A. Moreover, one may verify that (AT)T = (AT)T.
Hence, we may write A”T instead of (AT)" without worrying about the order of the symbols.

Proposition 2.20. Every matrix A € R"™*" has at most one pseudoinverse.

14

Proof. Let B,C € R™*"™ be pseudoinverses of A. Then
AB = (AB)T = BTAT = BT(ACA)T = BT ATCT AT = (AB)T(AC)T = ABAC = AC.
Analogously, BA = CA. Therefore,

B=BAB=CAB=CAC =C. O
Proposition 2.21. Let A € R™*" and let B € R"*™. Then
(AB)' = BT AT (2.23)
if at least one of the following holds:
(1) ATA=1T;
(2) BBT =1 ;
(3) B=AT.

In particular, we have that (AAT)T = ATt AT,
Proof. If (1) holds, then one can verify that AT = A”. Let us show that, in this case, (2.23) holds. Using the
properties of the pseudoinverse of B, we have
(AB)(BYA")(AB) = ABBT AT AB = ABB'B Y AB
and .
(Bt ANY(AB)(BTAT) = Bt AT ABB AT = B'BBTAT ¥ BT Al
Let us now show that ABBTAT is symmetric. We have

(ABB'ANT = (ABBTAT)T = A(BBNT AT "2 ABBAT — ABB! AT,

Analogously, Bf AT AB is symmetric. Hence, (2.23) holds in this case. The proof is analogous in the case on
which (2) holds. Let us analyze now the case which (3) holds. In this case, we have
(AAT)(ATTATY(AAT) = A(ATA)T AT AAT D At 447447 D At 44T D A4T.

With a similar proof, one can verify that (ATTAT)(AAT)(ATTAT) = ATTAT. Let us show that AATATTAT is
symmetric. We have

(AATY(ATTAT) = Aat)T At @ g4t a4t @ 441
and since AAT is symmetric by the property (iii) of the pseudoinverse of A, we conclude that AAT ATTAT is
symmetric. Analogously, ATt ATAAT is symmetric. Therefore, (2.23) holds in this case. O
Theorem 2.22. If A € S”, then there is an unique pseudoinverse At of A and it is given by
A" = QDiag(p)Q", (2.24)
where @ € R™ ™ is an orthogonal matrix, and p € R™ is defined by
i = () £ AL, vie [l

Proof. Uniqueness follows from Proposition 2.20. Hence, it only remains to show that A as defined in (2.24)
satisfies the properties of a pseudoinverse of A.

Suppose that @ = I. In this case, properties (i) and (ii) are easily verified using the fact that, for
any x,y € R", Diag(x) Diag(y) = Diag(z ® y). To show that property (iii) holds, it suffices to use the fact
that the product of diagonal matrices is also diagonal. Therefore,

Diag(A*(A))" = Diag(u).
For the general case where () is any orthogonal matrix, using Proposition 2.21 we have that

(QDiag(A*(4))Q")" = (Diag(*(4)Q")'Q" = (@) Diag(A*(4))'Q" = @ Diag(n)Q"" O

15

With the above theorem, one may note that if A € S, then (A1/2)" = (A")!/2. Hence, we may write AT/2
without worrying about the order of the operators.

Proposition 2.23. If A € R™*" then AAT = Projiy, 4y and ATA = Projimcar)-
Proof. Let P := AAT. By property (iii) of a pseudoinverse, PT = P. Moreover, by property (ii),
P? = AATAAT = AAT = P.

Hence, the matrix P is an orthogonal projector. Clearly Im(P) C Im(A). Let us show that Im(A) C Im(P).
Let v € Im(A). By definition, there is € R™ such that v = Az. Then,

Pv=AATw = AATAz = Az = v.

Hence, we have that v € Im(P). Therefore, we conclude that Im(P) = Im(A). Thus, the matrix P is the
orthogonal projector onto Im(A). Let us now prove that ATA is the orthogonal projector onto Im(AT).
By property (iii) of the definition of a pseudoinverse, we know that A A is symmetric. Hence,

ATA = (ATA)T = AT (ATHT,
Since we already proved that AT (AT)T is the orthogonal projector onto Im(AT), the result follows. 0O

Theorem 2.22 gives a way to compute the pseudoinverse of symmetric matrices. The next proposition
shows how to reduce the computation the pseudoinverse of an arbitrary matrix to the symmetric case.

Proposition 2.24. If A € R™*" then AT = AT(AAT)T.

Proof. Define B := AT(AAT)!. To prove that AT = B, it suffices to show that B satisfies the properties of
the pseudoinverse of A. To see that property (i) holds, note that

ABA = AAT(AAT)T A = Projp,aar) A.
To prove that Proji,aary A = A, it suffices to show that
Im(AAT) = Im(A). (2.25)

Clearly, Im(AAT) C Tm(A). Let € Im(A). Hence, there is y € Null(A)* such that x = Ay. By Theorem 2.1,
we have Null(4)* = Im(A”). Hence, there is y' € R™ such that y = ATy’. Hence, x = AATy/, and we
conclude that € Im(AAT). This ends the proof of (2.25). Let us now prove that property (ii) holds for B.
Note that,

BAB = AT(AAT) AAT(AAT)T 2 AT (44T) = B.
This ends the proof of (ii) for B. It only remains to prove that (iii) holds for B. We have,
(BA)T = (AT(AATY)T = AT(AATYNTA = AT((AAT)TYTA = AT(AAT)T A = BA.

Moreover, since AB = AAT(AAT)!, we have that AB is symmetric by property (iii) of the pseudoinverse
of AAT. This ends the proof of (iii) for B. O

Proposition 2.25. If A € R™*" then Null(A") = Null(AT) and Im(AT) = Im(AT).
Proof. Let Q = A'A. By Proposition 2.23, the matrix @ is an orthogonal projector onto Im(AT).
Since Im(Q) = Im(AT), to prove Im(AT) = Im(A7) it suffices to show Im(AT) = Im(Q).
By definition of @, we have Im(Q) C Im(AT). Moreover, we have
QAT = ATAAT = AT — Im(AT) C Im(Q).
Therefore, we conclude that Im(A") = Im(Q) = Im(AT). This, together with Theorem 2.1, implies

(Null(AT)t = Im(ATT) = Im(A4) = (Null(AT))t = Null(4") = Null(4T). O

16

Theorem 2.26. Let A, B € S be such that A = B and rank(A) = rank(B). Then BT = AT.

Proof. Let us first show that
Im(A) = Im(B). (2.26)
To show (2.26), let us show that
Null(A) C Null(B). (2.27)

Note that if there is 2 € Null(A) \ Null(B), by Proposition 2.12 we have 27 Bx > 0. Hence,
2TBx >0 = 2T Az,

what is a contradiction, since A = B. This ends the proof of (2.27). Hence, by Theorem 2.1, we have Im(B) C
Im(A). This fact together with rank(A) = rank(B) imply (2.26).

By Proposition 2.11, Im(B) = Im(B'/?). Thus, by Proposition 2.23 and by the uniqueness of the
orthogonal projector, we have BT1/2B1/2 = Proji, gy = BY/2B11/2 Hence,

Projlm(B) = Proj%m(B) — BT1/2B1/2BI/2BT1/2 _ BTI/QBBTl/Q < BTl/QABTl/z. (228)
Let r == rank(A) = rank(B). Then, (2.28) implies that 1 < \:(BT/24AB1/2). By Lemma 2.4, the eigenvalues

of BIY/2ABT/2 = (B11/2A1/2)(AY/2 BT1/2) are the same as the ones of (A'/2B11/2)(B1/2A1/2) = A1/2Bt A1/2,
Therefore,

1 < XH(AY2BTAY?), (2.29)
thus,
Projlm(A1/2BTA1/2) = A1/2BTA1/2. (2.30)
Let us show that
Im(AY2BTAY2) = Im(A). (2.31)
By Proposition 2.11,
Im(A) = Im(AY/2). (2.32)

Hence, Im(A'/2Bf A'/2) C Tm(A). Moreover, by Proposition 2.25,

(2.26)

Im(B'") = Im(B) Im(A) = Im(AT). (2.33)

Let 2 € Im(A). By (2.32), there is y € Im(A) = Im(A'/2) such that x = AY2y. By (2.33), there
is i € Im(AY/?) = Im(B") such that y = Bfy’. Again by (2.33), there is y”” € Im(BT) = Im(A'/?) such

that ' = AY2y". Hence, x = AY2BTA'/2y". We conclude that Tm(A) C Im(B'/2ATB'/2). This ends the
proof of (2.31). Hence, Proji,(4) = Projiy,(pi/2at g1/2). This fact together with (2.30) implies that

Projp,4) < AY2BTAY2 (2.34)
By Proposition 2.23, AT1/241/2 = Pr0jim(4) = A2 AT1/2 Hence, by Proposition 2.10,

(2.34) .
< AT A2 BEAN2 ATV = Proj o B Proji) 2 B O

AT = AT1/2 PrOjIm(A) 141-1/2
Proposition 2.27. If A € R™*" and b € Im(A) C R™, then
ATh = argmin{ ||z|| : © € R", Az = b}.

Proof. Define z* := A'b, and let y € R™ be such that Ay = b. Such y exists since b € Im(A). Let us show
that
Ity £ ", then |lyl| > 2*]|. (2.35)

By Proposition 2.23,
Az = AATh = Projiy,a) b ="0.

17

Therefore,
0=Ay—b= Ay —z"). (2.36)

Using the above equation with the properties of the pseudoinverse, we have
(@) (y —a*) = bT (AN (y —a*) = b" (ATAAN T (y — 2¥)
=07 (AT AN (y —) = 0T (ATATTAN T (y — o)

— T (AT ATA®y — 27) P20,
Therefore (y — x*) L x*. Thus,
lyl* = lly — &* + 2" = |2*]|* + lly — " ||* > [|]="||%,
where equality holds if, and only if, y = 2*. This ends the proof of (2.35). O

2.5 The Spectrum of the Adjacency Matrix
The adjacency matrix of a graph G = (V, E) is the matrix Ag € SV such that (Ag); ; = lij € E] for
every 4,5 € V.

Theorem 2.28. If G is a graph, then
[Aclly < A(G), (2.37)

and equality holds if and only if some component of G is regular with valency A(G).

Proof. First, let us show (2.37). By Corollary 2.9, we know that [|Ag|l, = max{|Amax(Ac)|, [Amin(Ac)|}-
Hence, it suffices to bound the maximum absolute value of the eigenvalues of Ag. Let € RV be an
eigenvector of Ag with associated eigenvalue \. If j € arg max;cy |x;|, then

[Alls] = |(Az);] =’ Do owi| < D fail < deg(h)lag] < AG)|l. (2.38)

iENG) iENG)

Note that,
if j € arg max;cy |4/, then equality holds in (2.38) if and only if all the entries of z[;) (2.39)
have the same sign, N(j) C argmax;cy|z;| and deg(j) = A(G).
Hence, we have that |A\| < A(G). This concludes the proof of (2.37).
Suppose now that G has a component H that is regular with degree A(G), and set G' := G — V(H).

Then,
Ag 0 (1 A(H)1
Aalvim = (0 AG,) (0) = ((0)) = A(G) Ly m).

To prove the other side of the implication, suppose that ||A|, = A(G). Let k € R = argmax;cy |z;|.
Let H be a component of G such that k € V(H). Suppose there exists i € V(H) \ R, and choose such 14

with minimum distance to k. Clearly i # k. Let (vo,...,vs) be a path of minimum length in H from vy =1
to vy = k. Such a path exists since H is connected. By our choice of i, we have that j := v; € R. By (2.39),
it follows that ¢ € N(j) C R, which is a contradiction. O

Theorem 2.29. If G is a bipartite graph and A € R, then A is an eigenvalue of Ag if and only if —\ also is.
Proof. Let {X,Y} be a bipartition of G. Then

0 M
AG(MT 0)7

v:(z>eRV\{o}

where M € RX*Y | Let

18

be such that Agv = v, where x € RX and y € RY. Therefore,

() == (e) 0) = Grt)

Define

Then,

(3) (3)- () - ()

Thus, we have that —A is also an eigenvalue of Ag.

2.6 Incidence Matrices

The incidence matrix Bp € RV*4 of a digraph D = (V, A) is defined by

1, if a = (¢,7) for some j €'V,
(Bp)i,a =14 —1, ifa=(j,i) for some j € V, V(i,a) € V x A.
0, otherwise,

It is easy to verify that Bpe(; j) = e; — e; for every (i,j) € A. Hence,

Bp = Z (ei—ej)e(Tm-).

(i,j)eA
Proposition 2.30. If D = (V, A) is a digraph, then Null(BY) is the linear subspace spanned by
{1v(c) : C is a component of D}.

Proof. If C' is a component of D and (i,7) € A, then (e; — ej)T]lv(C) =0, so

Bhlyicy= Y euplei—e) Ly =0.
(i,4)€A

Hence, span{ 1y (c) : C is a component of G} C Null(B}).

(2.40)

(2.41)

Let x € Null(B}), and let 4, € V be vertices of the same component C of G. Let (vy,...,vs) be a path

in C from vy = ¢ to vy = j. Note that

0= (ng)(r,s) =Ty —Ts —> Tp = Ty V(T, 8) e A.

Thus, we have that x(vg) = x(v1) = - - - = z(vg). Therefore, for every component of G its vertices will have

the same value in z. Thus, x is in the subspace spanned by (2.41).

19

O

Chapter 3

The Graph Laplacian

The Laplacian of a graph G = (V, E) is the function L5 : R® — SV such that
£G(lU) = Z wijLij, Yw € RE,
ijEE

where L;; = (e; — ej)(e; — e;)T for ij € E. Note that Lg = L5 (1) = Diag(deg) — Ag. A Laplacian system
is any system of equations of the form Lz = b, where L is the Laplacian of a graph.

Proposition 3.1. If G = (V, A) is an orientation of a graph G = (V, E) and w € R¥| then Lg(w) =
B Diag(w)Bg».

Proof. We have

(i,4)€A

= Z ’U_},J(Bz 63)(61 GJ)T
(i,4)eA

= Z wij(ei - ej)(ei - ej)T = Lg(w). O
ij€EE

Corollary 3.2. Let G = (V, E) be a graph and w € R¥, . Then L (w) = 0, and Null(L(w)) is the subspace
spanned by { 1y () : C is a component of G}.

Proof. Let G = (V,A) be an orientation of G. By Proposition 3.1 we have that Lg(w) = By Diag(w)Bé:».
Define b, := Bge, for each a € A. Then

— : T _ T T __ T
Le(w) = Bg Diag(w)Bg = Ba(> wije(m)e(i,y‘)>36 = D wisba bl
(i,5)€A (i,)€A

Therefore, by Theorem 2.13, we have that Lg(w) > 0. Let us now show that Null(Lg(w)) is the subspace
spanned by { 1y () : C is a component of G}.
By Proposition 2.12, for every # € RV, we have Lg(w)z = 0 if and only if 27 Lg(w)z = 0. Since

2 Lg(w)r = 2" Bz Diag(w)Bg»x = ||Diag(w)1/23§x||g,

and Diag(w)'/? is nonsingular, then Lg(w)z = 0 if and only if B%x = 0. The result now follows from

Proposition 2.30. O

20

Proposition 3.3. If G = (V, E) is a graph, then ||Lg||, < 2A(G). In particular, Amax(La) < 2A(G).

Proof. By Corollary 2.9 and since Lg > 0, we know that || Lg||, = A.x(Le). Hence, using Corollary 2.7,
2TL T Diag(d TA
Amn(le) = max TEGT g, 7 Diseldeglr 0 Ao
zeRV\{0} zTz Z€RV\{0} zTx zeRVA{0} 2Tz

= A(G) = Amin(Ag) < A(G) + [|Ag]l,-
By Theorem 2.28, we have that ||Ag||, < A(G). Hence,
ILall < AG) + [|Agll, < 2A(G). O

3.1 Flows in Graphs

Let D = (V, A) be a digraph and let s,t € V be distinct. An (s,¢)-flow in D is a function f: A — R
that obeys the flow-conservation constraints, that is,

> fa— Y fa=0 VoeV\{st},

agsout (v a€sin(v)
and that
|f‘?_ 2: ﬁz_ 2: ﬂzz()
agsout(s) a€sin(t)

The value of an (s, t)-flow f is |f|, and the vertices s and ¢ are, respectively, the source and the sink of f.
A unit (s,¢)-flow is an (s,t)-flow of value 1. We may omit the vertices (s,t) when they are clear from context
or when it is not necessary to know these vertices. A circulation is a flow of value 0. Note that we can also
write the flow-conservation constraints as follows

Bpf =|fl(es —er). (3.1)

Let G = (V, E) be a graph and let s,t € V be distinct. Fix an orientation G of G. An (s,t)-flow in G
(with respect to the orientation G) is a function f: E — R such that

Baf = |fl(es —).

We may omit the fixed orientation of the graph which the flow is associated with when it is clear from
context or when it is not important to explicitly name it. Note that, differently from the directed case,
we allow edges to have negative flow in this case. Let f be an (s,t)-flow in a graph with respect to an
orientation G and let a = (u,v) € A(a) Intuitively, if f, > 0, one should interpret that the flow of a is
going from u to v. Similarly, if f, < 0, then the flow of a is going from v to u. To formalize this intuition,
define the sets AT == {(u,v) € A: f(u,v) >0} and A~ := { (u,v) €V x V: (v,u) € A\ AT}. Define the
orientation G = (V,ATUA™), and define f’ = Diag(sgn(f))f. One can note that f’ is an (s, ¢)-flow in the
digraph G'. We call such a orientation G’ an induced orientation of G (with respect to the flow f). The
reader may notice that many propositions about flows in digraphs can be extended to graphs by taking care
of the signs of the flow component wise.

Proposition 3.4. Let D = (V, A) be a digraph and let f € Rﬁ. Then f is an (s,t)-flow in D if and only if
there is a collection of directed circuits C in D, a collection of directed (s, t)-paths P in D with |C|+ |P]| < |4],
vectors b € RS and d € R? with ||d||, = | f| such that

F=>_bC)lc+ Y d(P)Lp. (3.2)
cec PcP

Moreover, let G = (V,E) be a graph and let f € RF. Then f is an (s,t)-flow in G if and only if there
is a collection of circuits C in G, a collection of (s,t)-paths P in G with |C| 4+ |P| < |E|, vectors b € RS
and d € RY with ||d||, = |f| such that

f = Diag(sgn(f)) Y b(C)lo + Y d(P)1p

ceC PeP

21

Proof. Suppose that there is a collection of directed circuits C in D and a collection of directed (s, t)-paths P
in D with |[C| + |P| < |A], and vectors b € RS and d € RY such that (3.2) holds. Let us show that f is
an (s,t)-flow of value ||d||,. It is easy to see that if C' € C and P € P, then 1,(¢) is a circulation in D
and 1 4(py is an (s,t)-flow in D of value 1. Hence,

Bpf =Y bC)Bplc+ » d(P)Bplp =0+ Y d(P)(es—er) = |d];(es — ey).
cec PeP PeP

Suppose now that f is an (s, t)-flow in D of value a. We will prove the statement by induction on [supp(f)|.
If |[supp(f)| = 0, the statement holds trivially. Suppose |supp(f)| > 0. Define Dy := (V,supp(f)) and suppose
there is a directed circuit C' in D,. Define 8 = min{ f, : a € A(C)} > 0, and set f' := f — 1 4(¢). Note
that [supp(f’)| < [supp(f)| by the choice of 3. It is easy to see that 1 4y is a circulation in D. Hence,

Bpf'=Bpf—BBplawc)=Bpf =a(es —e).

Therefore, f’ is an (s,t)-flow in D, and the statement follows by the induction hypothesis.
Let us now analyze the case on which there are no directed circuits in Ds. Let P = (vg,- -+ ,vx) be a
maximal path in D, where v; € V for each i € [k]. Let us prove that

P is an (s, t)-path. (3.3)

Suppose that vg & {s,t}. Since there are no circuits in Dy, and since P is maximal, we conclude that §™(vg) = ()
in Dy, but this would violate the flow-conservation constraints. Hence, vy € {s,t}. Similarly, vy € {s,t}.
Hence,
if P is a maximal path in D and D, has no circuits, then P is either a directed (s, t)-path (3.4)
or a directed (¢, s)-path.
Suppose that P is a (¢, s)-path. In this case, if §°**(s) = @ in D,, then |f| < 0, a contradiction. Hence,
let a € 6°"(s) in Dy, and let P’ be a maximal path in Dy such that a € P’. By (3.4), we have that P’ is
an (s, t)-path. Since P is an (¢, s)-path in D, and P’ is an (s, t)-path in D,, this means that there is a directed
circuit in Dg, a contradiction. This ends the proof of (3.3). Hence, define § := min{ f, : a € A(P)} > 0.
Define f’ := f — 81 4(py. Note that [supp(f’)| < [supp(f)| by the choice of 3. It is easy to note that 1 4(p) is
n (s,t)-flow in D. Hence,

Bpf'=Bpf—BBplawp) = (a—p)(es —er).

If o« > 3, then f’ is an (s,t)-flow in D of value oo — §, and the statement follows by the induction hypothesis.
Hence, it only remains to show that
a>p. (3.5)

Suppose that 8 > a. Since P is an (s, t)-path, there is a € §°%*(s) N A(P). Hence, f, > 3 by the definition
of . Moreover, since 3 > «, there must be a € §(s) in Dy, otherwise | f| = o would be at least 3. Let P’
be a maximal path such that a € A(P’). Since we are in the case where there are no circuits in D, we have
that P’ is a (t, s)-path by (3.4). Since P’ is an (¢, s)-path in D, and P is an (s,t)-path in D;, there must be
a directed circuit in Dy, a contradiction. This ends the proof of (3.5). The undirected case follows from the
directed case from the definition of induced orientation. O

3.2 Electrical Flows
If f is a flow in a weighted graph G = (V, E,r), then the energy of f (with respect to r) is
E(f) = /7 Diag(r) .
Let G be a weighted graph with weights r € R£+. An (s,t)-flow f of value o € Ry in G is electrical if f

minimizes the energy over all the (s,t)-flows of value o in G. We say that r defines the resistances on the
edges for the electrical flow f.

22

Proposition 3.5. Let G = (V, E,r) be a weighted graph and let f € R® be an electrical (s,t)-flow in G
of value @ € Ry;. Then there is a collection of (s,¢)-paths P in G with [P| < |E| and a vector b € R?
with ||]|, < ||b]l; = « such that

f = Diag(sgn(f)) >_ b(P)Lg(p). (3.6)

pepP

Proof. Let G be an induced orientation of G with respect to the flow f, and define g := Diag(sgn(f)) f. Note
that, for any (s,t)-flow f’ in G and any vector u € {£1}V we have

E(f) = £(Diag(u) f').

Hence, it suffices to prove that if g has minimum energy among the (s, t)-flows of value « in 6, then there is
a collection of directed (s, t)-paths P in G with |P| < |E| and a vector b € RY with ||b||, = c such that

g=Y_ b(P)lap). (3.7)
PecP

By Proposition 3.4, there is a collection of directed circuits C in 6, a collection of (s,t)-paths P in el
with |C| + |P| < |E|, vectors b € R” and d € R¢ with ||b]|; = « such that

g=>_d(C)Lacy+ > b(P)Lacp). (3.8)
cec PeP
Suppose that C # (), let C € C be fixed and define ¢’ .= g — d(C)1 A@©) Note that d(C)1 A@@) s a circulation
in 3 Hence,

Bzg' = Bgg — d(é)Bg]lA@) = Bgag = .

Therefore, ¢’ is an (s, t)-flow in G of value . By (3.8), we have

g = _dC)lacy+ Y b(P)lap).

cec\{C} pePp

Hence, g’ > 0. Moreover, since d(C) > 0, we have that g/, < g, for each a € A(C). Therefore £(g') < £(g), a
contradiction. This ends the proof of equation (3.7). Let us now prove that

9l < 10l = a

By (3.6), for each a € A(a:)7
ga=Y_la€P(P) < [bl], = a. =
PeP

Theorem 3.6. Let G = (V, E,r) be a connected weighted graph, let s, € V be distinct, let f* € R¥ be an
electrical (s, t)-flow in G of value a € R4, and let ¢ € R¥, be defined by ¢, :=r_! for each e € E. Then f*
is unique, and for every v € Lg(c)(es — e;) + span{1},

ff=a Diag(c)Bgv. (3.9)

In particular, if f; is the unit electric (s,t)-flow in G, then, for every o € Ry we have that «f; is the
electrical (s, t)-flow of value a.

Proof. Let F; be the set of all (s,t)-flows in G of value o € Ry. Let f € Fy, and let R := Diag(r). Note
that
E(f) = fTRf = (RM2F)TRV2f = | RV2f3.

23

Hence,

argmin{ £(f) : f € F, .} = argmin{ HR1/2f||§ s f e Fort
= argmin{ |R'f||; : Baf = ales — &)}
= R Y?argmin{ ||g|5 : BgR /%9 = a(es —es)},

where in the last equation we made the change of variables g := R'/2f. By Proposition 2.27, the solution of

minimum norm of the system
B@R‘lﬂg = afes — ep)

is g* = a(BgR™?)!(es — ;). By Proposition 2.24, we have At = AT(AAT) for any A € R™*". Hence,

B B B B T B _ _ T
(BzR 1/2)T:(B§R 1/2)T(B@>R 1/2(B@>R 1/2)T> - R 1/QB§(B§R 1/2p 1/2Bg)
_ . T _
=R 1/QBg(Ba:Dlag(c)Bé—"») =R 1/QBgEG(C)T,

where in the last equation we used Proposition 3.1. Therefore, we have g* = aR_l/QBg»Eg(w)T(es —et).

Since we made the change of variables g = R'/2f, we have
f* = RY26" = aR"VBLLG(c) (es — e1) = a Diag(e) BELa(c) (es — e1):
Moreover, since G is connected, by Proposition 2.30 we have Null(BZ) = span{1}. Therefore, for every 8 € R,
f* = aDiag(c) ' BE(La(c)'(es —) + B1).

Let v € Lg(c)T(es — ;) + span{1}. In particular, if f; is the unit electrical (s,t)-flow in G, we have f; =
Diag(c) BLv. Hence,
ff=a Diag(c)Bgv =afi. O

Let G be a weighted graph with weights r €]Rf 4, let G be a fixed orientation of G, and let f be the
electrical (s,t)-flow in G with respect to the orientation G. We say that a vector v € RV as in the above
theorem is a vector of vertex potentials (with respect to the flow f and the vector 7). Define ¢ € R¥ such
that ¢, := 1/r, for each e € E. Suppose that f is a unit electrical (s,)-flow in G, and let v € RV be vertex
potentials of f. Hence, Proposition 3.1 together with equations (3.1) and (3.9) yield

La(c)v = Bz Diag(c)Bgv = Baf = (es — e). (3.10)

This means that vertex potentials can be obtained by solving a Laplacian system. Moreover, by Theorem 3.6,
the electrical (s,t)-flow of value o € Ry in G is simply af. Hence, it suffices to know how to compute the
unit electrical flow in a graph to compute a electrical flow of an arbitrary value.

There is a physical intuition behind the language used in this section. Although it is not essential to
understand this intuition for a good comprehension of the remaining of the section, the reader may find it
useful as a memory aid for the definitions about electrical flows. For a moment, imagine that a weighted
graph G = (V, E,r) is a representation of an electrical network. Each edge e € F represents a resistor with
resistance 7. and each vertex represents a node (or junction) of the circuit. The (s, t)-flow f represents the
currents passing through the resistors when connecting s and t to the poles of an external current source.
With that in mind, one can note that (3.9) is equivalent to Ohm’s law [17], that states

The current through a resistor between two nodes is directly proportional to the potential (3.11)
difference across the two nodes,

Moreover, the flow-conservation constraints are equivalent to Kirchhoff’s current law [17], which states

At any node in an electrical circuit, the sum of currents flowing into that node is equal to (3.12)
the sum of currents flowing out of that node.

24

Let G = (V, E,r) be a weighted graph, let s,¢ € V be distinct, and let ¢ € RF be given by c, = 1/r, for
each e € E. The effective resistance of s and ¢t (with respect to r) is

R (r) = (es —e) Lo (o) (es — er).

We may omit the superscript whenever the vertices s, ¢ are clear from context (usually they will be the source
and sink of a flow).

Proposition 3.7. If G is a weighted graph with weights 7 € R¥, and f is the unit electrical (s, t)-flow in G,
then

R (r) = £(f).

Proof. Define ¢ € R by ¢, :=1/r, for each e € E. Let v € RV be vertex potentials of f, and let G be an
orientation of G for which f is a flow in G with respect to the orientation GG. Then, using the property (i) of
the pseudoinverse of Lg(c),

E(f) = f" Diag(r) f = v" Bz Diag(r) ! Diag(r) Diag(r)_lBg»U
=o' By Diag(c)Bg»v =vTLa(c)w © v La(e)La(e) Lale)v
= (La(ew) La(e) Lale)w P2 (e, — e)TLa(e) (es — er) = REG(r). 0

Proposition 3.8 (Rayleigh Monotonicity). If G = (V, E) is a graph, s,t € V are distinct, and r,r’ € RE
are such that » > r’, then
it t
R (r) = Ro ().

Proof. Define ¢, ¢’ € R¥ by ¢, :== 1/r. and ¢, := 1/r/, for every e € E. Note that ¢’ > ¢ > 0. Hence, Lg(c') =
La(c) = 0, and by Theorem 2.26,

(es —e)T L) (es —er) > (es —e)T L () (es — €r). O

3.3 Counting Spanning Trees

Lemma 3.9 (Matrix determinant lemma). If A € R™*™ is invertible and u,v € R", then

det(A + uv”) = det(A)(1 +vT A7).

A —u
R'<UT 1)'

Since A is invertible, the matrix R has both a block LDU decomposition and a block UDL decomposition,

that is,
I 0) (A 0 I —A7 '\ po (I —u A+w® 0\ (I 0
vTA=t 1)\0 14074 1w/ \0O 1 R W | 0 1) \WT 1)

The result now follows by taking the determinant of both sides of the equation. O

Proof. Let

The adjugate matrix adj(A) of A has entries defined by
adj(A)i; = (-1)" det(A[7,4]), Vi,j € [n],

where we recall that, for each S C V, we have S := V'\ S, and if S = {i}, we may write 7 instead of {i}. Using
the Laplace expansion to calculate the determinant of a matrix, one may verify that Aadj(A) = det(A)I.
Therefore, if A is invertible we have that adj(A) = det(A)A~".

Lemma 3.10. If A € R™*" and u,v € R™, then

det(A + uv®) = det(A) + vT adj(A)u.

25

Proof. Let (Ay)p, be a sequence of invertible matrices as in Theorem 2.3 that converges to A. By Lemma 3.9,
for each i € N we have
det(A; +uv’) = det(A;)(1 +vT A7 w) = det(4;) + o7 det(A;) A u
= det(4;) + 0T adj(4;)u.

Since the determinant of a matrix is a continuous function, we can take limit on both sides. Hence, the result
follows. H

Let G = (V, E,v) be a multigraph. Define 7(G) as the number of spanning trees of G. Note that if G is
not connected, then 7(G) = 0. Let e € E. Define G\ e := (V, E'\ {e},v¢’), where ¢’ is the restriction of
to E'\ {e}. Let S C V. The multigraph G/S := (V', E,4’) is the multigraph with the subset of vertices S
contracted, where V' := (V' \ §) U{S} and

e(f) i) NS =0,
V() =4S eSS, VfeE.
{k, S} i o(f)\S ={k},
If e € E(G), the multigraph G/e := (G \ e) /¥ (e) is the multigraph with the edge e contracted.

Proposition 3.11. If G is a multigraph with |E(G)| > 1, and e € E(G) is not a loop, then
7(G) =7(G\ e) + 7(G/e).

Although we do not give a formal proof of the above proposition, which would be unnecessarily long to
formalize, we give a sketch of the proof. Let G be a multigraph, and let e € E be a non-loop edge. To see
that the above proposition holds, note that the set of spanning trees of G that do not contain e is the set of
spanning trees of G \ e. In a similar way, for every spanning tree T of G that contains e, the tree T'/e is a
spanning tree of G/e. The converse also holds, that is, for every spanning tree of G/e we can construct a
spanning tree of G that contains e.

Theorem 3.12 (Matrix Tree Theorem). Let G = (V, E) be a multigraph with |V| > 2. If i € V, then
7(G) = det(Lg[1]). (3.13)
Proof. Let G = (V, E) be a counterexample that minimizes |V|+ |E|. Let i € V, and let G/ .= G — . If i is

isolated, then Lg[i] = Lgr. Since 1 € Null(Lg:), we have that Lg: is singular, and det(Lg/) = 0 = 7(G). So
suppose that ¢ is not isolated. Let e = ij € E for some j € V' \ {i}. Then,

det(Lg[i]) = det(Lene[i] + Le[i])) = det(Leye[7] + ejejr).
By Lemma 3.10,

det(Loye[il + ese]) = det(Lore[i) + € adi(Len e

= det(Len[]) + (adJ(LG\e[1),
= det(La\ i) + det (Lan [T7, 7))

Let k = v¢¢(e) € V(G/e). One may verify that

Lene[{i, 7} = Layelkl.

Equation (3.13) holds for G \ e and G/e since both of these multigraphs are not counterexamples. By
Proposition 3.11,

det(L¢[i]) = det(Le [i]) + det(Lg,e[k]) = 7(G \ e) + 7(G/e) = 7(G). O

26

3.4 Sparse Cuts

Let G = (V,E) be a graph and let S C V. The volume of S is vol(S) := >, gdeg(i). Moreover,
define vol(G) = vol(V') = 2|E|. The sparsity ®(S) of the cut associated with S is

5
min{vol(S), vol(S)}’

®(S) =

where we consider ®(S) = co if the denominator is zero. The sparsity of G is

O(G) = 0%1&/(1)(5).

The relaxed sparsity h(S) of S is

R 1)) I
wB) = vol(S) - vol(S) 1)

where we consider h(S) = oo if the denominator is zero. The relaxed sparsity of G is

hMG) = @;ﬁrggv h(S).

Proposition 3.13. Let G = (V, E) be a graph and let S C V. Then ®(S) < h(S) < 2®(S). In particu-
lar, ®(G) < h(G) < 20(G).

Proof. For each S C V, note that

vol(G) > max{vol(S), vol(5)} > V°12<G)
and that B B B
max{vol(S), vol(S)} - min{vol(S), vol(S)} = vol(S) - vol(S).
Therefore,
[0(S)] |6(S)| max{vol(S),vol(S)} _ |§(S)|vol(G)
o(9) = —— = — — = h(9),
(5) min{vol(S), vol(S)} vol(S) vol(S) = vol(S) vol(S) (5)
and
~|6(9)|vol(G) _ |6(S)|2max{vol(S),vol(S)}
hs) = vol(S) vol(S) : vol(S) vol(S) = 22(5). -
Let G = (V, E) be a graph. Define v : E — [0, 1] to be the uniform probability mass function over E, so
1
v(e) = E’ Ve € E.

Define p: V' — [0, 1] to be a probability mass function over V' such that

. deg(i) deg(i)
w0 = oG = 2E)

VieV.

Moreover, we recall that if p : @ — [0,1] is a probability mass function, then the expected value of a
random variable X : Q — R over p is

Exep(X) = 3 X(0)p(v).

Theorem 3.14. If G = (V, E) is a graph, then

’]

. Eijro[(zi — ;)
hG) = min K. . (2 — ;)7
2€{0,1} " \{0,1} B4, j)~vpxpl{Ti — T

27

Proof. Let S C V. Note that (15(i) — 1g(j))? = 1 if and only if (i,j) € Sx V \ S or (i,j) € V\ S x S.
Therefore,

Eujmn[(L5(0) — 15())2] = By [[(115) € (S x VA S)U(V\ S x S)]] = Ml(];)' — U(5(9))
and
E(s il (L5(0) — L5())) = Bio gyl (Ls(8) — Ls(3))? = 1]
= P(LJ’)N#X;L[Z. €S, jeV \ S] "‘P(i,j)NuXu[i ev \ S,j € S]
— 9P, [i € SIPsufi € V\ 8] = 2u(S)u(V \ S).
Hence,

(5~ PG 2B SSRIE_ v6(8) _ Eyeal(sli) ~15G)
vol(S) vol(V\ 8) ~ 21E| vol(8) vol(V\) ~ 2u(S)iu(V\S) Egyopiml (L5(0) — 15(3))7]

Notice that {0,1}V' \ {0,1} = {1g: 0 # S C V}. Therefore,

3 N Le(i))2 3 2
h(G) — min El]’\‘l’[(ls(l) i]]'S(]))} 5 — min Ezgwu[(xz l'j) } -
0S¢V B pyopxpul(Ls() — 1s(5))?] et 3\ {01} Egi jympxul(zi — 25)?]

Let G = (V, E) be a graph. The real sparsity of G is

Eijo((zi — 7))

seRV\span({L}) E(; jympxpl(@i — 25)?]

he(G) =

If G has no isolated vertices, then the normalized Laplacian of G is the matrix
Lg = Diag(degG)*%LG Diag(degc)*%.

Theorem 3.15. If G is a graph, then AQ(EG) = hr(G).

Proof. Let G = (V,E) and let z € RV. If 2’ = 2 + a1 for some o € R, then

Eijrol(@i —2))’] _ Eijuol((wi+al) — (2 +a1))?] B[—25)”]
Eijympxpnl (i = 25)% EBpjympsul (@i + o) = (25 + 1)) Egjympxpl(@] —25)?]

Hence, if f(x) denotes the argument of the infimum in (3.4),

(x): zeRY \ span({1})}

(z): a € R,y € RY \ span({1}),z = y+al}
=inf{ f(z): y € RV \ span({1}),2 = y — E;,[1:]1}

(z):x € RY \ span({1}),E;,[z;] = 0}

(z) : x € RV \ span({1}), (z,degs) = 0}.
Furthermore, for every z € RV such that (z,degg) = 0,

Ei jyronxnl (@i = 25)%] = B jyrpscult? + 25 — 2zi2]

= Einplwi]® + Ejnpulw]? — 2B j)mpuxulizs]
= 2B [2i]* — 2Einp @] Ejnpz)]

2 ey deg(i)a?

_ 2z7 Diag(degg)x
N vol(G) '

28

Moreover,
B >ijer(®i— x;)? 22T Lea

|E| - ovol(G)
Therefore,
xT Loz
hr(G) = inf —_—.
»(G) veR"\span({1}) z Diag(degg)x
(z,degg)=0
Let D := Diag(deg) and let y = Dzz. Hence,
'L D= 3y)TLg(D™ %
he(G)= inf T OT_ inf (D72y)” Lo(D”2y)
wERV\span({]l}) !t Dx yGRV\span({Dl/Q]l}) (D_fy)TD(D_fy)
(x,degg)=0 (Dil/zy,degc):o
. y"D"2LgD %y : v Lay
== inf T = inf T A
yGRV\span({]l}) yy yG]RV\span({]l}) y -y
(y,D7Y? degq)=0 (y,DY21)=0

It is easy to verify that D'/21 € Null(Lg). So Amin(Lg) = 0, and by Theorem 2.8 we have that

TT, _

inf LY (T,
veRV\span({1}) Y7y
<y1D_1/2]l>:O

Let G = (V, E) be a graph. The above theorem together with Proposition 3.13 implies that

M(Le)

5 <2(G).

A natural question that arises is how small can A}(L¢) get when compared to ®(G). If A}(L¢) gets too small
in some cases, it is of no use as an approximation to the sparsity of the graph. Luckily, there is a lower bound
of)\g(Lg) when comparing it to the sparsity, known as Cheeger’s inequality. Although we do not prove it

since this is not the focus of this text, we state the result for the sake of completeness.

Theorem 3.16 ([16]). If G = (V, E) is a graph, then

29

Chapter 4

The Conjugate Gradient Method

Solving a linear system is a fundamental and important task, and it is an essential subroutine in many
algorithms in computer science. Sometimes, solving a linear system with direct methods, i.e. methods that
find an exact solution in a finite number of operations, may be prohibitively expensive due to the size of the
matrix. Moreover, one may be willing to accept an approximate solution if it can be obtained efficiently.

In this chapter we describe the Conjugate Gradient method, which is an improvement over the Gradient
Descent technique when applied to solving an important class of linear systems. This is an iterative algorithm,
meaning that at each iteration we have a candidate solution, and its error decreases as the algorithm executes
more iterations. We shall see that the number of iterations required to find a solution with accuracy € depends
only on In(1/¢e) and on the square root of the condition number of the matrix. Moreover, each iteration runs
in time proportional to the number of non-zero entries of the matrix. In Chapter 5 we will use the Conjugate
Gradient method to construct a very efficient approximate solver for Laplacian systems.

4.1 Improving Gradient Descent

Gradient Descent is a widely known iterative method to approximately minimize a smooth func-
tion f:R™ — R. The method starts with a given point zy € R™ and, for ¢t € N\ {0}, it iteratively
computes

xp =x-1 — MV f(Ti—1), (4.1)
where n; € R, is the step size at iteration ¢ chosen according to some rule. The idea of the method is that f
decreases most rapidly at a point z € R™ in the direction —V f(z). Depending on the function f it may even
be possible to compute 7; that maximizes the decrease f(zi—1) — f(x¢) at iteration ¢t € N\ {0}.

Suppose now that we want to solve the linear system of equations Az = b, where A € S and b € Im(A).
Let

f(z) = 32T Az — bz, Va € R™. (4.2)

The next proposition shows that even when b € R™ is not necessarily in Im(A), it is enough to minimize f
over Im(A) to find the minimum norm solution of Ax = b.

Proposition 4.1. Let A € S7, let b € R™ and let f be defined as in (4.2). Then every point in ATb+ Null(A)
is a global minimizer of f. In particular, ATb is the unique global minimizer of f over Im(A).

Proof. Let x* :== A'b. Then, for every d € R",
flz*+d) =L@ +DTA@* +d)— (" +d)7Tb
(z*)T Az* + 2d" Az* + d" Ad) — (z*)"b—d"b
o) Az* — (2*)Tb+ d" Az* —d"b + Ld" Ad
= f(a*)+d"b—d"b+ 3d" Ad
= f(z*) + 3d" Ad > f(z*),
with equality if and only if d € Null(A). O

N— N D=
—~ T

-
N N

30

Suppose that b € Im(A). Note that Vf(z) = Az — b € Im(A4). Hence, if we pick an initial point zg in
the image of A, then by equation (4.1) we have that every iterate x; is also in the image of A. Therefore,
choosing such a initial point causes gradient descent to minimize f over the image of A. Hence, we can
solve Ax = b using gradient descent in this case. However, we shall improve this method.

Let A € R™*™ and let b € R™. For each ¢t € N\ {0}, the t-th Krylov subspace (generated by A and b) is

KC+(A,b) = span{A°b, Ab,... A*"1b},

and define Ky(A,b) :== {0}. For every ¢t € N the residual (at iteration t) is r; = A(z* — x) = =V f(24),
where z* := ATh. Note that (A, b) C Im(A) if b € Im(A). Moreover, note that for every i € N,

Ki(Ab) CKir1(A)D).
Proposition 4.2. Let A € S, let b € Im(A), and let o € R™. Define f as in (4.2) and define
xy = w1 — eV f(w-1), vt € N\ {0},
where 7, € R for each t € N\ {0}. Then z; € xg + K:(A4, ro) for each t € N, where r(is the residual.

Proof. Let r; be the residual at the t-th iteration. Let us prove that
T € ’Ct+1(A, 7’0) Vt € N (43)

by induction on t. For ¢ = 0, we have r; = 79 € span{rg} = K1(A, 7). Let t € N\ {0}. Define x* := A'b.
Note that

re=A(@" —xy) = A(x™ —w—1) —mAriy =11 — i Are_y.

By the induction hypothesis r;—1 € K¢(A,19) C Kiy1(A, o), therefore Ar,_1 € AK (A, r9) C Kiy1(A,ro).
Thus 7 € Ki11(A,79). This concludes the proof of (4.3).
Let t € N. By induction, we have

t—1
Ty = To + Zm+17“i-
=0
Hence, by (4.3) we conclude that z; € ¢ + K(A, 7o) for every ¢t € N. O

Proposition 4.2 shows that the search space in the first ¢ iterations is the affine space zg + Ki(4, 7). In
an ideal scenario, we would like x; to minimize f over this affine space. But this need not be the case, and
this leads us to an idea of how to improve gradient descent. Namely, at iteration ¢, we will find a minimizer
of f over xg + Kt (A, rg). This is the main idea behind the Conjugate Gradient method.

Suppose we have a set {p1,...,p:} € R"™ such that {p;...,p;} is a basis of K;(A,ry) for each i € [t] and

t

£ (w0 + D em) = flao) = Y (Fleo + eps) — flan) Ve R, (4.4)

i=1

that is, the function f is separable over {p1,...,p:}. Let i € [t — 1] and let a; € zo+ K;(A, ro) be a minimizer
of f over zg + K;(A, 7). We can write x; — zo with respect to the basis {p1,...,p;}, that is, there is ¢ € R

31

such that z; = x¢ + 2221 ¢;p;. Therefore, using the separability property in (4.4),

min{ f(x) — f(zo) : ¢ € g + Ki11(A,10)}
i+l

- i, (1o S5m) -)
i+1
= i, 20 +) = S(e0)

%

= min 3" (f(x0 + byp;) — f(20) + min(f(x0 + apisa) — f(0))

= min((xo + Zb]p])) + mli{}(f(l'o +apit1) — f(m))

beR?
=min{ f(z) — f(zg) : ® € xog + K;(A,ro)} + glei]%(f(xo + apit1) — f(a:o))
= F(@:) = f(xo) + min(f(xo + api1) = f(20)).

This means that if we have a minimizer of f over xzo+/C;(A4, 7o), then it is enough to solve the one-dimensional
problem minger f(zo + ap;y1) to find a minimizer of f over zg + K;11(A,ro). Hence, in this case it is
possible to solve mingeq, 4k, (4,r) f(2) iteratively. The idea of the Conjugate Gradient method is that, at
iteration ¢ € N, the method has a minimizer of f over x € xg+ K;—1(A,10), as well as a basis of zq + (A, o)
that satisfies the separability property in (4.4). With this information, the method efficiently computes
a minimizer of f over zo + Ki(A,rp), as well as a basis of zg + Ki11(A,ro) that satisfies the separability
property in (4.4). We will see that a minimizer of f over xzo + KC;(A,rg) is an approximate solution to the
linear system Ax = b, with the error decreasing as ¢t approximates n. Hence, every iteration of the Conjugate
Gradient method has an approximate solution to the linear system Ax = b. We will see that, if 29,0 € Im(A)
then z,, is an exact solution of Az = b.
Throughout the remainder of the chapter, we will use A € S%, a vector b € Im(A), the function

1
f(z) = EmTA:I: —aTh,

and z* := ATb. Any exceptions on the use of this notation, if they exist, will be clearly stated.

4.2 The Gram-Schmidt Method and Krylov subspaces

Theorem 4.3 (Gram-Schmidt Method). Let V be a vector space over R. Let {v1,...,v5} C V be linearly

independent and let {-,-) be an inner-product on V. Define wy,...,w; € V, in this order, by the formula
i—1 ’U W
Z i) Ty Vi € [k]. (4.5)
— (w;, w;)
Jj=1
Then for every i € [k] the set {w1,...,w;} is an orthogonal basis of span{vy,--- ,v;} with respect to (-,).

Proof. Our proof is by induction on i. For 4 =1 the statement holds since v; = wy. Let r € [k] \ {1}. Let us
first show that

{w1,...,wr_1,v,} is linearly independent. (4.6)
Let b € R” be such that .
Z blU}Z + bT'UT =0.
i=1

32

Let us show that b = 0. If b, = 0, we have that b = 0 since {wy, ..., w,_1} is linearly independent by induction
hypothesis. Hence, suppose that b, # 0. In this case, v, € span{wy,...,w,_1} = span{vy,...,v._1}, where
the equality follows by induction hypothesis. Hence v, € span{vi,...,v,_1}, which is a contradiction
since {v1,...,v.} is linearly independent. Therefore, b = 0. This concludes the proof of (4.6). For
every i € [r — 1], notice that

r—1
<'U7“7wj>
Wy, Wi) = (Ur — Wy, W;
o) = (o = 3 gy o)
r—1 <’U w>
= \Ur, W5) — L Wy, Wy
(000 = 3 Ty 2
= (v, w;) — <<:Z’Z1>> (w;, w;) Since (wj,w;) =0 if i # j.

= <v7”7wi> - <Urawi> =0.

Therefore, the set {wi,...,w,} is orthogonal by induction hypothesis and dim(span{ws,...,w,}) =r. It
only remains to prove that

span{vy,...,v,} = span{wi, ..., wy}. (4.7
By equation (4.5), we know that v, € span{ws,...,w.}. Moreover, using the induction hypothesis we
have that v; € span{ws,...,w;} for every i € [r — 1]. Therefore span{vy,...,v,.} C span{wy,...,w,}, but
since {v1, ..., v, } is a linearly independent set, we have that dim(span{vy,...,v,}) = dim(span{w, ..., w,}).
This ends the proof of (4.7). O

Define (-,-) ,: R” x R™ = R as
(z,y) 4, = zT Ay, Yo,y € R™.

Since A is symmetric, (z,y) 4, = (y,x) 4. If 2,3,z € Im(A) and « € R, it is easy to see that (a(z+vy),2) =
alz,z) + aly,z). Moreover, if x € Im(A), then (z,z), > 0 since A is positive semidefinite, and by
Proposition 2.12, equality holds if end only if 2 € Im(A4) N Null(4) = {0}. Hence, (-,-) , is an inner-product
on Im(A). A set § CIm(A) is A-orthogonal if it is orthogonal with respect to (-,-) ,. Therefore, if we have
a basis of K¢(A,b), we can A-orthogonalize it using the Gram-Schmidt method with (-,-) ,.

Lemma 4.4. Let A € S, let b € R", and let {wy,...,wr} € R™ such that span{wy,...,w;} = K;(A,b) for
every i € [k]. Then Ki41(A4,b) = span{ws, ..., wg, Awy}.

Proof. 1If i € [k — 1], then w; € K;(A,b). Hence,
Aw; € AK;(A,0) C Kit1(A,b) = span{ws, ..., w11} C span{wy,..., wk}, Vi€ [k—1] (4.8)
Since span{wy, ..., wi} = Ki(4,b), we have span{w, ..., wy, A¥b} = Kj41(A,b). Hence,
AFb = A(A*1h) € AKR(A,b) = Aspanf{wy, ..., wy} = span{Awy, ..., Awy} C span{ws, ..., wg, Aw},

where in the last inequality we used (4.8). Thus, A¥b € span{w,...,ws, Awy}. Hence, Kjy1(A,b) C
span{ws, ..., wg, Aw}. Note that Awy, € Kpi1(A,b). Since w; € K;(A,b) for every ¢ € [k], we have
that span{wy, ..., wg, Awg} C Ki11(A,b). Therefore, span{ws, ..., wx, Awi} = Kri1(A, D). O

Corollary 4.5. Let A € S and b € Im(A) be such that {4%, A'b,..., A""1b} C Im(A) is linearly
independent. Set w; := b and define wo, ..., w; € Im(A), in this order, by the formula

<Awi7 wi>A

<’IU7;, wz>
A

(Aw;, w;—1) 4

wi—[i22]<w' LW 1>
1—1y Wai—=1/4A

Wiyl = Aw; — Wi—1 Vi € [t — 1]

Then for each i € [t] the set {ws,...,w;} is an A-orthogonal basis of IC;(A, b).

33

Proof. Our proof is by induction on t. If ¢ = 1, the statement clearly holds. Let ¢ > 1. By the induction
hypothesis,
{w1,...,w;} is an A-orthogonal basis of K;(A,b) for every i € [t — 1]. (4.9)

Hence, by Lemma 4.4,
span{wi, ..., wi—1, Aws_1} = K(A,b). (4.10)

Moreover, dim(K;(A,b)) = t since {A%, A'b,..., A*=1b} is linearly independent. Hence, dim(K;(A4,b)) =t
and (4.10) imply that {wy,...,wi_1, Aw;_1} is linearly independent. We are in position now to apply

Theorem 4.3. Define .
t_

Zw“wﬂ w;, Yiell,

= (wj,wj) 4

and
t—1

(Awi 1, wj) o

wy = Awg_q — Y ~—— LA,

' o ; (wj,wi)y

By Theorem 4.3, we have that {w],...,w}} is an A-orthogonal basis of K;(A,b) for every i € [t]. It is easy to

see that (4.9) implies that w] = w; for every i € [t — 1]. Thus, we will be done once we prove that w; = wy.

Let j € [t — 3]. Note that Aw; € AK;(A,b) C ICJH(A b) = span{w,...,w;41}. Hence, there are

scalars a1, ..., ;41 € R such that Aw; = Z]Jrl a;w;. Moreover, we have (wy_1,w;) , = 0 for every i € [t —2]
by (4.9). Therefore,

Jj+1 j+1
(Awi_1,w;) , = wl AT Aw; = wl | Acw; =Y (w1, w;) , =0
t—1,%j/a4 — Wi—1 J = t—1410W; = i\ Wt—1,W;i) 4 = U.

Note that in the second equation we used the crucial property that A = A”. Hence,

Awt—la Wj

t—1
Aw_ _
w = Awt_lzwwj =, A,
Jj=1

<wt71awt71>,4

(Awg_1,wi—2) 4

1—t>3
e [] (wt72,wt72>,4

We—2 = Wt. O
Wy, Wj) o

Proposition 4.6. Let A € S%, let b € Im(A), and let f be defined as in (4.2). Let {p1,...,p:} € R" be
an A-orthogonal set, let 7o € R™ and let ¢ € Rt. Then

F 0+ ems) = fwo) = 3 (F(ao + eami) = f(wo)).
i=1 i

Proof. We have
¢ ¢ - t ¢ -
f(CEo +Y° Cipi) — f(xo) = %(wo +Y° Cipi) A(xo +° Cipi) - (330 +)° Cipi) b— g Az + x b
i—1 =1 i=1 i=1
t t T t t
= cipl Avg + 3 (Z CiPi) A(Z CiPi) - Z cipi b
i=1 i=1 j =1

t t
= cpf Avg + 1> (eipi) T Aleips) Z cip; b
i=1 i=1
t
= Z(CiperxO + %(cipi)TA(cipz) Cip; Th+ 1x§Ax0 ngxo + xgb — xgb)

=1
t
— 1 T) —) _1 T
= Z(g (w0 + cipi)” Ao + cipi) — (w0 + Czpz) b Io AIO + xy b)
=1
t

= Z(f(‘f() + Cipi) - f(x())) -

=1

34

4.3 The Conjugate Gradient Iteration

Proposition 4.7. Let A € S, let b,d € Im(A) with d # 0, and let zop € R". Let f be defined as in (4.2).
Define the function
g(a) = f(zo + ad) — f(xo) VYo € R.

Then
argmin g(a) = d'ro
Se I\ T mad
where rq is the residual at iteration 0.
Proof. For each o € R we have
g(a) = f(zo + ad) — f(xo)
= 1 ((zo + ad)" A(zo + ad)) — (zo + ad)"b — $af Axe + 2{b

a2 a2
= 7dTAd + ad” Azg — ad’b = 7dTAd - adT(b — Axg)
2
= %dTAd — adTry

Proposition 2.12, d¥ Ad = 0 if and only if d € Null(A). Hence, since d € Im(A) \ {0} and A = 0, we
have d” Ad > 0. Therefore, g is a quadratic function of o and the coefficient of a? is positive. Thus, the

. T
unique minimizer of g is gT:‘Od. O

Proposition 4.8. Let A € ST and let 20,0 € Im(A4). Let T € N and let {wy,...,wr} € R™ be
an A-orthogonal set such that {wy,...,w;} is a basis of K(A,rg) for each t € [T], where rg is the residual.
Define 1, ..., 27, in this order, by the formula

Ty = T + Mwy Vit € [T,

where
. wiro
N = .
<wt’ wt>A

Then x; is a global minimizer of f over zg + Kt(A, o) for each ¢t € {0,...,T}.

Proof. Let g(x) = f(z) — f(zo). Note that € R™ is a global minimizer of f if and only if x is a global
minimizer of g since xg is fixed. Therefore, to prove that x; is a global minimizer of f over xo + Kt(A, o) for
each t € [T, it suffices to prove that z; is a global minimizer of g over K;(A,ry) for each ¢ € [T].

For t = 0 the statement follows trivially. Let ¢ > 1. Then

min{ g(x) : ¢ € g + Kt(A,19)}
= min{ f(z) — f(z0) : € zo + Ke(A,10)}

t
iIeliRI} f(mo + Z biwi) — f(=o)

min f(xo + Z b; wz) — flxo) + mln f(zo + Bwy) — f(zo) by Prop. 4.6

E t 1
= fx4_1) — f(xo) + gu]% fzo + Bwy) — f(zo) by induction hypothesis
€
= fat—1 —xo + x0) — fx0) + f20 + nrwe) — f(x0) by Prop. 4.7
Note that x;—1 € x9 + Ki—1(A,r9) by the induction hypothesis. Hence, we can write 2;_1 — 2o in
the A-orthonormal basis {wy,...,w;_1}. Therefore, by Proposition 4.6, we have

f(xi—1 — w0 4+ x0) — f(x0) + fxo + mwy) — f(x0) = f(xe—1 — 2o + Mewy + x0) — f(20)
= f(@—1 + mwy) — f(wo)
= f(@) — f(wo) = g(=4). O

35

Lemma 4.9. Let A € S}, let b,zp € Im(A), let 79 == b — Axy be the residual and let t € N\ {0}.
If {A%q, Alrg, ..., A*=1rg} is linearly dependent, then ATh € 2o + Ky—1(A, 7).

Proof. Suppose that {A%, Alrg, ..., A*"1rg} is linearly dependent. Then there is ¢ € RII=1\ {0} such that

=1
D cidirg =0. (4.11)
i=0
Let k := min{¢ € [t] — 1 : ¢; # 0}. Then,
t—1 =1
k. _ At k, _ Ciai
cpArg = — Z ciA'rg = Arg= Z ckA 0. (4.12)
1=k+1 1=k+1

By Proposition 2.23, we know that AfA is the orthogonal projector onto Im(A). Hence, since 79 € Im(A),
left-multiplying the rightmost equation in (4.12) by (A")**! yields

t—1
ATTO = Z &Aii(del)T'O S]thl(A, 7’0).
. Ck
1=k+1
Note that Afrg = ATb — zo. Hence, ATb € zo + K;_1(A,70). O

Algorithm 4.1 The Conjugate Gradient method

Input: A matrix A € S7, vectors b, zg € Im(A), and T' € N.
Output: A global minimizer of f over xg + Kr(A,ro).

Ty < b— ASCO

Po < To

fort=0toT —1do

if Ax; = b then return z;
— :DtTTO

M+ 5 Jp

Tey1 <= Tt + Np+1D¢

(Apt,pe) (Apt,pt—1)
pt+1 = Apt o (Ptvpt>AA t [t 2 1] <Pt717pt71>1:

return zp

Pi—1

The pseudocode for the Conjugate Gradient method is given in Algorithm 4.1. Let us show the correctness
of this algorithm by arguing that, at the beginning of iteration ¢t € N of the for-loop in Algorithm 4.1, the
following invariants hold:

(i) {po,-...,pt} is an A-orthogonal basis of Ki11 (A4, r);
(ii) x4 is a global minimizer of f over xzo + Kt (A, 70).

For ¢t = 0, both invariants hold trivially. Suppose that these invariants hold at the beginning of iteration ¢ for
some t € N. Let us argue that, if the algorithm does not terminate, the invariants still hold at the beginning
of iteration t + 1.

If {A%,..., Alro} is linearly dependent, it follows from Lemma 4.9 that AThb € xo + K:(A, 7). By
invariant (ii), we have that x; is a global minimizer of f over x¢ + K;(A,70). Hence, z; = ATb in this case,
and the algorithm terminates. Suppose now that {A%r, ..., Alry} is linearly independent. By Corollary 4.5,
the set {po,...,pt, Pe+1} is an A-orthogonal basis of K;y2(A,b). Moreover, invariants (i) and (ii), together
with Proposition 4.8, imply that 2,1 is a global minimizer of f over zo + K;(4, rg). Therefore, invariants (i)
and (ii) hold in the beginning of iteration ¢ 4+ 1. Let us analyze the running time of Algorithm 4.1.

At each iteration, the algorithm makes a constant number of left-multiplications of vectors in Im(A) by A,
besides a constant number of dot products in R™. Therefore, if ¢4 is the time it takes to left-multiply a
vector in Im(A) by A, then Conjugate Gradient runs in time O(T'(t4 + n)). It is important to notice that we
use g = 0 in Section 4.5. This is done to simplify our analysis of Conjugate Gradient, and this choice does
not affect the asymptotic worst-case running time of the Method, neither its correctness.

It remains now to study the speed of convergence of the Conjugate Gradient method. That is, given t € N,
how well the iterate x; approximates a solution to the linear system Ax = b.

36

4.4 FError Analysis with Polynomials

Let R[A] be the set of all the polynomials on the indeterminate A with real coefficients and let R[A|<; C R[}]
be the set of all polynomials of the indeterminate X of degree at most t € N. If t € N, ¢ € RO°l!] and p € R[N <:

is such that .
A) =) e,
i=0

then
t

p(A) = Z ¢ AL

=0
Let
Qt = {]. -)\p(A) pe R[)\]Stfl}

be the set of polynomials of degree at most ¢ that evaluate to 1 at 0, where ¢t € N with ¢ > 1. Recall
that * :== A'b and that f: R” — R is given by

1
flx) = ia:TAa: — 2T,

where A € S™ and b € Im(A). Let y € R™. Note that
fly) = fa") = gyTAy y'b—3(2") Az + (%) "D
= LyT Ay — y" Ax* + L(2*)T Az*
=1(y" Ay — 2y" Ax* + (2*)" Ax™)
= 3" AW —a") = 3lly — 2|3

Lemma 4.10. If A € S and p € R[], then

(4.13)

2
Ayly < ol - AH(A Im(A).
Ip(A)oly < ol - _max p(X(4) vo e Tm(4)

Proof. Define A := Diag(\(A)). By the spectral decomposition theorem (see Theorem 2.5), there is an
orthogonal matrix @ € R™*" such that A = QAQT. Note that p(4) = Qp(A)QT. Moreover, it is easy

to see that a polynomial applied to a diagonal matrix yields a diagonal matrix. Hence, p(A) is diagonal.
Let v € Im(A) and define ¢ := Q7v. We have

Ip(A)o]% = 11Qp(A)Q v] = v" Qp(M)QTQAQT Qp(A)Q" v
=0TQAp(A)2QTv = T Ap(A C_ch (A))?
rank(A) rank(A)
= Z:j G APRGA)T <_max | p(A(A)? Z X5 (4)
ZCTACiE[glﬁjg) p(X(A))? = v"QAQTv v, e, P p(X{(4))
=vldv max p(A(A))? = HUHAZE[glﬁ{}éA)] p(\1(4))?,

where in the fourth equation we used that diagonal matrices commute.
O

Theorem 4.11. Let A € S” and let b, 29 € Im(A). Let z* = ATb and let ro be the residual. Let f be defined
as in (4.2) and define
x¢ = argmin{ f(z) : @ € xo + Ke(A,70)}. (4.14)

37

Then

%12 * .
e — (5 < (F(@o) = Fa) min _max 29(x}(4))"

< (f(wo) — f(=")) min max{2¢°(X) : A € [\fins Amad)

qEQ:

=\

where AT rank(A)

in (A) and Apax == A A). In particular, if g = 0, then

max(

w2 wn2 1 2
— < a A (A
foe = < o1 min _max ja(3t ()

< |1 Inin max{ ICVREP RSP RAP W) &

Proof. If {A%q, Alrg, ..., A=1rq} is linearly dependent, by Lemma 4.9 we have that 2* € x¢+/K;_1(A4,79) C
xo + Ki(A,ro). Hence, ||z, — x*Hi = 0 and the statement clearly holds in this case.

Suppose now that {A%, Alrg,..., A" 1ry} is linearly independent. Thus, the map y: ¢ € Rt
o + Zf;é civ1Alrg € o + K4(A,70) is a bijection. Moreover, define

t—1
pa(N) =Y dip X, VdeR
=0

Note that p: Rt — R[A]<¢—1 is also a bijection. Hence, poy~? is a bijection from zq + K¢(A, o) to R[N <¢—1.
Let ¢ € R?. Then
Ye = T + pe(A)ro = w0 + pe(A)A(z™ — x0).

Let g.(A) :==1 — Ap.(A\). Note that ¢ is a bijection from R* to Q;. Moreover,
Ye — % = o + p(A)A(x™ — xo) — 2" = (9 — 27) — pe(A)A(zo — =¥)
= (I =pc(A)A)(xo — 27) = ge(A) (o — 27).

By equation (4.13), we know that ||w — 9v*||21 = 2(f(w) — f(z*)) for each w € R™. By definition, z; is a
minimizer of f over xg + Kt(A, 7). Hence,

)2 « . » . w2
Ty — X =2(f(zy) — f(z™)) = min 2(f(w) — f(2™)) = min w—1x"%.
foe =l =2(f(e0) ~ f@) = min - 2f(w) - f@) = min e}
Therefore,
2 . _ -
T — x| = min w—x by definition of x
o =o'y =, min Ju-a'l} by t
= min|jy. — 2% using the bijection y
ceR?
= miQn |z(A)(xg — x*)||?4 using the bijection ¢
zeQy

Lemma 4.10 applied to the above equation yields

* (12 . 1 2 * (12
— <m m A (A —
lze — 2%’ —qelgriie[raﬁfbx)]‘q(AN Nlzo — 2%

o . 1 2 o *
= fellgliie[glrﬁ()fA)]‘q(Ai (ANI72(f (zo) — f(z7))

<min max |g(\)[*2(f(zo) — f(z¥)). O
q€Q: Ae[AL. A

min’ max

Corollary 4.12. Let A € S, let b,xz9 € Im(A), and let 7 be the residual. Let f be defined as in (4.2).
Then,
argmin{ f(x) : © € o + Krank(a)(4,70)} = ATb. (4.15)

38

Proof. Set k :=rank(A) and define ¢ € Q. by
A
A) = 1-——1.
" 1](Af(A))

Set z* = argmin{ f(z) : © € o + Krank(a)(4,70)}. Note that)\j(A) is a root of ¢ for every ¢ € [k]. By
Theorem 4.11,

7 — ATA < ma 2N AN P(fzo) — f(z¥) = 0. O
o = AT < _max 2la(HA) (S o) - Fla)

4.5 Improving the Analysis with Chebyshev Polynomials
For d € N, the degree-d Chebyshev polynomial (of the first kind) T, € R[A]<4 is defined by

if d =0,
ifd=1,
ATy 1(N) = Ty_o()), ifd>2.

Proposition 4.13. If € [-7/2,7/2] and d € N, then T,;(cos) = cos(db).

Proof. Our proof is by induction on d € N. By definition, if d = 0, then Ty(cosf) = 1 = cos(0) = cos(00),
and if d = 1, then 77 (cosf) = cos(0).
Let d > 1. Let us prove that Ty1(cos @) = cos((d + 1)8). We have

cos((d + 1)0) = cos B cos(df) — sin(df) sin b,
cos((d — 1)8) = cos 8 cos(df) + sin(df) sin 6.

Therefore,

Tyt1(cos@) = 2cosf Ty(cos®) — Ty—1(cosB) = 2cos b cos(df) — cos((d —1)0)
= 2cosf cos(df) — cos b cos(df) — sin(df) sin(6)
= cos 0 cos(df) — sin(df) sin(0) = cos((d + 1)6). O

Lemma 4.14. For every A € R with |A\| > 1 and for every d € N,
1 d d
Ty(N) = 2((>\+ vz 1) + (A— Vz = 1))

Proof. Let A € R be such that |A] > 1 and let p:= XA + v/ A2 — 1. Note that

pA— VA2 —1) =22 - A2+ 1=1.
Therefore, p=' = XA — /A2 — 1. Hence, to prove the statement of the lemma is equivalent to prove that
Ty(N) = s(ut+p~% VdeN.

Let us prove the above claim by induction on d. For the base cases where d € {0, 1}, we have %(/LO +u?) =
1=To(\) and 3(p+pt) =A=Ti(N).

Let d > 1. Note that
P2 =N 2202 =1+ A2 -1 =2\ — 1.

Similarly, we have ;=2 = 2\u~! — 1. Therefore,

1 1
T,(0) = 2XTy1 ()~ Tacal() = 2m (0" 4+ 1) = L2 4 pm(-2)
1, ., o _ 1 B
=§(ud 22— 1) +y~ 2 @2ap 1—1))=5(ud+u) m

39

Let d € N and let o, 8 € Ry be such that a < . Define the polynomial

B+a—2)
Qus.a(\) = Téég))

Note that Q.4 € Qq4. Since ﬂf—a > 1, by Lemma 4.14 we have that

f+a
Td(ﬂ_a> >0, VkeN. (4.16)

Lemma 4.15. If o, € R, are such that a < 3, then for every d € N,

d
Qa,p,d(A) < 2(%5;2‘:) Y\ € [, A).

In particular, let A € ST be such that A\t =)\iank(A)(A) < Apax = Apax(A). Then, for every d € N,

d
Qy+ (A = 1) VA e AL

N\ <2 Y — ,
mm,)\max,d()— (m—l—l min

A

max]7

where k1 (A4) = A

max /)\mm

Proof. Note that for every A € [a,],
B+ a—2\

b —a«a
Let d € N. Thus, by Proposition 4.13,
B4+ a—2A
T — —1,1].
(522 ey

Let x :== B/a. Therefore, using Lemma 4.14, for every X € [«, 3],

Td(%) (4. 16)
Qa,b,d(A) = W (
(5t a)

() = (55
() (s)d

where in the last inequality we used the fact that () O

mnk(A)(A) Apax(A), let b € Tm(A), let € > 0, and let z* = ATb.

)
) (i)

Corollary 4.16. Let A € S} be such that A
Let f be defined as in (4.2) and define
x¢ = argmin f(x) (4.17)
€I, (A,b)
for every t € N. Then))
e = 2™y < 2|2

for every t > V22 () In 2/e, where T (A) =)\maX(A)/)\;Lank(A)(A).

40

Proof. Let A\, =)\fank(A)(A), let Aoy = Amax(4), and let £ = kT (A). Since Q)‘;;in’)‘max’t(x) € Q, by
Theorem 4.11 we have that
%112 * (12 . 2 * (12 2
Ty — X <l min max A< ||z max M)
el < ol i a0 S e @)
Using Lemma 4.15 and Lemma 2.2, we get that
%112 * 12
lze — 2[4 < 2[4 max Q@+, A ,t()‘)Q
AEMGin Amax) T
2t 2t
w2 (VE—1 N2 1
<ol (YErg) <2t (1-)
* (12 2t * (|2
<ol en(- 22) < elel 0

Corollary 4.17. Let A € S7, let b € Im(A), let € > 0, and let z* = ATb. Let f be defined as in (4.2) and
define

x¢ = argmin f(z) (4.18)
€K (A,b)

for every t € N. If there are o, 8 € Ry with o < 3 such that all but ¢ eigenvalues of A are in [a, 5] U {0},
and the remaining c eigenvalues are all greater than 3, then

2 2
e — ™[Iy < ella™[

VB/a

for every t > ¢+ = lng.

Proof. Let Ay,..., A € (8, +00) be the eigenvalues of A that are not in [a, 5] U {0} and let » € N. Define the

polynomial
z A
&r(N) = Qapr(N) H<1 - A_).

i=1
Notice that ¢.(\) € Q... Moreover,
gr(A;) =0, Vi € []. (4.19)
Let k := 8/a. Note that
H(1 _ ;) <1, WaelaAUo).
i=1 i
Hence, we have
QT()\) S Qa,B,T(A)7 VA € [avﬂ] U {O} (420)

Therefore, if r := @ In2/e, then ¢, € Q... Hence, by Theorem 4.11, for every t > r + ¢ we have

4.19
o — 22 <) min max gOHA)? S [} min max_g(\)
q€ Q¢ i€[rank(A)] ¢ q€ Q¢ A\€[a,]

2

%12 2 (4.20) *(12 2
< oI ma OV S a7 s @)

Le.415 o (Vr—1\"" 2 1\?
< 20| T) S2Uetla(l - =
Ve+1 VE
Le. 2.2 .2 2r w2
<ol e (<21) < el =
Theorem 4.18. Let A € S7 such that)\fank(A) (A) > 1and Tr(A) <7 € Rit. Let b € Im(A), let € > 0,
and let 2* = A'b. Let f be defined as in (4.2) and define
xy = argmin f(x) (4.21)
€I (A,b)

41

for t € N. Then

e = (1% < ella” |1
for every t > 71/3(1 +1n1/e).
Proof. By Theorem 2.6, we know that Tr(A) is the sum of the eigenvalues of A. Therefore, it is easy to see
that for any 5 € Ry, the number of eigenvalues that are greater than f is at most Tr(A)/8. Hence, if we
set 3 := 72/3, at most Tr(A)'/3 of the eigenvalues of A will be outside the range [1,72/3]. Let ¢ be the number

of eigenvalues of A that are not in the range [1,72/3]. Hence, by Corollary 4.17, we have |z; — 2* HZ <egllz* HZ
for t > ¢+ V72/31In1/e. Since ¢ < Tr(A)l/3 < 71/3 the result follows. O

42

Chapter 5

Fast Laplacian Solvers

Many interesting algorithms for graph problems, including the algorithm for the maximum flow problem
that we study in Chapter 6, use a solver for a Laplacian system as a subroutine. Spielman and Teng described
in seminal work [11, 12, 13, 14] the first nearly-linear time solver for Laplacian systems. We state their result
in the following theorem.

Theorem 5.1. There is an algorithm that takes as input
e a weighted connected graph G = (V, E, w);
e a vector b € RY such that b L 1;
e avaluee >0,

and computes as output z € R such that
o — Lb], < LB,

where L := Lg(w). This algorithm runs in time O(mlog(1/¢)), where m = |E).

The algorithm constructed by Spielman and Teng is intricate, makes use of complex graph-theoretic
structures, and the power of logn hidden by the soft-O notation is quite large, but their solver opened
the floodgates. Following their work, many authors were able to simplify and improve the algorithm of
Theorem 5.1 (see [4, 8, 9]), and research for simpler Laplacian solvers is still active. One recent development in
the area is due to Kyng and Sachdeva [10], who constructed a simple nearly-linear time Laplacian solver based
purely on random sampling, not depending on any graph-theoretic construction. Moreover, fast Laplacian
solvers have been used in the development of very efficient algorithms for a host of combinatorial problems
(see [15]).

Although we shall not prove Theorem 5.1, in this chapter we describe a O(m*/3log(1/¢)) Laplacian solver.
This solver already has quite a respectable running time, and its construction contains many ideas used in
the solver of Spielman and Teng.

5.1 Preconditioning

Let A € R™*™ and let b € Im(A). Usually, the time it takes to solve the system Az = b with iterative
methods depends on some properties of the matrix A such as its condition number. The idea of preconditioning
is to build a matrix M € R™*™ such that applying an iterative method to the system MAx = Mb is
considerably faster than applying the same method to the original system. Moreover, constructing a solution
to the system Ax = b from a solution to the system M Ax = Mb should be efficient. We call the matrix M
a preconditioner of the system Ax = b. In this section, we will focus on preconditioners that decrease the
condition number of the matrix.

Note that AT is an excellent preconditioner for Az = b, but computing it exactly boils down to solving
the system itself. Moreover, the main operation that depends on A in many iterative algorithms, such as

43

the Conjugate Gradient method or the Power Method, is left-multiplying A by a vector in its image. Hence,
a preconditioner M such that it is time-consuming to left-multiply it by a vector may make an iterative
algorithm slower. Therefore, when choosing a preconditioner of a linear system, there are trade-offs involving
the time it takes to compute it, the time it takes to apply it to a vector (by left-multiplying it), and the
decrease it yields on the condition number of the system.

A problem that one may be concerned is that, if A € S, preconditioning the system Ax = b may not
preserve the symmetry of the matrix A. This is a problem in some cases, as in the Conjugate Gradient
method, which depends in a fundamental way on the symmetry of the matrix A. In this case, we may choose
a preconditioner M € S'}. This implies, by Theorem 2.13, that there exists £ € R"*" such that M = EET.
In this case, we will precondition the system Az = b by considering the system FAET = b. Hence, we will
first show that we can obtain an approximate solution to the system Az = b from an approximate solution
to EAET = b when some conditions are met. In the next section, we will show how this preconditioning
affects the condition number of the matrix, specially when considering the case of preconditioning a Laplacian
system.

Lemma 5.2. Let A, B € S be such that Null(4) = Null(B), and let E € R"*" be such that B = FE”.
Define W = ETAETT. Then Im(F) = Im(B), and Im(ET) = Im(W).

Proof. First, let us prove that Im(F) = Im(B). Let € R™. Note that
zeNull(B) "R2 1TBr =0 = 2TEETe =0 < |[ET2|? =0 < z e Null(E7).

Hence, Null(B) = Null(E”), and by Theorem (2.1), we have Im(B) = Im(F). This yields

Prop. 2.25

Im(ETT) Im(F) = Im(B) = Im(A). (5.1)

Let us now prove that Null(IW) = Null(E). Let z € R™. Since A »= 0, we have W = 0. Hence,

z e Null(W) "2)T Wy =0 <= 2TETAET Iz = 0 722" BTy € Null(A).

By (5.1), we have ETTx € Im(A). Therefore, ETTz € Null(A) N Im(A) = {0}. This is the case if and only
if 2 € Null(E”"), and by Proposition 2.25 we have x € Null(E). Hence, Null(W) = Null(E). Theorem 2.1
implies that Im(W) = Im(E7T). O

Theorem 5.3. Let A, B € S} be such that Null(A) = Null(B). Let E € R"*" be such that B = EET, and
define W := ETAETT. Define ¢: y € Im(W) — ETTy € Im(A). Then

<x7y>W = <¢)($), ¢(y)>Av Vm,y € Im(W)
In particular, let b € Im(A) and let € > 0. If, for each y € R™,

ly™ = yllw < elly"llw

where y* := WTETb, then
2% = oY)l 4 < ellz"]] 4,
where z* := A'b.

Proof. By Theorem 2.1, since Null(4) = Null(B), we have Im(B) = Im(A). By Proposition 2.25, we
have Im(ETT) = Im(E), and by Lemma 5.2 we have Im(E) = Im(B) = Im(A). Therefore,

Im(E) = Im(B) = Im(A). (5.2)
Let &,y € Im(W). We have

(0(2), 6(y)) 4 = $(a)" Ap(y) = 2T EVAET Ty = "Wy = (2, y) -
In particular,

ly" =yl < elly* 5y <= l60") = s@)h = 8™ =9I < eldy™)s-

44

Therefore, it only remains to show that ¢(y*) = 2*. By Proposition 2.23 and by (5.2),
AAT = EE" = Projy, 4 - (5.3)
Moreover, by Propositions 2.23 and 2.25,
WTW is an orthogonal projector onto Im(WT) = Im(W) = Im(E"). (5.4)
Therefore,

o(y*) = ETty* = ETTWTET

(5.3) 5.3)

ETwiEtaaty) ETW Bt A(EET)T AT
= ENTWIETAETTET AT = ETTWTW ET ATh

Y gTipT Aty — (EEDT AT

(5.3)

ATh = 2. O

5.2 A Fast Solver

For every A € SV we define the weighted graph G(A) = (V, E,w), where

E = {Zj S (Z) ZA,‘J‘ 750},

and (w);; == A; ; for every ij € E. A permutation matrix is an orthogonal matrix with entries in {0,1}.
Given a bijection o: V — V, define the permutation matrix P, € {0,1}V*V by

P,e; = €0 (i) VieV.

Proposition 5.4. If A € S} is such that G(A) is a tree, then there are a lower triangular matrix L € R"*"
with at most 2n non-zero entries and a bijection o: [n] — [n] such that P, APT = LLT. Moreover, we can
compute the matrix L and a the bijection o: [n] — [n] in time O(m), where m := |E(G(A))|, using the data
structures from Section 2.2.

Proof. Let o: [n] — [n] be a permutation such that, for each i € [n], o(4) is a leaf in G — {o(1),...,0(i —1)}.
Such a permutation can be found easily in linear time using depth-first search. Hence, each ¢ € [n] is a
leaf in G((P,APT)[[n]\ [i — 1]]). For simplicity, we may assume that P, = I. Let L € R"*™ be a lower
triangular matrix and let D € S be a diagonal as in Theorem 2.18 such that A = LDLT. Since A= LL7,
where L := (LD'/?) is lower triangular and has the same number of nonzero elements as L, it suffices to
prove that

the matrix L has n — 1 nonzero off-diagonal elements and can be computed in O(n) time. (5.5)

Let us first prove that L has n — 1 nonzero off-diagonal entries by induction on n. For n = 1 the statement
clearly holds. Suppose that n > 1. Let o € Ry, let i € Ng(a)(1) € [n] \ {1} be the only neighbor of 1, and

let B € S[f]\{l} be such that
o eiT
(e).

Let B := B — [a > 0]1e;e] € RPN Note that B can be computed in constant time, since e;e! has only

L= <[[o-> 0] Q) : (5.6)

one nonzero entry. By Theorem 2.18,
a>00te; L

where L € RIPNIDX(MM1D) s a Jower triangular matrix and D € S[f]\{l} is a diagonal matrix such
that B = LDL”. Note that G(B) = G(A) — 1, and since 1 is a leaf in G(A), we have that G(B) is a tree.

45

Moreover, E(G(B)) = E(G(A))\ {1i}. Hence, the property that j € [n]\ {1} is a leaf in G(B)[[n — 1]\ [4]] is
preserved. Therefore, by the induction hypothesis, the matrix L has n — 2 nonzero off-diagonal elements.
Hence, by equation (5.6), we conclude that L has n — 1 nonzero entries. It only remains to show that the
matrix L can be computed in O(n) time.

We can compute L recursively by the definitions in Theorem 2.18. Since we can find ¢ € Ng(1) and
compute L in constant time, each recursive call takes constant time to be computed. At each recursive call,
the dimension of the matrix we have to process decreases by 1. Hence, we make a total of n recursive calls,
and thus we can compute L in O(n) time. O

Let G = (V, E,w) be a weighted graph, and let T be a spanning tree of G. For every ij € E, let T(i, j) be
the unique path between ¢ and j in T'. For every e = ij € E, the stretch of e (with respect to T and w) is

1
str(e) = w, Z s
JEE(T(i,5))
We also define sty (G) ==) . str(e). We will use the following theorem without proof.

Theorem 5.5 ([1]). There is an algorithm that takes as input a connected weighted graph G, and computes
as output a spanning tree T' of G such that sty (G) € O(mlognloglogn(logloglogn)?), where n := |V(G))|
and m = |E(G)|, and runs in time O(m).

Lemma 5.6. If A € S” and B € R"*" are such that Null(4) = Null(B), then AT(A) = AT(BABT).
Proof. By Theorem 2.1, we know that
Im(A) = Null(4)* = Null(B)* = Im(BT).

Hence, BT B is an orthogonal projector onto Im(A) by Proposition 2.23. Therefore, BTBA = A, and the
statement follows from Lemma 2.4. O

Lemma 5.7. If A, B €S} and A = B, then all nonzero eigenvalues of BT A are at least 1.
Proof. Set W := (BT)Y/2A(B")/2. First, let us prove that
W has the same eigenvalues of BT A. (5.7)
By Lemma 5.6, the matrix W has the same eigenvalues of (BT)1/2W31/2. Note that
(BHYY2wBY? = (BNYY2(BN/2 A(BY /2 BY? = Bt A(BY/?)IBY/2 = B A,

where we used in the last equation Proposition 2.23, which states that (B'/2)f B1/2 is the orthogonal projector
onto Im(B'/?) = Im(B) and that
Im(B) C Im(A). (5.8)

To see that the above claim holds, suppose there is € Null(A) \ Null(B). Then, by Proposition 2.12, we
have 7 Bx > 0. Hence,
zI'Bx >0 =aT Az,

what is a contradiction since A = B. This ends the proof of (5.8), and therefore ends the proof of (5.7).
Thus, it suffices to show that
1
)\rank(W)(W) > 1

By Theorem 2.22, one can verify that (B)'/2B'/2 = (BTB)'/2. Hence, using that A = B, we have
W = (BT)l/QA(BT)1/2 t (BT)l/QB(BT)l/Q — (BT>1/2B1/2Bl/2(BT)1/2 — (BTB>1/2<BBT>1/2 — BB"‘7
where in the last equation we used that

BB' = (BB"T = BT'BT = B'B,

46

where in the first equation we used property (iii) of the pseudoinverse, and in the last equation we used
that B is symmetric. Let z € Im(W) be an eigenvector of W associated with /\(W)imk(w). By Propo-
sition 2.25, Im(B') = Im(B). Since W = (BN)Y/2A(B")/2, we have Im(W) C Im(B'). By Proposi-
tion 2.25, Im(BT) = Im(B). Hence, Proji, gy = x. By Proposition 2.23, we have that BBt = Proji,(p)-
Therefore,

Mlz||* = 2" Wa > 2" BBtz == 27 Projipy = = z]* = A>1. O

Lemma 5.8. Let T be a weighted tree with weights r € Rf+. If s,t € V(T) are distinct, and P is the
unique (s, t)-path in T, then
Ri(r) = Z Te.

e€E(P)

Proof. Let f be the unit electrical (s, t)-flow in 7. By Theorem 3.7, we have R’ (r) = £(f). By Proposition 3.4,
we can write Diag(sgn(f))f as a linear combination of incidence vectors of (s,t)-paths. Since P is the
unique (s,t)-path in T, we have Diag(sgn(f))f = |f|1gp) = Lg(p). Then,

Rzg(r) = E(f) = f* Diag(r)f = Diag(sgn(f))*f” Diag(r)f
(Diag(f) /)7 Diag(r) Diag(f)f = 13, Diag(r) Lscp)

- Y O

e€E(P)

Proposition 5.9. If G is a weighted graph with weights w € Rf 1, and T is a spanning tree of G, then
TI'(,CT(’U))T,Cg(’LU)) = str(G).

Proof. We have

Tr(ET(w)T,Cg(w)) = Z Wi Tr(LT(w)T(ei —ej)(e; — ej)T) = Z w;j(e; — ej)TLT(w)T(ei —€;).
ii€EB(G) iEE(G)

Note that (e; —e;)T L7 (w)T(e;—e;) is, by definition, the effective resistance of 45 in T with edge weights r € R
such that r. := 1/w, for each e € E. For every ij € E(G), let T(i,j) be the unique (7, j)-path in 7. Then,
by Lemma 5.8,

Tr(Lr(w) Lo(w) = Y wijle; —e) Lo(w)i(e;—e;) = Y <wj > 1) =stp(G). O
ijEE(G) ijEE(G) e€E(T(i,5)) ¢

Theorem 5.10. There is an algorithm that takes as input

e a weighted connected graph G = (V, E, w);

e a vector b € R such that b L 1;

e a value € > 0,
and computes as output € RY such that

|z — LT, <ellLTb|,,

where L := Lg(w). This algorithm runs in time O(m?*/3log(1/¢)) using the data structures from Section 2.2,
where m = |E].

Proof. Set n = |V| and let T be a spanning tree of G' such that st7(G) € O(m). Such a spanning
tree exists and can be computed in O(m) time by Theorem 5.5. By Proposition 5.4, there are a lower
triangular matrix £ € RV*Y with at most 2n nonzero off-diagonal entries and a bijection o: V' — V such
that P,Lr(w)PY = EET. Moreover, this proposition states that the matrix E and the permutation that

47

corresponds to the action of P can computed in O(m) time. Since we can fix any permutation of the

vertices, suppose that P = I. Define W := ET,Cg(w)ETT. The idea now is to approximately solve the

system Wy = E'b using the Conjugate Gradient method. Before invoking this method, we need to show that

Nankwy (W) = 1 and Te(W) = str(G). (5.9)

By Lemma 5.6, we have that the eigenvalues of W are the same of EfWE = Ly (w) L (w), and by

Lemma 5.7, we have that all nonzero eigenvalues of L1 (w)!Lg(w) are at least 1. Hence,)\fank(w)(W) > 1.
Moreover, note that

Tr(W) = TY(ETﬁG(w)ETT) _ rI\I.(ETTEfﬁg(w)> Prop. 2.21

Tr(BET) L (w)) = Tr(Lr(w) Lo (w)) = str(G),
where in the last equation we used Proposition 5.9. This ends the proof of (5.9).

Hence, by Proposition 4.8 and by Theorem 4.18, after w = st7(G)'/3(1+1n1/¢) iterations of the Conjugate
Gradient method on the system Wy = ETb, it yields y € RV such that

ly™ = yllw < elly"llw

where y* = WTEb. Define z := E7Ty. By Theorem 5.3, we have that
" — x”ﬁc(u)) < 5||$*||1:G(w)>

where z* == Lg(w)Tb.
It only remains to show that
the execution of the Conjugate Gradient method (CGM) to find a solution to the (5.10)
system Wy = ETb takes time O(m*/log1/e).
In each iteration, the CGM computes a constant number of matrix-vector multiplications of W with a vector
in K¢ (W, ETb) C Im(W) for some t € N. Therefore, let us first show that

it takes time O(m) to compute W for any v € Im(W). (5.11)

Since ETLg(w)ETT, left-multiplying a vector v € Im(W) by W can be broken down into three steps. First,
one needs to left-multiply v by E7f. By Lemma 5.2, we have that Im(W) = Im(E7). Therefore,

r=FETp — ETr=ETETTp=p,

where in the last equation we used that E7 ETT is an orthogonal projector onto Im(ET). Hence, to calculate r
it suffices to solve a linear system on ET. Since E has at most 2n nonzero entries and is lower triangular,
solving this system takes O(n) time. Next, to compute Lg(w)(ETTv) we need time O(m). This is due to
the fact that Lg(w) is a sparse matrix with O(m) nonzero entries. Finally, to calculate ET(Lg(w)ETv), by
Lemma 5.2, we have that Im(Lg(w)) = Im(Lr(w)) = Im(E). Since Lg(w)ETTv € Im(Lg(w)) = Im(E), we
only have to solve a linear system over the matrix E. Since E has at most 2n nonzero entries and is lower
triangular, solving this system takes O(n) time. This ends the proof of (5.11).

Hence, by (5.11), each iteration of the CGM takes time O(m). Since we execute w = st7(G)/3(14+1n1/e)
iterations of the CGM, and using the fact that st7(G) € O(m), we have that the CGM, in this case, takes
time O(mw) = O(m*?log1/e). This ends the proof of (5.10), and the theorem follows. O

48

Chapter 6

Maximum Flow in Graphs using
Electrical Flows

In this chapter we describe the algorithm from [3], which computes an approximately maximum flow
in a graph in a quite respectable running time with the aid of nearly-linear time Laplacian solvers. Not
only that, but its general idea is also is relatively simple. Intuitively, it uses electrical flows, which do not
necessarily satisfy the capacity constraints, as approximations to flows of some desired value that respect the
edge capacities. The basic idea is to first compute an electrical flow with some initial resistances on the edges
of the graph. Since an electrical flow may not respect the edge capacities, we modify the resistances over the
edges, penalizing edges on which there is too much flow compared to their capacities, and then repeat the
process. We compute these multiple electrical flows and combine them with the aid of the Multiplicative
Weights Update Method [2]. Intuitively, this method is a meta-algorithm that takes an algorithm which
solves a given problem very crudely and, by repeatedly calling this crude algorithm with new parameters, it
computes a good approximate solution to the problem. After computing sufficiently many electrical flows, we
will be able to compute a feasible flow whose value is close to the desired one. Since computing electrical
flows exactly is costly, we only compute electrical flows approximately.

In Section 6.1, we study how to compute an approximately electrical flow, that is, a flow that has almost
minimum energy, in nearly-linear time by using a nearly-linear time Laplacian solver. In Section 6.2, we
describe how to use approximately electrical flows as crude approximations to feasible (s, t)-flows of a target
value a € R, , and use such approximately electrical flows in the Multiplicative Weights Update Method
to compute a flow of value close to a in time O(m3/2¢=5/2). In Section 6.3, we show how to compute
an approximately maximum flow via binary search using the algorithm from the preceding section as a
subroutine.

6.1 Computing Approximately Electrical Flows

Recall from Section 3.2 that one can find an electrical (s,¢)-flow in a graph G by solving a Laplacian
system, which yields the vertex potentials of the unit electrical flow of the graph. By Theorem 5.1, we can
find an approximate solution to a Laplacian system in nearly-linear time, and hence we may approximately
find these vertex potentials in nearly-linear time. The problem that arises is that the vector induced by this
approximate solution may not be an (s, t)-flow, i.e. it need not satisfy the flow conservation constraints. In
this section, we will show how to round in nearly-linear time the vector induced by the approximate vertex
potentials to an (s,t)-flow with almost minimum energy.

Let G = (V,E,r) be a weighted graph. Let s,¢ € V be distinct and let f* € R¥ be the unit electri-
cal (s,t)-flow in G (see Section 3.2 for the definition of electrical flow). Let § € Ry. An (s,t)-flow f in G
is d-approximately electrical if £(f) < (1+8)E(|f]f*)-

In the next lemma we describe an algorithm that rounds a given vector to a flow in the graph. This
algorithm will be used in the main theorem of this section to round the non-flow induced by the vertex
potentials that forms an approximate solution of a Laplacian system.

49

Lemma 6.1. There is an algorithm that takes as input
e a weighted connected graph G = (V, E,r),
e distinct vertices s,t € V,
o a target flow value o € R,
e an orientation G of G,

e a vector f € Rf,

and computes as output an (s,t)-flow f of G with respect to G of value a € R, such that

1 = fllse < nlliext — ales — e)llcs
where n := |V| and
iext = Bé’f
Moreover, this algorithm runs in time O(m) when using the data structures from Section 2.2, where m = |E)|.
Proof. Let us show how to compute Af € R¥ such that
BaAf = a(es — er) — lext = d,
so that f := f + Af satisfies Bz f = a(es — e;). Note that
17d = a1 (es — e;) — 1Tiexy = al” (es — ;) — 17 Bz f =0,

where in the last equation we used that 1 € Null(Bg) y roposition 2.30. Let T'= (V, F) be a spanning tree

of G and let T be an orientation of T such that A(T) C AG) Such a spanning tree can be found in O(m)
by a depth-first search. Actually,

one can easily compute a spanning tree T of G and a function ¢ : [n] — V in O(m) (6.1)
time such that ¢ (¢) is a leaf in the tree T[{¢(3), (i + 1),...,%(n)}] by using depth-first
search.

If there is ¢ € RY such that Bzg = d, then defining Af € RE by Af. = [e € Flg. for every e € E
yields BgAf = Bzg = d. Hence, it suffices to prove the following claim:

Let T = (V,F') be a spanning tree of G with orientation T and let d € RY be such (6.2)
that 17d = 0. Then we can compute g € RF such that Bzg = d in time O(n).

First of all, note that

If n =1, then d = 17d = 0 and g = 0 satisfies the claim. Suppose that n > 1. Let v € V be a leaf
in T, let {u} = Np(v) and define V' := V' \ {v}. Let 77 := T — v and let T’ =T —v. Define d' € RV by
setting d .= d; + [¢ = u]d, for each i € V’. Hence,

d+dy(ey —ey) = (3,) eRY. (6.3)

Note that

17d =17 (2) =17d+ 1% (e, — ey)d, =0

Hence, d’ 1 1, and we can recursively compute g’ € RE(T/) such that B¢’ = d'. Let a € A(?) be the only
arc incident to v in 7. Extend g € RE(T/) toge RE(T) by setting

Guv = (=1)l€"Wg, (6.4)

50

Therefore,

-1 [a€5in(v)]dv
Bpg = Bz <() q

in O
— Bj_:ea(_l)[aeé (v)]dv + (BH /)
T/
= (-,) (1), + (1)

— (ey — eu)dy + (3/) ©3)

One may note that it is possible to perform the calculations from (6.4) during the depth first search from (6.1)
(more specifically, one may perform the calculation from (6.4) when ending visiting a vertex). Hence, the
algorithm takes a constant amount of computation for each node during the depth-first search. Hence, we
conclude the the algorithm runs in time O(m). O

We will now prove some bounds on the energy of an electrical flow, which will be useful in the proof of
the main theorem of this section.

Lemma 6.2. Let G = (V,E,r) be a weighted connected graph such that r. € [1,w] for each e € E,
set m = |E|, and let s,t € V be distinct. If f is the electrical (s,t)-flow in G of value o € Ry, then

[N~}

Y < E(f) < dPwm.
m
Proof. Let us first prove that
E(f) < a®wm. (6.5)

Note that
Ef) = fore w2 < | fIPwm.

ecE ecE

Hence, to prove (6.5), it suffices to prove that

[fll < a. (6.6)

By Proposition 3.5, there is a collection P of (s, ¢)-paths in G with |P| < |E| and a vector ¢ € R with ||c[|, = «
such that
[= Diag(sgn(f)) Z c(P)Lgp).

pPeP

Hence, for every e € E,
[fel =) le € E(P)e(P) < |le], = o,
PcP
ie., ||f]lo < c. This ends the proof of (6.6), and thus that of (6.5).

Let us now prove that

a2

= <e). (6.7)

Let f1 be the unit electrical (s,t)-flow in G. By Theorem 3.6, af; = f, and hence £(f) = a?£(f1). Moreover,
by Proposition 3.7, (f1) = R4 (r). Hence, to prove (6.7), it suffices to show that

IN

1 s,t
E Reff (T)

By Proposition 3.3, we have Apax(Lg) < 2A(G) < 2m. Hence, by Proposition 3.8 and Theorem 2.8,

s 1
Ri(r) > R (1) = (es — er) "Ll (es —) > 2ML(LE) = > —.

X (Le)

o1

Theorem 6.3. There is an algorithm that takes as input
e a connected weighted graph G = (V, E,r),
e an orientation G of G,
e distinct vertices s,t € V,
e scalars a € Ry and 6 € (0,1],

and computes a d-approximately electrical (s,t)-flow with respect to G of value a in G. Moreover, the
algorithm runs in time O(mlogw/d), where w = x(Diag(r)) and m = |E|.

Proof. Define ryi, = min{r.: e € E}. By Theorem 3.6, if f is an d-approximately electrical (s,t)-flow

of value o in G with weights given by (———)r, then (ryi,)f is an é-approximately electrical (s,t)-flow of

value o in G. Hence, we may assume that re € [1,w]. Define ¢ € R¥ where ¢, := 1/r, for each e € E,
define L := L(c) and let v :== aLf (e, —¢e;). Let € > 0 and let & € RV be such that

5~ vll, < <ol
By Theorem 5.1 we can compute such a vector in time O(mlog1/e). By Theorem 3.6, if we define
f = Diag(c)BLv, (6.8)
then f is the electrical (s, t)-flow of value v in G. Moreover, define
f= Diag(c)Bg»@.
Note that

E(f) = T Diag(c)~' f €9 v" Bg Diag(c) Diag(c) ™" Diag(c)BjG:»v =o' Ly = Hv||i

Similarly, £(f) = ||@H2L Hence, using these facts and the triangle inequality,

10l < llvllp + 12 —vll, <@ +e)lv]l,
] , (6.9)
= &(f) < (A +e)°E(f).

Note that f is not necessarily an (s, t)-flow, since it may not satisfy the flow conservation constraints. Define
iext = BLf = L,

set n == V] and let 1) = ||iexs — a(es — €;)|,. By Lemma 6.1, given f we may compute an (s,t)-flow f in G
of value a such that
1 = Flloo < .
Let us show that
the flow f is a d-approximately electrical (s,t)-flow if & < §/32n*m3/%w. (6.10)

By Proposition 3.3, we have ||L||, < 2n. Moreover, by Proposition 2.11, Apax(LY?) = Apax(L)'/2. Thus,
since L = 0 and by Corollary 2.9, we have

ILY2]]y = Amax(LY?) = Amax(L)Y? = | L]l3/* < 2. (6.11)
Hence,
n < ||iext - a(es - €t>||2 = ”Lﬁ - LU”Q
< LY ILY2 (0 — w)lly = |ILY2],]10 — o]l (6.12)

(6.11)

< 2nevE(f).

52

By Proposition 3.5, || f||., < a. By the triangle inequality,

1 Flloe < UFllo + 1L = FII < @ +nn. (6.13)
Therefore,
f) = Z Tef? < Zre(fe + 7’“7)2 = E(f) + QnWZTefAe + n2772 Z Te
ecE ecE eckE ecE
(6.13)
< E(f) + @2nn(a +nn) +n?n?) Zre = E(f) + (2nna + 3n*n?) Zre (6.14)
eceE e€E
E(f) + 2nma + 3n*n?)ymw.
Note that ©6.12)
6.12
2nna < 2na(2n5\/5(f)) = dan’e\/E(f) < 4n*cE(f)vV/m, (6.15)

where in the last inequality we used the fact that o < /E(f)m, which is a consequence of Lemma 6.2.
Moreover, since § < 1 and our hypothesis in (6.10), we have ¢ < 1, and thus,

(6.12) 2
3n’n? < 3n? (2n5 E(f)) = 12n*2E(f) < 12n*E(f). (6.16)
Hence,
E(f) < E(f) + 2nna + n*n?)mw by (6.14)

< E(f) + (4nPev/m + 12n%e) E(f)mw by (6.15) and (6.16)

< ((14 &%) +4en®m3 2w + 12n46mw>€(f) Since £(f) < (1 +¢)%E(f) by (6.9)

< ((1+e%) + 166n4m3/2w)5(f).
Thus, if

1
[—
~ 2(16n*m3/2w)’
then, using that § < 1,

et < ((+)+ 5)ewn < ((1+) g>e<f> - <1+ T (0)s §>s<f>

< <1+ 0 + 0 + 5)5(1”) = (1+ 76)&?(]“) < (1+6)E(S).
4 8 2 8

This ends the proof of (6.10). It only remains to calculate the running time of the algorithm. We can

compute ¢ using the algorithm from Theorem 5.1, which runs in time O(mlog1/¢) = O(mlogw/§). Since

the algorithm of Lemma 6.1, which was used to compute f from f, runs in time O(m), the whole algorithm

runs in time O(mlogw/§). O

6.2 Multiplicative Weights Update Method

In this section, we describe how to apply the Multiplicative Weights Update Method (see [2]) to the problem
of finding a feasible flow in a graph with value close to some target value. We first define an (g, p)-oracle,
which is, informally, a black box that returns a flow in a graph which is close to being feasible. These oracles
will be used as a source of crude approximations to feasible flows to be used by the Multiplicative Weights
Update method. Then, we show how to construct such an oracle by using the algorithm from Section 6.1
to compute approximately electrical flows. Next, we describe the application of the Multiplicative Weights

53

Update method, which computes a feasible flow by repeatedly calling an (e, p)-oracle. Finally, we show then
that using the oracle built using the algorithm from Section 6.1 in the Multiplicative Weights Update Method
yields an efficient algorithm for finding a feasible flow in a graph with value close to some target value.

Let G = (V,E) be a graph, let s,t € V be distinct, and let u € R£+' The capacity of e € E is u,.
Let f be an (s,t)-flow in G. The flow f is feasible (with respect to u) if |f.| < u. for every e € E. The
congestion of an edge e € E in f (with respect to the capacities u) is

| fel

cong(e) = o
€

Note that f is a feasible flow in G if and only if cong;(e) < 1 for every e € E.
Let G = (V, E,w) be a weighted graph with capacities u € R¥,, let € > 0, let « € Ry, and let p € Ry .
If s,t € V are distinct, an (s,t)-flow f in G is (g, p)-quasi-feasible if

(i) w” cong; < (1+¢)[wl,, and
(i) [lcongyll.. < p-

An (g, p)-oracle is an algorithm which takes as input a weighted graph G = (V, E', w) with edge capacities u €
Rﬂ, distinct s,t € V, and a target value o € R, then

e if « < OPT, where OPT € R} is the value of a maximum (s, t)-flow in G, then the algorithm returns
an (g, p)-quasi-feasible (s,t)-flow f of G of value «;

e otherwise, the algorithm either returns an (g, p)-quasi-feasible (s,t)-flow f of G of value «, or it fails.

Algorithm 6.1 (¢,3,/m/e)-oracle

Input: A weighted connected graph G = (V, E,w) with capacities u € Rf, a value « € Ry, and s,t € V
distinct.
Output: An (g,34/m/e)-quasi-feasible (s,t)-flow of G if the algorithm does not fail, where m = | E].

Set re < - (we—l—%) for each e €

u2
Ug m

Compute an (¢/3)-approximately electrical (s, t)-flow f of value a on (V, E,r) using the algorithm from
Theorem 6.3.

if £(f) > (1 +¢)[jw||; then return fail
else return f

Let us analyze the running time of Algorithm 6.1 for a fixed ¢ > 0. Let G = (V, E,w) be a weighted
graph with capacities u € R¥, let o € Ry, and let 7 € R¥, be defined as in Algorithm 6.1. Define m := |E|.
The computation done by Algorithm 6.1 consists of finding an (¢/3)-approximately electrical (s,t)-flow
in G’ :== (V, E,r) by using the algorithm from Theorem 6.3, besides some calculations that can be done
in time O(m). By Theorem 6.3, we can compute an (¢/3)-approximately electrical (s,t)-flow in G’ in
time O(mlogw/e), where w := x(Diag(r)). Let U := x(Diag(u)), and let e, f € E. By the definition of r, we
have

g ggmuteluly panlel sl (3) om0
ry 3muwy + efwl, effwlly € €
Hence, w < 6mU?/e. Thus, Algorithm 6.1 runs in time O(mlogU/c). The next proposition shows that
Algorithm 6.3 is an (e, 34/m/c)-oracle.

Proposition 6.4. Let G = (V, E,w) be a weighted connected graph with edge capacities u € REJF, and
let s, € V be distinct. Let OPT € R¥ be the value of a maximum (s,t)-flow in G, let « € Ry and let f
be an (g/3)-approximately electrical (s,t)-flow of value « in the graph (V, E,r) for some ¢ with 0 < e < 1,

where r € Rf is defined by
Te = u;Q <w6+5|w”1>, Ve e E.
” 3m

If £(f) < (1 +¢)||wll;, then f is an (e,3y/m/e)-quasi-feasible (s,t)-flow in G of value «, where m = |E].
Moreover, if |f| < OPT, then £(f) < (14 ¢)|lw]l;.

54

Proof. Let f* be a maximum (s,t)-flow in G with respect to the capacities u. Since f* is feasible, we
have cong . (e) < 1 for every e € E. Hence,

() = 30 (et Zpt (727 = 30 (e + s cony ()

ecE ¢ e€E

< 30 (et) — o, (14 5).

eckE

(6.17)

Suppose that
a < OPT. (6.18)

Let f be an electrical (s, t)-flow in G :== (V, E,r) of value a. By Theorem 3.6, (OPT /a)f is an electrical (s, t)-
flow in G’ of value OPT. Moreover, by the definition of electrical flow, we have that £((OPT /a)f) < E(f*).

Hence,
e < (1+5)ed L (14 2) (L) o) = (14)e(E2F) < (14 ewr)

£\ 2 e e\ 2 2 €
< (1) bl = (14 2+ (5) Yt = (1+ %+ 5) ol = 1+ 9

It remains to prove that, if £(f) < (1 +¢)|jwl|,, then f is an (e, 34/m/e)-quasi-feasible (s,t)-flow in G of
value a. Since £(f) < (14 ¢)|lw||;, we have

1 gllw gllw
(1l > £00) = 3 o (10 T (702 = 32 (e + T om0, (.19
ecE ¢ ecE
By construction, we know that |f| = a. Let us prove that
w? cong; < (1 +¢)l|w;- (6.20)

From (6.19), we have

Z We comgf(e)2 < (1 +e)fw|y.
eckE

Hence, by the Cauchy-Schwarz inequality,

2 2
(w” cong;)? < [lwl, (3 we cong,(€)?) < (1+ &)}
ecE
— chongf <V1+elwl; < @ +e)|w|,.

This ends the proof of (6.20). It only remains to prove that
m
Jong . < 3/ 2

cong(e)* < (1+¢)[wl),.

Let e € E. From (6.19), we have
el|wlly
3m

/(1 [m
congf +€ < 3 O

The above proposition proves correctness of Algorithm 6.1. Hence, for any fixed £ > 0, Algorithm 6.1 is
an (g,34/m/e)-oracle, where m is the number of edges of the graph received as input by the oracle. The
following corollary summarizes what we have just proved.

Hence,

55

Algorithm 6.2 Multiplicative Weights Update Method

Input: A connected graph G = (V,E) with capacities u € Rf, vertices s,t € V, an (g, p)-oracle O
with 0 < e <1/3,and a € Ry.
Output: If the algorithm does not fail, it returns a feasible (s,)-flow of G of value at least (1 — 3¢)a.
m < |E|
w® « 1 € RE and N « 2253,
for:=1to N do
Query O with input the graph (V, E,w*~!) with capacities u and target value a.
if O fails then return fail
Let fi be the (s,t)-flow returned by O.
for all e € E do
wg + wg (1 + £ cong (e))

r —e)? N
return f < % Yoicq fi

Corollary 6.5. Let € > 0 be fixed. Then there is an (g, 31/m/e)-oracle such that, when given as input a
weighted connected graph G = (V, E, w) with capacities u € Rf_H and distinct vertices s,t € V, it runs in
time O(mlogU/e), where m := |E|, and U := x(Diag(u)).

In Algorithm 6.2 we present the pseudo-code for the Multiplicative Weights Update routine. At each itera-
tion of Algorithm 6.2, we make a call to the (g, p)-oracle and update the weights of the graph. Since the algo-
rithm executes N = (2pInm)e~2 iterations, we conclude that Algorithm 6.2 runs in time O(pe =2 max{m,to}),
where to is the running time of the (e, p)-oracle and m is the number of edges of the input graph. Note that
we may suppose to € 2(m) since the (e, p)-oracle needs ©(m) time to read its input. Let us now prove the
correctness of the algorithm.

Lemma 6.6. If ¢ > 0 and z € [0, 1], then
exp((1 —¢e)ex) <1+ ex.

Proof. Let x € [0,1], and let € > 0. If ¢ > 1, then (1 — e)ex < 0, and hence, exp((1 —¢)ex) <1 <1+ ew.
Suppose that € < 1. By definition, we have

exp((1 —g)ex) :iw = 1+5x—52x+i((1_i7f)m)i.
=0 ' i=2 :

Hence,

exp((l —e)ex) < 1+ex <~ i M ex.

7!
=2
If x = 0, the statement clearly holds. Suppose that = > 0. Then

i (1 —.s)aa:) <2y (1 —g)igt 2t <1
i=2 d i=2 i
Note that
& 1—¢)t i—2,.i—1 > o)
Z (I-¢) 5' x < Z(l £)igi=24i1,
i=2 b i=2
Since the right hand side of the above inequality is a geometric series with ratio (1 —e)ex < 1, we have
i(l —e)igim2giml = (1—-¢)z _ (1—e)z < (1-¢)z
P 1-(1—-¢lex l—ex+e2x ™ (1—c+e?)z
1—¢)? 1—¢)?
_ (=g _ (-9 <1. O

(1—-e+4+e?) (Q1-¢e)2+¢

56

Theorem 6.7. Let G = (V,E) be a connected graph with edge capacities u € R++, and let s,t € V be
distinct. Let € > 0, let p € Ry and define w® := 1 € R¥,. Let a € Ry and, for each i € N\ {0}, define
the vectors f € R¥ and w; € R¥, in order such that fi is an (g, p)-quasi-feasible (s,t)-flow of value «
in (V, E,w'™1), and w’ is given by the formula

w! = w (1 + £ congyi(e))7 Ve € E.
Define
= (1-¢)? i
f= oy Z 1 (6.21)

where N := 2plnm/e?, and m := |E|. Then, f is a feasible (s,t)-flow of G with edge capacities u such
that |f| > (1 — 3¢)a.

Proof. Let us first prove that,
) . 1 (1
w™*Hly < Jlw'lly exp<(+€)€> < mexp(l(Jrg)E) Vi e N. (6.22)
P P

For every i € N, we have

. I .
wi |, = Zw”l Zwé (1 + pcongfiﬂ(e)) = |lw'|, + Zw cong i+1(e)

eckE ecFE PGE
i (I4+¢e)e\ Le.22 (1+e)
< flw ||1(1+p R |

where in the first inequality we used property (i) from the definition of an (g, p)-quasi-feasible (s, t)-flow. The

second inequality from (6.22) follows by induction on i € N since ||w®||; = ||1||; = m. This ends the proof
of (6.22).
Let us now prove that, if e € F/, then
H—l
wy > exp(Zcongfl) Vi e N. (6.23)

Let e € E. It is easy to verify by induction on ¢ € N that

i+1
witt = H (1 + £ congyy; (e)).
j=1
By Lemma 6.6, for each ¢ € N,
i+1 z+1
with = H(l + £ congy; (e)) > exp(Zcongﬁ)

j=1

This ends the proof of (6.23). We are now in position to prove (6.21).
Let e € E. By (6.23) and (6.22), we have

N
N(1 1-
mexp((-l-€)8) > ||wN‘*'1||1 >Nt >l > exp(w Zcongfj(e))
p P —

SWETES S

(I—¢)p
Hence,
(I1—-¢)plnm e(1—¢)
- <1- — =1- —= < 1.
conggle) S1—e+ "7V “toaso S

LY

Therefore, f is feasible in G' with edge capacities u. Moreover, since |f?| = a for every i € N, we have

o (1—e2 N, (1-8)? l4e-— 2 14e-—
= Gy 1= U5 T a = P S0 T R s (g0 =
=1

— a a
(I+e¢ € 1+e¢ 1+e¢

The above Theorem proves the correctness of Algorithm 6.2. Moreover, as already discussed, the running
time of the algorithm is O(pe~2tp), where to is the running time of the (g, p)-oracle given as input to
Algorithm 6.2. The following corollary summarizes what we have proved.

Corollary 6.8. There is an algorithm that takes as input:
e a connected graph G = (V, E) with edge capacities u € R,

distinct vertices s, t € V,

a target flow value a > 0,

a value 0 < e < 1/3,
e an (g, p)-oracle with running time O(tp),

and, if « < OPT, it computes as output a feasible (s, t)-flow in G with respect to the capacities u of value
at least (1 — 3¢)a, where OPT is the value of a maximum (s,t)-flow in G. Otherwise, it either outputs an
feasible (s,t)-flow in G with respect to the capacities u of value at least (1 — 3¢)a, or it fails. Moreover, this
algorithm runs in time O(pe~2to), where m = |E|.

6.3 Calculating an Approximately Maximum Flow

Let G = (V, E) be a graph with capacities u € Rf+, let s,t € V be distinct, and let f be an (s,t)-flow
in G. The flow f is maximum (with respect to u) if it is feasible and has maximum value. If § € R, then f
is J-approximately maximum (with respect to u) if it is feasible and |f| > 6 OPT, where OPT € R is
the value of a maximum (s, ¢)-flow in G.

It only remains to show how to use the algorithm from the previous section to find, for a given € > 0,
a (1 — e)-approximately maximum flow in a graph. The idea is to use binary search in the range of possible
flow values, using as search condition for each target flow value the success or failure of the algorithm from
Section 6.2. This will approximate the value of the maximum flow since the latter algorithm only fails for
values greater than the optimum value, and when the algorithm succeeds, it yields a feasible flow of value not
far from the one supplied. A problem that arises is that, if the sizes of the capacities are not bounded by a
polynomial in the input size, neither is the maximum value of a feasible flow in G. In this section, we will
show how to modify the input in a way which will not affect the value of a maximum flow by much so the
graph has capacities bounded by a polynomial on the number of edges in the graph and on the inverse of the
error tolerance supplied. Then, we describe our application of binary search to the approximately maximum
flow problem.

Let G = (V, E) be a graph with capacities u € RY . The bottleneck of a path P in G (with respect to
the capacities u) is min{ u. : e € E(P)}.

Proposition 6.9. Let D = (V, A) be a connected digraph with capacities u €]Rﬁ_H and let s,t € V be
distinct. If there is a feasible (s, t)-flow of value @ € R, in D, then there is a feasible (s,t)-flow f in D, a
collection P of (s,t)-paths in D with |P| < |A|, and a vector ¢ € RY with [|¢[|, = a such that

f= eP)lpp). (6.24)
pPecP

Moreover, let G = (V, E) be a connected graph with capacities u € Rf 4, and let s, € V be distinct. If
there is a feasible (s, t)-flow of value @ € Ry in G, then there is a feasible (s,t)-flow f in G, a collection P of
(s,t)-paths in G with |P| < |E|, and a vector ¢ € RY with ||c[|; = a such that

f = Diag(sgn(f)) Y c(P)1gp). (6.25)

PepP

58

In particular, if 5 € R4, is the value of the maximum bottleneck of an (s, t)-path in G, then ||c||; < mp.

Proof. Let f be a feasible (s,t)-flow of value a in G, and let D = (V, A) be the induced orientation of G with
respect to f. Define g := Diag(sgn(f))f. By the definition of induced orientation, g is an (s, t)-flow in D of
value a. Hence, proving the directed case of the statement yields the undirected case directly.

By Proposition 3.4, there is a collection of directed circuits C in D, a collection of directed (s, t)-paths P
in D with |C| + |D| < |A], vectors b € RS and d € RY with ||d||;, = o such that

g= Z b(C)lao) + Z d(P)1a(p).-

ceC PeP

Define
j:: E:(“P)Lﬁpy
peP
By Proposition 3.4, ¢’ is an (s, t)-flow in D of value ||d||; = . Hence, Diag(sgn(f))g’ is an (s, t)-flow in G of
value a.

Let 8 € Ry be the maximum bottleneck of an (s, ¢)-path in G. By the definition of maximum bottleneck,
and since every directed (s,t)-path in D is an (s,t)-path in G, for every P € P, there is a € A(P) such
that u, < . Hence, if there is P’ € P such that ¢(P) > , then g, > 8 for each a € A(P), which is a
contradiction since g’ is a feasible flow. Therefore, ||d||, < mf. O

Proposition 6.10. Let G = (V, E) be a connected graph with capacities u € RE_H let 0 <e <1, and
let s,t € V be distinct. Then there is a spanning connected subgraph G/ = (V, E') of G and capacities v’ € RE’

such that
(i) 1 < wul <2m?/e for each e € E', where m == |E)|,

(i) if f/ € RF is an (1 —e/2)-approximately maximum (s, t)-flow of G’, then f is an (1 —e/2)-approximately
maximum (s,t)-flow of G, where f € R¥ is defined by f. = [e € E']f. for every e € E.

Moreover, the graph G’ and the capacities ' can be computed in time O(m + nlogn), where n == |V|.

Proof. Let OPT be the value of a maximum (s,t)-flow in G and let 8 € R be the maximum bottleneck of
an (s,t)-path in G with respect to the capacities u. The value of § can be computed in time O(mlogn)
by computing a spanning tree T of maximum weight in G, and then computing the bottleneck of the
unique (s, ¢)-path P in T'. By Proposition 3.4, we have that S1 4(p) is an (s,t)-flow in G of value 3. Moreover,
by Proposition 6.9, there is a maximum (s, ¢)-flow f in G such that OPT = |f| < mf and

[flloe < mpB-. (6.26)

Thus, we have
8 < OPT < mp. (6.27)
Define v’ € RF by
if ue > ,
—Jmp ity .mB Ve € E.
u, otherwise,
It is easy to note that the value of a maximum flow in G with capacities v’ is no greater then OPT. In the

other hand, by (6.26) the flow f is feasible in G with capacities v’. Hence the value of a maximum flow in G
with capacities v’ is OPT. Define F := {e € E: u, < %} and define E' := E \ F. Moreover, define the

graph G’ := (V, E') and let v € R¥' be the restriction of u’ to E’. Let us show that
the value of a maximum flow in G’ with capacities u” is at least OPT —e/2. (6.28)
To see this, let C and P be collections, and let b € RC and d € RE be vectors as in Proposition 3.4 such that

f = Diag(sgu(f)) Y b(C)Lc + Y d(P)1p.

ceC PeP

59

Note that, for each e € E, we have |f.| < d(P) for every P € P with E(P) > e. Hence, since f is feasible,

d(P) < % VP € P with E(P)NF # 0. (6.29)

Define P :={PeP: E(P)NF =0} and C' := {C €C: E(C)NF =0}. Hence, by (6.29),

S ey = Y ey~ L =y, - L = opr -2

pPepP’ PeP

Hence, by Proposition 3.4, we have that

f' == Diag(sgn(f Z b(C1le + Z d(P)1p

cec’ PeP’

is a feasible flow (with respect to u’) of value at least OPT —¢(3/2. By construction, we have f. = 0 for
each e € F. Hence, restricting f’ to E’ yields a feasible flow of value at least OPT —¢$/2 in G’ with
capacities u”. This ends the proof of (6.28).

Let OPT’ be the value of a maximum flow in G’ with capacities u”. By (6.28),

627
a>OPT7¥ S (177)OPT>O

where in the lest inequality we used that e < 1 and that OPT > 0. Let f’ be a (1 — ¢/2)-approximately
maximum (s, t)-flow in G’ with capacities u”. Note that we may extend f’ to a feasible (s, t)-flow in G with
capacities u by setting to 0 the flow on the edges of E '\ E’. Moreover,

'] > (177) opr % (l—g)QOPTz (1—¢)OPT.

Hence, if we have a (1 — ¢/2)-approximately maximum (s, ¢)-flow in G’ with capacities u”, we can extend this
flow to a (1 — e)-approximately maximum (s, ¢)-flow in G with capacities u. It only remains now to construct
capacities that obey the bound from (i).

Let ul;, == min{u! : e € E'}. It is easy to see that a flow f is feasible in G’ with capacities v” if and
only if (ul;)"1f is fea51ble in G’ with capacities (ulf;,) " 'u”. Since max{u” : e € E'} < mf} by construction,
we have

1<l ul <mpg, Ve e E'.

Hence, the graph G’ equipped with capacities (u;) 'u” satisfies the properties (i) and (ii) from the

statement. O

In Algorithm 6.3 we present the pseudocode to compute a (1 — £/2)-approximately maximum (s, t)-flow
in a graph computed by Proposition 6.10. Let us analyze its running time. Let the graph G = (V, E) with
capacities u, vertices s,t € V and error tolerance £ > 0 be the input to Algorithm 6.3. Define § = ¢/12.
The (8, 3+/m/d)-oracle used in Algorithm 6.3 runs in time O(m log(1/¢)) by Corollary 6.5 since 1 < u, < 2m?/e
for every e € E. Hence, by Corollary 6.8, the algorithm O used in Algorithm 6.3 runs in time O(m3/25_5/2).
Moreover, since Algorithm 6.3 makes O(logm/¢) calls to O, we conclude that it runs in time O(m?/2¢=5/2).

For the correctness of the algorithm, let us show that, at the beginning of each iteration, the following
invariant holds:

Let O be the algorithm from Corollary 6.8. Then when O receives as input the graph G (6.30)
with capacities u, distinct vertices s,t € V, error tolerance § € Ry, and target flow
value a € Ry, it fails if a = r, and it succeeds if o = [.

Let OPT € Ry be the value of a maximum (s,¢)-flow in G. In the first iteration | = 0, and hence O
trivially succeeds in this case. Moreover, since u, < 2m? /e for each e € E, by the flow decomposition result
from Proposition 6.9, we have OPT < 2m3?/e. Moreover, suppose O succeeds when given as input ay. By
Corollary 6.8, O returns a feasible (s, t)-flow of value at least (1 — 30)r. However, notice that in the first

iteration we have 3 3
2m 2m

>— — (1-30)r > — > OPT

" e(1—30) (r e - ’

60

Algorithm 6.3 Binary Search with MWU

Input: An error tolerance € > 0, a connected graph G = (V, E') with capacities u € Rf 4 such that 1 < wu, <
2m? /e, and distinct vertices s,¢ € V, where m = |E]|.
Output: An approximately (1 — /2)-approximately maximum (s, t)-flow of G with capacities .
m < |E|
[+ 0and r « 6(%;3) +1
0 ¢e/12
Let O be the algorithm from Corollary 6.8 using a (4, 3+/m/d)-oracle from Corollary 6.5.
repeat
a<+— (I4+7r)/2
Query O with the graph G, capacities u, error tolerance § and target flow value value a.
if O fails then r < «
else
Let f be the resulting (s, t)-flow returned by O
l+— «
until r — 1 < ¢e/4
return f

which is a contradiction. Hence, O fails in this case. It is easy to see that (6.30) still holds in the following
iterations of Algorithm 6.3. The following lemma completes the proof of the correctness of the algorithm.

Lemma 6.11. Let G = (V, E) be a connected graph with capacities u € Rf+ with u > 1, let s, € V be
distinct, and let € > 0. Define § :== £/12 and let O be the algorithm from Corollary 6.8 using a (d,3+/m/0)-
oracle from Corollary 6.5. Let I,r € Ry such that [< r and that r — [< /4. We have that f is
an (1 — e/2)-approximately maximum (s, t)-flow in G if the following property holds:

when O receives as input the graph G with capacities u, vertices s, t, error tolerance o (6.31)
and target flow value o € R, it fails if @« = r, and it succeeds if a = [, returning
an (s,t)-flow f in the latter case.

Proof. Let OPT € R, be the value of a maximum (s, t)-flow in G. By Corollary 6.8, we know that » > OPT
since O fails when receives as input the graph G with capacities u, vertices s, t, error value § and target flow
value r. Moreover, since u > 1, and since G is connected, by Proposition 3.4 there is a feasible flow of value 1.
Thus, OPT > 1. Hence,

>pr—1>0PT—] — ZZOPT—E 20PT<1—2).

N

Moreover, by Corollary 6.8, we have |f| > (1 — 3d)l = (1 — ¢/4)l. Therefore,
€ €\2 €
>(1-S)1>(1-2 >(1-2)
\f|_(1 4)l_(1 4) OPT_(I 2)OPT O

Theorem 6.12. There is an algorithm that takes as input
e a connected graph G = (V, E),
e edge capacities u € R,
e distinct vertices s,t € V,
e avalue 0 < e < 2/3,

and computes as output a (1 — 5)-appr9ximately maximum (s, t)-flow in G with respect to the capacities u.
Moreover, this algorithm runs in time O(m?3/2e=5/2).

61

Proof. By Proposition 6.10, to compute an (1 — &)-approximately maximum (s, t)-flow in G with capacities u,
it suffices to compute an (1 — €/2)-approximately maximum (s, t)-flow in a subgraph G’ = (V, E’) with edge
capacities v’ € R¥. such that

e 2m?
max{ e, e f€ E'} < (6.32)
uys 3

Moreover, we can compute G’ and the capacities v’ in time O(m+nlogn). To compute an (1—e/2)-approximately
maximum (s,t)-flow in the graph G’ with capacities u’, we can use Algorithm 6.3, which is correct by

Lemma 6.11, and runs in time O(m?3/2¢=%/2).
O

62

References

[1]

[10]

[11]

I. Abraham, Y. Bartal, and O. Neiman. “Nearly Tight Low Stretch Spanning Trees”. In: abs/0808.2017
(August 2008). arXiv: 0808.2017 [cs.DS]. URL: http://arxiv.org/abs/0808.2017 (cited on
page 46).

S. Arora, E. Hazan, and S. Kale. “The multiplicative weights update method: a meta-algorithm and
applications”. In: Theory Comput. 8 (2012), pages 121-164 (cited on pages 49, 53).

P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng. FElectrical Flows, Laplacian
Systems, and Faster Approximation of Maximum Flow in Undirected Graphs. October 2010. arXiv:
1010.2921 [cs.DS]. URL: http://arxiv.org/abs/1010.2921 (cited on pages 1, 49). Complete
version of “Electrical flows, Laplacian systems, and faster approximation of maximum flow in undirected
graphs”. In: STOC’11—Proceedings of the 43rd ACM Symposium on Theory of Computing. ACM, 2011,
pages 273—-281. STOC Best Paper Award.

F. Chung and O. Simpson. “Solving linear systems with boundary conditions using heat kernel pagerank”.
In: Algorithms and models for the web graph. Volume 8305. Lecture Notes in Comput. Sci. Springer,
2013, pages 203-219 (cited on pages 1, 43).

A. Cobham. “The intrinsic computational difficulty of functions”. In: Logic, Methodology and Philos.
Sci. (Proc. 1964 Internat. Congr.) North-Holland, Amsterdam, 1965, pages 24-30 (cited on page 1).

J. Edmonds. “Paths, trees, and flowers”. In: Canadian Journal of Mathematics 17 (1965), pages 449-467
(cited on page 1).
A. Goldberg. Andrew Goldberg guest blog on new max flow result. November 8, 2012. URL: http://

blog.computationalcomplexity.org/2012/11/andrew-goldberg-guest-blog-on-new-max.html
(visited on 11/23/2015) (cited on page 1).

J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. “A simple, combinatorial algorithm for solving
SDD systems in nearly-linear time”. In: STOC”13—Proceedings of the 2013 ACM Symposium on Theory
of Computing. ACM, 2013, pages 911-920 (cited on pages 1, 43).

1. Koutis, G. L. Miller, and R. Peng. “Approaching optimality for solving SDD linear systems”. In:
IEEE 51st Annual Symposium on Foundations of Computer Science—FOCS 2010. IEEE Computer
Soc., 2010, pages 235-244 (cited on pages 1, 43).

R. Kyng and S. Sachdeva. “Approximate Gaussian Elimination for Laplacians: Fast, Sparse, and Simple”.
In: CoRR abs/1605.02353 (May 2016). arXiv: 1605.00235 [cs.DS]. URL: http://arxiv.org/abs/
1605.02353 (cited on pages 1, 43).

D. A. Spielman and S.-H. Teng. “A local clustering algorithm for massive graphs and its application
to nearly linear time graph partitioning”. In: STAM J. Comput. 42.1 (2013), pages 1-26. URL: http:
//dx.doi.org/10.1137/080744888 (cited on page 43).

D. A. Spielman and S.-H. Teng. “Nearly linear time algorithms for preconditioning and solving symmetric,
diagonally dominant linear systems”. In: STAM J. Matriz Anal. Appl. 35.3 (2014), pages 835-885. URL:
http://dx.doi.org/10.1137/090771430 (cited on page 43).

D. A. Spielman and S.-H. Teng. “Nearly-linear Time Algorithms for Graph Partitioning, Graph
Sparsification, and Solving Linear Systems”. In: Proceedings of the Thirty-sixth Annual ACM Symposium
on Theory of Computing. STOC ’04. New York, NY, USA: ACM, 2004, pages 81-90 (cited on pages 1,
43).

63

http://arxiv.org/abs/0808.2017
http://arxiv.org/abs/0808.2017
http://arxiv.org/abs/1010.2921
http://arxiv.org/abs/1010.2921
http://blog.computationalcomplexity.org/2012/11/andrew-goldberg-guest-blog-on-new-max.html
http://blog.computationalcomplexity.org/2012/11/andrew-goldberg-guest-blog-on-new-max.html
http://arxiv.org/abs/1605.00235
http://arxiv.org/abs/1605.02353
http://arxiv.org/abs/1605.02353
http://dx.doi.org/10.1137/080744888
http://dx.doi.org/10.1137/080744888
http://dx.doi.org/10.1137/090771430

[14] D. A. Spielman and S.-H. Teng. “Spectral sparsification of graphs”. In: SIAM J. Comput. 40.4 (2011),
pages 981-1025. URL: http://dx.doi.org/10.1137/08074489X (cited on page 43).

[15] S.-H. Teng. “The Laplacian paradigm: emerging algorithms for massive graphs”. In: Theory and
applications of models of computation. Volume 6108. Lecture Notes in Comput. Sci. Springer, 2010,
pages 2-14 (cited on pages 1, 43).

[16] N. K. Vishnoi. “Lz = b Laplacian solvers and their algorithmic applications”. In: Found. Trends Theor.
Comput. Sci. 8.1-2 (2012), pages 1-141 (cited on page 29).

[17] D. Wagner. Combinatorics of Electrical Networks. 2009. URL: http://www.math.uwaterloo.ca/
~dgwagner/Networks.pdf (visited on 11/05/2015) (cited on page 24).

64

http://dx.doi.org/10.1137/08074489X
http://www.math.uwaterloo.ca/~dgwagner/Networks.pdf
http://www.math.uwaterloo.ca/~dgwagner/Networks.pdf

	Introduction
	Preliminaries
	Basic Notation and Definitions
	Data Structures
	Spectral Decomposition of Symmetric Matrices
	Moore-Penrose Pseudoinverse
	The Spectrum of the Adjacency Matrix
	Incidence Matrices

	The Graph Laplacian
	Flows in Graphs
	Electrical Flows
	Counting Spanning Trees
	Sparse Cuts

	The Conjugate Gradient Method
	Improving Gradient Descent
	The Gram-Schmidt Method and Krylov subspaces
	The Conjugate Gradient Iteration
	Error Analysis with Polynomials
	Improving the Analysis with Chebyshev Polynomials

	Fast Laplacian Solvers
	Preconditioning
	A Fast Solver

	Maximum Flow in Graphs using Electrical Flows
	Computing Approximately Electrical Flows
	Multiplicative Weights Update Method
	Calculating an Approximately Maximum Flow

	References

