PLANNING FOR DYNAMIC MOTIONS
USING A SEARCH TREE

Pedro S. Huang

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

© Copyright by Pedro S. Huang (1996)

PLANNING FOR DYNAMIC MOTIONS USING A SEARCH TREE
for the degree of Master of Science, 1996
by
Pedro S. Huang
Department of Computer Science

University of Toronto

Abstract

The generation of physics-based motion for articulated figures can be studied as a path-
planning problem through state-space. This thesis presents an algorithm that searches for
control sequences that perform a desired action. The search is accelerated by making use of
evaluation functions, pruning conditions, and a memory containing successful state-action
pairs. Results for various low-level control problems are demonstrated, including balance
for an acrobot (a two-link robot); simultaneous balance of two inverted pendulums; hopping
and flipping for the acrobot; and swing-up solutions for a double pendulum on a cart. The
application of this algorithm for high-level path-planning is demonstrated using the example

of a hopping lamp that traverses rugged terrains.

ii

Acknowledgements

A well-deserved thanks goes to my supervisor, Michiel van de Panne, who has provided a
wealth of stimulating ideas and energetic enthusiasm. Michiel provided the starting points
for this work; his subsequent guidance and direction have been invaluable. Fugene Fiume
has always been available for helpful wisdom and supportive encouragement in navigating
through academia and industry. James Stewart also provided much needed help. Finally,
thanks to the rest of the gang at DGP for technical help, volleyball, lunches, parties, and
other good times.

My parents worked hard and sacrificed much to ensure a better life for their children in
North America. Thanks, Mom and Dad!

Finally, through patient sacrifice, tireless encouragement, undying perseverance and
loving companionship, my wife, Jennifer, has been instrumental in giving me the confidence

to pursue my dreams.

iii

Contents

Acknowledgementso L L iii
Table of Contents L e vi
List of Figures e e viii

1 Introduction 1
1.1 Motivation L 2
1.2 Physics-Based Animation L o oo o 3
1.3 The Problem of Control 3
1.4 Thesis Contributions L o 5
1.5 Thesis Organization e 5

2 Background and Related Work 7
2.1 Approaches to Animation L Lo e 8

2.1.1 Motion Capture e 8
2.1.2 Keyframe Animation 0 oo 9
2.1.3 Algorithmic Animation 9
2.2 Physics-Based Animation Techniques 10
2.2.1 Constraint-Based Physical Animation 10
2.2.2 Controller-Based Physical Animation 11
2.3 Related Work from Other Fields 14
2.3.1 Artificial Intelligence L oo 15
2.3.2 Control Theory s 16

3 A Control Example: The Acrobot 18
3.1 The Acrobot Control Problem 18
3.2 Acrobot Simulation Parameters oo oo L 20

v

3.3 The Hopping Problem o

3.4 The Hybrid Controller
3.4.1 Balance Control o
3.4.2 Jump Control
3.4.3 Switching Behaviour oo oL

3.0 Results. . . oL oo e

3.6 Conclusions L e e e

The Search Algorithm

4.1 Decision Trees. o . o e e e
4.2 The Search Algorithm o oL
4.2.1 General Description o o
4.2.2 Simplifications oL L
4.3 Algorithm Detail and Example oL
4.3.1 Selecting the Node to Extend
4.3.2 Generating a Control Input 0oL
4.3.3 Pruning the Search Tree
4.4 The Simulationo e

Low-Level Control Results

5.1 Acrobot Balance
5.2 Acrobot Gymnastics L L e
5.2.1 Acrobot Cartwheel o o oo
5.2.2 Acrobot Flips o .
5.2.3 Acrobot Hop s
5.3 Double Pendulum L
B4 Spinner ..o oL e e e
5.5 Conclusions oL L e e e

High-Level Control Results

6.1 Path-Planning for Luxo oo L.
6.2 Animator Interface L L L
6.3 Expanding the Search oL L.

30
30
31
31
32
33
34
35
36
37

38
39
41
42
42
44
45
47
49

7 Memory-Based Acceleration

7.1 Stored Experience
7.2 Nearest-Neighbours L oo

7.2.1 Similarity Metric Lo
7.3 Results. . . .o 0 e

7.4 Conclusions o e e e

8 Conclusion

8.1 Contributions e e e e

8.1.1 Applications of the Algorithm

8.1.2 Results o e

8.2 Visual versus Physical Realism

8.3 TFuture Work e e

Bibliography

vi

55
55
56
57
58
59

60
60
60
61
62
62

67

List of Figures

1.1 The pendulum model. 4
1.2 A path through state-space; p; and p, are initial and goal states. 4
1.3 Map outlining the thesisflow. 0oL 6
2.1 Continuum of tradeoff between animator and computer control. 7
2.2 Some approaches within the control continuum. 8
2.3 Physics-based animation techniques. L0 10
2.4 Related work from other fields. 0000 14
3.1 The two-link robot, displaying positional state components. 19
3.2 Simulation Parameters Lo L Lo 20
3.3 Simulation of ground contact. oL Lo oL 20
3.4 FSM for acrobot hopping, where h is the height of the ‘head’. 21
3.5 Sketch of acrobot hop showing the transition from balance to flight. 22
3.6 Operation of balance control. 0oL 23
3.7 Convergence to a balancing limit cycle. L. 23
3.8 An unstable limit cycle used to induce the transition to the jumping state.. 24

3.9 Limit cycle for the acrobot ‘head’, with state switches at y=0.90 and y=0.95. 26

3.10 Selected acrobot state variables.. oo o000 L 27
3.11 A double-period motion resulting after a bifurcation. 27
3.12 Speed control. oL L 28
3.13 Climbing an incline (slope=0.3). 28
3.14 Locomotion across variable terrain.o oL 28
4.1 Building a state-space trajectory using a tree search. 31
4.2 Pseudocode for the search controller. 00 33

vii

4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

6.1
6.2
6.3

7.1
7.2
7.3

An example search tree.o oL L 33

Detail of progress for the example search tree. 34
The double pendulum. o o oL 39
The Spinner. e e 40
Foot and joint angle correlation after 1 second. 41
Model parameters. e e e 41
A clip from the cartwheel motion. 42
Control inputs to the joint angle.0 0 oL, 43
A sequence of flips. 44
A hopping sequence. oL o Lo e e 44
Progress rate for different motions. L 0oL L 45
Bang, bang, zero-input swing-up.o o oo oL 46
Continuous input sWing-up. o . L L e 47
Giant sWing. e e e e e e e 48
Correlation of joint angles for the spinner arms. 48
Spinner inverted double pendulum balance. 000 49
Luxo Lamp. o o e 52
Simulation of ground contact. oL Lo oL 52
Luxo goes cross-country running 54
Acrobot balance accelerated using experience. 58
Acrobot cartwheel accelerated using experience. 58

Spinner balance accelerated using experience and different similarity metrics. 59

viii

Chapter 1

Introduction

The quality and demand for computer animation has experienced recent, unprecedented
growth. Consider, for example, the use of computer animation techniques in the entertain-
ment industry, such as in the 1993 release of Jurassic Park [SCK93], which had audiences
guessing as to what was real and what was not. Disney’s recently released Toy Story [Las95]
has earned the distinction of being the first completely computer-generated, full-length fea-
ture film. Where the use of computer animation techniques was virtually non-existent a
decade ago, today, it is commonplace.

The word animate is defined in Merriam Webster’s Dictionary as: to make or design
in such a way as to create apparently spontaneous lifelike movement [Web93]. The goal of
computer animation is to use the computer as a tool to bring life to a sequence of images.

Animation techniques can be placed within a spectrum that ranges from cartoon at
one extreme to physically—realistic at the other. Cartoon animation exaggerates motions in
unrealistic ways with the goal of producing farcical situations. For example, characters in a
cartoon world find themselves unaffected by gravity until the moment they actually become
aware of being beyond the edge of a cliff. In the movie, The Mask [RFV94], computer
animation is used to enhance the lead character’s already elastic and comedic performance.

In contrast, physically—realistic animation seeks to achieve results that are virtually in-
distinguishable from real life. As computer graphics produces increasingly photo-realistic
images, animation flaws from unnatural motions can be more readily perceived. For ex-
ample, while stick figures are easily forgiven for a partially flawed motion, a photo-realistic

dinosaur is expected to appear to balance and move smoothly at all times, while interact-

ing naturally with its environment. Another example is the animation of hopping animal
models, in which audiences reasonably expect anticipation and follow-through for jumps.
A variety of techniques has been developed to deal with the various challenges that the
creation of physically—realistic animations presents.

This thesis contributes to the state of the art of physics-based animation. Physics-
based animation addresses the challenge of realism by making use of computer simulation
to enforce physical constraints and to handle object interactions. In particular, this thesis
explores an algorithmic technique for the automatic synthesis of dynamic motions for various
objects, especially those that involve balance or precise timing and execution of the motion

in order to succeed.

1.1 Motivation

How can we animate a human model to walk or perform realistic gymnastic manoeuvres?
Given an arbitrary robot configuration, how would it move? Would it be able to balance,
hop, or even flip?

Our work addresses these kinds of questions. We wish to develop a novel, but general,
technique that produces motion control for problems whose motions would otherwise be
tedious to generate. It is assumed that feasible motions may not be known ahead of time.
The design of our algorithm is motivated by the desire to incorporate several desirable
properties: (1) to have a simple representation; (2) to use previous experience to help
improve future performance; (3) to find novel solutions; and (4) to be efficient.

We specifically avoid the use of domain-specific knowledge or any special-case knowledge
of the environment. While embedding knowledge of these features into the control scheme
would undoubtedly produce better solutions for specific problems, the solutions would not
necessarily generalize with parameter changes. This is particularly true for the systems
that we have experimented with whose behaviour is very sensitive to small changes in the
parameters and initial conditions.

Our work focuses mainly on motion control synthesis for animated characters. However,
we keep in mind a broader scope that includes the verification of physical robotic design
through dynamic correctness in simulation. While dynamic laws in animation can be altered

to achieve a desired effect, we cannot tamper with physical laws in the context of real-world

robotics. To this end, we design our models with realistic mass and inertial parameters.

1.2 Physics-Based Animation

Given an appropriate model of the environment and a simulator, physics-based animation
enforces realistic motion. The cost of this realism is the loss of fine-grained control over
objects in the scene. An animator can no longer simply specify an object’s trajectory or
velocities over time, since those values may not be physically achievable. For example, the
centre of mass of an object in flight, in the absence of any external forces except gravity, is
constrained to follow a parabolic path.

While fine-grained control is necessary to achieve certain effects, an animator might
prefer to let specific objects behave autonomously. This is particularly useful in a scene
where many objects are interacting in a complex manner. Rather than tediously specifying
the trajectories of all the objects, the animator would often prefer to focus on control of
a few foreground characters, allowing the background characters to evolve in a natural
manner.

Control of animated objects in a physics-based environment ultimately involves the
specification over time of actuations consisting of forces and torques. Given these, the
equations of motion determine resulting accelerations, which the simulator then integrates

to produce velocities and positions to update the state vector.

1.3 The Problem of Control

Synthesizing the control required to produce a desired motion is a difficult problem. Con-
sider the control that humans use to produce a walking motion. While much progress has
been made in a general understanding of the principles of biped locomotion, there has been
little progress made toward a controller for physics-based human locomotion that can be
applied to general gaits and terrains. Yet, walking is second nature to us; conscious con-
trol is rarely required for navigating smooth terrains. In fact, the human body senses and
interprets many cues from the environment, using these to orchestrate muscle activity in a
manner that puts most sophisticated robotic control systems to shame.

A general solution of the control problem produces a mapping from the state of a system

to actions that will produce an appropriate path to a desired goal state. In physics-based

Figure 1.1: The pendulum model.

State 2

-0
NS

State 1

Figure 1.2: A path through state-space; p; and p, are initial and goal states.

animation, the state is described in terms of the degrees of freedom (DOFs) of the system
and their derivatives. The space spanned by the DOFs and their derivatives is called the
state-space. For example, the state of a pendulum (see Figure 1.1) could be described using
the pair < 6,6’ >, where 6 and € are respectively the hinge angle and hinge angular velocity.

The control problem can be thought of as a path-planning problem grthrough state-
space as seen in Figure 1.2, which shows a two-dimensional space. A major obstacle to
solving this problem is dealing with the size of the space, which grows exponentially with
the number of dimensions. This is often referred to as the curse of dimensionality. For high-
dimensional spaces, it can be difficult or altogether impossible to compute a path between
points in the state-space, even when they are close together. These difficulties arise because
of the inherent constraints of a physical environment such as inertia or gravity. A path
between two points in state-space does not exist when no actuations exist that can control

the system to go from one state to the other.

We are interested in solving a class of control problems where motions are very sensitive
to the state of the system, such as balancing and hopping. The problems that we experiment

with are limited to having a single control input.

1.4 Thesis Contributions

This thesis presents an algorithm which searches for a path through state-space that repre-
sents the performance of a desired motion. The planning is performed in much the same way
as chess is played, building a search tree by evaluating the possible actions at each decision
point. Planning is done for several stages before a specific control decision is accepted.

Experimental results from applying our search algorithm have demonstrated success in
producing low-level control for various underactuated systems. An underactuated system has
fewer actuators than it has DOFs, and such systems have been receiving growing attention
in the control community [BF94]. In particular, we experiment with the acrobot, cart-and-
double-pendulum, and spinner models, each of which has only a single controllable actuator.
These models will be described in more detail later. Various motions are demonstrated,
including balance, hop, flip, and swing-up motions.

High-level control is demonstrated by synthesizing motions which use complete jumps as
control primitives. In this case, we use the algorithm to build a search tree representing con-
catenations of different hop-control primitives for Luzo the hopping lamp. We demonstrate
successful path-planning for Luxo across a variety of terrains.

The search for successful motions can be accelerated by reusing prior experience. For
the systems that we have studied, motions are highly sensitive to their initial conditions so
that control sequences are difficult to reuse directly. This is because the exact repetition of
a previous state is unlikely to ever occur. However, we demonstrate that prior experience
can serve as a guide to generating control inputs that are more likely to succeed. Important

accelerations of the search procedure are obtained for several of the example motions.

1.5 Thesis Organization

An outline of this thesis is presented in Figure 1.3. We begin in Chapter 2 with animation
techniques and related work providing background to our work. In addition to previous

work in Computer Animation, we have drawn from fields including Artificial Intelligence

Introduction Ch. 1

i Thesis Map
Background and| Ch-2
Related Work

Y\

Acrobot Algorithmic Search-Tree | Ch. 4
Control Example Algorithm
Ch. 3

Low-Level High-Level Ch.6
Control Results Control Results
ch.5 N\ /

Memory-Based .
Acceleration — -Concluswns
Ch.7 Ch. 8

Figure 1.3: Map outlining the thesis flow.

and Control Theory. All earlier work on the acrobot example, which inspired much of the
work in this thesis, originated from Control Theory.

In Chapter 3, we demonstrate a hand-tuned algorithmic controller for the acrobot. The
acrobot example is chosen because it is difficult to control; it is not a priori clear how (or
even if!) the acrobot can successfully balance or locomote using a single actuator. This
example demonstrates the hand-crafting of a controller, a process which we later show
can be largely automated using the search tree. Another purpose for this example is to
familiarize the reader with the acrobot and its possible motions. We use lessons learned
from this experience to guide the development of our general control algorithm.

The search tree algorithm is introduced and described in Chapter 4. This algorithm
is applied to several models to demonstrate successful motion resulting from searching for
low-level control. The experimental results are presented in Chapter 5, including low-
level control of gymnastic manoeuvres, swing-ups, and balance. The algorithm is then
applied to high-level control using Luzo, the hopping lamp. Successful locomotion planning
experiments over rugged terrains are documented in Chapter 6. We return to the notion of
using previous experience in Chapter 7, which demonstrates the search acceleration. Finally,
we conclude in Chapter 8 with a summary of the work and of future directions that can be

explored.

Chapter 2

Background and Related Work

Computer animation techniques can be broadly described as belonging to a spectrum that
goes from complete animator control at one extreme to complete computer control at the
other (see Figure 2.1). Associated with this continuum of control is a transition from
full trajectory specification at one end to behavioural specification at the other. Different
techniques are better for different applications. In practice, animation systems attempt to
provide several techniques along this continuum to produce a flexible production system.
We first describe some approaches to computer animation, using the techniques of mo-
tion capture, keyframe animation, and algorithmic animation to illustrate examples at dif-
ferent points along the continuum (see Figure 2.2). Following this, physics-based animation
techniques are presented. Contributions from Artificial Intelligence and Control Theory are
also discussed, since they play a strong role in the design of the search algorithm described

in this thesis.

Control
Animator Computer

Trajectory Behaviour

Specification

Figure 2.1: Continuum of tradeoff between animator and computer control.

Animator
Control

Computer
Control

Behaviour
Specification

Trajectory
Specification

Motion

'Algorithmic

Capture

Figure 2.2: Some approaches within the control continuum.
2.1 Approaches to Animation

2.1.1 Motion Capture

Motion capture solves the problem of motion specification by capturing motion data from
a physical model. For example, sensors that can detect position and orientation such as the
Flock-of-Birds' or Polhemus® sensors may be attached to key positions on a human. Data
for a motion is recorded as a manoeuvre is performed. This data can then be mapped onto
a computer model of a human or even a completely different creature. Some manipulation
of the data may be required when the features of the model do not correspond directly to
the features of the original source. Editing techniques for motion capture data have recently
begun to appear in the literature [WP95] [BW95].

Motion capture can be viewed as a type of puppetry, where the captured data specifies
the movement of key points on the puppet. The successful use of motion capture requires
that the data can be appropriately mapped to the model being animated; this constraint can
limit the usefulness of this technique. Another problem is that collision and interpenetration
are not handled at all, since the motion specification is directly mapped to a character in a
potentially different environment.

The main advantage of motion capture is that fine details of a motion are preserved.

This is important because it is easy to spot a motion that does not look right when particular

!Trademark of Ascension Technology
?Trademark of Polhemus Magnetic

visual cues that we are accustomed to seeing are absent [WP95] [BW95]. These cues may
have low-frequency components corresponding to gross movements or they may have high-

frequency components corresponding to subtle qualities of the motion.

2.1.2 Keyframe Animation

Keyframing is the traditional and favoured method of generating animations [FvDFH90].
This technique uses the computer as an assistant in creating the animation. The animation
is specified by defining a set of key frames that describe the positions of the characters
at certain key instants in time. The responsibility for creating these keyframes is usually
given to skillful and experienced artists who must visualize the desired motion and make
decisions about overall appearance. The keyframes are accompanied by directions for the
creation of intermediate frames. The process of interpolating in between these keyframes
is appropriately called inbetweening. Using this approach, all character interactions with
the environment are controlled by the animator. Thus, the quality of the results depends
entirely upon the skill of the animators. Ensuring realistic motion is both difficult and
tedious.

Computer-based keyframe tools have eliminated some of the tedium in creating anima-
tions. The use of techniques such as spline interpolation has assisted in improving the task
of inbetweening both in terms of speed and quality. Splines are used because of their well-
defined continuity properties and of their intuitive manipulation through the positioning of

a relatively small number of control points.

2.1.3 Algorithmic Animation

Algorithmic animation uses a model and a set of rules to directly generate motion from a
set of initial conditions [HS1.92] [SC92]. The motion behaviour is preprogrammed, usually
using some sort of procedural or state-machine representation. While this approach saves
the animator from having to specify a motion in detail, the cost is the loss of direct animator
control over the motion.

Taken to its extreme, objects may be programmed with completely autonomous be-
haviours. Different animation sequences may be generated by simply choosing different
initial conditions for the characters and allowing them play out their parts. Characters

may have sensors and behavioural hierarchies that allow them to interact with and respond

~
Dynamics
. Dynamic
. [Constramt—Based]» Programming
k Space-Time
Physics-Based Constraints

Animation
Techniques

(’
> [Co

ntroller-Based |— (Behavioural

Genetic
Algorithms

Parameter

Optimization

L Generate-and-Test

Figure 2.3: Physics-based animation techniques.

to their environment.
Physics-based animation is an instance of algorithmic animation. The objects begin
with a chosen set of initial conditions. Actuators are used to move the objects, and the

laws of physics act as constraints on the behaviour of the objects.

2.2 Physics-Based Animation Techniques

We broadly categorize physics-based animation approaches as either constraint-based or
controller-based (see Figure 2.3). Constraint techniques solve for the actuations required to
move an object from an initial state to a goal state, while including physics as a constraint
to be satisfied. Controller-based techniques use a direct simulation to implement the laws
of physics, but require the synthesis of a controller to apply the internal actuating forces.
These controllers are often optimized for a particular goal, such as speed of locomotion or

height of jump.

2.2.1 Constraint-Based Physical Animation
Space-Time Constraints

Witkin and Kass [WKS88] decompose a desired motion path into a sequence of boundary

conditions analogous to keyframes. Constraints in both space and time are used to solve a

10

sequence of two-point boundary problems for the required actuations. This technique, called
space-time constraints, is used to animate a jumping sequence for a 2D, 3-link articulated

model of an animate lamp (henceforth referred to simply as Luzo).

Inverse Dynamics

Inverse dynamics takes a set of control variables and maps them onto the forces and torques
needed to control an object. Usually, this mapping is done by solving a system of equations
numerically. Thus, constraints on the control variables for the motion can be programmed
algorithmically and inverse dynamics can be used to compute an appropriate set of necessary
actuations. Stewart and Cremer [SC92] use this technique to “program” a human figure to

walk on level ground and to climb staircases in a realistic manner.

Dynamic Programming

Van de Panne, Fiume, and Vranesic [vF'V90] solve the motion control problem in a reusable
manner and treat the goal state as a single boundary condition. First, a cell-based discretiza-
tion of state-space is performed. This is followed by a procedure which propagates control
solutions from the goal state to all other state-space cells using dynamic programming.

Finding the path to the goal state produces the required sequence of control actuations.

2.2.2 Controller-Based Physical Animation

Rather than describing a motion through a direct specification of the motion trajectory,
a motion controller operates in a manner more akin to the way things move in the real
world, namely by generating appropriate internal forces for the “muscles” of our animated

character.

State-Machine Controllers

State-Machine controllers are designed to take advantage of features of a system that permit
the decomposition of motion control into a set of separate control laws. Control decisions
are based not only on the current state of the system, but also on the active control law.
Rules to transition from one control law to another are usually based on the state of the
system and on the amount of time that the control law has been active. The parameters of

the controller are often manually tuned.

11

Raibert tackled the challenge of controlling running motions for creatures with light-
weight legs in robotics [Rai85]. Their strategy for control decomposes the controller into
three distinct and separable components: (1) height control, (2) attitude control, and
(3) speed control. Hodgins and Raibert [HR90] extend this work on legged controllers
to produce a control system that performs biped gymnastics in simulation. In this case the
takeoff, flight, and landing are treated as distinct control phases. In [RH91], Raibert and
Hodgins demonstrate a variety of gaits for monopeds, bipeds, and quadrupeds.

Hodgins, Wooten, et al [WH94, HWBO95] recently produced realistic simulations of
human diving and running using a detailed human model and a tuned state-based controller.
However, the controllers are specific to the parameters of the model being animated and

require much tuning.

Parameter Optimization

An alternative to the hand-design of a controller is the automated optimization of control
histories or of a set of controller parameters. The control histories can be optimized using
methods such as nonlinear programming, gradient-descent, and simulated annealing.

From the biomechanical literature, Pandy [PAH92] parameterizes the control history of
a nonlinear dynamical system using a set of nodal points. This control history is optimized
using nonlinear programming methods. Pandy demonstrates his results by optimizing the
height for human jumping using a musculoskeletal model.

Van de Panne and Fiume [vF93] search the space of possible controllers by first gen-
erating and testing for viable motions, then optimizing the controller parameters. They
introduced sensor-actuator networks (SANs) as a controller representation with the goal
of achieving closed-loop control. Closed-loop control, in contrast to open-loop control, uses
feedback from the environment in making a control decision. A SAN is a non-linear network
of weighted connections from sensors to actuators. Random weights are initially assigned
and the ones which produce desirable motions are kept and optimized.

Van de Panne, Kim, and Fiume [vKF94] study the limits of open-loop, cyclic motion
controllers for producing locomotion in their work with “virtual wind-up toys.” Using
the classic spring-driven wind-up toy as a model, the motion controller loops through a
repeated sequence of actuations. This approach is used to synthesize bounding, hopping,

and crawling motions for creatures whose locomotion modes were not known in advance.

12

Grzeszcezuk and Terzopoulos [GT95] synthesize realistic locomotion for the animation of
deformable physics-based snakes, dolphins, and sharks. For each actuator in the creature,
the actuation sequence is transformed into the Fourier domain in order to provide a more
compact representation. To derive the control required for a specified motion sequence, a
hierarchical control scheme is used that searches for optimal concatenations of the learned
motion sequences.

Ngo and Marks [NM93] use a massively parallel genetic algorithm (GA) to search for
a motion controller in which the controller is represented by a bank of stimulus-response
rules. Natural selection is simulated by a GA using the principles of crossover and mutation
on the components of the controller. Those controllers that are judged “fit” according to a
selection criteria are added to the “gene pool,” while those judged less “fit” are selected out.
Experiments were carried out on several different configurations of multi-link creatures.

Sims [Sim94] uses genetic algorithms to evolve virtual creatures that were selected based
on an optimization goal. With his creatures, the configuration of the creature and the con-
troller were candidate parameters for optimization. The resulting behaviours demonstrated
interesting ways of solving for the specific tasks presented.

Although parameter optimization methods mentioned have produced excellent anima-
tion results, their usefulness is limited to systems where useful regions of the controller
space can be readily found and search progress is easily defined. This is partly due to the
type of algorithms that are used for optimization. When a controller fails to successfully
complete a motion, the cause of the failure is usually not identified, but rather the entire
set of parameters is penalized. In many cases, partial progress toward a solution should be
rewarded and the parameters that led to failure should be identified so that a more directed
search can be performed.

Van de Panne, Fiume, and Vranesic [vFV93] use a search algorithm to plan turning
motions for bicyclists and skiers. Inverse kinematics are used to dress up the motion ap-

propriately. The search algorithm we present in this thesis is loosely related to this work.

Behavioural Control

Behavioural control endows virtual creatures with built-in stimulus-response systems. On
the extreme automated end of the animator/computer control continuum, these systems

produce animation sequences in which the creatures are only controlled by changes to the

13

Work Related
to the
Motion-Control Problem

Artificial Control
Intelligence Theory

Machine Robotics

Learning

Figure 2.4: Related work from other fields.

environment that the creature can sense.

Wilhelms and Skinner [WS89] enumerate a set of stimulus-response behaviours that
control the behaviours of objects that must navigate a virtual environment with obstacles
that produce different stimuli. The strengths of the stimuli can obey arbitrary distance
laws, such as the typical inverse-squared proportionality.

The artificial life of Tu, Terzopoulos, and Grzeszczuk [TT94] [TTG94] models an under-
sea ecosystem where both prey and predator face the daily realities and dangers of marine
life. The behavioural model encapsulates a hierarchy of needs, which is used to process
the sensory data to resolve conflicting goals. Modeled behaviours include target-following,

schooling, mating, and obstacle-avoidance.

2.3 Related Work from Other Fields

Besides computer animation, other fields (see Figure 2.4) have influenced the design of the
algorithm that we present in this thesis. In particular, Artificial Intelligence contributes
search, machine learning, and robotics techniques. Earlier work on controlling the acrobot
model is from Control Theory. As the bodies of literature in these fields is quite extensive,

we cite only several examples immediately relevant to the work of this thesis.

14

2.3.1 Artificial Intelligence
Search

Tree-based search techniques [Win84], also known as decision-trees, are popular for solving
problems where a series of decisions must be made. For example, the options available to a
chess player can be represented by a tree whose root node represents the current state of the
game. The problem is to search for the correct branch to take that will ultimately optimize
the player’s game. In our algorithm, a tree node represents the state of the dynamical

system to be controlled. The edges of the tree represent choices of control inputs.

Machine Learning

Machine learning encodes experience for reuse, forming a behavioural model. This expe-
rience can later be queried when choosing an action. For example, a chess program may,
over the course of several games, store board patterns that eventually lead to a win. When
a familiar pattern is recognized, the program may attempt to make similar decisions. Al-
ternately, the program may avoid making similar decisions for patterns that lead to a loss.

Atkeson [Atk91] describes a local regression method for robot learning which extrapo-
lates actions that can be represented by a continuous-valued variable. This method opti-
mizes the similarity metric of nearest neighbours in order to refine robotic memory-based
control. Lowe [Low93] describes a variable-kernel similarity metric method which optimizes
the local model for a binary output.

Reinforcement learning attempts to assign credit for actions leading to success or failure.
This is intended to reinforce or discourage certain actions. Sutton and Barto [BSA83] [Sut91]
demonstrate the effectiveness of applying reinforcement learning to cart-pole balance and
other problems. Sutton explores issues such as the credit-assignment problem (assigning
credit or blame to a series of actions which lead to a success or failure) and the addition of
adaptive critic elements. These latter elements use outcomes to reward earlier predictions

of success or failure.

Robotics

Khatib [Lat91] proposes the use of potential-field methods to guide robots during on-line

operation. Objects that are to be avoided produce a positive field while the goal projects

15

a negative field. The robot can use this field to perform navigation by traveling in the
direction of most-decreasing gradient.

A problem with pure potential-field methods is that complex environments will often be
riddled with potential wells that are only locally minimal. This is the same local optimiza-
tion problem encountered when using any greedy algorithm. Randomized path planning

[Lat91] is a technique used to attempt to avoid being trapped in local minima.

2.3.2 Control Theory

One of the motivations for the work in this thesis is to tackle a problem which is receiving
attention within the control community, namely that of controlling underactuated mech-
anisms. An underactuated mechanism is one which has fewer actuators than degrees of
freedom. These systems are particularly interesting because they are difficult to control.
They are non-linear and, like many animated objects, rely on accumulating appropriate
momenta to perform a desired action.

As an extreme example, we consider the acrobot, the jointed robot shown in Figure 3.1.
Figures such as the acrobot, which are composed of links that are connected by joints, are
known as articulated. In particular, the acrobot has a single actuator at the joint connecting
its two links.

We work with the acrobot for two reasons. First, articulated figures such as humans
are effectively underactuated because ankles only provide limited control over the global
orientation of the body. Second, the acrobot serves as an example of an articulated figure
that is difficult to control despite having very few DOFs. We propose that the number of
DOFs is not always a good measure of the difficulty of a control problem. Other factors,
such as the size of acceptable regions of state-space and the connectivity of these regions

through control inputs, play a major role in determining the overall difficulty of an action.

Earlier Work on the Acrobot

The work of Hauser and Murray [HM90] first proposes a controller which makes an acrobot
balance in place. In this case, the acrobot’s foot is fixed to the ground using a frictionless,
unactuated hinge. Bortoff and Spong [Bor92] [BS92] use approximate linearization to pro-
duce slow movements among stable configurations. Their method is also shown to work on

a real acrobot system.

16

Berkemeier and Fearing [BF92] attempt further types of motion with the acrobot and
arrive at a controller capable of balancing, sliding, and hopping, subject to some constraints
on the acrobot’s physical design. The control for both balancing and sliding is successfully
tested [BF94] using an inclined mechanism to reduce the effects of gravity. The hop is not

implemented due to technical difficulties.

17

Chapter 3

A Control Example: The Acrobot

Before we present our proposed general solution for certain control problems in animation,
we motivate the need for such solutions using a typical control problem that we first solve
using a state-machine controller. In particular, we work with finding a hopping motion for
the acrobot, which is shown in Figure 3.1. The acrobot is equipped with only a single ac-
tuator, making it an underactuated mechanism, which means that there are fewer actuators
than there are degrees of freedom. This single actuator is located at P, and effects a torque
between the two links. The end of the bottom link, called the foot, is completely free to
translate and rotate.

This case study demonstrates several points which are critical to the development of
our search algorithm. First, hand-crafted controllers can require large amounts of effort to
tune and they often rely on cyclical behaviour. We use both manual and automated tuning
to arrive at experimentally robust control. Second, tuned controllers can fail with small
changes in the parameters or in the environment. Since control laws can have a limited
range of applicability, once the state of the system falls outside the controllable domain, the
controller is likely to fail. Finally, even when goals for the system such as balance may be
intuitive, the encoding of these goals into control laws may require expertise that animators

may not possess or even care to learn.

3.1 The Acrobot Control Problem

The main difference between the acrobot and Raibert’s well-known monoped hopper [Rai85]

is in the number of actuated degrees of freedom. The acrobot controls for both attitude and

18

Figure 3.1: The two-link robot, displaying positional state components.

upward acceleration using a single actuator. Successful control of this mechanism must rely
on building up appropriate momenta in earlier control stages. In contrast, Raibert’s hopper
uses two independent actuators; one controls for the orientation of the hip joint while the
other controls for the thrust of the leg.

Since it is not immediately evident how a hopping motion for the acrobot can be per-
formed, it is likely to be difficult for an animator to visualize and draw a set of keyframes
that will realize a physical motion. An open-loop controller is unlikely to be effective since
small perturbations in control actions have a major impact on the state of the system over
time. It is unclear and unlikely that open-loop control can attract the motion into a stable
cycle.

This problem can be solved by resorting to a state-machine solution, which is a fairly
common control structure used to solve legged locomotion problems [HR90] [RH91]. The two
phases of the state machine encode control laws for (1) balance and (2) upward acceleration.
Testing the height of the acrobot head within each control phase will provide the means of
switching between these two control laws.

The controller presented here cannot be proven robust in any rigorous sense. However,
the results produced through experimental simulations are found to work well and they

produce visually convincing motions. For the purpose of animation, this visual realism is

19

i, 8000N/m

kq, 800N s/m

kp, 400N /m

kq, 40N s/m
Topfset | —0.02m

my, mo | 10kg

L, I 0.8333kg s/m?
tsim 0.001s

Figure 3.2: Simulation Parameters

Figure 3.3: Simulation of ground contact.

what really counts.

3.2 Acrobot Simulation Parameters

The physical model parameters of the acrobot are given Figure 3.2. The acrobot has two
links with a single actuator placed at the connecting joint P, effecting a torque between
the two links as shown in Figure 3.1. Point P; will be referred to as the foot and point Ps
as the head.

The dynamics simulation uses a penalty method to model the ground contact; a stiff
spring-and-damper system applies a force to pull the foot back towards the initial point of
ground contact, as shown in Figure 3.3, using k,, = 14000N/m and kq, = 800N s/m. The
compliance modelled by the spring-and-damper system can be equivalently considered to

be a property of the floor or of the foot of the model.

20

BALANCE

Figure 3.4: FSM for acrobot hopping, where & is the height of the ‘head’.
3.3 The Hopping Problem

The hopping problem is to generate stable control for the acrobot to move in a desired
direction across a terrain. The only allowable contact point with the ground is the foot.
The difficulty in generating control results from the inherent instability of the acrobot.

In order to be convinced of the difficulty of the resulting control problem, we encourage
the reader to try the following experiment. While standing upright, place all the weight
on the heels and attempt to maintain balance by bending only at the waist. Performing
flips while maintaining balance before and afterwards is predictably even more challenging,

although we exempt the reader from attempting this manoeuvre!

3.4 The Hybrid Controller

A hybrid controller is one in which the high-level control is discrete and the low-level control
is continuous. We derive a hybrid controller of two states and a means of switching between
them, with the result of producing a stable hopping motion. Fach state has a continuous
control law that produces a control action for any given configuration of the acrobot. The
basic two-state structure is shown in Figure 3.4. We first describe the control laws in effect
for each state and then describe the strategy for switching between them that provides a

successful and stable hopping motion as sketched in Figure 3.5.

3.4.1 Balance Control

When the acrobot is not in flight, applying a torque to the actuator will cause a reaction

force to act on the foot. We would like to control for the horizontal component of this force,

21

Balance Transition Jump

Phase Phase

Figure 3.5: Sketch of acrobot hop showing the transition from balance to flight.

since we can use this to keep the acrobot’s centre of mass above the supporting foot. We

ignore, for now, the effects on the angular momentum of the acrobot.

Thus, to drive the z-coordinate of the centre of mass to zero (relative to the foot), the
balance control law must calculate an appropriate actuator torque 7. This can be done by
making the horizontal component of the net external reaction force, f,, drive the centre of

mass appropriately. A simple PD controller suffices for this:
fx = _kpli_kdlfa

where £, and kg, are the PD constants, # is the location of the centre of mass with respect
to the foot, and z is its time derivative. The desired reaction force is proportional to the
applied torque and can be expressed with the relation f, « Tcos(6;), as shown in Figure 3.6.

The balance control law thus becomes
T = (—kp, @ — kg, 7)/cos(01).

The balance control law is not capable of bringing the acrobot to a motionless bal-
anced state. This is because the expression ignores the angular momentum of the changing
configuration and so does not attempt to dampen it. In fact, a few attempts were made
at dampening the angular momentum; they failed because they conflicted with the more
important goal of balance.

The control law does, however, attract the acrobot from an initial unstable state onto
a stable limit cycle. Figure 3.7 illustrates this using a phase portrait of #; and g,. The
magnitude of the limit oscillation is proportional to the initial disturbance of the centre of
mass. This control law works best with a zero damping constant, kg, .

This control law can be employed to yield a regulated, stable limit cycle for the acrobot.

To employ it as a part of the hopping strategy, however, the parameters of the controller

22

omega 1 (rad/s)

Figure 3.6: Operation of balance control.

01 -005 0 005 01 015 0.2
theta 1 (rad)

Figure 3.7: Convergence to a balancing limit cycle.

23

1 | | | I | | |
o8}
@
g 0.6 -
— 0.4
&
@ 2+
: 0

O .

-0.2

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2
theta 1 (rad)

Figure 3.8: An unstable limit cycle used to induce the transition to the jumping state.

are chosen so as to lead to a slow destabilizing oscillation in order to eventually trigger the
transition to the jump state. This will be described in greater detail shortly.

In order to trigger hopping, we shall choose to obtain oscillations of increasing amplitude
over time as shown in Figure 3.8. Increasing the value of k4, has the effect of increasing
the limit cycle amplitude over time, such as in Figure 3.8. The initial conditions and
controller parameters are identical for Figures 3.7 and 3.8, except for kq, (kq, = 0 for
Figure 3.7, kg, = 800 in Figure 3.8). However, these oscillations by themselves will not
directly perform the hop. After attaining a critical amplitude, the jump state is entered. In
the next section, we describe the control law used for this jump state. This is followed with

a more precise description of the rules used for changing states in the hybrid controller.

3.4.2 Jump Control

The job of the jump controller is to cause a rapid extension motion of short duration in
order to ‘kick’ the acrobot into the air. The control law for the jump state is a PD controller

which attempts to straighten the acrobot. The desired expression is

T = —kp, 0y — kq, 0y, (3.1)

where k,, and kg4, are PD constants and 6, is measured as shown in Figure 3.1.

24

3.4.3 Switching Behaviour

The last element of the hybrid controller description is the set of rules which governs tran-
sitions between the balance and jump states. The transition to the jump state is made
whenever the ‘head’ of the acrobot (ps in Figure 3.1) dips below a fixed height hq. Sim-
ilarly, the transition back to the balance state occurs when the ‘head’ rises above a fixed
height hy. The net effect of the jump-state control is to initiate a hop by forcing an exten-
sion of the acrobot, while the hop is completed using the balance state. Since the acrobot
concludes the flight phase of its motion in the balance-control state, the foot is controlled
to centre itself approximately underneath the centre of mass. This is necessary to achieve
a stable landing.

To control the speed and direction of the hopping motion, one can use a simple trick
to ‘fool’ the balance control into thinking its centre of mass is slightly offset from its true
position. This will cause the acrobot to ‘lean’ forward or backward, depending on the
direction that we wish it to jump. The magnitude of this offset controls the magnitude of
the lean and thus the size of the jump. The following modification is made to the balance
control:

fo = (kp (& = 2o poet) = kay2)[cos(br), (3.2)

where x5, is used to alter the effective centre of mass displacement. A hopping motion
to the right is obtained using z,ff5; < 0, thus causing the balance control law to keep
the acrobot off-balance to the right. The magnitude of z,;¢s¢ controls the speed of the
locomotion in a roughly linear manner as shown in Figure 3.12.

Figure 3.9 illustrates the cyclic motion of the head of the acrobot during hopping, using
a phase portrait. The trigger points used in this case, hy = 0.90 and hy = 0.95 are evident.
The discrete nature of the simulation means that the transition is effected with a slight
delay. The path traced by a single period of the motion in its stable limit is known as a
limit cycle. The existence of this limit is significant for control in that configurations of the
acrobot which are close to the limit cycle can be attracted to approach this path over time.
Periodicity of motion also guarantees the perpetuation of the motion, which is important if
the animated figure is to exist autonomously.

As with many other control algorithms, there are several parameters which have an

important effect on the performance of the hybrid controller. Many of these ‘magic’ pa-

25

hdot (m/s)

| | | |

088 09 092 094 09 098
h (m)

Figure 3.9: Limit cycle for the acrobot ‘head’, with state switches at y=0.90 and y=0.95.

rameters have been hand-tuned, while others are useful in that they provide motions with
different features. These effects are discussed in the next section, along with a presentation

of other results.

3.5 Results

The parameters used in the simulations (unless otherwise indicated) are given earlier in
Figure 3.2. Although the k, and k4, values appear high at first glance, they are applied
with respect to the offset in the centre of mass, which is usually quite small. Experiments
were performed in which the torque was clamped to £300N m with little difference in the
resulting performance.

The parameters were determined by first selecting some arbitrary but reasonable pa-
rameters for the model, then tuning the other parameters as necessary. In particular, the
mass and inertial parameters of the acrobot were first defined. The spring-damper system
that models ground-contact required some coarse tuning to provide a reasonable ‘bounce’
that was neither overly ‘springy’ nor fully absorbed. Finally, the other parameters were
hand-tuned through trial-and-error. The ratio between the k, and k; constants was fixed
to simplify the tuning process.

Using the nominal parameters of Figure 3.2, the hopping behaviour shown in Figure 3.10
is obtained for motion across a flat terrain. From top to bottom (reading from the extreme
right of the plot), the variables represent z, 6z, y, 6. The units of and y are metres, while

the units of #; and 0, are radians. For damping constants in the range 105 < k4, < 185,

26

time (s)

Figure 3.10: Selected acrobot state variables.

hdot (m/s)

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
h (m)

Figure 3.11: A double-period motion resulting after a bifurcation.

a steady-state limit cycle is obtained. Higher values lead to bifurcations in the limit cycle,
as shown in Figure 3.11. A stable but non-repetitive motion occurs for 0 < k4, < 105. The
hopping motion fails (i.e. the acrobot falls over) for k4, > 185. This behaviour is a typical
feature of controllers. That is, controllers tend to operate well within a certain range of
parameters for the model and for the external environmental parameters.

The speed of the gait is a smooth function of #,fse, as shown in Figure 3.12. Note
that the sign of #,¢tsc; determines the direction of the hopping motion. The value of 24
can be changed in a continuous fashion to provide velocity control. The hybrid controller
is robust enough to allow for locomotion up and down modest inclines and across variable

terrain, as illustrated in Figures 3.13 and 3.14. These figures show the trajectory of the

27

1 T T T
@ 08 ° .
E 0.6 | s °]
8 o4t . © .
& 02} .
0 | | |
0 1 2 3 4
x offset (cm)
Figure 3.12: Speed control.
1 | | |
0.8 .
£ 06f .
> 04 -
0.2 .
0 ! ! !
0 1 2 3 4

x (m)

Figure 3.13: Climbing an incline (slope=0.3).

foot of the acrobot as it hops over the terrain.

The hybrid controller works well for a wide range of choices for hy and hy. If we relate
ho and hq by hg — hqy = 0.10m, the hybrid controller works for 0.55m < hy < 1.85m. Stable
hopping locomotion can thus be obtained for both a very extended acrobot (small 63) or a
very compact, folded acrobot (large 6;).

Experiments also show that the hybrid controller is effective in controlling acrobots with
different masses and moments of inertia. This demonstrates the robustness of the controller,
which is a desirable control characteristic. The constants kp,, kq,, kp,, kd,, kp., and kg,

need to be scaled by the same factor as the mass scale factor, but no other changes are

Figure 3.14: Locomotion across variable terrain.

28

required.

3.6 Conclusions

A new hybrid control strategy for controlling acrobot locomotion has been developed and
tested in simulation. The successful state-machine controller encodes the intuitively desir-
able goals of balance and upward acceleration into two separate control laws. The transition
between these two laws is triggered by testing the height of the head. Once the parameters
of the model and controller are tuned, the resulting behaviour is experimentally robust.
These parameters have a limited range of stability and are specific to the configuration of
the acrobot. In simulation experiments, this controller is speed-controllable and is capable
of ascending and descending various slopes and navigating various terrains. The results
show that hybrid controllers can in this case provide a simple solution to an otherwise
difficult control problem.

This case study using the acrobot model demonstrates that control can be difficult, even
for figures with a small number of degrees of freedom [HM90] [Bor92] [BF92]. The hybrid
controller that is developed for the hopping motion effectively accomplishes the specific task
for which it is designed. Time, expertise and even some luck were required to properly craft
such a controller. However, an animator may not necessarily have this time, expertise, or
even the inclination for designing, let alone tuning such a controller.

Learning from this example, we would like to develop a general control strategy that
does not require fine tuning of the controller parameters. This strategy should operate
across a large domain of configurations. The encoding of motions goals should be intuitive
and should not require carefully crafted control laws. Such a strategy is proposed and
evaluated in the chapters following. We will use an automated search for dynamic motions
that satisfy specified goals and constraints. Since many different motions are possible, the

search will discover different motions that are both valid and interesting.

29

Chapter 4

The Search Algorithm

The approach we propose for control problems in animation is reminiscent of early search
algorithms such as those developed for playing chess. At any given point in this game, a
choice must be made from among a set of candidate moves. Moves require careful con-
sideration because of their potential impact on the development of the remaining game.
Most computer chess-playing algorithms perform a ‘look-ahead’ search through candidate
sequences of decisions. Because of the complexity of chess, algorithms must rely on human-
supplied evaluation metrics or on experience gained using machine-learning techniques. Our

proposed algorithm is also similar in this respect.

4.1 Decision Trees

The sequence of decisions made by a chess player can be represented in the form of a tree,
which is a directed graph rooted at a single node corresponding to the initial state. In this
tree, each node represents a board configuration. The edges connecting a parent to a child
node define a move from one state to another.

Because of the exponential growth of candidate moves in relation to the depth of the
look-ahead, an exhaustive enumeration of the tree is impractical for even small depths. As
a result, search heuristics are used to guide the process. A heuristic is a technique used to
evaluate several alternative solutions. An evaluation function aids in this decision process.
This function is applied to the nodes of the tree, providing a metric which can be used to
compare different board positions. Nodes which clearly lead to failure, such as imminent

check-mate against the player, can be pruned or eliminated from consideration. A node

30

undesirable
region

desirable
region

Figure 4.1: Building a state-space trajectory using a tree search.

which is promising can be extended by enumerating some or all of its children. When a
path that is being explored appears to lead to a dead-end, back-tracking occurs, which
means tracing backward to a different part of the tree and searching from that point.

A good introduction to search trees and heuristics can be found in [Win84]. We propose
to use a modified form of the best-first search tree. This strategy chooses always to extend

the node which has the current highest value of the evaluation function.

4.2 The Search Algorithm

4.2.1 General Description

We treat the search space of our problem as a set of sequential control decisions that are
made at discrete instants in time. Since each sequence begins from the same initial state
conditions, the set of control decisions can be represented by a tree structure such as shown
in Figure 4.1. The nodes of the tree are generated through a forward dynamic simulation
resulting from the application of a control action, represented by the directed edge from
the parent to the child. The control problem is then reduced to producing an algorithm
that can efficiently generate and search through this tree. Equivalently, we seek to find
the control required to drive a system through a traversal of state-space, guided using an
evaluation function, and made efficient by the pruning of actions leading to undesirable
configurations.

Just as a new search tree is built for each move in a chess game, we generate a search tree

31

for each action. Also, as in chess, we are able to reuse relevant branches of the computed
search tree from an earlier phase. To make a decision about any given action, our algorithm
uses a modified version of the best-first search tree.

Two choices must be made whenever carrying out a simulation to further expand the
search tree. First, a starting node must be selected. This should presumably be one which
looks like it is part of a promising motion, so we shall define an evaluation function v to
quantify how promising any given node is. To prevent the same node from being selected
continually, » normally has a term which penalizes for the number of node children. Thus,
a node will only be extended a certain number of times before backtracking will occur.
Second, we need a method of choosing the control input « to apply. The simplest method is
one of stochastically selecting the control input from a fixed uniform distribution function,

although the form of the control input generator is left to the user to define.

4.2.2 Simplifications

In our representation of the search space, we have made a series of simplifications to the
problem. First, we have restricted control to a sequence of actions that are applied for
a fixed time duration. Since we place no restriction on the form of the control action,
this representation does not limit the generality of the solution. However, in practice, this
representation can make the search for timing-critical actions more difficult.

Another simplification is that we do not attempt to choose among all possible control
actions at each node, since the number of possible actions is large and often even continuous.
Instead, we choose to take a sampling of the possible actions and evaluate among those.

A final simplification is that control actions are single-valued. A multiple-value action
can either encode control inputs for multiple actuators or encode a sequence of different
actions for a single actuator. Although we could encode multiple actions as a vector within
a single input, we choose not to do this in order to simplify the problem. Also, it is not
clear how the encoding of multiple actions would affect the complexity of the problem since

the size of both the search space and the solution space would grow.

32

best_node = choose_node(tree);
rand_input = generate_input();
new_node = simulate(state(best_node) ,rand_input);

B W N =

new_node.score = evaluate(state(new_node),
depth(new_node)) ;
5. if (test_prune(new_node)) {
delete(new_node);
} else insert(new_node,tree);
6. best_node.score = best_node.score + v_retry;
7. if (depth(tree) > depth_max) {
trajectory = add_input(trajectory,tree,new_node);
tree = child_along_path(tree,new_node);
}
8. loop;

Figure 4.2: Pseudocode for the search controller.

Time (s) Depth

0.0 0 f(x))=10 @

w3 | \u=Ls
0.1 1 f(x,)=8 @ @ f(x)=7
u=1 .5{ u=-2.2
02 2 f(x)=10 @ @ fi(x)=5
u=1 .OL u=0.5 \u:l 0
03 3 f(x)=2 @ @ @ f(x)=10
fi(x,)=1

Figure 4.3: An example search tree.
4.3 Algorithm Detail and Example

The algorithm, which controls the development of the search tree, is described with the
pseudocode in Figure 4.2. An example search tree is shown in Figure 4.3 for a single
decision. The development of the tree is documented in the table of Figure 4.4. At each
step, the actual scores for the nodes are given. The highlighted score indicates which node
will be extended in the next step. For sorting efficiency, we store the tree nodes in a heap.
We will refer to this example as we describe the algorithm in more detail.

In the example tree of Figure 4.3, the current candidate input-histories of three consec-

utive actions are obtained by tracing the possible directed paths from the root to each leaf.

33

Node Scores: veq
Step 0 1 2 31415 6 7
1 10
2 6 9
3 6 5 12
4 6 5 8 5
5 6 5 4 51| 4
6 2 5 4 5148
7 2 5 4 514 |4 7
8 2 5 4 514 |4 3 13

Figure 4.4: Detail of progress for the example search tree.

The resulting candidate set of input sequences U,y,q are given by:

Ucand = {(1.5,-2.2,-1.0),(—2.3,1.5,1.0), (=2.3,1.5,0.5)}

In this tree, node n; will be next selected for extension. Using a look-ahead depth
Ndepth = 4, this will result in the acceptance of the action represented by v = 1.5. For
control inputs applied for 0.1s, this would correspond to 0.4s of look-ahead. The selected
control input represents the edge from the root node along the path that includes node
n7. The simulation of the root node ng with the input u = 1.5 results in the configuration
represented by node ns.

After the action is accepted, another tree will be created to determine the next action.
Node ng will be the root node of this new tree. We are able to reuse the portion of the tree

rooted at ms since the existing results for this branch remain valid.

4.3.1 Selecting the Node to Extend

An evaluation function is used to guide the exploration of state-space by selecting for system
configurations which are more promising. For example, if the goal is to move in the positive
z direction, a component of the evaluation function should reasonably include z. The general

form of this function is given by:

Veval = f($) + g(ndepth) + Vretry * Nehildren

where 2 is the state of the system or creature at that node; ngeps, is the depth of the node

in the tree; ncpiidren are the number of node children; v, is the penalty that is added for

34

each node child; and f and ¢ are user-specified functions. In the example, we use

feg(®) = {(0,10),(1,8),(2,10),(3,2),(4,1),(5,7),(6,5),(7,10)}
geg(ndepth) = Ndepth

Uretryeg — —4

to produce the evaluation function

Veg = feg(x) + Ndepth — 4. Nchildren

Use of the term v, ensures that the search distributes its efforts over all currently
promising motions. In effect, the term causes backtracking to occur if the same node is
being continually retried. Thus, even if a search spends a long time in a certain part of a
tree, this does not prevent it from going to a completely different branch and subsequently

returning if a solution is still not found.

4.3.2 Generating a Control Input

The form of the function that generates a potential control input is left for the user to
define. In practice, we have found for several problems that a stochastic sampling from
a uniform distribution function is more effective than a fixed discrete choice of samples.
With fixed sampling, the algorithm would often get “stuck” backtracking through certain
branches of the tree.

In cases where the choice of inputs are finite, it is useful to randomize the order in
which the possible inputs are enumerated or to enumerate all the inputs in a single pass
(before selecting another node to extend). A branching factor parameter np,qncn controls
the number of simulations computed for each node in a single pass. In our example, we use
Npranch = 1 and the control inputs are randomly selected. Once a control input is generated,
a forward dynamic simulation is performed to compute the state representing a new node.

As the search tree grows in depth, the number of nodes, and hence the forward sim-
ulations required, grows exponentially. Besides directing the growth of the tree using an
evaluation function, it is useful to prune unwanted branches of the tree by specifying con-

straints. These are described in the next section.

35

4.3.3 Pruning the Search Tree

For our representation of control, which uses a sequence of control inputs, the following
factors affect the size s of the search space: (1) the dimensions of state-space d,, (2) the
dimensions of the control inputs d,, and (3) the length of the discrete time interval ¢;. We

can summarize this relation with
5 = O((t /1))

when searching for a motion sequence of length ¢,,. For the problems that we worked with,
the nodes along the accepted decision path have anywhere from 2-10 branches. This tree
can grow quickly for even a short motion sequence. If we can prune even half of the branches
at each time interval, the size of the tree would decrease by (t,,/t;)?. For a sequence of 10
actions, this is a reduction by a factor of 1024! In practice, since the evaluation function
already directs the growth of the tree, we will not see such a large acceleration in the search.
Nevertheless, examples in Chapter 5 demonstrate that the speed-up can be substantial.

To reduce the number of branches in the tree, a constraint function is used to prune
those nodes which represent configurations that are undesirable. For example, if the joint
or head of the acrobot should ever touch the ground during a flip, the node representing
this motion should be discarded. This particular example (see step 5 in the pseudocode)
would require that the simulator provide a way of detecting the collision.

In general, using constraints makes the solution easier to find. This is because pruning
prevents the algorithm from wasting time searching through branches that are known to
lead to failure. In some cases, however, a poorly defined pruning function can actually
divert the search from a good solution by disallowing valid configurations.

Pruning criteriain animation can take several forms. Animated characters typically have
constraints on their joint angles. If these are not enforced in the simulation, they should
be enforced using constraints. Locomotion problems can constrain the type of allowable
motion by preventing certain configurations from occurring, such as landing on the head
during a flip. Balancing problems typically include a constraint on the position of the centre
of mass relative to the points of support, such as the feet. In general, constraint functions
can be defined by the user using intuitive features of the system being modeled. These

functions can then be iteratively refined as motion samples are produced and analyzed.

36

4.4 The Simulation

To support this algorithm, the state of the simulation is constantly being reset to that stored
in the current node being extended. For a real-time simulation, this can be a problem since,
although the average time to search for each action may be short, the time for any given
single decision has the potential for being long if the node is in a particularly ill-conditioned
state. For controlling real robots, this is even more problematic since the real state of
the robot can quickly deviate from the state in the simulation. In controlling real robots,
reusing branches of precomputed simulation may only be practical when the state of the
robot is sufficiently close to that in the simulation. Otherwise, the entire tree may need to
be regenerated.

We have made the assumption thus far that the tree can only be generated through
simulation. Once the search algorithm has produced a series of successful motions, it may
be possible to generalize these results and reuse the control that was learned for earlier
successful motion. This can be used to accelerate subsequent searches. We explore this

machine-learning direction in Chapter 7.

37

Chapter 5

Low-Level Control Results

The search algorithm of the previous section has been applied to several control problems
at different levels of abstraction. We refer to low-level control as sequences of basic control
inputs that are provided to actuators. On the other hand, high-level control refers to
sequences of control inputs for abstracted controllers. For example, low-level control for
Luxo could be the specification of angles for poses used by a pose-controller [vKF94]. A
pose is a specification of desired angles for each controllable joint. In a pose-controller,
PD-control is used to drive the joints to these desired angles for the duration of the pose.
A hop can be generated by concatenating a set of appropriate poses. Thus, a hop is a
high-level control abstraction that encapsulates a sequence of low-level poses. High-level
control for Luxo could be the specification of hops used by a hop-controller.

The low-level control problems that we solve for use models for the acrobot (Figure 3.1),
the cart and double-pendulum® (Figure 5.1), and the spinner (see Figure 5.2). For the
acrobot, we will solve for balance, flipping, and hopping. For the cart and double-pendulum,
we solve for various swing-up motions. Finally, for the spinner, we solve for simultaneous
inverted balance for the pendulums.

While many of these problems that we choose may not be particularly interesting in
animation (although some undoubtedly are), we choose to solve them since they are recog-
nized in the control literature as difficult problems [HM90] [BS92] [BF92] [KOH94]. Control
techniques used to approach these problems have largely used analytical models for the com-

putation of solutions. We see these problems as being barely within the grasp of analytical

!The cart/pendulum and spinner models were simulated using code produced by SD/Fast from Symbolic
Dynamics

38

Figure 5.1: The double pendulum.

solutions, but well within the bounds of the algorithmic technique that we propose. The
evaluation and pruning functions that we use are surprisingly simple and we obtain motions

that are both new and entertaining.

5.1 Acrobot Balance

General parameters for the acrobot simulation are provided in Figure 5.4. The same pa-
rameters, unless otherwise specified, are also used for all our acrobot motions.

For acrobot balance, we attach the foot to the ground with an unactuated hinge joint.
The goal is then to actuate the joint connecting the links in such a way as to provide a
reaction force at the foot which keeps the acrobot balanced and which prevents the head
from folding over and touching the ground. Initially, we define the evaluation function using
the intuitive notion that the centre of mass should be kept high and centred above the foot.
The pruning function tests that the joint and head remain well above the ground. The

following functions are used:

Vap = Ndepth + 5. |me| + |cmy| — 10 - nepitdren

Pab = (sz < 05) \ (P3y < 10)

where ¢m, and em,, are respectively horizontal and vertical offsets of the centre of mass from

39

Figure 5.2: The Spinner.

the foot. The points P, and P, are as defined in Figure 3.1. A PD-controller is attached to
the hinge joint which takes as input a desired angle for a fixed time duration t;,servai-

An initial implementation of the search algorithm, conducted with #;,ser0q; = 0.1,
requires approximately 10 000 trials to accept 0.8 s of motion. Since we use 20 stages of
look-ahead, this means that an additional 2.0s of motion was generated. However, the latter
stages of this motion likely lead to imminent failure and are not included. For generating
the control inputs, we sample from a random distribution from the range —2.6 < 6 < 2.6,
where 6 is measured in radians.

Fortunately, we take advantage of these trials to help in the construction of an improved
search, using better evaluation and pruning functions. In the resulting successful motion,
we observe that #; and 6, are approximately linearly related as shown in Figure 5.3, thus
defining a near-stable manifold in the state-space. We can use this relationship to refine
the evaluation functions and add constraints. In particular, we reformulate them as the

following:

Vab = Ndepth — 10 - |375 * 91 + 62| - 10- Nehildren
(Py, < 0.5)V (Ps, < 1.0)V (|3.75 % 61 + 62| > 1.0)

Pab

The term |3.75 % 61 4 6| has been derived from the graph of Figure 5.3 and rewards
configurations that maintain the linear relationship in the evaluation function. For the
pruning function, configurations that stray sufficiently from this linear relationship are

eliminated. As a result, 16.4 s of successful input-history is accepted using 10 000 trials.

40

angles —

05 B

joint 2 angle

-0.5 | B

R 1 1 1 1 1 1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
joint 1 angle

Figure 5.3: Foot and joint angle correlation after 1 second.

my,ms | 10 kg

ll, 12 1m

I, 15 0.8333 kg - s/m?
tsim 0.001 s

tinterval 0.1s

Ndepth 20

k, 200 N/m

kq 20 N -s/m

Figure 5.4: Model parameters.

This corresponds to an average of 1 accepted trial for every 6.1 attempts, which is a clear

improvement.

5.2 Acrobot Gymnastics

When the foot hinge constraint is removed, the acrobot can be controlled to produce
cartwheels, flips, and hops. These are both more interesting and more difficult motions from
the points of view of animation and control. We again define the quantity em, = x4, — 1,
where z.,, is the horizontal position of the centre of mass; z; is as shown in Figure 3.1.
We also define [as the angular momentum measured in a counter-clockwise direction. The
simulation time interval ;0,007 has been increased to 0.18 s to increase the size of the

simulation look-ahead window.

41

- > 5) /S

= e U By 2
[O~ A g 4

Figure 5.5: A clip from the cartwheel motion.

5.2.1 Acrobot Cartwheel

For a cartwheeling motion, the evaluation and pruning functions are:

Vae = —1—-10- |me| + ndepth/lo -5 Nehildren

Pac = (y2<0.2)V[(y1 <0.0)A (ys < 0.0)].

The pruning function constrains the joint to be at least 0.2 m above the ground and
ensures that only the end of one link may contact the ground at any instant in time.
The evaluation function rewards negative angular momentum [, penalizes centre of mass
offsets [emy|, and rewards simulation progress ngeye,. The result is a clockwise leg-over-arm
motion as shown in Figure 5.5. This cartwheel motion will continue indefinitely. We use
k, =50 N/m and kg =5 N - s/m for the joint proportional-derivative (PD) constants.

The joint angles 63 and control inputs 6y for this motion are shown in Figure 5.6. Note
that the control inputs define a step function, and the actual €5 is continually pulled toward
the desired 6, by the PD-controller. From Figure 5.9, it takes on average approximately

90 simulations for every single accepted control action.

5.2.2 Acrobot Flips

For somersault motions, the evaluation and pruning functions are:

viip = —10-[emg| + nacptn — 5 - Nenitaren
Viront flip = —10-|emg| 4 Naepth — 5 - Nehitdren
prip = (y2<0.2)V (ys < 0.4)
Divont f1ip = (y2 < 0.2)V (y3 < 0.4)V [(y1 > 0.5) A (I > 0.0)].

42

Actual and Desired Actuator Joint Angles
T T

actual —
desired -----_

joint angle in radians
o
=

time (sec)

Figure 5.6: Control inputs to the joint angle.

The pruning function constrains the joint and head to avoid contact with the ground.
The evaluation function penalizes centre of mass offsets and rewards simulation progress.
Given these constraints, the flips naturally occur in the motions produced by the search
algorithm. The flipping motions can be sustained indefinitely. Successful landing is at-
tributed to the penalty for a large centre of mass offset. This encourages actions that drive
the foot to be underneath the centre of mass. Since there is no specification of the direction
of the flip, both front and back flips are possible by default.

The frames in Figure 5.7 demonstrate a back-flip followed immediately by a front-flip. To
achieve the torque required for the flip, PD constants of k, = 200 N/m and kg =20 N-s/m
are used. Higher-order flips (double, triple, etc.) have been achieved by simply increasing
the k, of the actuator. From Figure 5.9, it takes on average approximately 40 simulations
for every single accepted control action.

A motion with only front flips uses the same pruning and evaluation functions as the
normal flip with an additional constraint that whenever the foot is above 0.5 m, the angular

momentum [must be positive.

43

éywﬁfk

NSy s g
A

Figure 5.7: A sequence of flips.

by Y b
AN AD I B
| D 2

Figure 5.8: A hopping sequence.

5.2.3 Acrobot Hop

The hop requires the largest number of pruning constraints. The evaluation and pruning

functions are:

Vhop = MNdepth — D * Nehildren
P P

Phop = (yz < 02) \ (y3 < 04) \ [(y1 > 00) A (1‘1 < —01)] \ (y1 > 04)

The pruning function keeps the joint and head above the ground, permits only small
backward velocities when the foot is in the air, and keeps the foot below 0.4 m in the air.
The evaluation function rewards temporal progress. Figure 5.8 demonstrates the resulting
motion. To the best of our knowledge, this motion can be indefinitely sustained. The
PD-constants used here are the same as those for the flips.

Figure 5.9 shows a history of how simulation trials are allocated to different levels of
the tree (times of the motion) as the search algorithm proceeds. A negative slope in these

graphs indicates a back-tracking behaviour in the search. The general rising slope of the

44

Depth vs. Trials (sample per 100)
600 T T T

T T
Cartwheel -----

Ho
500 P

400 R

300 g

current exploration depth

200 | o

i o) I I I I I I

0 .
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
trials

Figure 5.9: Progress rate for different motions.

curve indicates how easy a given type of motion is to plan. A steep slope indicates a
relatively easy motion to plan, while a shallow slope indicates that progress is difficult.
Surprisingly, flip motions are the easiest to generate, followed by the cartwheel in difficulty,

and then the hop.

5.3 Double Pendulum

The double pendulum (see Figure 5.1) model is controlled using a sequence of fixed hori-
zontal forces applied to the cart for a fixed time interval #;,;¢r0q; = 0.1 s. Both of the joint
hinges are unactuated. The algorithm produces control for two types of swing-up and for a
continuous giant swing, while maintaining the cart within the range |z| < 5.

The difficulty in performing a swing-up is that energy must be built up appropriately
through swinging back and forth [KOH94]. The forces of the cart must be directed to
produce increases in the total potential and kinetic energy of the system. This problem can
be compared to that of a person on a swing, where the total energy of the system must be

raised incrementally with each swing through changing the length of the swing.

For the first swing-up problem, we restrict inputs to be taken from discrete range u =
{—1,0, f}, with f =40 N. This is known as bang, bang, zero-input control. The evaluation
function rewards the configuration for potential and kinetic energies for the system (Egystem)
that approach the energy required for an inverted static position (Fsiqsic, which is unstable).

The function also rewards the configuration that has a small #; and 6y’, which corresponds

45

theta1 —
theta2 ----

angle (radians)

15 ! ! \ \ A
0 2 4 6 8 10 12
time (sec)

Figure 5.10: Bang, bang, zero-input swing-up.

to a fully extended double pendulum. The state-space trajectory for a successful swing-up
is shown in Figure 5.10. This motion results from the following evaluation and pruning

functions:

Vsu = _|Esystem - Estatic| - |92| - |92/| + Yern — 10 000 x (nchildren > 3)

Psu |l‘| >5

where 7., is the centre of mass of the two links.

For the second swing-up, we drop the restriction on taking discrete input samples and
allow the control to take values from the continuous range u = [—f, f]. As expected,
removing the constraint on the inputs results in a much better swing-up. Figure 5.11 shows
the angles of the two pendulums in a particularly good example of the final swing-up motion.
Note that not only do the angles approach zero radians, but their derivatives (angular speed)
also drops.

Finally, the giant swing uses an evaluation function that ignores the energy term but
rewards depth. The configuration continues to be rewarded for having a small #; and 6,'.
The result is a cyclic swing as shown in Figure 5.12. Note that this swing was initiated
from an inverted balance position to provide the energy required for the first swing. The
angle ¢, is wrapped around for clarity. The evaluation and pruning functions are modified

to be as follows:

46

16 T

theta1 —
theta2 ---- B

angle (radians)

time (sec)

Figure 5.11: Continuous input swing-up.

Vgiant = _|62| - |92/| + Yem + Ndepth — 5 X Nehildren

Pgiant = |$| >5

5.4 Spinner

The final example of low-level results that we demonstrate uses the spinner model (see
Figure 5.2) to solve the balance problem for a double inverted pendulum. In this problem,
the only input is torsional control to the centre hinge rotating about the y-axis as measured
by #;. The other two hinges, one for each pendulum, are unactuated. Beginning with both
pendulums in an inverted position, the problem is to control the system to prevent either
pendulum from falling over completely. The evaluation and pruning functions maintain an
empirically-determined ratio of 85 to f5 that was determined by plotting the state vector

for an initial sequence of successful control.
For an initial attempt at solving the problem, we use the following evaluation and

pruning functions:

VUspl = Ndepth — Nechildren

Psp1 = (|92 > 03|) vV (|93| > 12)

Using these choices, only 21 trials have been accepted after 100 000 attempts. Exami-
nation of the state variables for the accepted trials yields an inverse correlation between 6,

and @5 as shown in Figure 5.13.

47

i

theta 1
theta2 +

OO O OO

(suelpeu) s|bue

10

Figure 5.12: Giant swing.

correlation

0.5

04

03

0.2

0.1

¢ o|bue

-0.1 |

-0.2 |-

0.3

04

.2 -0.1 0 0.1 0.2 0.3
angle 2

-0.

-0.3

Figure 5.13: Correlation of joint angles for the spinner arms.

48

0.6 T

theta-2 —
theta-3 ----

[i
i i
04| i i 4
H [
[

[[A
oo | \ /
R | \ i
i VoA A | \ [
i Vo 0 | | [
i \ | \ \
0.2 | i \ " i | Do B
! i [H \ 1 i
2 ! 1 [i \ 1 '
N\ ! ' [! i I I
o | | i | A !
[| [| \ [!)
i \ [! | |
h o ! \ P Voo |
AN { i ! ! \ \ A
Sor N | | Lo | Voo ! 7
f \ | ! i] AR | /
[1 1 | by 1 AL i J
0 [P YA \
% | It Ao \ n I N |
/ \ ! | | | A f\ Nop Vo
\ / | ; \ \ | o |
\ ! Vo | ! \/ SR i i Vo
\ ! Iy | | \/ Vo | Vi i
\ ! \ \ | (R i
\ \ | \ \ |
. i] ! Vo | \
\ i \ |
! i | i
\ | \ H |
-0.2 | Vs ! Vo |
g VT Voo \
\ \ ! i
! Vo
i | Vo Vi
] 4 [A
\ \/ | ‘
Vi Voo / !

0.4 v ’;‘ i

angle (radians)

06 L L L L L L L L L
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
time (sec)

Figure 5.14: Spinner inverted double pendulum balance.

The graph shown in Figure 5.14 demonstrates the correlation of 83 and 83 for the success-

ful balance. We can now modify the evaluation and pruning functions to be the following:

VUspl = Ndepth — D - Nehildren + |20 -0y + 93|

Dspl = (|92 > 03|) vV (|93| > 12) vV (|20 . 92 + 93| > 01)

The result is a drastic improvement with over 400 trials being accepted after 100 000 at-
tempts. A sample of this motion is shown in Figure 5.14. We will see a further improvement

by applying memory-based techniques, which will be discussed later.

5.5 Conclusions

Our search algorithm has been applied successfully to several difficult low-level control
problems. Balance, hop, and flip motions were demonstrated for the acrobot; different
swing-ups and a giant swing were demonstrated for the double pendulum and cart; and
a balance sequence was demonstrated for the spinner. The motions were produced by
encoding an evaluation function that captured desired intuitive features such as balance.
A pruning function encoded constraints to eliminate configurations that led to failure. In
some cases, these functions were refined by examining the relationships among the state
variables for successful motions.

The motions described in this chapter were all controlled at a low-level—at the basic

49

level of torques and forces. In the next chapter, this algorithm is applied for high-level
motion planning using the problem of Luxo as it plans a sequence of hops to traverse

various terrains.

50

Chapter 6

High-Level Control Results

In the previous chapter, we used our search algorithm to synthesize low-level control of
systems that were actuated using a sequence of single inputs. However, such a specification
does not scale well for more complex creatures. Animation is often concerned with creatures
having many actuators and with motions whose primitives are more complex. For example,
even a simplified human model would have a large number of actuators. In this case, an
animator would prefer to specify the motion of a human in terms of different types of steps
rather than actuations at the different joints.

We now begin to tackle the problem of generalizing our search algorithm to solve high-
level control problems. We first make the assumption that low-level controllers exist that
can perform several variations of a motion. These controllers can arise from a set of discrete
controllers or from one that is parameterized. In particular, we could clip or take samples
of the motions that are learned from the low-level search and use them as control primi-
tives. The search technique can then be used to concatenate these more complex primitives
into appropriate sequences. We have performed some preliminary investigations with some

promising results that we now present.

6.1 Path-Planning for Luxo

In this particular example, we shall deal with the motion of Luzo, a 3-link articulated figure
with two actuators shown in Figure 6.1. The ground contact model for Luxo uses the same
penalty method as used by the acrobot: A spring-and-damper system applies a force to pull

the base of Luxo toward the initial point of ground contact, as shown in Figure 6.2.

51

[
Lol

X

Figure 6.1: Luxo Lamp.

Figure 6.2: Simulation of ground contact.

52

The motion primitives to be used in this case are the control histories necessary to
execute complete jumps. A total of 5 different types of jumps are used in creating the
motions shown in Figure 6.3. Each jump consists of a sequential series of three states,
where each state is of a fixed duration (0.13 seconds) and holds the control inputs constant.
The control inputs are desired joint angles, which are fed to PD-controllers that are used
to generate actuator torques. This is also known as pose-control.

Executing a given jump primitive will not always produce the same motion. This is
because the resulting motion is also a function of the initial state. The search algorithm
must thus determine a suitable order in which to apply the jump primitives. As with the
other examples, this is done by planning ahead a fixed number of stages into the future
where, in this case, the stages correspond to complete jumps. For the examples shown in
Figure 6.3, it is sufficient to plan ahead a maximum of 4 jumps. As with previous examples,
the search is conducted using a best-first strategy. Since the control primitives are selected
from a discrete set, the random generation of control inputs is not necessary. Instead, we
choose to evaluate all choices at each stage and prune failed motions as necessary.

The evaluation function used to compare nodes is the total distance travelled. The
mechanism which is used to constrain the growth of the search tree is the pruning of
branches that lead to falls. Any contact with the ground by a part of Luxo other than the
base is considered a fall. In the given examples, the falls are sufficient to prune 50 to 66%
of the search tree. More of the tree could be pruned by establishing a conservative upper
bound on the distance that can be travelled in a jump. Branches which could not possibly
obtain the current maximum distance, even with future maximum-size jumps, can then be
pruned. This then becomes a type of branch-and-bound algorithm.

The motions shown in Figure 6.3 took between 4.5 and 9.5 minutes to plan on a 90
MHz Pentium PC, where the simulation itself requires 0.41 real seconds for every simulated

second. The final motions clearly show anticipation of the upcoming terrain.

6.2 Animator Interface

The interface to the system consists of two steps: (1) specification of the terrain and (2) ini-
tiation of the search. For simplicity, we specify the terrain using a sequence of line segments.

These are read by the simulator, which handles the ground contact model using the same

53

spring-damper system as used for the acrobot. The animator then initiates the search. The
search completes either when a successful path has been planned, or when the terrain is

found not to be navigable using the supplied primitives and search parameters.

6.3 Expanding the Search

In cases where the search algorithm cannot find a solution path, several remedies can be
used. However, these remedies require additional search time. The first possibility is to
introduce additional types of jump primitives. The second is to keep the existing jump
primitives, but to allow some type of interpolation between them so that the control space
becomes continuous. The last possibility is to force the search algorithm to use a longer-

duration planning window, thereby doing a better job of avoiding dead-end situations.

AN ////I///// | \\\\]\\\\\V////////// [

NN,

M |
A \l//” \ vz //H\\W\\N///\W/ \\\VW/\\ f
TN B N/
L v N TALZ s i AN v

i M ////I///// /1

/
i Nl 1

Figure 6.3: Luxo goes cross-country running

54

Chapter 7

Memory-Based Acceleration

A gymnast learns through experience by reinforcing the correct actions leading to successful
manoeuvres. In the same way, the search algorithm can access stored experience in order to
guide the computation of control inputs that will lead to a successful motion. If, for example,
we have stored the data for balancing an acrobot for 100 seconds, surely this information
could be used in continuing to balance. Ideally, this experience may lead to closed-loop
control through the interpolation of a correct input for any given state. Alternately, it may
be possible to generate and search through a look-ahead tree that uses experience to perform
a type of “mental” simulation of possible outcomes. Compared to the cost of running trial
simulations, this would result in a significant reduction in required computational resources.

This chapter provides a brief initial investigation into this experience-based acceleration.
We first describe the representation of the stored experience. Following the definition of
this representation, methods for accessing the information are addressed as well as relevant
issues in defining how to measure the similarity between a pair of states. The chapter

concludes by describing some promising experimental results.

7.1 Stored Experience

The results of the algorithm are a feasible control input history Ay that can be applied
through simulation to yield a state-space trajectory hy in the environment F. At the
discrete decision points, we have successful samples of the mapping X X F — U, which can
be stored as experience. For an accurate physical simulation, it is not useful to simply store

the mapping @; — 4+ for two reasons: (1) For most problems, state-space is continuous

55

and so matching a state exactly is unlikely; (2) We require knowledge of the control that
was successful so that it can be applied again.

In practice, we could generalize this experience by only storing selected features of the
environment relative to the controlled system. For example, if Luxo is planning to jump
across a chasm after it has successful climbed a hill, it no longer matters to the planner
that the hill is in the environment. On the other hand, it matters greatly to Luxo that it
may plunge into the oncoming chasm given the wrong decision. The planner should only
focus on the features that are relevant to the current path being planned. In this case,
the mapping would consist of the relevant components E’ of the environment producing
the mapping X x F’ +— U. The relevant environment component F’ could be considered
as a set of sensory information. Thus, the experience could be interpreted to answer the
question: “given the configuration of Luxo and the locations of immediate obstacles, what

actions were performed in the past that allowed Luxo to continue hopping?”

7.2 Nearest-Neighbours

We use a nearest-neighbour approach as a lookup into this stored experience set in an
attempt to interpolate control for an arbitrary state vector z. The success of this approach
for arbitrary z depends on (1) the density of the sample points at z, (2) the existence of a
solution at x, (3) the sensitivity of the system to small changes in the control input at z,
and (4) the choice of interpolation function.

The density of sampling will increase as more experience is stored, so the system can be
expected to perform on-line learning. If a solution does not exist at z, the search algorithm
can simply direct the search elsewhere. If the system is highly sensitive to small changes
in the control inputs at z, the lookup will yield results which are not likely to be any
worse than stochastically generating an input. As with (1), increasing the stored samples
will reduce this difficulty. Finally, different interpolation functions can yield very different
search acceleration (or even deceleration!). The specific choice depends on the problem
being solved and the locality of state-space being searched in the problem. We have found
in practice that application of the mean of the control inputs of a set of nearest-neighbours

has yielded good results.

56

7.2.1 Similarity Metric

To compute the nearest neighbours of a given state, we require the definition of a distance

function that can be applied to state pairs. Consider the choice of the Euclidean distance

metric whose simplest form is d = \/ZZ (z1; — ¢2,)?. Several issues arise when considering

a distance metric:
e the state dimensions have different units,
e the state dimensions should not necessarily be equally weighted, and
e the state dimensions may be correlated in some way.

For example, the graph of Figure 7.3 demonstrates the differences in the rate of progress in
searching for balance for the spinner using all dimensions equally weighted (6D projection)
and using only the angles of joints 2 and 3, along with their derivatives (4D projection). In
this case, the joint 1 angle and derivative are irrelevant, and so progress is better made by
eliminating those elements from the distance metric.

Cross-validation is a technique used to overcome some of the problems that are men-
tioned above regarding differences in the significance of the dimensions. This technique
takes a set of sample points with an assignment of weight to each dimension. For each
sample point s, a local model without s is computed to estimate the value of the removed s.
The sum of the discrepancies computed for all the points is known as the cross-validation

error. A local minimum for this error can be found by using gradient descent techniques.

The resulting weighted distance function has the form d = \/ZZ wi(x1,; — 2,)?, where
w; refers to the weights of each dimension 7. Atkeson and Lowe have proposed approaches
for automating the selection of weights for continuous [Atk91] and binary [Low93] variables,
respectively. They both use cross-validation.

Lowe uses conjugate gradient descent to select an optimal set of weights to minimize the
cross-validation error. We implemented this approach, but find that, in practice, the cost of
computing the optimal weights far outweighs the cost of additional simulation trials for the
set of problems that we are investigating. We find it sufficient to simply hand-pick relevant
dimensions and to ignore their units. In some cases, we perform some range normalization.
For example, in the case of the acrobot, we normalize the angular velocities of the joints

since they are an order of magnitude larger than the angular measurements.

57

4500

T T

Experience Guided Trials ——
Stochasfic Trials -~

4000

3500
3000
2500

2000

Current Exploration Depth

1500 [

1000

500

- L L L
0 2000 4000 6000 8000 10000 12000
Trials

Figure 7.1: Acrobot balance accelerated using experience.

2500

T T T
Experience Guided Trials ——
Stochastic Trials ----

2000

1500 [

1000

Current Exploration Depth

500 -

POt}

0 [L L
0 00(4000 6000 8000 10000 12000 14000 16000 18000 20000
Trials

Figure 7.2: Acrobot cartwheel accelerated using experience.

We expect that optimizing the weights would be helpful, if the computation were less
costly. Unfortunately, a single global set of weights would be inappropriate since the rel-
evance of different state-space dimensions changes locally. As an example, consider the
relatively high importance of the foot position of the acrobot during ground contact versus

during flight.

7.3 Results

We have used a memory-based approach to successfully accelerate the search for input-
histories for acrobot balance, acrobot cartwheel, and spinner balance. Various acceleration
factors were experienced as shown in the plots of Figures 7.1-7.3. In these cases, relatively
few (several hundred) state-input experience pairs were used.

In general, acceleration performs better where more experience points are available. In

58

1600

T T T
Guided Trials - 4D projection ——
Guided Trials - 6D projection ----

1400 Stochastic Trials -----

1200
1000 [

800 -

Current Exploration Depth

600 - A
400

200

oL L L L L L L L L L
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Trials

Figure 7.3: Spinner balance accelerated using experience and different similarity metrics.

fact, when there are few stored state-input pairs, the guided search can progress much more
slowly than the stochastic search. This result makes sense, considering that the nearest
neighbours are not likely near enough in state-space to yield an input that would be better
than a stochasticinput. In fact, the input can be worse than a stochastic input depending on
the choice of interpolation function. For example, choosing an unweighted mean can yield
a consistently poor value when few neighbours are available. For our trials, the acceleration

was noticeable with even fewer than 50 sample points of stored experience.

7.4 Conclusions

We have proposed a method for storing and reusing experience in the form of state-action
pairs. This experience is accessed using a Euclidean distance metric, with weights on each di-
mension. While we have found it sufficient to hand-pick these weights for efficiency reasons,
the dimensional weights can be optimized globally or locally using cross-validation methods,
which have been the subject of several studies in the field of Machine Learning. Several
experiments were performed which demonstrate conclusively that even a sparse sampling
of successful state-action pairs can drastically accelerate the search. These early, promising
results suggest that further investigations into search acceleration should be worthwhile.
Ultimately, the goal would be to produce closed-loop or nearly closed-loop control so that
building the look-ahead search tree may no longer need to incur the computational costs of

performing actual simulations.

59

Chapter 8

Conclusion

8.1 Contributions

A new type of control algorithm has been proposed for dynamic motion discovery, control,
and planning for various actuated, articulated figures. This algorithm determines appro-
priate actions by exploring different possible results using simulation. It has been shown
that various motions can be produced by using this decision-tree technique and by applying
simple pruning and evaluation functions. The control for these motions can be stored as
experience and accessed to accelerate future searches using a nearest-neighbour approach.

The approach we use in this thesis is to treat the problem of control synthesis as a path-
planning problem. In particular, the algorithm searches for a physically-feasible trajectory
through state-space. The path is physically-feasiblein the sense that the simulatoris capable
of producing the motion using a sequence of control actuations applied to the model. The

use of simulation guarantees dynamic correctness for the motions that are found.

8.1.1 Applications of the Algorithm

This algorithm is useful for motion synthesis and planning problems in both animation and
robotics. For animation, the advantage of this approach over the traditional method of
keyframing is that the produced motions are constrained by the simulator to be physically
correct. However, because the specification of the motion is behavioural, exact space and
time constraints cannot be placed on the models. Also, the algorithm is computationally
expensive and many trial simulations are eventually discarded because they do not con-

tribute to the final solution. However, this expense must be seen within the perspective

60

that the algorithm addresses a class of problems that are difficult or impractical to solve
through other methods.

For robotics, the look-ahead simulations would be particularly useful for dealing with ar-
bitrary environments, provided the environments can be modeled appropriately. Two major
disadvantages are that (1) the simulation may not be accurate enough to produce a correct
decision and (2) the computational requirements of the algorithm may prohibit its use for
real-time operation using current technology. For systems that require dynamic control for
balance, small inaccuracies in the simulation will be amplified over time. Branches of the
search tree may not be reusable as the results become more inaccurate and consequently
much of the tree may need to be regenerated. Some suggestions for future work that address
ways of accelerating the search process are found at the end of this chapter.

Systems that are particularly suited for this algorithm are those that are actuated
through a sequence of single-inputs and whose motions rely on planning. Several exam-
ples of control for underactuated mechanical systems are demonstrated; these systems rely
on building appropriate momentum in the early stages of control in order to successfully
complete a manoeuvre. Balance, locomotion, and path-planning problems are particularly
well-suited.

The algorithm is not designed to search for low-level control for systems that have
multiple actuators. However, by using high-level control primitives, the search algorithm

can be scaled to handle such problems.

8.1.2 Results

We have produced new gymnastic motions for the difficult-to-control acrobot. Our results
indicate that the automatic synthesis of control for finely-tuned gymnastics behaviours
might indeed be achievable. Examples of balance, cartwheel, flip, and hop motions are
demonstrated. To our knowledge, this is the first successful hop control strategy for the
acrobot that does not require over-rotation of one of the links and is the first successful
control strategy for any kind of flipping. We have demonstrated the generality of this
algorithm in applying it successfully to various other control problems. Using more complex
control primitives, this algorithm can successfully plan locomotion paths to navigate difficult

terrains for Luxo the hopping lamp.

61

8.2 Visual versus Physical Realism

Up to this point, we have strictly adhered to physics-based solutions for the problems that
we proposed. We should keep in mind that, for the purpose of animation, only visual
realism is required. Minor violations of physical laws are not likely to be noticeable by the
human eye, while their incorporation can greatly simplify a problem. In many cases, we can
completely close the loop for the successful use of experience by “cheating” on the physical
aspects of the motion and using the stored experience as motion clips whose end points can
be smoothly interpolated.

For example, the reason Luxo may fail to jump across a chasm when success had been
predicted is that the pre-jump state of Luxo may not have had a close enough match to
that of the retrieved state-input pairing that yielded the successful prediction. Rather
than abandoning this action, motion interpolation could be used to smoothly connect two
already-calculated motion segments. For end points that are already very similar in state,
this “cheating” would not likely be perceptible. This would, of course, be suicidal for a real

robot!

8.3 Future Work

In this thesis, performed tests have been limited to figures having a single control input.
We would like to see how multiple inputs affect the algorithm since the growth of the
search space is exponential in the number of control variables. However, the space of
desirable configurations can also grow, so it is unclear how the complexity of the search
would increase. The growth in complexity will likely depend on the individual characteristics
of each problem.

It would be useful to automatically categorize low-level control solutions so that the
learned control can be reused for high-level control. For example, the application of the
search algorithm to the problem of acrobot flipping produced many variations of the basic
flip. The control that was used for the different flips could be used to create a set of flip
primitives that could be used when planning at a high level.

Issues affecting the reuse of stored experience can be further explored. One issue is
finding a distance metric optimization technique that can be efficiently computed. This

would be particularly useful for discarding dimensions of state-space that are irrelevant to

62

control and that can in fact confound the interpolation of control. An example of this was
demonstrated earlier in Chapter 7 with the spinner model. Removal of irrelevant dimensions
would be particularly useful as sensory data is made a part of the stored experience. Sen-
sory information is often redundant and a distance metric optimization technique should
detect this. A second issue is appropriate nearest-neighbour selection. For example, we
chose simply to select the nearest neighbours; it may be more useful to select neighbours
whose bounding box encloses the sample point. A third issue is control-input extrapolation
techniques. We have used simple statistical measures, such as the mean. While this has
worked well for the problems we proposed, other measures should be explored.

With enough samples of successful motion control, it may be possible to estimate the
results of applying control inputs without performing a simulation. It may then be possible
to create a search tree that is based entirely on estimated data as opposed to simulated
data. This could accelerate the search tremendously and make it useful for applications
that rely on real-time operation.

Finally, the growth of the search tree could be better managed, which would increase
the speed of the search. One way to do this is to define an evaluation metric that can
be applied across entire branches of the tree. In this way, the criteria for selecting nodes
for extension can be based on global characteristics of the tree rather than simply those
of the local node. Another way to manage the growth of the tree is to penalize nodes for
having children or grand-children that are pruned. Thus, nodes that always produce failing

children could also be deemed useless and pruned.

63

Bibliography

[Atk91]

[BF92]

[BF94]

[Bor92]

[BS92]

[BSAS3]

[BW95]

[FvDFH90]

Christopher Atkeson. Using locally weighted regression for robot learning. Pro-
ceedings of the 1991 IEFE Internation Conference on Robotics and Automation,
pages 958-963, April 1991.

Matthew D. Berkemeier and Ronald S. Fearing. Control of a two-link robot to
achieve sliding and hopping gaits. IEEE Conference on Robotics and Automa-
tion, 1:286-291, 1992.

Matthew D. Berkemeier and Ronald S. Fearing. Control experiments on an
underactuated robot with applications to legged locomotion. Proceedings, IEFEFE

International Conference on Robotics and Automation, pages 149-154, 1994.

S. A. Bortoff. Pseudolinearization Using Spline Functions with Application to
the Acrobot. PhD thesis, University of Illinois at Urbana-Champaign, 1992.

S. A. Bortoff and M. W. Spong. Pseudolinearization of the acrobot using spline
functions. Proceedings, 31st Conference on Decision and Control, pages 593—

598, 1992.

Andrew Barto, Richard Sutton, and Charles Anderson. Neuronlike adaptive
elements that can solve difficult learning problems. Systems, Man, and Cyber-

netics, SMC-13(5):834-846, September/October 1983.

Armin Bruderlin and Lance Williams. Motion signal processing. Computer

Graphics Proceedings, pages 97-104, August 1995.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley, 2nd edition, 1990.

64

[GT95]

[HM90]

[HR90]

[HSL.92]

[HWBO95]

[KOH94]

[Las95]

[Lat91]

[Low93]

[NM93]

[PATI92]

[Rai85]

Radek Grzeszczuk and Demetri Terzopoulos. Automated learning of muscle-
actuated locomotion through control abstraction. Computer Graphics Proceed-

ings, pages 63-70, April 1995.

J. Hauser and R. M. Murray. Nonlinear controllers for non-integrable systems:
The acrobot example. Proceedings, American Control Conference, pages 669—

671, 1990.

Jessica K. Hodgins and M. H. Raibert. Biped gymnastics. International Journal
of Robotics Research, 2:115-132, 1990.

Jessica K. Hodgins, Paula K. Sweeney, and David G. Lawrence. Generating
natural-looking motion for computer animation. Graphics Interface, pages 265—

272, 1992.

Jessica K. Hodgins, Wayne I.. Wooten, David C. Brogan, and James F. O’Brien.

Animating human athletics. Computer Graphics, 1995.

Shigeyasu Kawaji, Ken’ichi Ogasawara, and Hidenobu Honda. Swing-up control
of double pendulum using genetic algorithms. 3rd International Conference on

Fuzzy Logic, Neural Nets and Soft Computing, August 1994.
John Lasseter. Toy Story. Walt Disney Pictures, 1995.

Jean-Claude Latombe. Robot Motion Planning. The Kluwer International Se-

ries in Engineering and Computer Science. Kluwer Academic Publishers, 1991.

David G. Lowe. Similarity metric learning for a variable-kernel classifier. Tech-

nical Report TR-93.43, University of British Columbia, November 1993.

J. Thomas Ngo and Joe Marks. Physically realistic motion synthesis in anima-

tion. Fvolutionary Computation, 1(3):235-268, 1993.

M. G. Pandy, F. C. Anderson, and D. G. Hull. A parameter optimization
approach for the optimal control of large-scale musculoskeletal systems. Trans-

actions of the ASMF, 114:450-459, November 1992.

Marc Raibert. Legged Robots that Balance. MIT Press, Cambridge, 1985.

65

[RFVO4]

[RH91]

[SC92]

[SCK93]

[Sim94]

[Sut91]

[TT94]

[TTG94]

[vF93]

[VFV90]

[VFV93]

[VKF94]

Charles Russell, Michael Fallon, and Mark Verheiden. The Mask. New Line
Cinema, 1994.

Marc Raibert and Jessica Hodgins. Animation of dynamic legged locomotion.

Computer Graphics, 25(4):349-358, July 1991.

A. James Stewart and James F. Cremer. Beyond keyframing: An algorithmic

approach to animation. Graphics Interface, pages 273-281, 1992.

Steven Spielberg, Michael Crichton, and David Koepp. Jurassic Park. Amblin

Entertainment, 1993.

Karl Sims. Evolving virtual creatures. Computer Graphics Proceedings, pages

15-22. July 1994.

Richard S. Sutton. Reinforcement learning architectures for animats. From

Animals to Animats, pages 288-296, 1991.

Xiaoyuan Tu and Demetri Terzopoulos. Artificial fishes: Physics, locomotion,

perception, behavior. Computer Graphics Proceedings, pages 43-50, july 1994.

Demetri Terzopoulos, Xiaoyuan Tu, and Radek Grzeszczuk. Artificial fishes
with autonomous locomotion, perception, behavior, and learning in a simulated

physical world. Proceedings of the Artificial Life Workshop, July 1994.

Michiel van de Panne and Fugene Fiume. Sensor-actuated networks. Computer

Graphics Proceedings, Annual Conference Series, pages 335-342, 1993.

Michiel van de Panne, Eugene Fiume, and Zvonko Vranesic. Reusable motion
synthesis using state-space controllers. Computer Graphics, 24(4):225-234, Au-
gust 1990.

Michiel van de Panne, Fugene Fiume, and Zvonko Vranesic. Physically-based
modeling and control of turning. Computer Vision, Graphics, and Image Pro-
cessing: Graphical Models and Image Processing, 55(6):507-521, November
1993.

Michiel van de Panne, Ryan Kim, and Eugene Fiume. Virtual wind-up toys for

animation. Graphics Interface, pages 208-215, 1994.

66

[Web93]

[WH94]

[Win84]

[WKSS]

[WP95]

[WSS9]

Merriam Webster, editor. Merriam Webster’s Collegiate Dictionary. Thomas

Allen & Son, tenth edition, 1993.

Wayne L. Wooten and Jessica K. Hodgins. Simulation of human diving. Tech-
nical Report GIT-GVU-94-31, Georgia Institute of Technology, July 1994.

Patrick H. Winston. Artificial Intelligence. Addison-Wesley, 2 edition, 1984.

Andrew Witkin and Michael Kass. Spacetime constraints. Computer Graphics,

22(4):159-168, August 1988.

Andrew Witkin and Zoran Popovi¢. Motion warping. Computer Graphics

Proceedings, pages 105-108, August 1995.

Jane Wilhelms and Robert Skinner. An interactive approach to behavioral

control. Graphics Interface, pages 1-8, 1989.

67

