
Learning Soccer Juggling Skills with Layer-wise
Mixture-of-Experts

Zhaoming Xie
zxie47@cs.ubc.ca

University of British Columbia, Electronic Arts
Canada

Sebastian Starke
sstarke@ea.com

University of Edinburgh, Electronic Arts
United Kingdom

Hung Yu Ling
hyuling@cs.ubc.ca

University of British Columbia
Canada

Michiel van de Panne
van@cs.ubc.ca

University of British Columbia
Canada

Figure 1: Our system is able to generate many soccer juggling skills and their transitions. We show snapshots of a policy
juggling with foot, chest and head.

ABSTRACT
Learning physics-based character controllers that can successfully
integrate diverse motor skills using a single policy remains a chal-
lenging problem. We present a system to learn control policies
for multiple soccer juggling skills, based on deep reinforcement
learning. We introduce a task-description framework for these
skills which facilitates the specification of individual soccer jug-
gling tasks and the transitions between them. Desired motions
can be authored using interpolation of crude reference poses or
based on motion capture data. We show that a layer-wise mixture-
of-experts architecture offers significant benefits. During training,
transitions are chosen with the help of an adaptive random walk,
in support of efficient learning. We demonstrate foot, head, knee,
and chest juggles, foot stalls, the challenging around-the-world
trick, as well as robust transitions. Our work provides a signifi-
cant step towards realizing physics-based characters capable of the
precision-based motor skills of human athletes. Code is available at
https://github.com/ZhaomingXie/soccer_juggle_release.

CCS CONCEPTS
• Computing methodologies→ Physical simulation; Reinforce-
ment learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9337-9/22/08. . . $15.00
https://doi.org/10.1145/3528233.3530735

KEYWORDS
character animation, soccer juggling, reinforcement learning

ACM Reference Format:
Zhaoming Xie, Sebastian Starke, Hung Yu Ling, and Michiel van de Panne.
2022. Learning Soccer Juggling Skills with Layer-wise Mixture-of-Experts.
In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Proceedings (SIGGRAPH ’22 Conference Proceedings), August 7–11,
2022, Vancouver, BC, Canada. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3528233.3530735

1 INTRODUCTION
Soccer is commonly acknowledged as being the most popular sport
in the world. It is therefore also one of the most popular sports to be
emulated for video games. The character animation required to play
soccer is particularly challenging due to the complex interaction
between the characters and the ball. In this paper, we tackle arguably
some of the most complex interactions of this type, namely soccer
juggling. This involves keeping the ball in the air via repeated hits
using the feet, knees, head, or chest. Because of the challenging
nature of these skills, soccer juggling is typically implemented using
kinematic character animation, driven by motion capture data. As
is common with this class of methods, however, this is then prone
to a restricted degree of user control and blending artifacts.

In this paper, we present a system to generate soccer juggling
animation using physics-based simulation and control. We first de-
velop a control graph tailored to the soccer juggling problem. This
control graph allows us to easily specify different soccer juggling
skills via crude hand-designed pose sequences, or using motion
capture data. Transitions between skills are introduced as directed
edges in the graph. Reinforcement learning (RL) is used to train con-
trol policies based on this graph. In support of efficient and effective
learning, we employ a layer-wise mixture-of-experts architecture,

https://github.com/ZhaomingXie/soccer_juggle_release
https://doi.org/10.1145/3528233.3530735
https://doi.org/10.1145/3528233.3530735
https://doi.org/10.1145/3528233.3530735

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Xie et al.

Control Graph Policy
control nodes

Simulation
edge weight

constraints

state, reward

action

Figure 2: We design a control graph that specifies various
juggling skills and their transitions. We learn these skills via
random walk on the graph. The policy generates the action
based on the upcoming control nodes and the simulation
state. The policy is trained based on the reward feedback via
RL. A simulation episode terminates if the constraints in the
control node are violated, and the edge weight of the specific
node will be updated to adjust the probability of traversing
an edge during the random walk.

in contrast to the common output-gated mixture of experts. We
further introduce success-adaptive random walks of the control
graph for efficient and balanced training. The result is a control
policy that can perform a variety of full-body soccer juggling skills
and the related transitions, including foot, knee, head, and chest
juggling, as well as the around the world foot juggle. See Fig. 1 for
some examples.

This paper makes the following contributions:
• We propose an overall method for learning difficult soccer jug-
gling skills. Individual skills can be defined using either a few
hand-designed poses or using motion capture data.

• We show that a layer-wise mixture-of-experts architecture pro-
vides significant benefits for this multi-skill RL problem. Strong
specialization among the experts tends to arise naturally, which
reduces interference between different experts.

• We introduce an adaptive random walk training strategy in
support of efficient learning.

2 RELATEDWORK
In the interests of space, we largely focus on related work that uses
physics-based simulations.

2.1 Physics-based Character Animation
A principled physics-based approach for modeling full-body mo-
tion has been a long-standing goal for creating realistic worlds,
dating back over three decades, e.g., [van de Panne et al. 1990; Raib-
ert and Hodgins 1991]. The development of control strategies, via
careful design, optimization, and learning-based approaches, has
been a key focus of efforts [Geijtenbeek and Pronost 2012]. The
past decade has seen methods that leverage sampling-based meth-
ods [Hämäläinen et al. 2014, 2015; Liu et al. 2010, 2016], various
types of policy search, e.g., [Geijtenbeek et al. 2013; Tan et al. 2014],
reinforcement learning e.g., [Coros et al. 2009; Peng et al. 2015] and
deep reinforcement learning, e.g., [Peng et al. 2016; Won et al. 2017;
Heess et al. 2017].

h

𝜙 = 0 𝜙 = 0.5

𝜙 = 0.5 𝜙 = 1

RFD

RFU

Figure 3: Stages of right foot juggling and the corresponding
control nodes. A juggling skill is divided into two stages.
Stage Down: the ball starts with zero velocity and falls down.
Stage UP: the ball hits the foot and rises until the vertical
velocity is 0. The phase 𝜙 goes from 0 to 0.5 in the down stage
and goes from 0.5 to 1 in the up stage. The rate the phase
changes depends on the overall duration of the stages, which
is determined by the vertical traveling distance of the ball ℎ.
We build a control node for each stage and use directed edges
to indicate transitions between stages.

Physics-based characters have been used to create athletic mo-
tions for various sports, including running, vaulting, and bicy-
cling [Hodgins et al. 1995], via specialized control strategies. Recent
examples include learning based approaches to generate skills such
as bicycle stunts [Tan et al. 2014], wall climbing [Naderi et al. 2018],
figure skating [Yu et al. 2019], parkour [Liu et al. 2012; Yu et al.
2021], jumping [Yin et al. 2021], boxing and fencing [Won et al.
2021].

2.2 Control while Interacting with Balls
Controlling a virtual character or robot to juggle a ball is a long-
standing problem. A first scientific study of the ball juggling prob-
lem starts with [Shannon 1993]. Since then, there are many works
that learn to juggle a ball using virtual hands, e.g., [Chemin and
Lee 2018; Lee et al. 2018; Luo et al. 2021]. There are also works
that learn to juggle with a bipededal robot [Poggensee et al. 2020],
quadrotor [Müller et al. 2011; Dong et al. 2015] or robot arms [Serra
et al. 2017]. These often assume full controllability of the robot.

Recent work in character animation also explores how to interact
with objects while performing dynamic motions, such as basket-
ball dribbling [Liu and Hodgins 2018; Park et al. 2019] and soccer
dribbling [Peng et al. 2017, 2019; Liu et al. 2021]. These works often
decouple the motion control and ball control, e.g., first learn to
imitate a reference motion without the consideration of ball control
and then learning to control the ball. [Hong et al. 2019] makes use
of model predictive control to synthesize soccer dribbling skills, at
the expense of slow online computation. More recently, [Peng et al.
2021] directly learn soccer dribbling skills from scratch with the
guidance of a walking reference motion.

In this paper, we employ RL to synthesize control policies for
soccer juggling skills. This requires the character to perform highly

Learning Soccer Juggling Skills with Layer-wise Mixture-of-Experts SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

dynamic skills while juggling a soccer ball using different body
parts. Our system does not require a decoupling of learning the
motion and controlling the ball, thus allowing for more efficient
learning. Furthermore, with our fully trained policy, users can in-
teractively choose what body parts to juggle the ball with at run
time. This is in contrast with kinematics-based soccer juggling sys-
tems used in video games, where the user has limited control of
the juggling sequence. [Jain and Liu 2009; Choi et al. 2015] also
design motion synthesis systems to generate trajectories for soccer
juggling. However, their system is designed for single trajectory
generation and is thus not suitable for user interaction such as
game control.

2.3 Mixture of Experts for Character Control
Mixture of experts (MOE), where multiple models are used to recon-
struct the desired output, have been used extensively to generate
complex motions for character animation and motion control.

Recent work in kinematics based character animation often
makes use of the weight-blended mixture of experts neural network,
where the weights of multiple feedforward neural networks are
blended via a gating network to construct a single neural network.
This has been used to generate complex kinematics behaviors via
supervised learning, including human locomotion [Holden et al.
2017; Ling et al. 2020], quadruped locomotion [Zhang et al. 2018],
humans interacting with objects [Starke et al. 2019], basketball
skills [Starke et al. 2020] and boxing [Starke et al. 2021].

Recently, a weight-blended MOE has been used in RL for legged
robot locomotion. However, it either shows no clear advantage
over baseline methods for single task training [Yang et al. 2020a]
or relies heavily on pretraining of individual skills for multitask
training [Yang et al. 2020b]. In our work, we adopt a similar archi-
tecture, which we name a layer-wise mixture of experts, where the
outputs of layers are blended instead of the weights. Note that since
each layer is linear before the nonlinearity, this is equivalent to
the weight-blended MOE, but the layer-wise blended interpretation
affords a much more efficient implementation; see Appendix 1 for
details. Our work is thus among the first to demonstrate the benefit
of this class of architecture for RL settings.

The more conventional MOE architecture directly blends the fi-
nal output of the individual expert neural nets. This enables policies
to imitate a broad range of motion capture data [Won et al. 2020]
with experts specialized in different motions, or generating distinct
behaviors for different experts, which can then be used for policy
transfer [Peng et al. 2019]. Instead of blending different experts
to generate the output, other neural networks can be trained to
select an appropriate expert to process the input. This has been
used to learn locomotion policies for a 2D dog to traverse complex
terrains [Peng et al. 2016]. All these methods rely on pretraining of
different experts on specific variations of the final tasks.

3 SYSTEM OVERVIEW
Wemodel the characterwith an articulated skeleton system, adapted
from Deepmimic[Peng et al. 2018]. It has 34 degrees of freedom,
including the floating base. We use RAISIM [Hwangbo et al. 2018]
as the physics simulator. The character is controlled via Stable
proportional-derivative controllers [Tan et al. 2011]. We simulate

the soccer ball as a hollow sphere, with the dimensions and mass
taken from a real soccer ball. We set the restitution coefficient
between the soccer ball and the character to be 0.8.

An overview of our system is shown in Fig. 2. We use RL to
train the character to juggle the ball. We simulate a large number
of environments in parallel to collect data. This is made possible
with the fast simulator, which can gather up to 800 seconds of
simulated experience every second. In particular, we simulate 800
environments in parallel, with a 400 Hz simulation and controlled at
50 Hz. We use Proximal Policy Optimization [Schulman et al. 2017]
as the RL algorithm. At each iteration, we collect 100 samples per
environment for policy update, taking 2 − 3 seconds on a machine
with a NVIDIA GeForce RTX 3070 GPU and a 12-core CPU. Training
takes 6 hours for single skill training and 30 hours for learning
multiple skills and their transitions.

4 SOCCER JUGGLINGWITH CONTROL
GRAPHS

We design our control structure based in part on the desired trajec-
tory of the ball and the body part that the ball should make contact
with. In this section, we describe our control architecture that al-
lows us to specify different juggling soccer skills as well as their
transitions. There is some similarity between our control graph and
motion graphs [Kovar et al. 2008], and related work that generates
control policies with a motion graph, e.g., [Won et al. 2020].

4.1 Parameterization of a Soccer Juggling Skill
During juggling, the soccer ball switches between two stages: (1)
falling downwards with gravity, until it hits a body part, after
reached its peak height, and (2) moving upwards due to impact
with the body parts and until reaching a maximum height. We
further parameterize the ball trajectory and the character motion
with a single phase variable 𝜙 ∈ [0, 1]. Specifically, when the ball is
at the peak with zero velocity, 𝜙 = 0, 𝜙 advances linearly with time
to 1

2 as the ball goes down until the ball hits the desired body part,
and linearly increases to 1 as ball moves up until the ball reaches 0
velocity at the peak.𝜙 then resets to 0 and the whole process repeats.
𝜙 will also be used to compute the desiredmotion of the character so
it is synchronized with the ball trajectory. Note that 𝜙 can increase
at different rates for different skills or at different stages. At any
stage of the juggling process, the ball will travel in the vertical
direction for ℎ meters, starting or ending with zero velocity. The
overall duration of the stage can be computed as 𝑡 =

√︁
2ℎ/𝑔 where

𝑔 is the gravitational constant. The rate of change for 𝜙 is then√︁
𝑔/8ℎ. In Fig. 3 we present an example of this parameterization.

4.2 Control Node
We design control nodes based on the stages of the ball, the body
parts to receive the ball, and the overall motion of the character. A
control node consists of the following:

• The phase speed, as calculated based on the overall motion dura-
tion, using the vertical traveling distance of the ball. The phase
is integrated over time using the phase speed.

• The desired ball trajectory and the desired character motion.

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Xie et al.

• A constraint on when a body part can make contact with the
ball.

• An optional constraint that enforces a relationship between the
motion of the character and motion of the ball.

• A set of outgoing edges that indicate the possible transitions
from the current control node to other nodes.
A control graph consists of a set of control nodes connected by a

set of directed edges. A transition happens when the 𝜙 = 1
2 during

a down stage or when 𝜙 = 1 in an up stage. We next describe how
to use RL to train control policies given a control graph and give
examples of control graphs for soccer juggling skills.

4.3 Reinforcement Learning with A Control
Graph

Given a control graph, we train policies to generate desired skills
and their transition specified by the graph using RL. This is achieved
via a random walk on the graph during training, and in each node,
the policy is rewarded for completing the desired skills specified.
Here, we document the details of the process.

Observation Space. The observation space for a control policy
consists of the following:
• The state of the character, including the height, orientation and
angular velocity of the root link in world space, the joint ori-
entation and joint velocity of each joint. We exclude the root
translation in the plane, as the policy should be invariant to that.

• The state of the ball, including its position relative to the charac-
ter, and its angular velocity. Orientation is excluded.

• The phase and the phase speed.
• The current node the policy is in, and the next two nodes to
be visited. This is encoded via three one-hot vectors, where
the length of the vector is equal to the number of nodes. It is
important for the policy to observe the upcoming nodes in order
to make anticipatory decisions during transitions between many
skills.

Action Space. Weemploy Proportional-Derivative (PD) controllers
to control the character. Specifically, at each simulation time step,
a control torque is computed via the following equation:

𝜏 = 𝑘𝑝 (𝜃𝑑 ⊖ 𝜃) − 𝑘𝑑 ¤𝜃 + 𝜏𝑐 , (1)

where 𝜃𝑑 and 𝜃 is the desired and current joint orientation of the
joints on the character, ⊖ computes the difference between two
orientations, 𝑘𝑝 and 𝑘𝑑 are the control gains, and 𝜏𝑐 is a learned
correction term to compensate for failure. We set 𝜃𝑑 to be the joint
angle specified by the reference character pose in the current node
given the phase, and the policy will output 𝜏𝑐 . For rotational joints,
we can interpret 𝜏𝑐 as a correction term to the target angle, as has
been done in prior works that use RL to track reference motions,
e.g., [Xie et al. 2018; Park et al. 2019; Bergamin et al. 2019]. However,
outputting a correction term for a spherical joint requires further
transformations, such as taking the exponential map [Ma et al. 2021;
Fussell et al. 2021]. We directly use the policy output as a torque
correction term to avoid these complications.

Reward. We use a reward function of the form

𝑟 = 𝑟character + 𝑟ball, (2)

𝜓

Figure 4: Around the world motion sequence. The juggling
foot will go around the ball. We put a coordinate system on
the ball, with the origin at the center of the ball, the x-axis
pointing in the lateral direction of the character and y-up.
We can then describe the motion with𝜓 , which is the angle
between the line connecting the ball and the foot and the x-
axis. During training,𝜓 is enforced to stay within 60 degrees
of𝜓𝑑 taken from the reference motion.

where 𝑟character is defined as

𝑟character = 0.4𝑟joint + 0.3𝑟translation + 0.3𝑟orientation, (3)

and

𝑟joint = exp(−3∥(𝜃 ⊖ 𝜃𝑑)∥2)
𝑟translation = exp(−∥ ¤𝑥 − ¤𝑥𝑑 ∥2 − ∥ ¤𝑦 − ¤𝑦𝑑 ∥2 − ∥𝑧 − 𝑧𝑑 ∥2)
𝑟orientation = exp(−2∥𝑜 ⊖ 𝑜𝑑 ∥2)

rewards quantity in joint space, root-translational and rotational
space to be close to the reference motion.

Lastly, 𝑟ball is defined as

𝑟ball = exp(−∥𝑥ball, d − 𝑥ball + 𝑥 ∥2

− ∥𝑦ball, d − 𝑦ball + 𝑦∥2 − 5∥𝑧ball, d − 𝑧ball∥2)
where 𝑥ball, d and 𝑦ball, d is calculated based on the body part to
juggle the ball, and 𝑧ball, d is the desired vertical ball location.

Initialization and Termination. Given a control graph, the policy
randomly starts with a node corresponding to a down stage, with
phase 𝜙 = 0. The next two nodes are also sampled via random walk
on the graph. The state of the character and the ball are initialized
with the desired state specified by the reference motion. An episode
terminates whenever the constraint specified in the node is violated,
the orientation or height of the character reaches some threshold
(a proxy falling condition) or when the ball hits the ground.

4.4 Single Skill Learning
A single juggling skill consists of the ball repeatedly going up and
down, following a single desired trajectory, while a specific body
part repeatedly hits the ball. The reference motion for the character
is periodic. For convenience, we name a control node based on the
up/down stage of the ball and the relevant body part. For example,
the right foot juggling skill contains two nodes, named "Right Foot
Down" (RFD) and "Right Foot Up" (RFU), respectively indicating
that the ball is falling down and is about to be hit by the right foot,
and that the ball is moving upward after being hit by the right foot.

4.4.1 Example 1: Juggling with the Right Foot with Hand Designed
Reference. We start with a simple example of juggling with the right
foot, described in Fig. 3. There are only two nodes in the graph,
RFD and RFU, as described previously. The directed edges allow

Learning Soccer Juggling Skills with Layer-wise Mixture-of-Experts SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

us to generate a policy to transition between them. We design a
simple reference motion with the character lifting the right foot
up to meet the ball while the ball is falling (RFD) and putting the
right foot down while the ball is rising (RFU). The other parts of
the body remain stationary. More specifically, the motion of the
right knee and the pitch angle of the right hip follows 𝜋2 sin(𝜙/𝜋).
We further set a constraint where the ball is only allowed to make
contact with the right foot or the right shin in the last 0.06𝑠 of RFD
or the first 0.06𝑠 of RFU, and is not allowed to contact anything
else. Despite the very crude reference motion for the character, our
system is able to generate natural juggling skills.

4.4.2 Example 2: Juggling with the Right Foot with Around the World
Reference. Around the world is a juggling trick where after kicking
the ball with a foot, the same foot will go around the ball before
kicking it again. We use motion capture data of this skill as our
reference motion. The data is divided into two segments based on
whether the ball is going up or going down. We then construct
two control nodes for the around-the-world skill with directed
edges, as shown in Fig. 4. To distinguish it from the normal right
foot juggling, we name the control nodes "Right Around the World
Down" and "Right Around the World Up", or "RAWD" and "RAWU".

One aspect of the around the world is the requirement for the
foot to go around the ball. We find that using the reward alone is not
sufficient to obtain the intended behavior. Inspired by spacetime
bounds [Ma et al. 2021], in addition to the contact constraint similar
to foot juggling, we introduce a constraint between the position of
the foot and the ball, as shown in Fig. 4. Without this, the policy
will cheat and juggle the ball in the normal fashion.

4.5 Transitions between Skills
Transitions between skills can be achieved by connecting nodes.
Two nodes 𝑁1 and 𝑁2 can be connected if one of these two condi-
tions apply: (i) the end pose of 𝑁1 matches the starting pose of 𝑁2,
or (ii) the ball position at the end of 𝑁1 relative to the body matches
the ball position at the beginning of 𝑁2.

4.5.1 Example 1: Transition between Foot Juggling and Around the
World. First, we create a graph to describe the transition between
foot juggling and around theworld. In both foot juggling and around
the world, the foot kicks the ball from beneath at the end of the
down stage. At this point, the character can either put the foot
down while the ball goes up or perform the around the ball skill
by lifting the foot and moving it around the ball. This allows us to
generate transition between foot juggling and around the world by
connecting RFD with RAWU and RAWD with RFD. See Fig. 5(a).

4.5.2 Example 2: Transition between Foot Juggling and Head Jug-
gling. Another common way to juggle a ball is using the head. We
design a crude reference motion for head juggling where the char-
acter bends and straightens its knees during the down stage, in
order to generate impulses to bounce the ball back up. During the
up stage, the character assumes a standing pose. We name these
nodes Head Down (HD) and Head Up (HU).

Since the right foot juggling skill and the head juggling skill have
identical character poses at the beginning of the down stages, we
can generate transitions between them by connecting RFU with HD
and HU with RFD. Note that although the poses of the character

RFD

RFU RA
WU

RA
WD

(a) Transition between right foot juggling and right around the world.

RFD

RFU HU

HD

(b) Transition between right foot juggling and head juggling.

Figure 5: With our framework, we can define transitions
between different skills by connecting the respective control
nodes.

linear1
linear2

linear8
MOE Linear

gating

input

w!w" w#

x

x

x

+ output

MOE
Linearstate MOE

Linear
MOE
Linear action

expert weight

ReLU ReLU

Figure 6: Layer-wise MOE: A linear MOE layer consists of
multiple linear layers (experts) that are used independently
to construct different outputs, these outputs are blended
together via the expert weights.A layer-wise MOE consists of
multiple layers of linearMOE, and a common gating network
is used to generate the expert weights for all linear MOE
layers.

are the same at the beginning, the positions of the ball are different,
i.e., the ball is in front of the chest in RFD while the ball is on top of
the head in HD. During RFU, depending on whether the next node
is RFD or HD, the desired ball trajectories are different. Specifically,
the traveling distance of the ball in the vertical direction is different,
leading to slower phase speed if the next node is HD. See Fig. 5(b).

5 LEARNING MULTIPLE SKILLS AND
TRANSITIONS

A soccer player is able to perform a wide variety of soccer juggling
skills and can switch between them on the fly. To train policies with
similar capability, we construct a large control graph that involves

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Xie et al.

skills such as juggling with different feet, different knees, head and
juggling with different styles, i.e., around the world. The detailed
graph is shown in Appendix 2. Policies are then trained via random
walks on this graph. In this section, we describe key components
that make training on this graph more efficient.

5.1 Layer-wise Mixture of Experts
While training for one or two skills is manageable with a standard
multilayer perceptron (MLP) neural network, we find that as the
number of skills increases, an MLP has a hard time mastering all
the transitions. Mixture of experts (MOE), where multiple neural
networks are used to construct the desired output, has been proven
to be successful for multitask learning. We make use of a layer-wise
MOE network, shown in Fig. 6, for more effective training. This
is mathematically equivalent to the weight-blended MOE neural
network, which has been used for synthesizing high quality kine-
matic based animation [Zhang et al. 2018; Starke et al. 2019, 2020,
2021; Ling et al. 2020]. We use a neural network with 3 linear MOE
layers with 8 experts. Each expert is a linear layer with an output
size 128 for the hidden linear MOE layer. The gating network is
shared across all layers and is an MLP with 2 hidden layers of size
128. ReLU activations are used between different layers.

5.2 Adaptive RandomWalk
Another challenge in RL with more skills is the data balancing
problem. During random walk on the control graph, some transi-
tions are inherently more challenging than others. During training,
the easy transitions can be quickly learned before the policy can
handle the more challenging transitions. Due to the termination
of an episode after failure, more samples are accumulated for the
easy transitions while fewer samples are obtained for harder ones.
This unbalanced number of samples for different transitions makes
the challenging transitions even harder to learn. To overcome this
issue, we propose an adaptive weight update approach. We assign
an integer count 𝑐 to each edge in the graph, initialized to 𝑐 = 1.
During the random walk, when it is time to transition from one
node to its neighbors, the probability of choosing which outgoing
edge to use is proportional to the edge count 𝑐 . Once an edge is
selected, its count is incremented by 1. After transition to a new
node, if the policy is able to complete the motion of the node, i.e., no
termination condition is triggered, then the edge count is decreased
by 2. The edge weights are constrained to 𝑐 ∈ [1, 100] to avoid
oversampling an edge or starving edges of visits. Under this setup,
a transition is more likely to happen if this transition often leads to
failure, while the probability of successful transitions being selected
will decrease. Similar ideas are explored in [Won and Lee 2019],
where the value function is used to estimate task difficulty.

6 RESULTS
Our system is able to train policies for a character to juggle the
soccer with different body parts. We encourage the readers to watch
the supplementary video for qualitative results. In this section, we
evaluate the importance of different components of our system.

0 50 100 150 200 250 300 350 400
iteration(×1000)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

no
rm

al
ize

d
re

wa
rd

layer-wise MOE
mlp
output MOE
nonadaptive

0 50 100 150 200 250 300 350 400
iteration(×1000)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

no
rm

al
ize

d
re

wa
rd

layer-wise MOE
mlp
output MOE
nonadaptive

Figure 7: Learning curves over 5 runs with different settings.
TOP: Learning curves for individual runs. BOTTOM: Average
performance of different runs.

6.1 Evaluation of Layer-wise Mixture of Experts
We evaluate the importance of using a layer-wise MOE for training
on a control graph with many skills and transitions. Specifically, we
compare layer-wise MOE with a MLP and a standard MOE where
only the outputs are blended, which has been used by many prior
works in RL for character animation [Won et al. 2020; Peng et al.
2019]. For fair comparison, we use the same number of neurons
for MLP and the layer-wise MOE. Specifically, each hidden layer of
MLP has 8 × 128 = 1024 neurons. This introduces more parameters
for the MLP compared to layer-wise MOE since the MLP is fully
connected. Similarly, we use an output MOE that has the same
number of parameters and internal structure as the layer-wise
MOE. The learning curves of 5 runs using different architectures
are shown in Fig 7. Overall, the layer-wise MOE learns significantly
faster.

We hypothesize that the benefit of using layer-wise MOE is its
capability to learn different skills using a different set of experts,
reducing the interference effect that can be present in a fully con-
nected MLP [Yu et al. 2020]. In Fig. 8, we show the gating patterns
for different skills of a layer-wise MOE policy. We also collect the
output of the second layer and the final output of different experts
over 200 timesteps and project them in 2D with t-SNE. The distinct
clusters demonstrate that the neural network does not converge to
a scenario where all experts are learning the same distribution.

We introduce two metrics to measure the performance of a MOE,
named specialization and utilization. If we run an episode for 𝑁

Learning Soccer Juggling Skills with Layer-wise Mixture-of-Experts SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Figure 8: Different skills exhibit different gating patterns. We also visualize the output space of different layers of different
experts.

Table 1: We apply a constant force to the soccer ball in differ-
ent directions and record the maximum force different skills
can keep juggling with. For reference, a constant force of 1
Newton applied on the ball will be approximately equivalent
to a wind of speed 24 km/h acting on the ball.

forward backward left right
LF 0.45 0.23 0.34 0.34
LK 0.27 0.34 0.47 0.34
LAW 0.45 0.90 0.56 0.56
H 0.09 0.45 0.27 0.18
RF 0.02 0.23 0.18 0.40
RK 0.27 0.41 0.17 0.34
RAW 0.27 0.90 0.56 0.61

steps, the specialization and utilization are computed as

𝑠𝑝𝑒𝑐 =
1
𝑁

𝑁∑︁
𝑖=1

(
𝐾∑︁
𝑘=1

𝑔2
𝑖,𝑘
), 𝑢𝑡𝑖𝑙 =

𝐾∑︁
𝑘=1

(1
𝑁

𝑁∑︁
𝑖=1

𝑔𝑖,𝑘)2, (4)

where 𝐾 is the number of experts and 𝑔𝑖,𝑘 is the gating weight
for expert 𝑘 at time step 𝑖 . Intuitively, specialization measures the
average activation pattern of the experts at each time step, while
utilization measures whether the policy utilizes all the experts. In
our scenario with 8 experts, extreme-but-balanced specialization
would have only 1 expert at any point in time, with all experts
used equally often. In this case, the optimal specialization value
is 1 (higher is better) while the optimal utilization value is 0.125
(lower is better). We measure the specialization and utilization for
layer-wise MOE and output MOE, via 1 minute of random walk
on the control graph. For layer-wise MOE, we see a specialization
of 0.664 ± 0.050 and utilization of 0.181 ± 0.030, averaged over

the final policies of 5 different runs. For output MOE, we see a
specialization of 0.394± 0.013 and a utilization of 0.136± 0.008. We
see that layer-wise MOE induces better specialization, which can
reduce the interference effect between tasks. The slightly worse
utilization is expected since the control graph is unbalanced.

6.2 Ablations on Methodology
Adaptive Random Walk. The adaptive random walk supports the

learning of challenging transitions. We run an ablation where all
transitions are equally sampled, with results shown in Fig. 7. Note
that the same initialization of the policies is used for fairness. In
all cases, training with adaptive random walk converges faster. We
note that even without the adaptive random walk, the layer-wise
MOE is better than alternatives with the adaptive random walk,
further demonstrating the benefit of using the layer-wise MOE.

Constraints Enforcement. If we remove the contact constraint for
a skill, a policy fails to juggle with the desired body parts and does
not respect contact timing. For the around-the-world, the constraint
on the relative position between the foot and the ball is also crucial
to generate the desired behavior. Please see video for the results.

6.3 Robustness
We evaluate the robustness of a control policy by adding external
forces to the soccer ball in different directions. The results are
recorded in Table 1. Our learned policy can withstand perturbations
equivalent to a moderate breeze. We also evaluate the robustness
of the policy against object shapes. Surprisingly, we find that our
policy is able to juggle novel shapes such as box, cylinder and
ellipsoid, with sizes similar to that of the soccer ball.

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Xie et al.

We can also generate turning motions by slowly rotating the
appropriate observations, such as the orientation of the character.
Even though the policy is not trained with turning motions, it
observes similar states during training and is able to turn.

7 CONCLUSIONS
We present a system for learning soccer juggling skills with a phys-
ically simulated character. We design a control architecture that
allows us to design and train different juggling skills, such as jug-
gling with different body parts and juggling with different styles
such as the challenging around the world skill. Transitions between
different skills can also be easily defined with our control architec-
ture. We further demonstrate efficient training utilizing adaptive
random walks and the layer-wise MOE.

Currentlywe need tomanually design control nodes for each new
skills. An automatic way to create control nodes and attach them
to existing control graphs can make learning more skills scalable.
This may be achieved via automatic synthesis from juggling motion
capture data or videos. It will be also interesting to synthesize novel
skills automatically, e.g., by rewarding policies for generating novel
motion sequences.

While we design our control graph for solving the soccer juggling
problem, we believe it can be extended to similar control problems
that involve interaction between the characters and objects, e.g.,
basketball dribbling. We can also extend this architecture to model
interactions between multiple characters, e.g., passing the soccer
ball between them while juggling.

The layer-wise MOE architecture demonstrates better perfor-
mance compared to other alternatives. We hypothesize that it is
because it reduces the interference effect in the multi-task setting.
This is shown via the specialization metric we introduce. In the
future, we plan to investigate more design alternatives in order to
understand and further improve this architecture and apply it to
more general muiltitask settings.

ACKNOWLEDGMENTS
We thank Yiwei Zhao for preparing the motion capture data for
around the world juggling and helpful discussion. We also thank
Harold Chaput for his support of the project.

REFERENCES
Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019.

DReCon: data-driven responsive control of physics-based characters. ACM Trans-
actions On Graphics (TOG) 38, 6 (2019), 1–11.

Jason Chemin and Jehee Lee. 2018. A physics-based juggling simulation using rein-
forcement learning. In Proceedings of the 11th Annual International Conference on
Motion, Interaction, and Games. 1–7.

Jong-In Choi, Shin-Jin Kang, Chang-Hun Kim, and Jung Lee. 2015. Virtual ball player.
The Visual Computer 31, 6 (2015), 905–914.

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2009. Robust task-based
control policies for physics-based characters. In ACM SIGGRAPH Asia 2009 papers.
1–9.

Wei Dong, Guo-Ying Gu, Ye Ding, Xiangyang Zhu, and Han Ding. 2015. Ball juggling
with an under-actuated flying robot. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 68–73.

Levi Fussell, Kevin Bergamin, and Daniel Holden. 2021. SuperTrack: motion tracking
for physically simulated characters using supervised learning. ACM Transactions
on Graphics (TOG) 40, 6 (2021), 1–13.

Thomas Geijtenbeek and Nicolas Pronost. 2012. Interactive character animation using
simulated physics: A state-of-the-art review. In Computer graphics forum, Vol. 31.
Wiley Online Library, 2492–2515.

Thomas Geijtenbeek, Michiel van de Panne, and A Frank Van Der Stappen. 2013.
Flexible muscle-based locomotion for bipedal creatures. ACM Transactions on
Graphics (TOG) 32, 6 (2013), 1–11.

Perttu Hämäläinen, Sebastian Eriksson, Esa Tanskanen, Ville Kyrki, and Jaakko Lehti-
nen. 2014. Online motion synthesis using sequential monte carlo. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 1–12.

Perttu Hämäläinen, Joose Rajamäki, and C Karen Liu. 2015. Online control of simulated
humanoids using particle belief propagation. ACM Transactions on Graphics (TOG)
34, 4 (2015), 1–13.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne,
Yuval Tassa, Tom Erez, ZiyuWang, SM Eslami, et al. 2017. Emergence of locomotion
behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017).

Jessica K Hodgins, Wayne L Wooten, David C Brogan, and James F O’Brien. 1995. Ani-
mating human athletics. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques. 71–78.

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–13.

Seokpyo Hong, Daseong Han, Kyungmin Cho, Joseph S Shin, and Junyong Noh. 2019.
Physics-based full-body soccer motion control for dribbling and shooting. ACM
Transactions on Graphics (TOG) 38, 4 (2019), 1–12.

Jemin Hwangbo, Joonho Lee, and Marco Hutter. 2018. Per-contact iteration method
for solving contact dynamics. IEEE Robotics and Automation Letters 3, 2 (2018),
895–902. www.raisim.com

Sumit Jain and C Karen Liu. 2009. Interactive synthesis of human-object interaction.
In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 47–53.

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2008. Motion graphs. In ACM
SIGGRAPH 2008 classes. 1–10.

Seunghwan Lee, Ri Yu, Jungnam Park, Mridul Aanjaneya, Eftychios Sifakis, and Jehee
Lee. 2018. Dexterous manipulation and control with volumetric muscles. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 1–13.

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. 2020. Character
controllers using motion vaes. ACM Transactions on Graphics (TOG) 39, 4 (2020),
40–1.

Libin Liu and Jessica Hodgins. 2018. Learning basketball dribbling skills using trajectory
optimization and deep reinforcement learning. ACM Transactions on Graphics (TOG)
37, 4 (2018), 1–14.

Libin Liu, Michiel van de Panne, and KangKang Yin. 2016. Guided learning of control
graphs for physics-based characters. ACM Transactions on Graphics (TOG) 35, 3
(2016), 1–14.

Libin Liu, KangKang Yin, Michiel van de Panne, and Baining Guo. 2012. Terrain runner:
control, parameterization, composition, and planning for highly dynamic motions.
ACM Transactions on Graphics (TOG) 31, 6 (2012), 154.

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010.
Sampling-based contact-rich motion control. In ACM SIGGRAPH 2010 papers. 1–10.

Siqi Liu, Guy Lever, Zhe Wang, Josh Merel, SM Eslami, Daniel Hennes, Wojciech M
Czarnecki, Yuval Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki, et al. 2021.
From Motor Control to Team Play in Simulated Humanoid Football. arXiv preprint
arXiv:2105.12196 (2021).

Yunhao Luo, Kaixiang Xie, Sheldon Andrews, and Paul Kry. 2021. Catching and
Throwing Control of a Physically Simulated Hand. In Motion, Interaction and
Games. 1–7.

Li-Ke Ma, Zeshi Yang, Xin Tong, Baining Guo, and KangKang Yin. 2021. Learning
and Exploring Motor Skills with Spacetime Bounds. In Computer Graphics Forum,
Vol. 40. Wiley Online Library, 251–263.

Mark Müller, Sergei Lupashin, and Raffaello D’Andrea. 2011. Quadrocopter ball jug-
gling. In 2011 IEEE/RSJ international conference on Intelligent Robots and Systems.
IEEE, 5113–5120.

Kourosh Naderi, Amin Babadi, and Perttu Hämäläinen. 2018. Learning physically
based humanoid climbing movements. In Computer Graphics Forum, Vol. 37. Wiley
Online Library, 69–80.

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learn-
ing predict-and-simulate policies from unorganized human motion data. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–11.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018. Deep-
mimic: Example-guided deep reinforcement learning of physics-based character
skills. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–14.

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2015. Dynamic terrain traversal
skills using reinforcement learning. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–11.

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-adaptive loco-
motion skills using deep reinforcement learning. ACM Transactions on Graphics
(TOG) 35, 4 (2016), 1–12.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. 2017. Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM
Transactions on Graphics (TOG) 36, 4 (2017), 1–13.

www.raisim.com

Learning Soccer Juggling Skills with Layer-wise Mixture-of-Experts SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. 2019.
MCP: Learning Composable Hierarchical Control with Multiplicative Composi-
tional Policies. Advances in Neural Information Processing Systems 32 (2019), 3686–
3697.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021. AMP:
Adversarial Motion Priors for Stylized Physics-Based Character Control. ACMTrans.
Graph. 40, 4, Article 1 (July 2021), 15 pages. https://doi.org/10.1145/3450626.3459670

Katherine L Poggensee, Albert H Li, Daniel Sotsaikich, Bike Zhang, Prasanth Kotaru,
Mark Mueller, and Koushil Sreenath. 2020. Ball Juggling on the Bipedal Robot
Cassie. In 2020 European Control Conference (ECC). IEEE, 875–880.

Marc H Raibert and Jessica K Hodgins. 1991. Animation of dynamic legged locomotion.
In Proceedings of the 18th annual conference on Computer graphics and interactive
techniques. 349–358.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

Diana Serra, Fabio Ruggiero, Vincenzo Lippiello, and Bruno Siciliano. 2017. A nonlinear
least squares approach for nonprehensile dual-hand robotic ball juggling. IFAC-
PapersOnLine 50, 1 (2017), 11485–11490.

Claude E Shannon. 1993. Scientific aspects of juggling. , 924 pages.
Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural state machine

for character-scene interactions. ACM Transactions on Graphics (TOG) 38, 6 (2019),
1–14.

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion
phases for learning multi-contact character movements. ACM Transactions on
Graphics (TOG) 39, 4 (2020), 54–1.

Sebastian Starke, Yiwei Zhao, Fabio Zinno, and Taku Komura. 2021. Neural animation
layering for synthesizing martial arts movements. ACM Transactions on Graphics
(TOG) 40, 4 (2021), 1–16.

Jie Tan, Yuting Gu, C Karen Liu, and Greg Turk. 2014. Learning bicycle stunts. ACM
Transactions on Graphics (TOG) 33, 4 (2014), 1–12.

Jie Tan, Karen Liu, and Greg Turk. 2011. Stable proportional-derivative controllers.
IEEE Computer Graphics and Applications 31, 4 (2011), 34–44.

Michiel van de Panne, Eugene Fiume, and Zvonko Vranesic. 1990. Reusable motion
synthesis using state-space controllers. ACM SIGGRAPH Computer Graphics 24, 4
(1990), 225–234.

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A scalable approach to
control diverse behaviors for physically simulated characters. ACM Transactions
on Graphics (TOG) 39, 4 (2020), 33–1.

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2021. Control strategies for
physically simulated characters performing two-player competitive sports. ACM
Transactions on Graphics (TOG) 40, 4 (2021), 1–11.

Jungdam Won and Jehee Lee. 2019. Learning body shape variation in physics-based
characters. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–12.

Jungdam Won, Jongho Park, Kwanyu Kim, and Jehee Lee. 2017. How to train your
dragon: example-guided control of flapping flight. ACM Transactions on Graphics
(TOG) 36, 6 (2017), 1–13.

Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, and Michiel van de Panne.
2018. Feedback control for cassie with deep reinforcement learning. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 1241–1246.

Chuanyu Yang, Kai Yuan, Shuai Heng, Taku Komura, and Zhibin Li. 2020a. Learning
natural locomotion behaviors for humanoid robots using human bias. IEEE Robotics
and Automation Letters 5, 2 (2020), 2610–2617.

Chuanyu Yang, Kai Yuan, Qiuguo Zhu,Wanming Yu, and Zhibin Li. 2020b. Multi-expert
learning of adaptive legged locomotion. Science Robotics 5, 49 (2020).

Zhiqi Yin, Zeshi Yang, Michiel van de Panne, and KangKang Yin. 2021. Discovering
diverse athletic jumping strategies. ACM Transactions on Graphics (TOG) 40, 4
(2021), 1–17.

Ri Yu, Hwangpil Park, and Jehee Lee. 2019. Figure skating simulation from video. In
Computer graphics forum, Vol. 38. Wiley Online Library, 225–234.

Ri Yu, Hwangpil Park, and Jehee Lee. 2021. Human dynamics from monocular video
with dynamic camera movements. ACM Transactions on Graphics (TOG) 40, 6 (2021),
1–14.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and
Chelsea Finn. 2020. Gradient Surgery for Multi-Task Learning. Advances in Neural
Information Processing Systems 33 (2020).

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural
networks for quadruped motion control. ACM Transactions on Graphics (TOG) 37,
4 (2018), 1–11.

https://doi.org/10.1145/3450626.3459670

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Xie et al.

A WEIGHT-BLENDED MOE VS LAYER-WISED
MOE

A.1 Equivalency between Weight-blended MOE
and Layer-wise MOE

The forward pass of a fully connected neural network with 𝐿 layers
involves the following computations for each layer 𝑙 :

𝑥𝑙 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑊𝑙𝑥𝑙−1),

where activation is a fixed nonlinear function, 𝑥0 is the input,𝑊𝑙 is
the learnable matrix at layer 𝑙 . Note that we omit the bias term but
it can be included by appending a 1 to all 𝑥𝑙 . For a weight-blended
MOE, the computation at each layer will be:

𝑥𝑙 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(
∑︁
𝑔

(𝑤𝑔𝑊𝑔,𝑙)𝑥𝑙−1),

where 𝑤𝑔 and 𝑊𝑔,𝑙 is the gating weight and the corresponding
expert parameters for expert 𝑔. Since every operation before the
activation is linear, this is equivalent to

𝑥𝑙 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(
∑︁
𝑔

𝑤𝑔 (𝑊𝑔,𝑙𝑥𝑙−1)),

where instead of computing the weighted sum of𝑊𝑔,𝑙 first, we
compute𝑊𝑔,𝑙𝑥𝑙−1 independently first and compute the weighted
sum of their results. This corresponds to our formulation of layer-
wise MOE.

A.2 Computational Efficiency
Even though the weight-blended interpretation and layer-wise
MOE interpretation are equivalent, they require dramatically differ-
ent compute resources. In the weight-blended interpretation, when
we desire to perform forward pass or backward pass with a batch of
data with batch size 𝐵, we need to copy all the parameters in𝑊𝑔,𝑙 𝐵
times in order to perform batch operation. This requires additional
memory of O(𝐵𝑚𝑛) where𝑚,𝑛 are the size of the matrix𝑊𝑔,𝑙 . On
the other hand, layer-wise MOE can perform this operation in the
usual manner without additional copying of data. The speed up of
layer-wise MOE compared to weight-blended MOE is related to the
batch size 𝐵. When 𝐵 is small (around 32-64) as in the supervised
learning setting, the speedup is around 10x. The speedup grows
almost linearly with the batch size. Weight-blended MOE used up
all 8𝐺𝐵 of GPU memory when the batch size reaches 512 and stops
working, while layer-wise MOE continues to operate efficiently. In
RL, we use large batch size (10000), which is impossible to imple-
ment using weight-blended MOE with our hardware setup. Our
layer-wise MOE is inspired by the implementation from [Ling et al.
2020]; however, we focus on physics-based motion control, while
theirs is kinematic.

B ADJACENCY MATRIX FOR MULTIPLE
SKILLS AND THEIR TRANSITIONS

We design many soccer juggling skills and their transitions with
our control graph. In Table 2, we show the adjacency matrix for
this control graph.

RFD

RFU

RFS

Figure 9: The control graph for creating a foot stall policy.

Figure 10: We can generate a foot juggling policy that juggles
the ball to different height.

C ADDITIONAL RESULTS
C.1 Chest Juggling
We also create a chest juggling skill, where the chest of the character
is used to receive and bounce the ball. See Fig. 1 for visualization.

C.2 Foot Stalling
Another common soccer juggling skill is foot stalling. To create a
foot stalling skill, we create an additional control node called Right
Foot Stall, or RFS. In the right foot stall, the reference motion is a
fixed pose with the character standing on the left leg with the right
leg lifted up, and the soccer ball lying still on top of the right foot.
Directed edges from RFD to RFS and RFS to RFU are created to
indicate transitions between them. To generate foot stalling motion
with appropriate length, another edge connecting RFS to itself is
also created. The weight of this self connected edge is set to be 30
to indicate a desired longer duration of the stalling motion. See
Fig. 9 for the control graph for generating a foot stall policy.

C.3 Foot Juggling with Different Heights
For the foot juggling skill, we can randomize the desired traveling
distance of ball ℎ in the vertical direction to train policy that can be
capable of juggling the soccer ball at different heights. See Fig. 10
for visualization.

Learning Soccer Juggling Skills with Layer-wise Mixture-of-Experts SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Table 2: Adjacency matrix for control graph with many skills. 1 indicates a directed edge going from the row node to the column
node.

LFD LFU LKD LKU LAWD LAWU HD HU RFD RFU RKD RKU RAWD RAWU
LFD 1 1
LFU 1 1 1 1 1
LKD 1
LKU 1 1 1 1 1
LAWD 1 1
LAWU 1
HD 1
HU 1 1 1 1 1
RFD 1 1
RFU 1 1 1 1 1
RKD 1
RKU 1 1 1 1 1
RAWD 1 1
RAWU 1

	Abstract
	1 Introduction
	2 Related Work
	2.1 Physics-based Character Animation
	2.2 Control while Interacting with Balls
	2.3 Mixture of Experts for Character Control

	3 System Overview
	4 Soccer Juggling with Control Graphs
	4.1 Parameterization of a Soccer Juggling Skill
	4.2 Control Node
	4.3 Reinforcement Learning with A Control Graph
	4.4 Single Skill Learning
	4.5 Transitions between Skills

	5 Learning Multiple Skills and Transitions
	5.1 Layer-wise Mixture of Experts
	5.2 Adaptive Random Walk

	6 Results
	6.1 Evaluation of Layer-wise Mixture of Experts
	6.2 Ablations on Methodology
	6.3 Robustness

	7 Conclusions
	Acknowledgments
	References
	A Weight-blended MOE vs Layer-wised MOE
	A.1 Equivalency between Weight-blended MOE and Layer-wise MOE
	A.2 Computational Efficiency

	B Adjacency Matrix for Multiple Skills and Their Transitions
	C Additional Results
	C.1 Chest Juggling
	C.2 Foot Stalling
	C.3 Foot Juggling with Different Heights

