
Character Controllers using Motion VAEs

HUNG YU LING, University of British Columbia, Canada
FABIO ZINNO, Electronic Arts Vancouver, Canada
GEORGE CHENG, Electronic Arts Vancouver, Canada
MICHIEL VAN DE PANNE, University of British Columbia, Canada

Fig. 1. Given example data, we learn an autoregressive conditional variational autoencoder that predicts the next pose one frame at a time. A variety of
task-specific control policies can then be learned on top of this model.

A fundamental problem in computer animation is that of realizing purposeful
and realistic humanmovement given a sufficiently-rich set of motion capture
clips. We learn data-driven generative models of human movement using
autoregressive conditional variational autoencoders, or Motion VAEs. The
latent variables of the learned autoencoder define the action space for the
movement and thereby govern its evolution over time. Planning or control
algorithms can then use this action space to generate desired motions. In
particular, we use deep reinforcement learning to learn controllers that
achieve goal-directed movements. We demonstrate the effectiveness of the
approach on multiple tasks. We further evaluate system-design choices and
describe the current limitations of Motion VAEs.

CCS Concepts: • Computing methodologies→Motion capture; Rein-
forcement learning.

Additional Key Words and Phrases: motion synthesis, character control,
human motion model, reinforcement learning

ACM Reference Format:
Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. 2020.
Character Controllers using Motion VAEs. ACM Trans. Graph. 39, 4, Article 1
(July 2020), 12 pages. https://doi.org/10.1145/3386569.3392422

1 INTRODUCTION
Given example motions, how can we generalize these to produce
new purposeful motions? This problem is at the core of interactive

Authors’ addresses: Hung Yu Ling, University of British Columbia, Vancouver,
Canada, hyuling@cs.ubc.ca; Fabio Zinno, Electronic Arts Vancouver, Vancouver,
Canada, fzinno@ea.com; George Cheng, Electronic Arts Vancouver, Vancouver, Canada,
gecheng@ea.com; Michiel van de Panne, University of British Columbia, Vancouver,
Canada, van@cs.ubc.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/7-ART1 $15.00
https://doi.org/10.1145/3386569.3392422

character animation and control, with applications that include
games, simulations, and virtual reality. The solutions should ideally
produce high-quality motion, be compact, be efficient to compute
(at runtime), and support a variety of goal-directed behaviors.

In this paper, we take a two-step approach to this problem. First,
we learn a kinematic generative model of human motion given the
example motion data. This is based on an autoregressive conditional
variational autoencoder, which we refer to more simply as a motion
VAE (MVAE). Given the current character pose, the MVAE predicts
the pose at the next time step. Importantly, the model can produce a
distribution of next-state predictions because it is also conditioned on
a set of stochastic latent variables – each sampling of these variables
corresponds to a different future feasible next-state prediction. The
model is autoregressive, meaning that the current predicted pose
becomes the current character pose for the following prediction.

Given a trainedMVAE, it can be controlled to generate desiredmo-
tions in several ways. The simplest is to randomly sample from the
next-state predictions at each time-step, which produces a random
walk through the learned dynamics of the MVAE. More interest-
ingly, we can treat the stochastic variables that govern the next-state
predictions as the action space for a reinforcement learning prob-
lem, which is not possible for learning approaches based purely on
supervised learning. Given a reward function that defines the goals
of the character, a control policy can then be learned which uses
this action space to guide the generative model in accordance with
those goals.
We note that VAEs have been previously identified as a promis-

ing class of models for kinematic motion generation, along with
RNNs. However, the stable generation of long motion sequences is
commonly acknowledged as a significant challenge, as are issues
of motion quality. MVAEs produce high-quality results as demon-
strated with fully-skinned characters and with no additional foot-
skate cleanup. Further, unlike previous approaches using a memory-
enabled RNN architecture, we show that the MVAE can work well
in a memoryless fashion, i.e., conditioned only on the previous pose

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392422
https://doi.org/10.1145/3386569.3392422

1:2 • Ling, H. et al

(which includes velocities). The MVAE decoder architecture plays
an important role with regards to motion quality and stability. We
provide insights with respect to generalization and over-fitting, as
well as documenting other remaining limitations of the MVAE ar-
chitecture. Importantly, we show the usability of MVAEs in an RL
setting and demonstrate how an energy penalty can be used to
better model human motion preferences.
Our contributions are as follows:

• We introduce a generative VAE motion model, the MVAE,
capable of producing stable high-quality human motions. We
document the key algorithmic and architectural features that
are needed to do this successfully.

• We show that reinforcement learning can effectively use the
MVAE generative model to produce compact control policies.
These can then be coupled with the MVAE model to produce
desired goal-directed movement.

2 RELATED WORK
The animation problem being solved is that of data-driven time-
series prediction, additionally conditioned on the desired goals of a
movement. We can further characterize solutions according to addi-
tional attributes: (i) kinematic vs. physics-based: the former directly
predicts future motion without regard for physics, while the latter
uses a physics simulation to generate movement. (ii) direct prediction
vs. model-then-control: if the example data is already considered to
be moving in accordance with the desired task goals, the predictive
policy can be trained directly using supervised learning. Otherwise,
we describe it as being an indirect approach, where the example
data is first used to learn a dynamics model, and a method such
as reinforcement learning is then used to learn a control policy on
top of this model to realize the motions for the desired task. (iii)
non-parametric model vs. parametric model: parametric models, such
as neural networks, discard the original motion data, while non-
parametric models keep the original data. In what follows, we focus
heavily on kinematic motion synthesis methods, and we further
structure our review of related work according to the remaining
attributes. Locomotion is most frequently used as the desired task
to solve. For a broader survey on kinematic character animation
methods, we refer the reader to [Van Welbergen et al. 2010].

2.1 Kinematic motion synthesis
Direct prediction, non-parametric models. In this category, the

original example data is considered to directly embody example
solutions to the desired task, and the data is directly used to construct
the generated motion. The simplest version uses manually-designed
control logic that plays specific clips in specific situations, with
possible multi-way blends for interpolation between two clips being
played in parallel, and to enable seamless-transitions between clips.
Instead of working with motion capture clips, motion matching
[Clavet 2016] works with example motions at the level of individual
frames. At run-time, it seeks to choose the best possible next frame
from a database of motion capture data when given the previous
pose. The locomotion task itself is embedded in the feature vector
used in a 𝑘-NN query. This vector contains root information from
the past, so as to be able to find a match that is compatible with the

ongoing movement, and also root information from the future, so
as to be compatible with the desired motion as demanded by the
task. Limitations include the generated behaviors being sensitive to
the choice of time window and feature weighting that are used for
the matching process. Embedding the task in the feature vector also
makes it difficult to apply this framework to non-locomotion tasks.

Model-then-control, non-parametric models. A different approach
is to first use the example motions to learn or develop a model of
the space of possible motions and how they connect. This model
can then be used by a planning or reinforcement learning algo-
rithm which, for a given character state in the world, determines
an optimal traversal path through the model to achieve a desired
behavior or goal, as defined by the task. Motion graphs [Kovar et al.
2002] were an early method of explicitly inferring the connectivity
between arbitrary frames on motion clips, based on a pose distance
metric being less than a given threshold. It can also be useful to seg-
ment the motion into short clips with the use of constraint frames,
in a way that allows the construction of a valid animation from
any sequence of these clips without foot skating. This creates an
implicit fully-connected motion graph. While motion graphs have
an explicit enumeration of the transition possibilities, some transi-
tions will still be smoother and more natural than others. This can
still be taken into account via an additional transition reward while
planning a movement on the motion graph or learning a control
policy for the motion graph. Using these methods, kinematic motion
controllers have been created for boxing [Lee and Lee 2006], and
locomotion, e.g., [Lo and Zwicker 2008; Treuille et al. 2007]. Motion
models may also be implicitly defined using Principle Component
Analysis (PCA) of motion exemplars, e.g., [Safonova et al. 2004].

The space of possible motions or dynamics can also be learned as
an embedding in a continuous latent space, such as using Gaussian
Process Latent Variable Models (GPLVMs) [Levine et al. 2012] or
using a distance metric in the original state-space [Lee et al. 2010].
In both cases, discrete action spaces are defined implicitly using
states within a similarity neighborhood as an informal method of
approximating a distribution. Reinforcement learning for a given
task can then be applied using the given motion dynamics and
discrete actions.

Direct prediction, parametric models. Parametric methods synthe-
size a motion, pose-by-pose, for a given behavior using a fixed-
parameterization, such as that provided by a deep neural network
pose predictor; the original motion data is discarded after training.
In the direct case, the example data is considered to come from
task-specific motions and thus it can be directly used for supervised
training of a sequential model for that task. These models can main-
tain knowledge of the current state using explicit memory, as is the
case for any form of recurrent neural network (RNNs), and/or direct
access to the history of the sequence, as is the case for autoregressive
models. RNNs have been extensively explored for short and long-
term human motion prediction in computer vision [Fragkiadaki
et al. 2015; Martinez et al. 2017]. It is commonly noted that these
models can often be unstable for long-term sequence prediction,
and the production of long-term stable sequences is considered an
accomplishment, even in the absence of a control task [Habibie et al.
2017; Yan et al. 2018; Zhou et al. 2018].

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Character Controllers using Motion VAEs • 1:3

For task-specific computer animation, supervised learning of
(direct-predictive) parametric motion models have seen much re-
cent interest. Autoregressive DNN models can produce high-quality
human variable-terrain locomotion [Holden et al. 2017], quadruped
variable-terrain locomotion [Zhang et al. 2018], and environment
aware human locomotion [Starke et al. 2019]. Similarly, a mix of
data augmentation and flexible objective annotation [Lee et al. 2018]
can be used to learn an effective task-specific RNN model for hu-
man motion, as demonstrated on locomotion, basketball, and tennis.
One practical consideration of direct-prediction policies is that they
require careful tuning to handle run-time user requests. This is
achieved by adding future trajectory as an input feature in [Holden
et al. 2017; Zhang et al. 2018], and object representation in [Starke
et al. 2019].

Model-then-control, parametric models. We can also choose to first
learn a generic parametric motion model from the data, independent
of the future tasks that we may wish to use it for. Such models sup-
port sampling from a distribution of next-state predictions, and as
such the same model can be used by a motion planner or control pol-
icy to achievemultiple desired tasks. Mixture-density network RNNs
(MDN-RNNs) output a distribution as a Gaussian mixture-model,
and have been used as models for sequence-generation problems,
including handwriting generation [Graves 2013] and for OpenAI
Gym environments [Ha and Schmidhuber 2018]. These models typ-
ically make use of autoencoders and are often autoregressive or
recurrent in the construction of the latent state.

For character animation, [Min and Chai 2012] uses graph traversal
and probabilistic sampling techniques to synthesize motions from
contact-aware Gaussian mixture motion primitives. Our mixture-
of-expert model is functionally similar but requires less predefined
structure and data preprocessing. In addition, our work also focuses
on learning motion controllers in the MVAE latent space using re-
inforcement learning. Time-convolutional autoencoders [Holden
et al. 2016] have been used to first learn a latent motion manifold,
from task-relevant data. A mapping from locomotion control signals
to the latent variables can then be trained via supervised learning.
This approach does not model the forward dynamics of the hu-
man motion, and it avoids RL by directly regressing the high-level
commands given by the user to the learned motion features.

Followup work develops an autoregressive and recurrent convo-
lutional variational autoencoder model [Habibie et al. 2017]. This
is close in spirit to our work in many ways, given the similar aims
and the use of conditional autoregressive VAEs. However, there are
a number of significant differences with our work. The stochastic
latent variable is not sampled at run-time and therefore does not
govern the time evolution. The encoders and decoders have a time-
convolutional structure that is absent in our work. Control is added
by direct concatenation of an encoded control signal in the latent
space for use by the decoder, and thus autoregressive modeling
requires a control signal.

Other recent promising work builds a stochastic generative model
for human motion using an RNN with an output distribution mod-
eled via the parameters of a Gaussian-Mixture Model [Wang et al.
2019]. The RNN output is further processed by a refiner network to
remove foot skating and add robustness, which is trained using a

generative adversarial network (GAN). Control is solved as an on-
line or offline planning problem via initial derivative-free optimiza-
tion in the sample space, followed by gradient-based optimization.
Knowledge of contact information is assumed.

OurMVAEmodel is also a parametric model-then-control method.
We draw inspiration from the works described previously and inves-
tigate in depth how VAE-architectures can be used for high-quality
controllable real-time animation in a way that supports reinforce-
ment learning. In contrast with prior work, we show that a robust
stochastic generative motion model can be learned using a memory-
free first-order autoregressive model, trained with scheduled sam-
pling. It generates high-quality motion without requiring contact
annotations learned post-processing, or time-convolutional struc-
ture. We are not aware of other parametric model-then-control ap-
proaches using reinforcement learning that are capable of producing
high-quality motions without post-processing.

2.2 Physics-based motion synthesis
In a physics-based setting, the motion model already exists, as the
motion dynamics are provided by the physics, along with a well-
defined action space, often consisting of joint torques. A large body
of recent work in deep reinforcement learning targets the learning
of control policies for physically simulated movements, either as
motion imitation tasks [Bergamin et al. 2019; Park et al. 2019; Peng
et al. 2018, 2017; Won and Lee 2019] or without reference motion
data, e.g., [Brockman et al. 2016; Heess et al. 2017; Jiang et al. 2019;
Lee et al. 2019; Yu et al. 2018] and many others. These represent a
separate stream of research and are uniquely complex in their own
way. Our work focuses on kinematics motion generation.

3 MOTION VAES
We develop an autoregressive conditional variational autoencoder,
or Motion VAE (MVAE), that is trained using supervised learning
with motion capture data. The MVAE implicitly models a distribu-
tion of possible next poses. To sample from this distribution, samples
are drawn from the normally-distributed latent variables, which
are then passed through the MVAE decoder in order to realize a
next-pose estimate. Importantly, it is controllable via the choice
of sample in the latent space of the learned autoencoder. This will
serve as the action space for the planner or control policy, to be
described later. The MVAE consists of an encoder and a decoder,
and these two modules work cooperatively to model natural motion
transitions. The encoder compresses high dimensional pose transi-
tion information into a compact latent representation. The decoder
takes this latent representation of the motion, as well as a condition
pose, to generate the next pose.

Pose Representation. We first compute the root position of the
character by projecting the hip joint position onto the ground.
Similarly, the root facing direction is the ground projection of the
forward facing axis of the hip joint. The root position and facing
direction are used to compute the character’s linear and angular ve-
locities (¤𝑟𝑥 , ¤𝑟𝑦, ¤𝑟𝑎 ∈ R). The joint positions (𝑗𝑝 ∈ R3) and velocities
(𝑗𝑣 ∈ R3) are expressed in the character’s root space. Joint orien-
tations (𝑗𝑟 ∈ R6) are represented using their forward and upward
vectors, which avoids the problems of angle-based representations,

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:4 • Ling, H. et al

in the character space. We define a pose, 𝑝 , to be a tuple contain-
ing (¤𝑟𝑥 , ¤𝑟𝑦, ¤𝑟𝑎, 𝑗𝑝 , 𝑗𝑣, 𝑗𝑟). The pose representation is similar to that
defined in [Zhang et al. 2018].

Conditions and Predictions. We use the MVAE to generate a dis-
tribution of possible next poses given the previous pose. During
training, the MVAE reconstructs the next pose given the current
pose, while trying to shape the latent variable 𝑧 into the standard
normal distribution, as shown in Figure 2. The reconstruction loss is
defined as the mean squared error (MSE) between the predicted pose
and the next frame observed in the motion clip. At run-time, the
encoder is discarded and the decoder is used to predict future poses,
one at a time, in an autoregressive fashion. More precisely, given
an initial pose, e.g. randomly selected from the motion database, a
sample is drawn from the latent variable 𝑧. This sample, together
with the current pose, is used by the decoder to generate the next
pose, which is then fed back into the decoder for the following pose,
and this process repeats ad infinitum.

3.1 Encoder Network
The encoder is a three-layer feed-forward neural network that en-
codes the previous pose (𝑝𝑡−1) and current pose (𝑝𝑡) into a latent
vector 𝑧. Each internal layer has 256 hidden units followed by ELU
activations. The output layer has two heads, 𝜇 and 𝜎 , required for
the reparameterization trick used to train variational autoencoders
[Kingma and Welling 2013]. We choose the latent dimension to be
32, which approximates the degrees of freedom of typical physics-
based humanoids, such as in [Peng et al. 2018]. We find that the
training stability and reconstructed motion quality is not overly
sensitive to the encoder structure and latent dimension size.

3.2 Decoder Network
We use a mixture-of-expert (MoE) architecture for the decoder. MoE
methods commonly partition the problem space between a fixed
number of neural network experts, with a gating network used to
decide how much to weight the prediction of each expert when
computing a final output or prediction. We use a style of MoE
proposed in [Zhang et al. 2018], which we empirically observe to
help achieve slightly better pose construction and reduced visual
artifacts. The MoE decoder consists of six identically structured
expert networks and a single gating network to blend the weights
of each expert to define the decoder network to be used at the
current time step. Similar to the encoder, the gating network is
also a three-layer feed-forward neural network with 256 hidden
units followed by ELU activations. The input to the gating network
is the latent variable 𝑧 and the previous pose 𝑝𝑡−1. Each expert
network is also similar to the encoder network in structure. These
compute the current pose from the latent variable 𝑧, which encodes
the pose transition, and the previous pose. An important feature of
the expert network is that 𝑧 is used as input to each layer to help
prevent posterior collapse, a point we further discuss next. Note
that the gating network receives 𝑧 as input only for the first layer.

3.3 Practical Considerations
Avoiding Posterior Collapse. Although we use a single pose as

the condition, it is also possible to use consecutive past poses,

i.e. 𝑝𝑡−𝑘 ...𝑝𝑡−1. In general, using multiple frames as the condition
improves the reconstruction quality of the MVAE, but at the same
time reduces the diversity of the output poses. In the worse case, the
decoder may learn to ignore the encoder output, a problem known
as the posterior collapse, and cause the conditional VAE to only play-
back the original motion capture data. We find that using one or two
consecutive poses as the condition works well for our experiments,
but in general, the optimal choice may be a function of diversity and
quality of the motion database. To further prevent posterior collapse,
we emphasize the importance of the latent variable by passing it to
every layer of the expert network, as described in Section 3.2. We
find empirically that this trick reduces the likelihood of posterior
collapse happening. Other design decisions that impact the likeli-
hood of posterior collapse include the decoder network size, the
weight of the KL-divergence loss (in 𝛽-VAE), and the number of
latent dimensions.

BalancingMotion Quality and Generalization. A fundamental chal-
lenge of all kinematic animation systems is the need to balance
motion quality against generalization. In a non-parametric setting,
e.g., [Clavet 2016; Kovar et al. 2002; Lee et al. 2010], this can be ad-
justed by tuning the number of nearest-neighbors and the distance
threshold in the nearest neighbor search. In VAEs, the balance comes
from weighting the reconstruction and KL-divergence losses. When
motion quality is heavily favored, the system simply replays the orig-
inal motion capture sequences, and as a result, it will not respond
effectively to user control. Conversely, when motion generalization
is favored, the system may produce implausible poses and motions.
A generative model that can generalize to all physically-feasible mo-
tions must learn to infer the laws of Newtonian mechanics, which
is difficult given limited training data. Therefore, when data is lim-
ited, the goal is to strike a balance between motion quality and
generalization. We find that having the MVAE reconstruction and
KL-divergence losses be within one order of magnitude of each
other at convergence is a good proxy for finding an appropriate
balance between quality and generalization.

3.4 MVAE Training
Our motion capture database contains 17 minutes of walking, run-
ning, turning, dynamic stopping, and resting motions. This includes
the mirrored version of each trajectory. The data is captured at
30 Hz and contains about 30,000 frames. The motion classification,
i.e. walking and running, is not used during training and there is no
further preprocessing, i.e. foot contact and gait-phase annotations
are not required. The breakdown of the motion capture database
clips is visualized in Figure 3.

The training procedure follows that of a standard 𝛽-VAE. The ob-
jective is to minimize the reconstruction and KL-divergence losses.
We choose 𝛽 = 0.2 to minimize the chance of posterior collapse. We
note that the learning stability is not sensitive to the exact value
of 𝛽 . We find that better generalization occurs when z-score nor-
malization is applied to the training data. Intuitively, standardizing
the input data reduces the bias caused by the motion range differ-
ences of each joint. This is analogous to the pose similarity metrics
used in [Lee et al. 2010], which uses independent scaling factors for
each joint in proportion to the bone length. We use Adam optimizer

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Character Controllers using Motion VAEs • 1:5

AutoregressFeedback Render

Fig. 2. The conditional VAE has two parts. The encoder takes past (𝑝𝑡−1) and current (𝑝𝑡) pose as input and outputs both 𝜇 and 𝜎 , which is then used to
sample a latent variable 𝑧. The decoder uses 𝑝𝑡−1 and 𝑧 to reconstruct 𝑝𝑡 . For the decoder, we use a MANN-style mixture-of-expert neural network. When
using scheduled sampling during training or at run-time, the decoder output, 𝑝𝑡 , is fed back as input for generating the next prediction.

0 5 10 15 20 25 30
Speed (feet / second)

0

100

200

300

Fr
am

e
Co

un
t

Others (3914)
Walk (4549)
Jog (12350)
Sprint (9316)

Fig. 3. A breakdown of different motions used for training. The number of
frames in each category is labeled in brackets. The Others category contains
mostly non-locomotion motion clips, such as in-place turning and resting.

[Kingma and Ba 2014] to update the network weights. The learning
rate is initialized at 10−4 and is linearly decayed to zero over 180
epochs. With a mini-batch size of 64, the entire training procedure
takes roughly two hours on an Nvidia GeForce GTX 1060 and an
Intel i7-5960X CPU.

Stable Sequence Prediction. The MVAE trained with standard su-
pervised learning suffers from unstable predictions when making
autoregressive predictions at run-time. This is due to growing recon-
struction errors that can rapidly cause the MVAE to enter a new and
unrecoverable region of the state space. The consequence is clear
when visualizing the predicted poses, which no longer resemble a
character body. To alleviate this, we use scheduled sampling [Bengio
et al. 2015] to progressively introduce the run-time distribution
during training. A sample probability 𝑝 is defined for each training
epoch. After a pose prediction is made, it is used as input for the
next time step with probability 1− 𝑝 , instead of using the pose from
the ground truth training data. The entire training process is divided
into three modes: supervised learning (𝑝 = 1), scheduled sampling
(decaying 𝑝), and autoregressive prediction (𝑝 = 0). The number of

Fig. 4. Comparison of MVAE reconstruction stability with and without
scheduled sampling. The time axis flows from left to right. Top: With sched-
uled sampling, the MVAE is able to reconstruct the character body even
when the initial joint locations are all clustered into a single point. Bottom:
Pose reconstruction of MVAE trained without scheduled sampling with
exactly the same settings for the same number of epochs. Even though the
character is initialized to a motion capture frame, reconstruction error still
quickly accumulates causing the joints to fly apart.

epochs for each mode is 20, 20, and 140 respectively. For the sched-
uled sampling mode, the sampling probability decays to zero in a
linear fashion with each learning iteration. Figure 4 illustrates the
ability of the MVAE to recover after being trained in this fashion.

Training MVAE with Mini-batches. In order to implement sched-
uled sampling, we need to define a prediction length 𝐿 for each
roll-out, even though we do not use a recurrent neural network. In
each roll-out, we randomly sample a start frame from the motion
capture database and perform pose prediction for 𝐿 steps. Ideally, 𝐿
should be large enough to allow prediction errors to accumulate, so
as to simulate the actual run-time distribution. We find that training
with 𝐿 = 8 (1/4 second) is enough to prevent covariate shift for our
motions. Another technical detail for doing mini-batched supervised
learning is that we need to handle the end-of-clip problem. Since
we know in advance that each frame sample needs 𝐿 = 8 subse-
quent frames, we can choose to only sample frames that meet this
condition. A common practice in sequential prediction supervised
learning tasks is to cope with variable length inputs by padding the

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:6 • Ling, H. et al

training sequences to match the length of the longest sequence, e.g.,
for sentence generation in natural language processing, where the
end of input sentences are padded with end-of-sentence tokens. In
our case, padding would be inappropriate because, unlike sentences,
the motion clips we used do not have a definitive end pose. Since
any frame can be treated as a start and end pose of a sequence,
the motion clips can be freely divided into equal-length sequences.
However, this assumption may not hold for some motions where the
start and end poses need to be fixed, such as gymnastic movements.

4 MOTION SYNTHESIS
With the learned MVAE motion model in place, we turn to the
problem of control. As noted previously, this can be achieved via
the space of possible actions, as defined by samples from the latent
encoded state 𝑧. In this section, we present two simple control
strategies, random sampling and sampling-based control. In the
following section, we then present the use of reinforcement learning
methods on top of the MVAE model.

4.1 Random Walk
Given an initial character state, we can simulate random plausible
movements by using random samples from the MVAE latent dis-
tribution. Even with our single frame condition, the synthesized
reconstructed motion will typically resemble that of the original
motion clip from which the starting frame is chosen. E.g., when
the initial character state comes from the middle of a sprint cycle,
the MVAE will continue to reconstruct the sprint cycle. Further-
more, when the initial state is a stationary pose – a common pose
at the start of most motion clips – the character can transition into
walking, running, jumping, and resting motions. Figure 5 shows the
effect of the conditioning on the reconstructed motion. Examples
are also shown in the supplementary video.
One challenge in kinematic animation is to know whether the

underlying motion database is capable of a given desired motion. For
instance, it may not obvious when a data-driven animation system
can transition between twomotion clips. Oftenwemight believe that
two motion clips have close enough transition points upon visual
inspection, but the actual distance in high-dimensional pose space
may not match our intuition. In the random walk condition, it can
be plainly observed when a particular motion is isolated in the pose
space and therefore has no transition to other motions. When the
random walk is unable to transition despite drawing many samples,
it is an indication that additional motion capture data, especially
the transition motions, may need to be supplied. An advantage of
using an MVAE model is that it is small enough, and therefore fast
enough, for quick design iterations. In our experiment, we used this
method to find that our original motion capture database had an
insufficient number of character turning examples.

4.2 Sampling-based Control
We next develop a simple sampling-based controller. This performs
multiple Monte Carlo roll-outs (𝑁) for a fixed horizon (𝐻). The first
action of the best trajectory, among all sampled roll-outs, is selected
and applied to the character for the current time step. This procedure
is then repeated until the task is accomplished or terminated.We find

Fig. 5. Random walks visualized for six different initial conditions. Each of
eight characters is initialized to the same initial condition, but unique latent
variable samples are drawn at each time step for 300 steps. The resulting
root trajectories are shown, with the original motion capture trajectory
shown in blue for comparison.

this simple sampling-based control method works modestly well
for simple locomotion tasks, such as Target (§ 6.1). Using 𝑁 = 200
and 𝐻 = 4, the character can generally navigate towards and circle
around the target, as well as adapting to sudden changes in the
target location. This is shown in the supplementary video.

When compared to policies learned with RL (§ 5), the policy has
difficulty directing the character to reach within two feet of the
target. For more difficult tasks, such as Joystick Control (§ 6.2) and
Path Follower (§ 6.3), the simple sampling-based policy is unable to
achieve the desired goals. In such scenarios, a more sophisticated
approach, such as [Rajamäki and Hämäläinen 2017], would likely be
able to find better solutions. In general, fine-tuned sampling-based
methods can provide faster design iteration cycles for artists at the
cost of more run-time computation.

5 LEARNING CONTROL POLICIES
A control policy can be used to guide the character to perform
various tasks using the latent samples 𝑧 as an action space. This is
illustrated in Figure 6. Unlike direct-prediction policies, e.g., [Holden
et al. 2017; Lee et al. 2018], a control policy can be learned in support
of arbitrarily-defined rewards that can be used to shape a behavior.
We demonstrate the flexibility of our system in handling a variety
of task representations (§ 6), e.g. target location, desired speed and
direction, and working with local-vision sensing capability.

Reinforcement Learning. We use deep reinforcement learning
(DRL) to learn various locomotion skills. In RL, at each time step 𝑡 ,
the agent reacts to an environment state 𝑠𝑡 by performing an action
𝑎𝑡 . Based on the action performed, the agent receives a reward sig-
nal 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡) as feedback. In DRL, the agent computes 𝑎𝑡 using
a neural network policy 𝜋𝜃 (𝑎 |𝑠), where 𝜋𝜃 (𝑎 |·) is the probability
density of 𝑎 under the current policy. The goal of DRL is to find the
network parameters 𝜃 which maximize the following:

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Character Controllers using Motion VAEs • 1:7

Autoregression

Integrate Condition

Fig. 6. Using DRL, we can learn a policy to compute the latent variable 𝑧 at
every step to guide the character. The encoder is discarded since we do not
have the next pose from the motion capture sequence. Initially, a random
pose 𝑝0 is selected from the motion capture database. In each time step,
the environment uses 𝑝𝑡 generated by the decoder to integrate the root
positions and computes relevant task information𝑔𝑡 . The policy 𝜋 computes
the action from 𝑝𝑡 and 𝑔𝑡 , which is fed as 𝑧𝑡 back into the decoder.

𝐽𝑅𝐿 (𝜃) = 𝐸

[∞∑
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡)
]
.

Here, 𝛾 ∈ [0, 1) is the discount factor so that the sum converges.
We solve this optimization problem using the proximal policy opti-
mization (PPO) algorithm [Schulman et al. 2017]. We use a publicly
available implementation of PPO [Kostrikov 2018].

5.1 Controller Network
The control policy is a two hidden-layer neural network with 256
hidden units followed by ReLU activations. The output layer is
normalized with Tanh activation and then scaled to be between -4
and +4. Since the policy outputs the latent variable, the scaling factor
should be chosen according to the latent distribution. In the case of a
CVAE, the latent distribution is assumed to be a normal distribution
with zero mean and unit variance. With a scaling factor of 4, the
majority of the probability mass of a standard normal distribution
is covered. The value function network is identical to the policy
network, except for the output layer width and normalization.

The convergence of DRL algorithms can be sensitive to hyperpa-
rameter settings in general, but we do not find that to be the case
in our experiments. We use the same hyperparameters for every
task. The learning rate decays exponentially following the equation:
max(1, 3 · 0.99iteration) × 10−5. We find that decaying the learning
rate exponentially helps to improve the training stability of the
policy network. For collecting training data, we run 100 parallel sim-
ulations until the episode terminates upon reaching the maximum
time step defined for each task, typically 1000. The policy and value
function networks are updated in mini-batches of 1000 samples.
Since all computations are done on the GPU, the data collection
and training processes are fast despite the large batch size. All tasks
described in the following sections can be fully trained within one
to six hours on our desktop machine.

5.2 Effort Penalty in Kinematics Animation
In physics-based animation control, an energy or effort penalty
is often used to restrict the solution space such that the learned
policy produces natural motions. Mechanical energy can be easily
calculated from torque, since torque is already used as part of the
physics simulation. In contrast, it can be difficult to define an energy
term in kinematic animation, so typically root velocity is used as
a proxy. In our motion data, we find that the root velocity metrics
can often be inconsistent with our intuition of physical effort when
visually examining the motion. To accurately quantify effort, we
should consider the motion of the joints as well, and we therefore
define energy as follows:

𝐸 = (¤𝑟𝑥)2 + (¤𝑟𝑦)2 + (¤𝑟𝑎)2 + 1
𝐽

𝐽∑
𝑗

 𝑗𝑣2 .
A more accurate energy metric should take masses and inertia

of each joint into consideration. However, we find that scaling the
individual contributions of the joint energy terms is approximately
equivalent. When we include the energy measure as a penalty in RL
optimization, we see that the policy is able to find visibly lower effort
solutions. In comparison to the common approach of using a target
root velocity to regulate character energy expenditure, our approach
of using RL to optimize for energy is more natural. Also, since the
target velocity does not need to be supplied by the user at run-time,
our approach is more flexible for animating non-directly controllable
characters or large crowds. Please refer to the supplementary video
for the impact of energy-based regularization.

6 LOCOMOTION CONTROLLERS
We now describe multiple locomotion tasks that can be achieved
using learned RL-based control policies on top of the MVAE model.
The locomotion tasks are: Target (§ 6.1), Joystick Control (§ 6.2),
Path Follower (§ 6.3), and Maze Runner (§ 6.4).

6.1 Target
The goal for this task is to navigate towards a target that is randomly
placedwithin the bounds of a predefined arena. The character begins
in the center of the arena and knows the precise location of the
target at any given moment in its root space. Upon reaching the
target, a new target location is randomly selected and the cycle
starts over again. We define the character as having reached the
target if its pelvis is within two feet of the target. Furthermore, we
define the size of the arena to be 120×80 feet to simulate the fact that
soccer pitches are rectangular. The exact values of these parameters
do not impact learning and solving of the task.
In the context of Figure 6, the environment needs to compute

the goal 𝑔𝑡 and the reward 𝑟𝑡 in each time step. The environment
keeps track of the root position and root facing of the character,
i.e. 𝑟𝑥 , 𝑟𝑦 , and 𝑟𝑎 , in global space. In each time step, the environment
first computes the new global state of the character by integrating
¤𝑟𝑥 , ¤𝑟𝑦 , and ¤𝑟𝑎 in the current pose. The coordinate of the target in
character root space is provided to the policy. The reward, 𝑟 (𝑠, 𝑎),
is a combination of progress made towards the target and a bonus

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:8 • Ling, H. et al

72 72 72 72 72

4 4 4 4 4
38 38 38 38 383

8
13

3
8
13

3
8
13

3
8
13

3
8
13

60

-60
0

-40
0
40

60

-60
0

-40
0
40

60

-60
0

-40
0
40

60

-60
0

-40
0
40

60

-60
0

-40
0
40

Fig. 7. Visualizing the value function for the Target task. Top: Using a
surface plot, we can show the value function computed if the target is
placed at coordinates (𝑥, 𝑦) , corresponding to the left and right axis. Each
surface plot shows a different character initialization – From left to right,
we have forward sprint, 180° turn, right banking turn, left turn, and resting.
Bottom: Value functions for additional timed-variant experiment of the
Target task in which the character has limited time to reach the targets.
The left axis corresponds to the target distance in feet and right axis to the
remaining time in seconds.

reward for reaching the target. The progress term is computed as
the change in distance to the target in each step after applying the
integration procedure. Upon reaching the target, the policy receives
an one-time bonus before a new target is set.

Visualizing the Value Function. In actor-critic based RL algorithms,
a value function is learned alongside the policy. Although at test
time we only need to query the policy to get the action, the value
function contains valuable information regarding the limitations of
the policy. Figure 7 shows the value function for target locations
sampled across the arena and different character initial states. The
character is always located at the origin and facing along the x-axis.
We see that the value function peaks at the origin as expected; if the
target is also located at the origin, then the character does not need
to move at all to receive the target bonus. Moreover, we see that
the value function is lower in the vicinity of the character and rises
gradually as the target gets further. This means that it is easier and
quicker for the policy to navigate the character to targets that are at
a certain distance. Considering the data distribution of the original
motion capture sequences which mostly contain running motions,
this observation is reasonable. Lastly, we also observe reasonable
value function shapes when the character is initialized to a left or
right turn.

We further experimented with a timed-variant of the Target task
in which the character has limited time to reach the targets. Each of
the value function plots in Figure 7 contains an inverted parabolic
cylinder-like surface, e.g. the expected return is highest at middle
distances. Again, this is the combined effect of the progress reward
and target bonus. For a fixed time slice, the expected return is low
when the target is close because the total receivable progress reward,
i.e. the potential, is small. Conversely, when the target is beyond
reach given the remaining time, the contribution from the target
bonus vanishes from the value function.

TestingMVAEGeneralization. As discussed in Section 3.3, a trained
MVAE model may not always generalize enough to allow the char-
acter movement to be controlled. While this is clear when posterior

collapse occurs, it can be less obvious if the MVAE still exhibits
some generalization. We devise a straight line running task as a
sanity check to determine if the model has enough generalization
for learning a controller. This task is a special case of the Target
task where the character is initialized to be at the start of a run-
ning sequence and the target is placed directly in front of it. By
varying the distance between the character and the target, we can
test whether the MVAE has sufficient controllability. Please see the
supplementary video for more detail.

6.2 Joystick Control
Joystick control is another standard locomotion task in animation.
The task requires the character to change its heading direction to
match the direction of the joystick and adjust its forward speed
proportional to the magnitude of the joystick tilt. Note that this is,
in essence, the default task in previous work for bipeds [Holden
et al. 2017] and quadruped characters [Zhang et al. 2018]. In those
works, a future trajectory can be generated from the joystick and
character state at test time. The ability to use RL means that this
desired task can be defined more directly.
We simulate joystick control by changing the desired direction

and speed every 120 and 240 frames respectively. The desired direc-
tion (𝑟𝑎

𝑑
) is uniformly sampled between 0 and 2𝜋 , regardless of the

current facing direction. For the desired speed (¤𝑟𝑑), we uniformly
select a value between 0 and 24 feet per second, which is the typ-
ical velocity range for our character in the example motions. The
character receives the following reward in every time step,

𝑟 𝑗𝑜𝑦𝑠𝑡𝑖𝑐𝑘 = 𝑒cos(𝑟
𝑎−𝑟𝑎

𝑑
)−1 × 𝑒−| ¤𝑟−¤𝑟𝑑 |,

where ¤𝑟 is the current speed of the character. The cosine operator
in the first reward term addresses the discontinuity at 0 and 2𝜋
when calculating difference between two angles, while the two
exponentials are used to normalize the reward to be between 0 and
1. Multiplying the two reward terms encourages the policy to satisfy
both target direction and speed simultaneously [Lee et al. 2019]. At
run-time, the user can control the desired heading direction and
speed interactively.

6.3 Path Follower
In the Path Follower task, the character is required to follow a
predefined 2D path as closely as possible. We implement this task as
an extension of the Target task, with the character seeing multiple
targets (𝑁 = 4), each spaced 15 time steps apart, along the predefined
path. We feed the policy 𝑁 target locations, rather than the entire
path, so that it does not memorize the entire trajectory. This way
the policy can have a chance to adapt to path variations at run-time
without further training.

We train the policy on a parametric figure 8, given by𝑥 = 𝐴 sin(𝑏𝑡)
and 𝑦 = 𝐴 sin(𝑏𝑡) cos(𝑏𝑡) where 𝑡 ∈ [0, 2𝜋], 𝐴 = 50, and 𝑏 = 2. The
time step is discretized into 1200 equal steps. We choose this partic-
ular curve because it contains left and right turns, as well as straight
line segments that require the character to adjust its speed in and
out of the turns. It is important to note that the targets advance with
time, regardless of the current location of the character. Therefore,
the policy must learn to speed up and slow down to match the

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Character Controllers using Motion VAEs • 1:9

Fig. 8. Character performing the Path Follower task. Left: Top view of the
character root trajectory (red) overlaid on top of a figure 8 path (blue).
Overall the character is able to match the curve well and remain on target.
Middle: The policy is able to adapt to new paths with different curvatures
and speed requirements. Since the goal for the character is to chase a
moving target, the policy exhibits corner-cutting behaviour when the target
is moving faster beyond the capability of the character. Right: The policy
is unable to find an 180-degree turn, so a small radius looping motion is
improvised to keep the character close to the moving target.

progression of the curve, as well as learn to recover if it has devi-
ated from the path. We find randomizing the initial position of the
character to be important, in a way that is analogous to reference
state initialization [Peng et al. 2018]. In addition, we set the initial
orientation of the character to match the direction of the curve. In
the absence of this, the policy may never learn the later segments
of the path. Figure 8 shows that the character can generally stick to
the path except for a few challenging scenarios.

6.4 Maze Runner
All previous locomotion tasks have explicit and structured goals in
the form of target location and desired direction and velocity. In
contrast, the Maze Runner task allows the character to freely explore
the space within the confines of a predefined maze. Different from
traditional RL maze environments, such as AntMaze [Frans et al.
2017] and others [Ecoffet et al. 2019], our maze is fully enclosed
without an entrance or exit. The character begins at a random lo-
cation in the maze and is rewarded for covering as much area as
possible.

The arena is a square of 160 × 160 feet and the total allotted time
is 1500 steps. For simplicity, we define an exploration reward by
dividing the maze into 32×32 equal sectors. Each time the character
enters a new sector, it receives a small bonus. The exploration reward
can be viewed as a bias for encouraging the policy to be in constant
motion, without explicitly specifying how the character should
move. The task is terminated immediately when the character hits
any of the walls, or when the allotted time is exhausted. Rather than
receiving explicit target locations, the character uses a simple vision
system to navigate in the environment. The vision system involves
casting 16 light rays centred around the current facing direction.
Each light ray is encoded by a single floating-point number, which
represents the distance to the wall, up to a maximum distance of 50
feet. Note that the character is unaware of its current position in
the global space, therefore it must rely on its simple vision system
to avoid obstacles. Figure 9 shows that, with the exploration reward,
the policy learns a non-stationary solution and is capable of avoiding
walls using the vision system.

We find hierarchical RL to be beneficial for solving this task. With-
out it, the policy often fails to avoid colliding with the walls even at
convergence. To this end, we train a high-level controller (HLC) on
top of a pre-trained low-level controller (LLC) for the Target task,

Fig. 9. The Maze Runner environment requires the character to explore
within the maze as much as possible. Left: The vision system includes 16
rays; each encodes a distance to the nearest wall, up to a maximum distance
of 50 feet. Right: The character can be initialized anywhere within the
maze. The red path traces the progress made by the character thus far in
the current episode.

similar to [Peng et al. 2017]. The HLC outputs a target location at
each time step, which is consumed by the LLC to compute an action.
Since both HLC and LLC operate at the same control frequency, this
suggests that the hierarchical approach may be unnecessary given
better fine-tuning of a single policy network.

7 DISCUSSION & EVALUATION
This section presents observations regarding the capabilities of the
learned MVAE model when combined with reinforcement learning
to produce better quality animations.

Why not use an RNN? Recurrent neural networks (RNN), such
as LSTMs and GRUs, are a standard learning-based approach to
working with sequential data. While RNNs have seen success in
areas such as NLP, audio, and video, our work demonstrates that
a first-order autoregressive model can be sufficient for working
with sequential pose data. An advantage of RNNs is that they can
encode sequence information from the past as hidden states and
use the information in subsequent predictions. However, this is
unnecessary in fully observable dynamic simulations. The motion
of rigid bodies follows the Markov assumption where the next state
depends only on the current state and action. Although the Markov
condition may not hold for kinematic animation, the pose vector
may already contain enough information such that the benefit of
having a hidden state is minimal. Many RNN-basedmotion synthesis
methods produce deterministic single-pose estimates, and not the
distributions needed for modeling the space of available motion
transitions.

Patterns in the Gating Network. Figure 10 shows that the blending
coefficients exhibit clear sinusoidal patterns and that each expert
is utilized approximately equally. In the random walk scenario, we
visualize the blending coefficients when the character is performing
different actions, i.e. sprinting, 180° turn, right banking turn, left turn,
and resting. In the sprinting motion, we can see a clear transition
from the preparation phase into a run cycle, even just by looking
at the expert utility plot. For the resting motion, the non-periodic

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:10 • Ling, H. et al

Fig. 10. Top: Visualization of blending coefficients under random walk
starting from various initial poses. The initial poses, from left to right, as the
same as the ones in Figure 7. Bottom: Visualizing expert utility under policy
control in Target task. From left to right, each figure highlights the blending
coefficient of the corresponding expert. Please see the supplementary video
for further detail.

nature of the curves is consistent with the acyclic nature of the
motion.
Another pattern emerges when we visualize expert activation

under policy control when solving the Target task. We plot the
blending coefficients on a larger time scale in the second set of
figures in Figure 10. Each expert activation curve resembles a high-
frequency sinusoidal signal enveloped by a low-frequency signal.
We find the peaks and troughs of the high-frequency oscillation
to be consistent with the foot strike timing. Furthermore, the low-
frequency envelope corresponds to the overall character motion.
In particular, the troughs on the orange curve (i.e. expert 2) and
the peaks on the green curve are consistent with the character
performing a turn after reaching the target. The emergence of these
structures means that the MVAE not only learned to reconstruct
the character pose, but was also able to infer locomotion features
such as foot contact. This observation opens a promising approach
to learn character motion. If during training of the MVAE and the
policy we can manipulate the underlying signal, such as making
the transitions sharper or the period longer, then we may be able to
achieve more efficient learning and higher quality motions.

7.1 System Evaluation
We evaluate quantitatively the motion quality and responsiveness
of our system. Overall, MVAEs can generate high-quality motions
and responsive controls that are comparable to existing kinematic
motion synthesis methods.

Foot Skating Artifacts. We use the same measurement as [Zhang
et al. 2018] to estimate the amount of foot skating during motion,
i.e. 𝑠 = 𝑑 (2 − 2ℎ/𝐻), where 𝑑 is the foot displacement and ℎ is the
foot height of two consecutive poses. To account for differences in
motion capture data, we use a height threshold of𝐻 = 3.3cm, which
produces an average foot skate of 0.10 centimeters per frame in the
ground truth data, similar to previous work. Table 1 shows the aver-
age foot skate for different MVAE models. For ease of comparison,
the values are presented in centimeters per frame.

Joystick Responsiveness. We also measure the controller respon-
siveness under the joystick control task, where a new target di-
rection is randomly sampled every five seconds. Since the desired

Table 1. The average foot skating in the motion capture data, and for MVAEs
trained with different KL (𝛽) and number of experts (𝑁).

cm/frame Random Target Joystick Path Maze

Motion Capture 0.10

𝛽 = 0.2, 𝑁 = 6 0.067 0.27 0.28 0.30 0.24
𝛽 = 0.4, 𝑁 = 6 0.082 0.15 0.33 0.28 0.21
𝛽 = 0.2, 𝑁 = 4 0.085 0.24 0.39 0.44 0.38

Table 2. The average controller responsiveness when performing the joystick
control task. The last two columns show the response times for target
directions in the left and right half-plane.

seconds Overall Time (0, 𝜋] (𝜋, 2𝜋]
𝛽 = 0.2, 𝑁 = 6 1.62 1.70 1.56
𝛽 = 0.4, 𝑁 = 6 1.71 1.66 1.77
𝛽 = 0.2, 𝑁 = 4 1.38 1.63 1.11

heading direction changes instantaneously, we count the number
of frames the character takes to reach within five degrees of the
target direction. Table 2 summarizes the result. The breakdown of
the response time by target direction demonstrates the effect of
handedness, which we further discuss in Section 7.5.

7.2 Ablation on Decoder Architecture
We use the MoE decoder model because it produces higher motion
quality with less visible artifacts. While a non-mixture model can
also produce quality motion, we find it to be less consistent. In
extreme cases, the predicted pose can converge to the mean pose of
possible next frames, causing the character to be stuck in the same
pose while gliding. Furthermore, we experimented with the effect
of encoder latent dimension size and number of decoder experts for
the MoE architecture. In both cases, we find that the motion quality
is not particularly sensitive to the choices, however, the divergent
behaviour occurs later with growing latent size and number of
experts. The ablation results are shown in the supplementary video.

7.3 Using a Noisy Policy to Generate Motion Variations
After RL training, we can create plausible motion variations by sam-
pling around the output of the trained policy. Specifically, motion
variations can be achieved by adding a small amount of noise to the
actions at run-time. As the impact of the noise accumulates over
time, the trajectories of the simulated characters become visibly
distinguishable from one another. To demonstrate the effect, we
simultaneously simulate multiple characters in the Path Follower
task. We set the characters to have the same initial root position and
pose. Since the target progression is the same for all characters, the
variations are the result of the noisy decisions at run-time. Figure 11
shows the variation between individual characters, while there are
all still “on task”.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Character Controllers using Motion VAEs • 1:11

Fig. 11. It is possible to generate a variety of motions while still satisfying
the overall objective. We simulate four characters with the same initial
condition and with the same path following control policy, but we include
the selection of random actions with a probability of 0.2 at each time step.
The controllers are exposed to noise during the exploration stage of RL, and
so can recover even if the path deviates at run-time.

7.4 Acyclic Motions
We can integrate acyclic motions into MVAEs by providing the
motion type as an additional condition to the encoder and decoder.
We categorize clips in the motion capture database by their motion
types: locomotion, kick, and header. The category is represented as
an one-hot vector and is concatenated with the pose representation
to form the new VAE condition. Although each kick and header clip
contains a segment of locomotion leading up to the final action, we
find that the MVAE can handle the labelling ambiguity.
Since our motion database contains relatively small amounts of

kick and header data, it can be difficult for the character to discover
these motions during random walk and RL training. To reduce the
sampling complexity, we can explicitly blend the target motion
type to trigger a transition. The blending procedure needs to be
fine-tuned to avoid reduced motion quality caused by the condition
being out of the training distribution. This issue is analogous to the
future trajectory generation procedure in [Holden et al. 2017; Zhang
et al. 2018]. In practice, we find that forcing the target motion type
for 10 frames helps with RL training and does not cause significant
motion artifacts. In the future, we wish to determine better ways to
assert finer control over specific motions, through additional data
or data reweighting.

7.5 Handedness Bias
In our experiments, we observe that the learned task controllers
often exhibit a slight preference for right-handedness, despite the
motion capture database being left-right balanced. We believe that
the handedness bias emerges from exploration and exploitation dur-
ing RL training. A policy in training may first discover, by chance,
that the right-hand turn motion achieves a higher than average
reward in some situations. The probability of sampling this motion
is subsequently increased due to the higher return, which leads to

lower probability of performing a left-hand turn. In physics-based
animations, a typical solution is to enforce symmetry during training
of the controllers, using one of several possible methods [Abdolhos-
seini et al. 2019]. However, the symmetry enforcement methods all
require the action mirror function to be defined, which is undefined
for our uninterpretable latent action space.

7.6 Limitations
Ourmethod has a number of limitations. The distribution of example
data plays a role in determining the likelihoods of the stochastic
motion model. For example, if right-hand turns greatly outnumber
left-hand turns, then this will be reflected in randomwalks using the
model. Similarly, the final motion connectivity is dependent on the
approximate connectivity available in the input data. For example,
our motion dataset contains a moderate amount of walking data
(see Fig. 3), but we found it difficult to generate control policies that
perform the tasks at a walking pace. We attribute this to a lack of
walking data or to lacking connectivity for that data.

While the MVAE and control policy are conceptually separated
in our method, in practice the learned control policy will not be
fully agnostic to the motion data distribution. This is because of the
fundamental nature of the stochastic policies that are at the heart of
on-policy policy-gradient algorithms. A policy with a mean action
that walks straight will also produce samples that perform other
nearby actions in the action space, due to the (commonly Gaussian)
distribution of the stochastic policy actions. In a world that is more
heavily populated by right turns than left turns, nearby actions are
then more likely to turn right than left.
In general, it can be difficult to attribute a problem to a given

portion of our learning pipeline. Problems may arise because of
any of: (i) missing data or heavily biased data; (ii) MVAE design,
including hyperparameters; and (iii) control policy design, including
reward functions, hyperparameters, and how the character senses its
environment. For example, we found it difficult to generate control
policies that can navigate in more tightly-constrained environments.

8 CONCLUSIONS
In this paper, we have presented a VAE-based approach for motion
synthesis. We show that VAEs are a viable learned stochastic model
for motion dynamics, and can produce robust, high-quality, long-
term motion predictions even for a simple memoryless first-order
autoregressive model. Reinforcement learning can then be used to
learn control policies on top of the learnedmotion VAE, using the sto-
chastic latent variable as the action space. Unlike direct-prediction
approaches, which directly learn final task-relevant motion predic-
tions from example data, the learning of the task is separated from
the learning of the dynamics, which allows multiple control policies
to be learned using the same motion model.
For future work, we wish to explore the best ways for artists

to be able to exert control over the MVAE and the learned control
policies. Tools for identifying gaps and adding connectivity to the
underlying example data will improve the design efficiency. We
also wish to test the model on much larger motion datasets, which
should allow for a variety of non-locomotion tasks. Including more
environment context in the MVAE is an important direction, given

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:12 • Ling, H. et al

that many tasks involve controlled interactionwith the world. It may
be possible to extend MVAEs to interesting multi-agent settings.

ACKNOWLEDGMENTS
We thank Sebastian Starke for the stimulating discussions and his
help on high-quality rendering, Elly Akhoundi for sharing her in-
sights on VAEs, Matteo Loddo for providing the character assets,
and Paul McComas for his support on this project. H.L. thanks Wil
Kao for his research tips, which are often as motivating as seeing
learning curves finally converging. This work was supported by
Mitacs through the Mitacs Accelerate program.

REFERENCES
Farzad Abdolhosseini, Hung Yu Ling, Zhaoming Xie, Xue Bin Peng, and Michiel van de

Panne. 2019. On Learning Symmetric Locomotion. In Motion, Interaction and Games
(MIG ’19). Association for ComputingMachinery, New York, NY, USA, Article Article
19, 10 pages. https://doi.org/10.1145/3359566.3360070

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled
sampling for sequence prediction with recurrent neural networks. In Advances in
Neural Information Processing Systems. 1171–1179.

Kevin Bergamin, SimonClavet, Daniel Holden, and James Richard Forbes. 2019. DReCon:
data-driven responsive control of physics-based characters. ACM Transactions on
Graphics (TOG) 38, 6 (2019), 1–11.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint arXiv:1606.01540
(2016).

Simon Clavet. 2016. Motion matching and the road to next-gen animation. In Proc. of
GDC.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
2019. Go-explore: a new approach for hard-exploration problems. arXiv preprint
arXiv:1901.10995 (2019).

Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015. Recur-
rent network models for human dynamics. In Proceedings of the IEEE International
Conference on Computer Vision. 4346–4354.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. 2017. Meta
learning shared hierarchies. arXiv preprint arXiv:1710.09767 (2017).

Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850 (2013).

David Ha and Jürgen Schmidhuber. 2018. World models. arXiv preprint arXiv:1803.10122
(2018).

Ikhsanul Habibie, Daniel Holden, Jonathan Schwarz, Joe Yearsley, and Taku Komura.
2017. A Recurrent Variational Autoencoder for HumanMotion Synthesis.. In BMVC.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, Martin Riedmiller, et al. 2017. Emergence of
locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017).

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned Neural Networks
for Character Control. ACM Trans. Graph. 36, 4, Article 42 (July 2017), 13 pages.
https://doi.org/10.1145/3072959.3073663

Daniel Holden, Jun Saito, and Taku Komura. 2016. A deep learning framework for
character motion synthesis and editing. ACM Transactions on Graphics (TOG) 35, 4
(2016), 1–11.

Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C Karen Liu. 2019. Synthesis of
Biologically Realistic Human Motion Using Joint Torque Actuation. arXiv preprint
arXiv:1904.13041 (2019).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

Ilya Kostrikov. 2018. PyTorch Implementations of Reinforcement Learning Algorithms.
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion Graphs. ACM Trans.
Graph. 21, 3 (July 2002), 473–482. https://doi.org/10.1145/566654.566605

Jehee Lee and Kang Hoon Lee. 2006. Precomputing avatar behavior from human motion
data. Graphical Models 68, 2 (2006), 158–174.

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive character animation by
learning multi-objective control. In SIGGRAPH Asia 2018 Technical Papers. ACM,
180.

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable Muscle-
Actuated Human Simulation and Control. ACM Trans. Graph. 38, 4, Article Article
73 (July 2019), 13 pages. https://doi.org/10.1145/3306346.3322972

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.
2010. Motion Fields for Interactive Character Locomotion. ACM Trans. Graph. 29, 6,
Article 138 (Dec. 2010), 8 pages. https://doi.org/10.1145/1882261.1866160

Sergey Levine, Jack M Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun. 2012.
Continuous character control with low-dimensional embeddings. ACM Transactions
on Graphics (TOG) 31, 4 (2012), 28.

Wan-Yen Lo and Matthias Zwicker. 2008. Real-time planning for parameterized human
motion. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. Eurographics Association, 29–38.

Julieta Martinez, Michael J Black, and Javier Romero. 2017. On humanmotion prediction
using recurrent neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2891–2900.

Jianyuan Min and Jinxiang Chai. 2012. Motion graphs++: a compact generative model
for semantic motion analysis and synthesis. ACM Transactions on Graphics (TOG)
31, 6 (2012), 153.

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learn-
ing predict-and-simulate policies from unorganized human motion data. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–11.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel van de Panne. 2018. DeepMimic:
Example-guided Deep Reinforcement Learning of Physics-based Character Skills.
ACM Trans. Graph. 37, 4, Article 143 (July 2018), 14 pages. https://doi.org/10.1145/
3197517.3201311

Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco:
Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Trans. Graph. 36, 4, Article Article 41 (July 2017), 13 pages. https://doi.org/10.1145/
3072959.3073602

Joose Rajamäki and Perttu Hämäläinen. 2017. Augmenting sampling based controllers
with machine learning. In Proceedings of the ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation. ACM, 11.

Alla Safonova, Jessica K Hodgins, and Nancy S Pollard. 2004. Synthesizing physi-
cally realistic human motion in low-dimensional, behavior-specific spaces. In ACM
Transactions on Graphics (ToG), Vol. 23. ACM, 514–521.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural State Machine
for Character-Scene Interactions. ACM Trans. Graph. 38, 6, Article Article 209 (Nov.
2019), 14 pages. https://doi.org/10.1145/3355089.3356505

Adrien Treuille, Yongjoon Lee, and Zoran Popović. 2007. Near-optimal character
animation with continuous control. In ACM Transactions on Graphics (tog), Vol. 26.
ACM, 7.

Herwin Van Welbergen, Ben JH Van Basten, Arjan Egges, Zs M Ruttkay, and Mark H
Overmars. 2010. Real time animation of virtual humans: a trade-off between nat-
uralness and control. In Computer Graphics Forum, Vol. 29. Wiley Online Library,
2530–2554.

Z. Wang, J. Chai, and S. Xia. 2019. Combining Recurrent Neural Networks and Ad-
versarial Training for Human Motion Synthesis and Control. IEEE Transactions on
Visualization and Computer Graphics (2019), 1–1. https://doi.org/10.1109/TVCG.
2019.2938520

Jungdam Won and Jehee Lee. 2019. Learning body shape variation in physics-based
characters. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–12.

Xinchen Yan, Akash Rastogi, Ruben Villegas, Kalyan Sunkavalli, Eli Shechtman, Sunil
Hadap, Ersin Yumer, and Honglak Lee. 2018. Mt-vae: Learning motion transfor-
mations to generate multimodal human dynamics. In Proceedings of the European
Conference on Computer Vision (ECCV). 265–281.

Wenhao Yu, Greg Turk, and C. Karen Liu. 2018. Learning Symmetric and Low-energy
Locomotion. ACM Trans. Graph. 37, 4, Article 144 (July 2018), 12 pages. https:
//doi.org/10.1145/3197517.3201397

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive Neural
Networks for Quadruped Motion Control. ACM Trans. Graph. 37, 4, Article 145 (July
2018), 11 pages. https://doi.org/10.1145/3197517.3201366

Yi Zhou, Zimo Li, Shuangjiu Xiao, Chong He, Zeng Huang, and Hao Li. 2018. Auto-
conditioned recurrent networks for extended complex human motion synthesis. In
ICLR 2018.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3359566.3360070
https://doi.org/10.1145/3072959.3073663
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://doi.org/10.1145/566654.566605
https://doi.org/10.1145/3306346.3322972
https://doi.org/10.1145/1882261.1866160
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1109/TVCG.2019.2938520
https://doi.org/10.1109/TVCG.2019.2938520
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201366

	Abstract
	1 Introduction
	2 Related Work
	2.1 Kinematic motion synthesis
	2.2 Physics-based motion synthesis

	3 Motion VAEs
	3.1 Encoder Network
	3.2 Decoder Network
	3.3 Practical Considerations
	3.4 MVAE Training

	4 Motion Synthesis
	4.1 Random Walk
	4.2 Sampling-based Control

	5 Learning Control Policies
	5.1 Controller Network
	5.2 Effort Penalty in Kinematics Animation

	6 Locomotion Controllers
	6.1 Target
	6.2 Joystick Control
	6.3 Path Follower
	6.4 Maze Runner

	7 Discussion & Evaluation
	7.1 System Evaluation
	7.2 Ablation on Decoder Architecture
	7.3 Using a Noisy Policy to Generate Motion Variations
	7.4 Acyclic Motions
	7.5 Handedness Bias
	7.6 Limitations

	8 Conclusions
	Acknowledgments
	References

