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ABSTRACT
Human and animal gaits are often symmetric in nature, which
points to the use of motion symmetry as a potentially useful source
of structure that can be exploited for learning. By encouraging
symmetric motion, the learning may be faster, converge to more
efficient solutions, and be more aesthetically pleasing. We describe,
compare, and evaluate four practical methods for encouraging mo-
tion symmetry. These are implemented via particular choices of
structure for the policy network, data duplication, or via the loss
function. We experimentally evaluate the methods in terms of learn-
ing performance and achieved symmetry, and provide summary
guidelines for the choice of symmetry method. We further describe
some practical and conceptual issues that arise. Because similar
implementation choices exist for other types of inductive biases,
the insights gained may also be relevant to other learning problems
with applicable symmetry abstractions.

CCS CONCEPTS
• Computing methodologies → Animation; Reinforcement
learning.
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1 INTRODUCTION
Deep reinforcement learning (DRL) has significant potential as a
general framework for the control of physically-simulated move-
ment, as achieved via learned control policies that optimize a re-
ward objective. Recent successes of DRL in animation and machine
learning show the ability to produce robust learned locomotion
for simulated humans, animals, and imaginary legged creatures.
However, there remains a compelling need to improve learning
efficiency and motion quality for DRL to become a widely-adopted
animation tool.

One obvious path towards faster-and-better learning relies on ex-
ploiting the motion symmetry that is a common attribute of human
and animal locomotion; gait symmetry is an indicator of healthy
outcomes in physiotherapy [Riskowski et al. 2011; Robinson et al.
1987]. Asymmetric gaits are often associated with physical injuries
and neural impairments such as stroke. A symmetry constraint or
symmetry-favoring bias thus offers a readily available and conve-
nient path towards faster learning and more realistic outcomes. It
is also largely orthogonal to most other efficiency improvements.

Naively, exploiting symmetry might be expected to yield a 2×
learning speedup, and may help to avoid some of the undesired
asymmetric local minima that DRL is prone to exploit. On the
other hand, it could also be the case that asymmetric policies and
motions serve a useful role as an intermediate path towards finding
eventual optimal symmetric motions, and therefore hard symmetry
constraints may be problematic. Another important subtlety is that
while a symmetric policy helps achieve symmetric motions, it does
not guarantee a symmetric outcome. For example, a quadruped
gallop and a biped lope are asymmetric gait cycles, as each gait
cycle begins with a leading left or right foot, while the underlying
policy can still be fully symmetric.

What is the best way to integrate a symmetry bias or other
forms of symmetry enforcement into the learning process? How
much benefit does it offer in terms of learning speed and learning
outcomes? What are other considerations for symmetry-informed
methods? The principal contribution of our work is an in-depth
analysis of four different methods of incorporating symmetry into
the learning process:

DUP Duplicating tuples with their symmetric counterparts.
LOSS Adding a symmetry auxiliary loss.
PHASE Motion phase mirroring.
NET Enforcing symmetry in the network itself.

https://doi.org/10.1145/3359566.3360070
https://doi.org/10.1145/3359566.3360070
https://doi.org/10.1145/3359566.3360070
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Two of these methods are new (DUP, NET) and two are already
present in existing literature (LOSS, PHASE), albeit without a sys-
tematic evaluation of all the issues around symmetry enforcement.
The methods incorporate knowledge of symmetry into the pol-
icy structure (NET), the learning data (DUP, PHASE), or via the
learning loss (LOSS). We also believe that the results are of more
general interest, because they illustrate (and experimentally vali-
date) various ways that inductive biases can be incorporated into
DRL methods.

2 RELATEDWORK
Motion symmetry has been a topic of interest for many years in the
study of human motion and movement biomechanics. Symmetric
motions are perceived to be more attractive, e.g., for dance [Brown
et al. 2005], and gait symmetry is seen as a desirable outcome for
physiological manipulation [Robinson et al. 1987]. While symmetry
is a common assumption in the study of gait and posture, individual
gaits often do exhibit asymmetries due to various possible func-
tional causes [Seeley et al. 2008].We refer the reader to a past review
article [Sadeghi et al. 2000] for insights into the degree of symmetry
of lower limbs movement during able-bodied gait and the potential
influence of limb dominance on the motion symmetry of the lower
extremities and human gaits [Riskowski et al. 2011]. It is also not ob-
vious how to best quantify the asymmetry of human gaits, and thus
specific symmetry metrics have been proposed [Hsiao-Wecksler
et al. 2010; Viteckova et al. 2018].

The robust control of physics-based character locomotion has
been a long-standing challenge for character animation. We refer
the reader to a survey paper for a detailed history [Geijtenbeek
and Pronost 2012]. An early and enduring approach to controller
design has been to structure control policies around finite state
machines (FSMs) and feedback rules that use a simplified abstract
model or feedback law. These general ideas have been applied to
human athletics, running [Hodgins et al. 1995], and a rich variety
of walking styles [Coros et al. 2010; Lee et al. 2010; Yin et al. 2007].
Many controllers developed for physics-based animation further
use optimization methods to improve controllers developed around
an FSM-structure, or use an FSM to define phase-dependent ob-
jectives for an inverse dynamics optimization to be solved at each
time step. Policy search methods, e.g., stochastic local search or
CMA [Hansen 2006], can be used to optimize the parameters of
the given control structures to achieve a richer variety of motions,
e.g., [Coros et al. 2011; Yin et al. 2007], and efficient muscle-driven
locomotion [Wang et al. 2009]. Many of the FSM controllers use
hard-coded symmetries, which assign the roles of stance-leg or
swing-leg to the left and right legs, as a function of the FSM state.
It is common in kinematic-based approaches to also mirror all the
available motion data in order to double the effective size of the data
set, and to reflect the often-symmetric nature of human locomotion,
e.g., [Bruderlin and Calvert 1989; Holden et al. 2017]. Lastly, trajec-
tory optimization-based methods also commonly assume motion
symmetry when convenient, e.g., [Majkowska and Faloutsos 2007].

More recently, locomotion synthesis has attracted significant at-
tention from the reinforcement learning (RL) community, where the

OpenAI Gym tasks have become a popular RL benchmark [Brock-
man et al. 2016]. In this context, symmetry constraints are com-
monly not imposed, and the resulting motions often have notice-
able asymmetries. Further work extends these efforts in a variety of
ways, including traversing challenging terrains [Heess et al. 2017].
More realistic and dynamic motions can be achieved with the help
of motion-capture clips [Peng et al. 2018, 2017] and these use what
we refer to as the PHASE symmetry method, with the goal of more
efficient learning. [Liu et al. 2016] uses a variation of PHASE in
which individual strides (half steps) are mirrored and concatenated
to generate symmetric reference motions. However, there exist
no robust documented experiments to verify the efficiency gains.
The efficient learning of controllers that are capable of producing
high-quality motion for realistic-strength characters remains a chal-
lenging problem in the absence of motion capture data. Recent work
makes progress on this problem using RL with a combination of
energy optimization, learning curriculum, and an auxiliary motion
symmetry loss [Yu et al. 2018], which we shall refer to as the LOSS
method.

A recent result investigates how DRL problems can become
prone to learning plateaus because of winner-take-all solution
modes [Schaul et al. 2019]. These can easily arise in DRL because
the distribution of data for policy learning is directly influenced
by the policy itself. Thus in the case of multiple diverging deci-
sion paths, one of the modes will quickly dominate. The choice of
whether to encourage symmetry, and how to do so, may create an
optimization landscape that exhibits similar properties.

3 BACKGROUND
In this section, we will briefly introduce the learning problem and
the relevant notation. In reinforcement learning (RL), we wish to
learn an optimal policy for a Markov Decision Process (MDP). The
MDP is defined by a tuple {S,A, P , r ,γ }, where S ∈ Rn ,A ∈ Rm
are the state space and action space of the problem, the transition
function P : S×S×A → [0,∞) is a probability density function, with
P(st+1 | st ,at ) being the probability density of visiting st+1 given
that at state st , the system takes action at . The reward function
r : S×A → R gives a scalar reward for each transition of the system.
γ ∈ [0, 1] is the discount factor. The goal of reinforcement learning
is to find a parameterized policy πθ , where πθ : S × A → [0,∞)
is the probability density of at given st , that solves the following
optimization problem:

max
θ

JRL(θ ) =E
[ ∞∑
t=0

γ t r (st ,at )
]
.

A class of algorithms to solve this problem is policy gradient
[Sutton et al. 1999]. Proximal Policy Optimization (PPO) [Schulman
et al. 2017] is a popular variant of policy gradient for training
locomotion tasks. At each PPO learning iteration, the agent interacts
with the environment and collects a set of (st ,at , rt , st+1) tuples.
These are then used to estimate the gradient of the PPO surrogate
loss, LPPO , and standard stochastic descent algorithms can be used
to update the network parameters θ to minimize this surrogate
loss.
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4 SYMMETRY ENFORCEMENT METHODS
We now describe four methods for enforcing symmetry, using du-
plicate tuples, auxiliary losses, a time-indexed motion phase, and
architecture-based methods. We begin by formally defining sym-
metric trajectories and symmetric policies. Two trajectories are
symmetric if for each state-action tuple, (s,a), from one trajectory,
the corresponding state-action tuple is given by (Ms (s),Ma (a))
for the other trajectory, where Ms and Ma are defined as follows,

Ms : S → S Ma : A → A
Ms (s) = the mirror of state s Ma (a) = the mirror of action a

Note that the mirroring functions are attributes of the environ-
ment and not attributes of the enforcement method or learning
pipeline. Here we use environment to refer to the combination of
the character, its simulated world, and the task, as is common in
RL settings. All the symmetry enforcement methods we shall de-
scribe require both of these functions as a minimum requirement.
Similarly, we can define a symmetric policy to be one where the
following holds for all states s ∈ S:

πθ (Ms (s)) = Ma (πθ (s)). (1)

A symmetric policy thus produces the mirrored action when
given the mirrored state as input. RL methods such as PPO also use
state-value functions during the learning process. The output of
these value functions should remain unchanged for any state and its
mirrored counterpart. The construction of the mirror functions for
our environments (Section 6) is further elaborated in Appendix A.1.

The methods discussed in this section attempt to achieve sym-
metric gaits by encouraging or constraining the learned policies
to be symmetric. However, even if successful, this may be insuf-
ficient to guarantee a symmetric gait. In particular, a symmetric
policy may learn to favour motions with staggered poses, where
the dominant foot is always in front. This may confer advantages
with respect to balance and agility. Once such a policy is initialized
to an initial asymmetric staggered pose, it can continue with an
asymmetric motion. With regard to the policy, it is not always pos-
sible to achieve exact symmetry in a parameterized model such as a
neural network. For example, regions of the state space may remain
unexplored during the learning process, and thus symmetry cannot
be enforced for such regions. Therefore, the equality in Equation (1)
is not always assumed to be strict.

It is possible to directly optimize for gait symmetry with rein-
forcement learning by including quantitative symmetry measures
in the reward function, such as the Symmetry Index [Robinson
et al. 1987] or other measures [Viteckova et al. 2018]. However, we
share the sentiment of previous work [Yu et al. 2018] that directly
optimizing such measures may be ineffective, as they introduce
delayed or sparse rewards that may make the learning problem
more difficult. Consequently, our work focuses on methods that
can be used for obtaining approximately symmetric policies, which
are described in the remainder of this section.

4.1 Duplicate Tuples (DUP)
This method may be the most intuitive way for achieving sym-
metry and is a form of data augmentation. In this approach each
trajectory tuple is duplicated, mirrored, then added as a valid ex-
perience tuple along with the original. More formally, let τ =
(s1,a1, r1, . . . , sT ) be a trajectory sampled from the environment.
A post-processing step will compute the mirrored trajectory of τ ,
i.e. τ ′ = (Ms (s1),Ma (a1), r1, . . . ,Ms (sT )), and both τ and τ ′ will be
added to the roll-out memory buffer for learning. Notice that the
rewards, r1, . . . , rT−1 are the same in both τ and τ ′. This is because
the reward function r (s,a) is automorphic under the symmetry
transformation, namely r (s,a) = r (Ms (s),Ma (a)).

One drawback of using this approach is that the mirrored tuples
are not strictly on-policy, as assumed by policy-gradient RL meth-
ods. Thus it could be problematic when used with methods such
as PPO [Schulman et al. 2017] and TRPO [Schulman et al. 2015].
The off-policy issue arises because at training time the policy πθ is
not guaranteed to be symmetric, and therefore the probability of
sampling action Ma (at ) from πθ (Ms (st )) could be low, effectively
corresponding to an off-policy action. However, our results show
that this is not necessarily a critical issue in practice.

4.2 Auxiliary Loss (LOSS)
In this method proposed by Yu et al.[Yu et al. 2018], the authors
create a symmetry loss defined as follows:

Lsym (θ ) =
T∑
t=1

∥πθ (st ) −Ma (πθ (Ms (st )))∥2 (2)

and optimize this as an auxiliary loss in addition to the default PPO
loss:

πθ = argmin
θ

LPPO (θ ) +wLsym (θ ), (3)

wherew is a scalar hyper-parameter used to balance the gait sym-
metry loss with the standard policy optimization loss which aims
to maximize the original objective. The authors usew = 4 for their
results. An alternative approach would be to simply include the
symmetry loss as an extra reward term. However, the auxiliary loss
is generally preferable; the loss term is differentiable and therefore
provides a clear signal to optimize rather than being included via
the PPO-approximated gradient. Changing the reward function
may also induce unexpected behaviours.

Yu et al. [2018] showed improvements in the sample efficiency
for their four tasks with a factor of approximately two (see Figure 8
in [Yu et al. 2018]). However, the symmetric loss is shown to be
beneficial only in the context of a given curriculum learning algo-
rithm; in its absence, there was no significant improvement over
a vanilla-PPO baseline, and in one case (the humanoid) using the
symmetric loss proved to be detrimental (please refer to the same
plot). The addition of an extra hyper-parameter may generally be
seen as undesirable. However, in practice, we find in our experi-
ments that the method is not very sensitive to the choice ofw and
we end up using the default value in all settings.
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Figure 1: An universal method for converting any neural
network into a symmetric network policy. M block is an
environment-dependent state mirroring function. The two
policy blocks are the same neural networkmodule, with the
output terminals re-ordered for illustration clarity. The s, c,
o terminals corresponds to side, common, and opposite joints
as described in Appendix A.1.

4.3 Phase-Based Mirroring (PHASE)
To study locomotion, the gait can usually be divided into repeated
gait cycles, which can then further be parameterized using a phase
variable ϕ ∈ [0, 1), which then wraps back to ϕ = 0 upon reaching
ϕ = 1. A common assumption is to advance the phase linearly with
time. Another strategy that can help provide additional robustness
is to perform a phase-reset at each bipedal foot strike, e.g., set ϕ = 0
upon left-foot strike and ϕ = 0.5 upon right foot strike. To enforce
symmetry, a policy is only learned for the first half cycle, and is
replaced by the policy with mirrored states-and-actions during the
second half cycle:

at =

{
πθ (st ) 0 ≤ ϕ(st ) < 0.5
Ma (πθ (Ms (st ))) 0.5 ≤ ϕ(st ) < 1

(4)

In our experiments, we strictly advance the motion phase as a
function of time andwe do not implement phase-resets. For forward-
progress tasks, this then corresponds to providing a mandated
duration for each half-cycle of the motion. The phase-based method
is particularly useful for imitation-guided learning scenarios such
as those presented in [Peng et al. 2017], [Peng et al. 2018], and [Xie
et al. 2019]. The goal in these cases is to imitate a reference motion
capture clip with the help of a phase-indexed reward that measures
the distance from the reference motion. The use of the PHASE
symmetry in that context is motivated by the potential for faster
learning.

The PHASE approach is simple to implement and does not re-
quire modifying training in any way since it can be implemented
directly within the environment. However, the potential for abrupt
changes exists at ϕ = 0.5 when the phase is strictly computed as a
function of time.

4.4 Symmetric Network Architecture (NET)
Another approach towards enforcing symmetry is to impose sym-
metry at the network architecture level. The goal here is to choose
a network architecture such that Equation (1) holds for all states s
and all network parameters θ . There are multiple ways to go about
designing such an architecture. However, they may require some
knowledge about how the actions and/or states in which case hav-
ing access to themirroring functionsMs andMa is strictly-speaking
not enough.

A general case description of this method would be lengthy,
and thus we focus only on the key aspects here. The simplest case
occurs when we can assume that the action vector is simply divided
into two, one corresponding to each side of the body, and that the
actions of one side can readily be applied to the other side through a
simple swapping operation. This ignores the common parts such as
the torso and the head for the time being. More concretely, consider:

a =

[
al
ar

]
Ma (a) =

[
ar
al

]
where al and ar are vectors of equal size. In this case, we can define
a symmetric policy composed of an inner network f as follows:

πside (s) =
[
f (s,Ms (s))
f (Ms (s), s)

]
It is easy to show in this case that Equation (1) holds:

πside (Ms (s)) =
[
f (Ms (s),Ms (Ms (s)))
f (Ms (Ms (s)),Ms (s))

]
=

[
f (Ms (s), s)
f (s,Ms (s))

]
= Ma

( [
f (s,Ms (s))
f (Ms (s), s)

] )
= Ma (πside (s))

When the action space also includes actions for common parts,
i.e., those such as the torso and head that have no symmetric coun-
terparts, it is easy to define πcom (s) = h(s) + h(Ms (s)) which is
then invariant to left/right mirroring. Finally, the policy is then a
combination of the common actions and the side actions:

πθ (s) =
[
πcom (s)
πside (s)

]
Please refer to Figure 1 for an illustration of the NET method.

A drawback of this method is that it requires knowledge about
the state and action symmetry structures to redefine the network.
Also, this method is highly sensitive to state and action normaliza-
tion. The problem is that an ordinary normalization based on past
experiences may break the symmetry. Though the other methods
introduced here can also suffer from the same problem, this method
is much more sensitive to the issue.

4.5 Practical Considerations
There are a number of practical considerations to take into account
when working with each of the methods introduced in the previous
section. In terms of implementation, the DUP and PHASE methods
are the easiest to implement as they required little to no change to
the learning pipeline. Architecture-based mirroring (NET) requires
the most modification to both the learning pipeline and the envi-
ronments. The LOSS method is the only approach here that allows
us to balance the desire for symmetry with the original learning
objective, albeit at the cost of an extra hyper-parameter. The NET
method produces a truly symmetric policy, which is not possible
with the other methods. The PHASE method is the approach best
suited for coping with neutral states, which represent symmetric
states where it may become problematic to break symmetry. We
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revisit this point later. PHASE is also restrictive in that it enforces
a predefined walk cycle timing.

One more consideration relates to the application of normaliza-
tion to network inputs, which is commonly done by using statistics
gathered from the data itself. However, this can break some of the
mirroring assumptions. The problem is most severe when using
a symmetric network architecture, although other methods are
also impacted. Fortunately, developing a normalization scheme that
works correctly is relatively straightforward. A simple approach is
to duplicate the states (or actions) as in Section 4.1 and to compute
the statistics based on the aggregated set of states (or actions) and
their mirrored states (or actions).

5 GAIT SYMMETRY METRICS
All of the methods discussed only provide indirect paths, via the
learned policies, for achieving symmetry for the actual motions.
Therefore it is important to evaluate how well these methods do
at achieving their final goal. Yu et al.[Yu et al. 2018] use an estab-
lished metric in the biomechanics literature known as the Robinson
Symmetry Index (SI):

SI =
2|XR − XL |
XL + XR

· 100, (5)

where XR is a scalar features of interest, such as the duration of
the stance phase for the right leg, and XL is its counterpart for
the left leg. Previous work using the LOSS method [Yu et al. 2018]
chooses to use the average actuation magnitude as the parameter of
interest which leads toXR =

∑T
t=1 ∥τ t,R ∥2 where τ t,R is the vector

of applied torques at time t for the right leg. We will refer to this as
the actuation symmetry index (ASI). In practice, we found that the
ASI can be misleading in some circumstances, e.g., a high torque
applied to the right hip can be conflated with a high torque applied
to the left knee, which is not desirable. ASI also loses information
about signs of the applied torques.

The phase-portrait is another tool that can be used to qualita-
tively investigate the symmetry or asymmetry of a gait, as seen in
[Hsiao-Wecksler et al. 2010]. The phase-portrait is a scatter plot
drawn over a period of time, usually over a single gait cycle. The
x and y-axes of the 2D plot correspond to the position and veloc-
ity, respectively, of a joint of interest, such as the hip flexion, For
an asymmetric gait, the phase portraits of the two sides will not
fully overlap. To numerically quantify the similarity between two
phase-portraits, we propose to use a phase-portrait index (PPI). One
problem to address is that the left and right limbs usually have
a phase offset even for a symmetric motion. This is not a prob-
lem when inspecting the phase-portraits visually, but the problem
needs to be addressed to compute a meaningful metric. We solve
this by finding the best phase offset between the left and the right
side through an exhaustive search. We also normalize each axis
so that x ,y ∈ [−1, 1] to address the potential discrepancy between
magnitudes of different gaits. The final PPI is defined according to:

PPI =
1
C
min
s

C−1∑
t=0

∥qRt − qLt+s ∥1 + ∥ ÛqRt − ÛqLt+s ∥1, (6)

where C is the length of a gait cycle, qRt and ÛqRt are the normalized
right joint position and velocity at time t . Similarly, qLt+s is the

Figure 2: Top-left: Walker2D. Top-right: Walker3D. Bottom-
left: Stepper. Bottom-right: Cassie.

normalized left joint position at time t+s moduloC , as the elements
that are shifted beyond the last position are reintroduced at the
beginning.

6 ENVIRONMENTS
We evaluate the effectiveness of the enforcement methods described
in Section 4 on four different locomotion tasks, i.e., RL “environ-
ments”. The environments were chosen to represent a fairly diverse
range of locomotion tasks. They are described in detail below. For
each environment, we run each method 5 times and plot the mean
results.

Walker2D. The implementation of Walker2D environment is
taken directly from PyBullet [Coumans and Bai 2019] without fur-
ther modification. The purpose of this environment is to evaluate
each symmetry method on a well-established existing reinforce-
ment learning environment. The task is for the character to walk as
far as possible in the forward direction in the allotted time. An ac-
tion is a 6D vector corresponding to a normalized torque at each of
the hip, knee, and ankle on both left and right legs. The observation
space is 22D and consists of root information (root z-coordinate,
x and y heading vector, root velocity, roll, and pitch), joint angles,
joint angular velocities, and binary foot contact information.

Walker3D. This represents a 3D character simulated in PyBullet,
with targets randomly placed, at a distance, in the half-plane in front
of the character. The task requires character to navigate towards
the target and then stop at the target. A new target will be chosen,
in the forward half-plane of the current character orientation, once
the target is reached and one second has passed. The 3D character
has 21-DoF corresponding to abdomen (x3), hip (x3), knee, ankle,
shoulder (x3), and elbow. The observation space is 52D, and is
analogous to that provided for Walker2D, with an additional 2D
vector representing the target location in the character root frame.

Stepper. Stepper uses the same model as Walker3D, and requires
it to navigate terrain consisting of a sequence of stepping blocks.
The blocks are randomly generated by sampling from the following
distributions: spacingd ∼ U(0.65, 0.85)meters and height variation
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of the next steph ∼ U(-25, 25)◦. The character receives information
for two upcoming blocks as an (x ,y, z) offset in character root space.
The stepping block information advances when either foot contacts
the immediate next block, which effectively forces the character to
step precisely on each step. The precise foot placement requirement,
as well as variable terrain height, makes this environment more
challenging thanWalker3D.

Cassie. The task requires a bipedal robot Cassie to walk forward
at a desired speed while mimicking a reference motion. Since the
reference motion is time-indexed, the character receives a phase
variable as input. The phase variable varies according to ϕ ∈ [0, 1)
in the gait cycle. In addition to phase, the character receives other
inputs including the height, the orientation expressed as a unit
quaternion, pelvis velocities, angular velocities, and acceleration,
joint angles and angular velocities. In total, the Cassie robot has a
10D action space and 47D observation space. Another important
distinction between Cassie and the other tasks is that it is imple-
mented in MuJoCo [Todorov et al. 2012], while other environments
use the Pybullet [Coumans and Bai 2019] physics engine. This sim-
ulated model has also been validated to be close to the physical
Cassie robot [Xie et al. 2019].

7 RESULTS
We compare the four methods, together with an asymmetric base-
line, across four different locomotion tasks of varying difficulties.
The source code is available at https://github.com/UBCMOCCA/
SymmetricRL.

7.1 Summary
We begin with a high-level summary of our findings. All symmetry
enforcement methods improve motion quality over the baseline,
but they cannot be reliably ranked across different environments.
In general, DUP is the least effective in enforcing symmetry, while
LOSS is the most consistent. For imitation-guided tasks, where the
reward is related to imitating a time-indexed reference motion,
such as for Cassie and DeepMimic, the PHASE method appears to
be superior.

Regarding learning speed, the symmetry enforcement methods
have no consistent and predictable impact, positive or negative.
While this contradicts our initial expectation, it does not provide
the full picture. In particular, even though BASE achieves relatively
high rewards in Stepper, it was unable to make forward progress in
any of the five runs. In summary, we suggest symmetry methods be
used for producing higher quality symmetric motions, i.e., closer to
what we might expect from human and animal movement, but not
necessarily for faster learning. We further expand the comparison
of the different methods in two sections below.

7.2 Effect on Learning Speed
One of our initial hypotheses was that the learning speed can be
improved by enforcing symmetry. Symmetry can be considered as
domain knowledge that may otherwise be difficult to learn, espe-
cially considering its abstract nature. However, our experiments
indicated that enforcing symmetry has no consistent impact on
the learning speed. As shown in Figure 3, BASE performs well in

Walker2D and Walker3D. In particular, although BASE was not ini-
tially the fastest inWalker3D, it ultimately achieves a higher return
than all mirroring methods. On the other hand, BASE fails to learn
the Stepper task in all five runs; it often pauses near the beginning
without taking a single step. This is consistent with findings by
Yu et al., who also find that symmetry enforcement can be crucial
when learning more difficult tasks.

For Cassie, the benefit of enforcing symmetry is evident because
the reward explicitly encourages the character to imitate a symmet-
ric reference motion.We hypothesize that for such a case, symmetry
constrains the search space in a suitable way for the symmetric
task. However, if symmetry is not rewarded, explicitly or implicitly,
then its effects may not be reflected in the learning curve. Finally,
between the symmetry methods, there is no clear winner in terms
of learning speed.

PHASE and Imitation-Guided Learning. In phase-based symmetry
experiments, we define a phase variable in correspondence to the
gait cycle. For the Cassie environment, we use a period of 0.8 s,
which is determined based on the reference motion. For all other
environments, we assign a period based on a working solution.

We find phase-based symmetry enforcement to be effective
for imitation-guided learning, as it outperforms other methods
by a significant margin for Cassie. When comparing Cassie with
DeepMimic [Peng et al. 2018], which also uses an imitation ob-
jective, we find the results to be consistent. The learning curves
for our DeepMimic symmetry experiment are presented in Appen-
dix A.3. We hypothesize that phase-based symmetry is effective
for imitation-guided tasks when the motion clips used for training
containing suitably-periodic and symmetric motions. On the other
hand, PHASE constrains the period of the gait cycle, which can be
harmful for non-imitation tasks. PHASE performs poorly in terms
of learning speed when used without a reference motion, i.e., for
Walker2D, Walker3D, and Stepper, although it can do well in terms
of quality, e.g., forWalker3D.

Alternate Symmetric Network. The NET method presented in
Figure 1 is an intuitive way of converting any neural network into a
symmetric policy. However, it is perhaps not the immediate solution
that one would come up with when tasked to design a symmetric
neural network. We include one of our earlier constructions of
symmetric policy in Appendix A.2, which we refer to as NET-ALT.
Amajor difference between NET and NET-ALT is that the latter uses
shared weights at the layer level to explicitly enforce the symmetry
constraint in Equation (1). Despite this, the two architecture-based
mirroring methods should, in theory, have similar performance. As
can be seen in Figure 3, NET-ALT significantly outperforms NET
in theWalker2D environment, along with the baseline and all other
mirroring methods. We believe that the structure of the symmetric
layer matrix in Appendix A.2 may be the key to resolve this gap,
which remains to be verified.

Policy Network Ablation Study. As an ablation study, we removed
the symmetry constraint for the value network in the NET method.
Since our goal is to produce a symmetric policy, and the value
network is discarded after training, we want to see how enforcing
symmetry in the value network during training affects the learning
speed. In Figure 3, the two curves of interest are NET and NET-POL,

https://github.com/UBCMOCCA/SymmetricRL
https://github.com/UBCMOCCA/SymmetricRL
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Figure 3: Learning curves for different symmetry methods in each of the four locomotion environments (Section 6). The
Walker2D plot contains two additional experiments aside from the baseline and four symmetry methods. NET-ALT uses an
alternate formulation of symmetric network architecture described in Appendix A.2. NET-POL is an ablation study on NET
with symmetry enforcement only on the policy network and not on the value network.
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Figure 4: Phase-portrait forWalker2D andWalker3D. The green curve is for the left hip flexion and red for the right side. The
more symmetric the motion, the more aligned are the curves.

where the latter has the symmetry constraint removed for the value
network. Our experiment shows that it is beneficial to enforce the
symmetry constraint for the value network during training since
the difference between the curves is not insignificant.

7.3 Symmetry Enforcement Effectiveness
Although learning speed is a major point of interest from the ML
perspective, our work is nevertheless motivated by the aesthetics of
symmetric gaits that are needed for applications in animation. We
measure the effectiveness of each symmetry enforcement method
on the metrics we defined in Section 5. In most cases, we find that
symmetric gaits are better achieved when any of the enforcement
methods are applied, as compared to the baseline. The motions
produced by the symmetry methods are also more natural-looking,
subjectively speaking, than without mirroring (see supplementary
video).

Figure 4 shows the phase-portraits for Walker2D and Walker3D.
The symmetry metrics for all environments are summarized in

Table 1 and Table 2. To perform consistent measurement for the
metrics, we omit the first two strides in order to limit the influence
of the transition period from standing to locomotion. The reported
metrics are calculated from the median of the ten subsequent strides
after the initial two. For the Stepper tasks, we use the median from
five strides to accommodate for the increased difficulty. Also, note
the Stepper results are missing for BASE because it was unable to
produce consistent gait cycles that can be measured. In most cases,
the policy either learns to pause at the starting location or falls
after taking one or two steps.

As in learning speed, there is not a single best mirroring method
across all environments. However, from the overall picture, we
found that LOSS and PHASE to be the most consistent among all
methods. In general ASI and PPI do not agree on a single best
method except for the Cassie task where PHASE is the best.
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Table 1: Actuation SI. Lower numbers are better.

Walker2D Walker3D Stepper Cassie
BASE 3.97 6.36 ✗ 9.27
DUP 3.77 7.57 7.54 6.58
LOSS 2.56 4.48 6.36 15.72
PHASE 3.77 2.55 3.99 4.49
NET 2.00 10.64 28.97 5.15
NET-ALT 1.04 – – –
NET-POL 1.71 – – –

Table 2: Phase-portrait index. Lower numbers are better.

Walker2D Walker3D Stepper Cassie
BASE 1.06 2.16 ✗ 0.49
DUP 0.39 1.61 0.57 0.41
LOSS 0.33 0.19 0.46 0.31
PHASE 0.57 0.30 0.49 0.17
NET 0.16 0.58 0.65 0.23
NET-ALT 0.16 – – –
NET-POL 0.28 – – –

8 DISCUSSION
Symmetry can sometimes be harmful, especially when the character
begins from or otherwise arrives at a neutral pose, i.e., a symmetric
pose where s = Ms (s). The problem is that a symmetric policy is
incapable of escaping from a neutral pose since the action that it
takes would also be symmetric. When a symmetric action is applied
in a symmetric state, the next state is necessarily also symmetric.
For instance, a character that starts from the T-pose will likely
perform some kind of hopping gait, since the feasible locomotion
possibilities which perpetuate symmetric states and actions are
limited. To make matters worse, states near the neutral states can
also become problematic.

The breaking symmetry problem is most severe when enforc-
ing symmetry through network architecture, as this method is
guaranteed to produce true symmetric policies. While DUP and
LOSS methods can suffer from the same issue, they can implement
workarounds at an additional cost. This issue, however, does not
affect PHASE. A simple workaround to this problem is to always
start the character from a non-neutral position. This can be easily
achieved by adding some random noise to each joint of the initial
pose at the start of the task. In practice, we did notice that on oc-
casion the character would converge on a hopping gait. However,
the simple workaround works well for the majority of cases in our
experiments.

Our work is motivated by the premise that healthy human gaits
are usually symmetric. However, this still remains a controversial
issue in the biomedical literature [Riskowski et al. 2011; Sadeghi
et al. 2000]. The strongest argument for asymmetry in humanmotor
control is the general belief that humans have a dominant side that
is often the preferred choice for manipulating objects. This is also
tied with the need for a leading foot to start a walk or run cycle
in the neutral state problem. One should, therefore, be aware of
the implications when enforcing perfect symmetry. Quadrupedal
locomotion, which has six commonly observed gaits as opposed

to the three gaits of bipeds [McMahon 1984], is also interesting
to examine. Of these six, half are fairly symmetric including walk,
trot, and rack. However the remaining three, also known as the
in-phase gaits which are used at high speeds, are often asymmetric.
Since the symmetry of gait and policy are not the same, it would
be interesting to see whether it is possible to nevertheless achieve
these non-symmetric quadrupedal gaits with a symmetric policy.

9 CONCLUSIONS
In this paper, we explore the use of symmetry constraints for DRL-
based learning of locomotion skills. We compared four different
enforcement methods, in addition to a symmetry-free baseline,
across four different locomotion tasks of varying difficulty. We
find that enforcing symmetry constraints can in fact sometimes
be harmful to learning efficiency, but that in general it produces
higher quality motions. When comparing the symmetry methods,
we find that the results, both in terms of learning speed and motion
symmetry, to be environment-dependent. A notable exception is
that the phase-based mirroring method generally performs better
than the the baseline for imitation-guided reward settings such as
for Cassie and DeepMimic.

The difference between the enforcement methods is more pro-
nounced from the implementation standpoint. LOSS and PHASE
methods have the burden of an additional hyperparameter to tune.
However, the additional parameter can also be viewed as an ad-
vantage in terms of flexibility. In LOSS, the hyperparameter can
be used to adjust the strength of symmetry constraint. For PHASE,
the phase variable allows us to define a desired locomotion period.
Given the similarities across all methods, it is perhaps justifiable
to choose one based on the implementation overhead. DUP is the
easiest to implement and evaluate since it requires minimal change
to existing RL pipeline and has no hyperparameter to tune. Finally,
if the application requires absolute symmetry, then the NETmethod
is guaranteed to produce a symmetric policy.

The application of symmetric policies is not limited to locomo-
tion. Many classical control tasks may benefit significantly from
leveraging symmetry, including acrobat, cart-pole, and pendulum
[Brockman et al. 2016]. Furthermore, the notion of symmetry ex-
tends beyond left-right symmetry and even character motion. The
Sudoku game is an example task that exhibits multiple types of
symmetry properties. Whether a learning method can take full ad-
vantage of all the symmetries remains an open question. However,
this paper lays a foundation for enabling future studies on inductive
biases based on symmetry.
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A SUPPLEMENTARY MATERIAL
A.1 Mirroring Functions
The mirroring functions,Ms andMa as described in Section 4 are
properties of the environment. Consequently, the environment is
responsible for providing the necessary information for policies to
perform the mirroring operation on state and action. Although the
mirroring functions can be arbitrarily complex, we found that all
the environments in Section 6 share a similar construction. Using
Walker3D as an example, the method for deriving mirror functions
are described in detail below.

TheWalker3D character has a total of 21-DoF and each DoF is
modelled as a one-dimensional hinge joint. Furthermore, let the
x-axis be the forward direction and the z-axis pointing up in the
local coordinate frame of the character. For mirroring purposes, the
joints can be divided into three categories, common, opposite, and
side. The common categories contain joints that are unchanged by
the mirroring function, such as abdomeny . In general, joints that
rotate about the y-axis should remain unchanged after mirroring.
The opposite categories contain joints that are mainly on the torso
of the character and they need to be negated for mirroring. In
the case of Walker3D, only abdomenx and abdomenz would fall
under this category. The side categories contain joints that are on
the limbs. Importantly, for each joint on one side, there must be a
corresponding joint on the other side; for instance, the right knee
corresponds to the left knee. With the one-to-one mapping, Ma
can simply interchange the applied torques for the respective joints
on either side. We found that it is more straightforward if the joint
rotation axes are flipped, except for axes aligned on the y-axis, for
the left and right limbs. Otherwise, additional negation operations
need to be applied after interchanging left and right actions.

Ms follows a similar pattern as described above. For state infor-
mation that is derived from the character, such as joint angles and
angular velocities, the mirrored counterpart would have negated
and interchanged values. In addition, the environment may pro-
vide additional information, such as character orientation, velocity,
and target location in character root space, as in Walker3D. For
vector-valued information, such as velocity and target location, the
values along the y-axis should be negated; for orientations, values
representing roll and yaw should be negated.

A.2 Alternate Symmetric Network
Architecture

In Figure 1, we presented a universal method for embedding any
neural network into a symmetric policy. The NET method effec-
tively uses the same policy module twice with flipped inputs for s
andM(s). While this construction is relatively simple to implement,
alternative symmetric policy constructions do exist. In this section,
we describe the construction used for NET-ALT in Figure 3.

Recall that a symmetric policy is one that satisfies Equation 1,
along with the fact that our mirror functions (subsection A.1) essen-
tially perform negation and swapping operation on the state and
action vectors. Let us then consider the individual layers of a neural
network as matrix operations, in particular, before the application
of non-linear activation functions. The full matrix form of the first
layer for s andMs (s) can be written as,
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Figure 5: Learning curves for the original DeepMimic envi-
ronment. BASE and Phase corresponds to the symmetry en-
forcement methods in Figure 3.
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 .
C , O , R, L represent the portions of the state vector correspond-

ing to common, opposite, right, and left respectively. The uppercase
letters for C , O , R, L,W , X , Y , and Z indicate that these are not
necessarily scalars. For instance, for Walker3D, O contains both
abdomenx and abdomenz . Similarly, the matrix, (ai j )4×4, is dimen-
sionally consistent with the corresponding elements in the state
vector. For example, a2j is a two-column wide block that matches
with the two elements in O for Walker3D. In addition, notice the
negatedO and X , as well as the interchanged R and L are the effect
of the mirroring functions. Overall, there are a total of 16 unknowns
and 8 equations. A symmetric layer can be obtained by solving this
system of equations. In particular, NetAlt contains symmetric layers
of the following form,

(ai j )4×4 =


α 0 β β
0 γ β −β
δ ϵ ζ η
δ −ϵ η ζ

 .
In order to maintain the symmetric policy constraint, the ac-

tivation function applied to the negation portion, O , must be an
odd function such as tanh or softsign. A similar procedure can be
followed for intermediate and output layers, as long as the sizes for
each of the portions are correctly maintained. Finally, a symmetric
policy network can be constructed by stacking symmetric layers.

A.3 Symmetry in DeepMimic Environment
To evaluate the effectiveness of phase-based mirroring, we ran an
experiment for the original DeepMimic environment [Peng et al.
2018] in additional to the Cassie environment. In both cases, our
data shows that phase-based mirroring does indeed make the learn-
ing faster. However, in the case of DeepMimic, the difference in
final return is small between BASE and PHASE and only a minor
difference can be seen from the video.
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