
Data-driven Autocompletion for Keyframe Animation
Xinyi Zhang

Department of Computer Science

University of British Columbia

xinyi92@cs.ubc.ca

Michiel van de Panne

Department of Computer Science

University of British Columbia

van@cs.ubc.ca

ABSTRACT

We explore the potential of learned autocompletion methods for

synthesizing animated motions from input keyframes. Our model

uses an autoregressive two-layer recurrent neural network that

is conditioned on target keyframes. The model is trained on the

motion characteristics of example motions and sampled keyframes

from those motions. Given a set of desired key frames, the trained

model is then capable of generating motion sequences that inter-

polate the keyframes while following the style of the examples

observed in the training corpus. We demonstrate our method on

a hopping lamp, using a diverse set of hops from a physics-based

model as training data. The model can then synthesize new hops

based on a diverse range of keyframes. We discuss the strengths

and weaknesses of this type of approach in some detail.

CCS CONCEPTS

• Computing methodologies→ Procedural animation;

KEYWORDS

keyframe animation, neural networks, motion completion

ACM Reference Format:

Xinyi Zhang and Michiel van de Panne. 2018. Data-driven Autocompletion

for Keyframe Animation. In MIG ’18: Motion, Interaction and Games (MIG
’18), November 8–10, 2018, Limassol, Cyprus. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3274247.3274502

1 INTRODUCTION

Animation is a beautiful art form that has evolved artistically and

technically for over many years. However, despite advancements

in tools and technologies, one of the main methods used to produce

animation, keyframing, remains a labor-intensive and challenging

process. Artists still spend many hours posing and defining key

frames or poses to choreograph motions, with a typical animator at

Pixar producing around only 4 seconds of animation every one or

two weeks. Over the years, many researchers have explored ways to

help support and automate the animation process. An ideal system

should support and accelerate the workflow while still allowing for

precise art-direction of motions by the animator. The ubiquitous

and classical solution of inbetweening keyframes using splines for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MIG ’18, November 8–10, 2018, Limassol, Cyprus
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6015-9/18/11. . . $15.00

https://doi.org/10.1145/3274247.3274502

each degree of freedom or animation variable (avar) allows for

ample control, but these curves are agnostic with respect to what

is being animated. Stated another way, the motion inbetweening

process is not aware of the type of motion, nor its style or physics.

As a result, this may then require additional keyframes to achieve

a given result.

In this paper, we explore a data-driven method for motion-aware

inbetweening, which can then support sparser keyframes and faster

experimentation. Given a set of target key frames and their asso-

ciated times, our method automatically synthesizes interpolating

frames between keys, yielding an output motion that follows the

movement patterns that it has seen during training, as well as allow-

ing for a degree of extrapolation. An example is shown in Figure 1.

The key component of our method is an autoregressive recurrent

neural network (ARNN) that is conditioned on the target keyframes.

These are trained using a specialized loss function that places ex-

tra importance on the accuracy of the pose predictions made at

the designated keyframe times. Given a set of example motions of

a character to be animated, the ARNN learns the motion charac-

teristics of the character, along with a blending function for key

frame interpolation. As a consequence, motions produced by the

ARNN match the movement characteristics of the character while

further conforming to the art-direction provided by the artist via

the keyframes. Additionally, the flexibility of an RNN model allows

for the support of both tightly-spaced and loosely spaced keyframes.

We train our network on a database of physics-based motion sam-

ples of a planar articulated hopping Luxo character, and generate

novel motions that are choreographed using keyframing.

Figure 1: An inbetweened motion synthesis result from the

learned autoregressive motion model.

The principle contribution of our work is a practical demonstra-

tion of how keyframe-conditioned motion models can be developed

using current learning techniques, and the design of an autore-

gressive network architecture, loss function, and annealed training

process in support of this. The overall style or type of motion fa-

vored by the model is implicitly specified by the training data used.

Once trained, the directly-predictive nature of the model allows

https://doi.org/10.1145/3274247.3274502
https://doi.org/10.1145/3274247.3274502

MIG ’18, November 8–10, 2018, Limassol, Cyprus Xinyi Zhang and Michiel van de Panne

for fast motion synthesis as compared to the iterative optimization

procedures used in trajectory-optimization approaches.

2 RELATEDWORK

There is an abundance of related work that serves as inspiration and

as building blocks for our work, including inbetweening, physics-

based methods, data-driven animation methods, and machine learn-

ing methods as applied to computer animation. Below we note the

most relevant work in each of these areas in turn.

2.1 Hand-drawn In-Betweening

Methods for automatically inbetweening hand-drawn key frames

have a long history, dating back to Burtnyk and Wein [Burtnyk and

Wein 1975]. Kort introduced an automatic system for inbetween-

ing 2D drawings which identifies stroke correspondences between

drawings and then interpolates between the matched strokes [Kort

2002]. Whited et al. [Whited et al. 2010] focus on the case in which

two key frames are very similar in shape. They use a graph-based

representation of strokes to find correspondences, and then per-

form a geometric interpolation to create natural, arc shaped motion

between keys. More recently, Dalstein et al. [Dalstein et al. 2015]

introduced a novel data structure, the Vector Animation Complex,

to enable continuous interpolation in both space and time for 2D

vector drawings. The VAC handles complex changes in drawing

topology and supports a keyframing paradigm similar to that used

by animators. For our work, we focus on the problem of inbe-

tweening for characters that are modeled as articulated rigid-bodys.

Significant advances have recently been made to allow animators to

create fully-coordinated motions using a single stroke or space-time
curve (STC) and optional secondary lines [Guay et al. 2015].

2.2 Physics-based Methods for Animation

Another important class of methods relies on simulation to au-

tomatically generate motions. However, although physics-based

methods excel at producing realistic and plausible motions, they are

inherently difficult to control. This is because the motions are de-

fined by an initial state and the equations of motion, which are then

integrated forward in time. However, keyframes require motions

to reach pose objectives at specific instants of time in the future.

One approach to the control problem for rigid bodies generates

collections of likely trajectories for objects by varying simulation

parameters and leave users to select the most desirable trajectory

out of the possibilities, e.g., [Chenney and Forsyth 2000; Twigg

and James 2007]. Space-time constraint methods [Barbič et al. 2009;

Hildebrandt et al. 2012; Witkin and Kass 1988]] take another ap-

proach, treating animation as a trajectory optimization problem.

These methods can treat the keyframe poses and timing as hard

constraints and are capable of producing smooth and realistic inter-

polating motions. However, these methods are generally complex

to implement, can be problematic to use whenever collisions are in-

volved, and require explicitly-defined objective functions to achieve

desired styles. The recent work of Bai et al. [Bai et al. 2016] combine

interpolation with simulation to enable more expressive animation

of non-physical actions for keyframed 2D cartoon animations. Their

method focuses on animating shape deformations and is agnostic to

the style and context of what is being animated, a drawback shared

by physics-based methods. Our work focuses on the animation of

articulated figures and the desire to achieve context-aware motion

completion.

2.3 Data-driven Motion Synthesis

Techniques to synthesize newmotions from an existingmotion data-

base include motion blending and motion graphs. Motion graphs

organize large datasets of motion clips into a graph structure in

which edges mark transitions between motion segments located

at nodes. New motions can be generated by traversing walks on

the graph, which can follow high-level constraints placed by the

user, e.g., [Kovar et al. 2002]. Such methods cannot generalize be-

yond the space of motions present in the database. To create larger

variations in what an be generated, motion blending may be used.

Motion blending techniques can generate new motions satisfying

high-level control parameters by interpolating between motion

examples, e.g., [Grochow et al. 2004; Kovar and Gleicher 2004; Rose

et al. 1998]. Relatedly, motion edits can also be performed using

motion warping to meet specific offset requirements [Witkin and

Popovic 1995]. The parameterizations of most motion blending

methods do not support precise art-direction.

Subspace methods choose to identify subspace of motions, usu-

ally linear, in which to perform trajectory optimization. The work

of Safonova et al. [Safonova et al. 2004] was among the first to

propose this approach. Min et al. [Min et al. 2009] construct a space-

time parameterized model which enables users to make sequential

edits to the timing or kinematics. Their system models the timing

and kinematic components of the motions separately and fails to

capture spatio-temporal correlations. Additionally, their system is

based on a linear (PCA) analysis of the motions that have been

put into correspondence with each other, whereas our proposed

method builds on an autoregressive predictive model that can in

principle be more flexible and therefore more general. In related

work, Wei et al. [Wei et al. 2011] develop a generative model for

human motion that exploits both physics-based priors and statisti-

cal priors based on GPLVMs. As with [Min et al. 2009], this model

uses a trajectory optimization framework.

2.4 Deep Learning for Motion Synthesis

Recently, researchers have begun to exploit deep learning algo-

rithms for motion synthesis. One such class of methods uses recur-

rent neural networks (RNNs), which can model temporal dependen-

cies between data points. Fragkiadaki et al. [Fragkiadaki et al. 2015]

used an Encoder-Recurrent-Decoder network for motion predic-

tion and mocap data generation. Crnkovic-Friis [Crnkovic-Friis and

Crnkovic-Friis 2016] use an RNN to generate dance choreography

with globally consistent style and composition. However, the above

methods provide no way of exerting control over the generated

motions. Additionally, since RNNs can only generate data points

similar to those seen in the training data set in a forward manner,

without modification, they cannot be used for in-filling. Recent

work by Holden et al. [Holden et al. 2017, 2016] takes a step to-

wards controllable motion generation using deep neural networks.

In one approach [Holden et al. 2016], they construct a manifold

of human motion using a convolutional autoencoder trained on a

motion capture database, and then train another neural network

Data-driven Autocompletion for Keyframe Animation MIG ’18, November 8–10, 2018, Limassol, Cyprus

to map high-level control parameters to motions on the manifold.

In [Holden et al. 2017], the same authors take a more direct ap-

proach for real-time controllable motion generation and train a

phase-functioned neural network to directly map keyboard con-

trols to output motions. Since [Holden et al. 2016] synthesizes entire

motion sequences in parallel using a CNN, their method is better

suited for motion editing, and does not support more precise con-

trol through keyframing. The method proposed in [Holden et al.

2017] generates motion in the forward direction only and requires

the desired global trajectory for every time step. The promise (and

challenge) of developing stable autoregressive models of motion

is outlined in a number of recent papers, e.g., [Holden et al. 2016;

Li et al. 2017]. The early NeuroAnimator work [Grzeszczuk et al.

1998] was one of the first to explore learning control policies for

physics-based animation. Recent methods also demonstrate the

feasibility of reinforcement learning as applied to physics-based

models, e.g., [Peng et al. 2018, 2017] . These do not provide the

flexibility and control of keyframing, however, and they currently

work strictly within the space of physics-based simulations.

3 METHOD OVERVIEW

The overview of our system is represented in Figure 2. First, to

create our dataset for training, we use simulation to generate a set

of jumping motions for our linkage-based Luxo lamp character (§4)

and preprocess the simulation data (§5) to extract sequences of

animation frames along with "virtual" keyframes and timing in-

formation for each sequence. During training, we feed the ARNN

network keyframes of sequences and drive the network to learn to

reproduce the corresponding animation sequence using a custom

loss function (§6,§7). Once the network is trained, users can syn-

thesize new animations by providing the network with a sequence

of input keyframes.

The structure of our ARNN neural network is illustrated in

Figure 6 and described in greater detail later §6. The ARNN is

a neural network composed of a recurrent portion and feedfor-

ward portion. The recurrent portion in conjunction with the the

feedforward portion helps the net learn both the motion character-

istics of the training data keyframe constraints. The ARNN takes

as input a sequence of n key frames X = {X0,X1, ...,Xn }, along
with timing information describing the temporal location of keys,

T = {T0,T1, ...,Tn }, and outputs a final interpolating sequence of

frames Y = {Y0,Y1, ...,Ym } of lengthm = Tn −T0 + 1. Frames are

pose representations, where each component X i
or Y i describes

the scalar value of a degree of freedom of Luxo.

4 THE ANIMATION DATABASE

Our animation database for training consists of hopping motions of

a 2D Luxo character. In this section, we describe our physics-based

method for generating motion samples for Luxo and our procedure

for transforming the motion data into a format suitable for training.

4.1 Physics-based Method for Generating

Animations

In order to efficiently train an expressive network, we need a

sufficiently-sized motion database containing a variety of jumping

motions. Creating such a dataset of jumps by hand would be im-

practical, so we developed a physics-based solution to generate our

motion samples. We build a physics-based model of the Luxo char-

acter in Bullet with actuated joints, and use simulated annealing to

search for control policies that make Luxo hop off the ground.

4.2 The Articulated Lamp Model

Figure 3 shows the mechanical configuration of Luxo which we use

for simulation. The model is composed of 4 links and has 6 degrees

of freedom: the x position of the base link (L1), the y position of

the base link, the orientation of the base link θ1, the joint angle
θ1 between the base link ad the the leg link (L2), the joint angle

θ2 between the leg link ad the the neck link (L3), and the joint

angle θ3 at the lamp head (L4). Despite its simple construction, the

primitive Luxo is expressive and capable of a rich range of move-

ments. To drive the motion of the character, we equip each joint

with a proportional-derivative (PD) controller. The PD controller

computes an actuating torque τ that moves the link towards a given

target pose θd according to τ = kp (θd − θ) − kdω where θ and ω
denote the current link position and velocity, and k and ω are stiff-

ness and damping parameters for the controller. By finding suitable

pose targets for the PD controllers over time, we can drive the lamp

to jump. However, searching for admissible control policies can

be intractable due to the large space of possible solutions. Thus,

we restrict the policy search space by developing a simple control

scheme for hops which makes the optimization problem easier.

X
Y

θ1
L1

θ2

A1

L2

θ3

A2

L3

A3

L4

θ4

Figure 3: The mechanical configuration of Luxo

4.3 Control Scheme for Jumping

Our control scheme for Luxo, shown in Figure 4, is based on the

periodic controller synthesis technique presented in [van de Panne

et al. 1994]. It consists of a simple finite state machine (FSM) with

a cyclic sequence of timed state transitions.The FSM behavior is

governed by a set of transition duration parameters, and the target

poses for each state, which then dictate the amount of torque applied

to Luxo’s joints, via PD controllers, when in a given state.

Given this control scheme, we can find parameter values for the

transition durations and pose targets that propel Luxo forward in a

potentially rich variety of hop styles. To this end, we use simulated

annealing, which finds good motions by iteratively searching the

parameter space using forward simulation.

MIG ’18, November 8–10, 2018, Limassol, Cyprus Xinyi Zhang and Michiel van de Panne

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ba
se
 y
 p
os

In-between Frames
Keys

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ba
se
 x
 p
os

−0.8

−0.6

−0.4

−0.2

0.0

Ba
se
 o
rie

nt
at
io
n

−0.4

−0.2

0.0

0.2

0.4

0.6

Le
g
lin

k
an

gl
e

0.5

1.0

1.5

2.0

Ne
ck
 li
nk

 a
ng

le

0 100 200 300 400 500 600 700
Time

−2.0

−1.5

−1.0

−0.5

0.0

0.5

He
ad

 li
nk

 a
ng

le

1. Create Animation Database 2. Train Neural Network 3. Generate Motion at Runtime

Figure 2: Overview of our system. We create our database of animations using simulation and extract keyframed animation

data for training. Next, we train our ARNN neural network using back-propagation such that we reproduce the full animation

sequence from input keyframes. Finally, the network can be used at run-time to generate believable character motions from

new keyframe inputs.

Figure 4: Pose control graph for jumping Luxo. The control

graph is parameterized by the target poses for the 4 states

and the transition durations t1,t2,t3,t4.

4.4 Finding Motions with Simulated Annealing

Algorithm 1. contains the pseudocode for the simulated annealing

algorithm. The algorithm starts with an initial guess for the transi-

tion durations and target poses. At each step, the algorithm seeks

to improve upon the current best guess s for the control parameters

by selecting a candidate solution s ′ and comparing the quality, or

energy of the resulting motions. If the s ′ produces a better jump

with lower energy, the algorithm updates the current best guess.

Otherwise, the algorithm probabilistically decides whether to keep

the current guess according to a temperature parameter, T . At the
beginning, T is set to be high to encourage more exploration of un-

favorable configurations, and slowly tapered off until only a strictly

better solutions are accepted.

Algorithm 1 Simulated Annealing

1: function SimulatedAnnealing()

2: T ← Tmax
3: K ← Kmax
4: s ← INIT()

5: while K > Kmax do

6: s ′ ← NEIGHBOUR(s)
7: ∆E ← E(s ′) − E(s)
8: if random() < ACCEPT(T ,∆E) then
9: s ← s ′

10: end if

11: T ← COOLING(K)
12: end while

13: return s
14: end function

4.4.1 The Energy Function. The quality of motions is measured

by the energy function

E(s) = −(1.0 −we)D −weHmax . (1)

This function is a weighted sum of the total distance D and max-

imum height Hmax reached by Luxo after cycling through the pose

control graph three times using a particular policy, corresponding

to three hops. To obtain a greater variety of hops, we select a ran-

dom value forwe between 0.0 and 1.0 for each run of the simulated

annealing algorithm and biasing the search towards different trajec-

tories. After Kmax iterations of search, we record the trajectory of

the best jump found if it is satisfactory, i.e reaches a certain distance

and max height, and contains three hops.

Data-driven Autocompletion for Keyframe Animation MIG ’18, November 8–10, 2018, Limassol, Cyprus

4.4.2 Picking Neighboring Candidate Solutions s ′. At each it-

eration of the simulated annealing algorithm, we choose a new

candidate solution by slightly perturbing the current best state s .
We select one of the 4 transition durations to perturb by 7 ms and

one joint angle for each of the 4 target poses to perturb by 0.5

radians.

4.4.3 Temperature And Acceptance Probability. The probability
of transitioning from the current state s to the new candidate state

s ′ for each iteration of search is specified by the following function:

ACCEPT(T ,E(s),E(s ′)) ={
1, if E(s ′) < E(s ′)

exp(
−(E(s ′)−E(s))

T), otherwise

(2)

Thus, we transition to the new candidate state if it has strictly

lower energy than the current state s ′. Otherwise, we decide proba-
bilistically whether we should explore the candidate state. From (2),

we see that this probability is higher for states with lower energy

and for higher temperature values T . As T cools down to 0, the

algorithm increasingly favors transitions that move towards lower

energy states.

4.4.4 Implementation Details. We used the Bullet physics en-

gine [Bai and Coumans 2017] to control and simulate the Luxo

character. We use a temperature cooling schedule of T (K) = 2 ∗

0.999307K and search for Kmax = 1000 iterations for our imple-

mentation of simulated annealing. After around 10000 total runs

of the algorithm, we obtained 300 different successful examples of

repeatable hops for our final motion dataset. For each type we use

three successive hops for training.

5 DATA PREPROCESSING

The raw simulated data generated from the above procedure con-

sists of densely sampled pose information for jumps and must be

preprocessed into a suitable format that includes plausible keyframes

for training. For hops, we use the liftoff pose, the landing pose, and

any pose with Luxo in the air as the 3 key poses for each jump

action. To create a larger variety of motions in the training set, we

also randomly choose to delete 0-2 arbitrary keys from each jump

sequence every time it is fed into the network during training, so

the actual training data set is much larger.

In order to extract the above key poses along with in-between

frames, we first identify events corresponding to jump liftoffs and

landings in the raw data. Once the individual jump segments are lo-

cated, we evenly sample each jump segment, beginning at the liftoff

point and ending at the landing point, to obtain 25 frames for each

hop. We then take one of those 25 frames with Luxo in the air to

be another keyframe, along with its timing relative to the previous

keyframe. Although individual jumps may have different durations,

we choose to work with the relative timing of poses within jumps

rather than the absolute timing of poses for our task, and thus sam-

ple evenly within each hop segment. In the pause between landings

and liftoffs, we take another 6 samples in-between frames to be

included in the final sequence. The fully processed data consists of a

list of key framesX = {X0,X1, ...,Xn } and their temporal locations,

T = {T0,T1, ...,Tn }, and the full sequence including key frames and

in-between frames Y = {Y0,Y1, ...,Ym }, where m = Tn − T0 + 1.

Figure 5 shows a preprocessed jump sequence from our training

set.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ba
se

 y
 p

os

In-between Frames
Keys

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ba
se

 x
 p

os

−0.8

−0.6

−0.4

−0.2

0.0

Ba
se

 o
rie

nt
at

io
n

−0.4

−0.2

0.0

0.2

0.4

0.6

Le
g

lin
k

an
gl

e

0.5

1.0

1.5

2.0

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500 600 700
Time

−2.0

−1.5

−1.0

−0.5

0.0

0.5

He
ad

 li
nk

 a
ng

le

Figure 5: Preprocessed training data with extracted

keyframes for each degree of freedom. There are 25

frames of animation for each full jump, punctuated by 6

frames of still transition between jumps. The bold open

circles indicate extracted key frames.

6 ARNN NETWORK

GRU Layer

GRU Layer

Recurrent Network

Ht−1

Ht

FC Layer

FC Layer Output Layer

Feedforward Network

residualt−1

Y ′t−1 XK XK+1

+

Pose Feature Preprocessing

t−TK

TK+1−TK

Y ′t

Figure 6: Architecture of the ARNN. The ARNN is composed

of a recurrent portion and a feed-forward portion.

Given a sequence of key poses X and timing information T , the

task of the ARNN is to progressively predict the full sequence of

frames Y that interpolate between keys. The network makes its

predictions sequentially, making one frame prediction at a time. To

make a pose prediction for a frame t , temporally located in the in-

terval between key poses XK and XK+1, the network takes as input

the keys XK and XK+1, the previous predicted pose Y
′
t−1, the previ-

ous recurrent hidden state Ht−1, and the relative temporal location

MIG ’18, November 8–10, 2018, Limassol, Cyprus Xinyi Zhang and Michiel van de Panne

of t , which is defined according to tr el =
t−TK

TK+1−TK , where TK and

TK+1 are the temporal locations of XK and XK+1 respectively. Note

that we use absolute positions for the x and y locations of Luxo’s

base, rather than using the relative ∆X and ∆y translations with

respect to the base position in the previous frame. This does not

yield the desired invariance with respect to horizontal or vertical

positions. However, our experiments when using absolute positions

produced smoother and more desirable results than when using

relative positions.

We now further describe the details of the ARNN network struc-

ture, which is composed of a recurrent and a feedforward portion,

and then discuss the loss function and procedure we use to train

the network to accomplish our objectives.

In the first stage of prediction, the network takes in all the rele-

vant inputs including the previous predicted frame Y ′t−1, the previ-
ous hidden state Ht−1, the preceding key frame XK , the next key

frame XK+1, and the relative temporal location of t, tr el to produce
a new hidden state Ht .

Y ′t−1,XK , andXK+1 are first individually preprocessed by a feed-

forward network composed of two linear layers as a pose feature

extraction step before they are concatenated along with tr el to form
the full input feature vector at time t , xt . This concatenated feature
vector along with the hidden state Ht−1 is fed into the recurrent

portion of the network, composed of two layers of GRUs [Cho et al.

2014]. We use SELU activations [Klambauer et al. 2017] between

intermediate outputs. The GRU cells have 100 hidden units each,

with architectures described by the following equations:

rt = σ (Wirxt + bir +WhrH(t−1) + bhr)

zt = σ (Wizxt + biz +WhzH(t−1) + bhz)

nt = tanh(Winxt + bin + rt (WhnH(t−1) + bhn))

Ht = (1 − zt)nt + ztH(t−1)

(3)

For the second stage of the prediction, the network takes the hid-

den output from the previous stage Ht as input into a feedforward

network composed of two linear layers containing 10 hidden units

each. This output from the feedforward network is then mapped to

a 6 dimensional residual pose vector which is added to the previous

pose prediction Y ′t−1 to produce the final output Y ′t .
The recurrent and feedforward portions of the network work to-

gether to accumulate knowledge about keyframe constraints while

learning to make predictions that are compatible with the history

of observed outputs. This dual-network structure arose from ex-

periments showing that a RNN only network/a feedforward only

network is insufficient for meeting the competing requirements of

self-consistency with the motion history and consistency with the

keyframe constraints. Our experiments with other architectures

are detailed in §9.

7 TRAINING

7.1 Loss Function

During the training process, we use backpropagation to optimize

the weights of the ARNN network so that the net can reproduce

the full sequence of frames Y given the input keyframe information

X and T . Additionally, to drive the network to learn to interpolate

between keyframe constraints, we use a specialized loss function,

LARNN = 100ω
n∑

K=1
(XK − Y

′
TK)

2 +MSE(Y , Ŷ)

MSE(W ,Z) =
1

N

N∑
i=1
(Wi − Zi)

2.

(4)

This custom loss function is composed of two parts - the frame

prediction loss and the key loss. The frame prediction loss,MSE(Y ,Y ′),
is the vanilla mean-squared error loss which calculates the cumula-

tive pose error between poses in the final predicted sequence and

the ground truth sequence. This loss helps the network encode

movement information about the character during training as it

is coerced to reproduce the original motion samples. By itself this

frame loss is insufficient for our in-betweening task because it fails

to model the influence of keyframe constraints on the final motion

sequence. In order to be consistent with the keyframing paradigm,

in-between frames generated by the network should be informed

by the art-direction of the input keys and interpolate between them.

Consequently, we introduce an additional loss term to the total

loss - the key loss,

∑n
K=1(XK − Y ′tK)

2
to penalize discrepancies

between predicted and ground truth keys, forcing the network to

pay attention to the input keyframe constraints. Amplifying the

weight of this loss term simulates placing a hard constraint on the

network to always produce frame predictions that hit the original

input keyframes. In experiments, we found that a weight of 100

was sufficient. However, because the network must incorporate the

contrasting demands of learning both the motion pattern of the

data as well as keyframe interpolation during training, setting the

weight of the key loss to 100 in the beginning is not optimal. Con-

sequently, we introduce ω, the Key Importance Weight, which we

anneal during the training process as part of a curriculum learning

method [Bengio et al. 2009] to help the network learn better during

training.

7.2 Curriculum Learning

In our curriculum learning method, we set ω to be 0 in the be-

ginning stages of training and slowly increase ω during the latter

half of the training process. Thus, for the first part of the training

process the network primarily focuses on learning the motion char-

acteristics of the data. Once the first stage of learning has stabilized,

we increase ω so the network can begin to consider the keyframe

constraints.During the first phase of the training, we apply sched-

uled sampling [Bengio et al. 2015] as another curriculum learning

regime to help the recurrent portion of the net learn movement

patterns. In this scheme, we feed the recurrent network the ground

truth input for the previous predicted poseYt−1 instead of the recur-
rent prediction Y ′t−1 at the start of training, and gradually change

the training process to fully use generated predictions Y ′t−1, which
corresponds to the inference situation at test time. The probability

of using the ground truth input at each training epoch is controlled

by the teacher forcing ratio which is annealing using an inverse

sigmoid schedule shown by the green curve of Figure 7. Once the

learning has stabilized, we gradually increase ω and push the net-

work to learn the interpolation aspect of the prediction until the

network is able to successfully make predictions for the training

Data-driven Autocompletion for Keyframe Animation MIG ’18, November 8–10, 2018, Limassol, Cyprus

samples under the new loss function. The sigmoid decay schedule

for ω is shown by the blue curve in Figure 7.

0 20000 40000 60000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Curriculum learning schedules used to train the

ARNN network during 60000 training epochs: teacher forc-

ing ratio decay (decreasing; green) and key importance

weight ω annealing (increasing; blue)

Without curriculum learning, the network has a harder time

learning during the training process and we observe a large error

spike in the learning curve at the beginning of training. In contrast,

using the above curriculum learning method produces a smoother

learning curve and superior results. Table 1 shows the quantitative

loss achieved on the test set for the ARNN trained with curriculum

learning and without curriculum learning.

Table 1: The ARNN trained with vs without curriculum on

a smaller sample set of 80 jump sequences for 20000 epochs.

Curriculum learning results lower loss values.

Training Key Loss Frame Loss Total Loss

With ω annealing 0.00100 0.00395 0.00496

No ω annealing 0.00120 0.00670 0.00790

7.3 Training Details

The final model we used to produce motions in the results section is

trained on 240 jump sequences, with 3 jumps per sequence. As noted

above, from each jump sequencewe obtainmanymore sequences by

randomly removing 0, 1, or 2 arbitrary keys from the sequence each

time it is fed into the network. The model is optimized for 60000

epochs using Adam [Kingma and Ba 2014] with an initial learning

rate of 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10
−8

and regularized

using dropout [Srivastava et al. 2014] with probabilities 0.9 and 0.95

for the first and second GRU layers in the recurrent portion of the

network and probabilities 0.8 and 0.9 for the first and second linear

layers in the feedforward portion. The current training process

takes 130 hours on an NVIDIA GTX 1080 GPU, although we expect

that significant further optimizations are possible.

8 RESULTS

We demonstrate the autocompletion method by choreographing

novel jumping motions using our system. When given keyframe

constraints that are similar to those in the training set, our system

reproduces the motions accurately. For keyframe constraints that

deviate from those seen in the training dataset, our system general-

izes, synthesizing smooth motions even with keyframe inputs that

are physically unfeasible. Results are best seen in the accompanying

video.

We first test our system’s ability to reproduce motions from the

test dataset, i.e., motions that are excluded from the training data,

based on keyframes derived from those motions. The animation

variables (AVARs) for two synthesized jumps from the test set are

plotted in Figure 8. More motions can be seen in the video. The

trajectories generated using our system follow the original motions

closely, and accurately track almost all of the keyframe AVARs.

The motions output by our system are slightly smoother than the

original jumps, possibly due to predictions regressing to an average

or the residual nature of the network predictions.

0.0

0.5

1.0

1.5

Ba
se

 y
 p

os

0

2

4

6

8

10

Ba
se

 x
 p

os

0.6

0.4

0.2

0.0

Ba
se

 O
rie

nt
at

io
n

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Le
g

lin
k

an
gl

e
0.5

1.0

1.5

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500 600
Time

1.5

1.0

0.5

0.0

0.5

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

0.0

0.2

0.4

0.6

0.8

1.0

Ba
se

 y
 p

os

0

2

4

6

8

10

Ba
se

 x
 p

os

0.8

0.6

0.4

0.2

0.0

Ba
se

 O
rie

nt
at

io
n

0.2

0.0

0.2

0.4

0.6

Le
g

lin
k

an
gl

e

0.5

1.0

1.5

2.0

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500 600
Time

1.0

0.5

0.0

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

Figure 8: Motion reconstruction of two jumps taken from

the test set. AVARs from the original simulated motion tra-

jectory from the test set is plotted in light green. Extracted

keyframes are circled in dark green. The resulting motion

generated using our network is displayed in dark blue.

We next demonstrate generalization by applying edits of increas-

ing amplitudes to motions in the test set. Our system produces

MIG ’18, November 8–10, 2018, Limassol, Cyprus Xinyi Zhang and Michiel van de Panne

plausible interpolated motions as we modify keyframes to demand

motions that are increasingly non-physical and divergent from the

training sets. Figure 9 shows a sequence of height edits to a jump

taken from the test set. As we decrease or increase the height of

the keyframe at the apex, the generated motion follows the move-

ments of the original jump and tracks the new keyframe constraints

with a smooth trajectory. Next, we modify the timing of another

sequence from the test set. Timing edits are shown in Figure 10.

Here, our system generates reasonable results but they do not track

the keyframe constraints as precisely; in the second figure the new

timing requires that Luxo cover the first portion of the jump in

half the original amount of time. This constraint deviates far from

motions of the training set, and motion generated by the network

is biased toward a more physically plausible result.

(a) Jump apex keyframed at 0.7x original height

(b) Jump apex keyframed at 1.5x original height

(c) Jump apex keyframes at 1.8x original height

Figure 9: Height edits. Original extracted keyframes are

shown in green. Generated motions track new apex

keyframes that have heights of 0.7× (top), 1.5× (middle), and

1.8× (bottom) the original base height.

We next show that in the absence of keyframes, i.e, with sparse

key inputs, the network is still able to output believable trajecto-

ries, demonstrating that the predictions output by the network are

style-and-physics aware. In Figure 11, we have removed the apex

keyframe and the landing keyframe of the second jump in the se-

quence. Our network creates smooth jump trajectories following

the movement characteristics of the Luxo character despite the

lack of information. This enabled by the memory embodied in the

recurrent model, which allows the network to build an internal

motion model of the character to make rich predictions.

The non-linearity and complexity of the motions as output by the

network can also be see in Figure 12. Figure 12 shows the changes

of individual degrees of freedom resulting from an edit to the height

of the keyframe, as seen in the top graph. If this edit were made

with a simple motion warping model, applied individually to each

degree of freedom, then we would expect to see an offset in the

top graph that is slowly blended in and then blended out. Indeed,

for the base position, the motion deformation follows a profile of

approximately that nature. However, the curves for the remaining

degrees of freedom are also impacted by the edit, revealing the

coupled nature of the motion synthesis model.

A number of results are further demonstrated by randomly sam-

pling, mixing, and perturbing keyframes from the test dataset, as

shown in Figure 13.

(a) Prediction using original keyframes extracted from a test jump.

(b) Prediction with 2x faster jump takeoffs.

(c) Prediction with 1.5x slower jump takeoffs.

Figure 10: Timing edits. Original extracted keyframes are

shown in green. The predicted pose at key locations

are shown in dark gray. (top) Prediction using original

keyframes, with keyframe numbers n=(13,46,79). (middle)

Keyed for faster takeoff, using n=(7,40,73). (bottom) Keyed

for slower takeoff, using n=(19,52,85).

Figure 11: Motion generation with sparse keyframes. The

top and landing keyframes for the above jumps have been

removed from the input.

Data-driven Autocompletion for Keyframe Animation MIG ’18, November 8–10, 2018, Limassol, Cyprus

0

1

2

3

4

Ba
se

 y
 p

os

Ground Truth
Keys
Prediction
Deformation

0

1

2

3

4

Ba
se

 x
 p

os

−0.25

0.00

0.25

0.50

0.75

1.00

Ba
se

 O
rie

nt
at

io
n

−0.75

−0.50

−0.25

0.00

0.25

0.50

Le
g

lin
k

an
gl

e

0.0

0.5

1.0

1.5

2.0

Ne
ck

 li
nk

 a
ng

le

0 25 50 75 100 125 150 175 200
Time

−1.5

−1.0

−0.5

0.0

0.5

He
ad

 li
nk

 a
ng

le

Figure 12: Coupled nature of the motion synthesis model.

Edits to a single degree of freedom (top graph, base y posi-

tion) leads to different warping functions for the other de-

grees of freedom.

Figure 13: Motion synthesis from novel keyframe inputs.

We created new keyframes from randomly sampled and per-

turbed keys taken from the test set (green). The output mo-

tion from the network is shown with predicted poses at in-

put key locations shown in dark gray.

9 COMPARISON TO OTHER

ARCHITECTURES

We evaluated other network architectures for the task of keyframe

auto-completion including a keyframe conditioned feed-forward

network with no memory and a segregated network which sepa-

rates the motion pattern and interpolation portions of the task. The

architecture of the segregated network is show in Figure 14. This

produces a pure RNN prediction with no keyframe conditioning

that is then "corrected" with a residual produced by a keyframe con-

ditioned feed-forward network. The number of layers and hidden

units for all the networks are adjusted to produce a fair comparison

and all networks are trained on 80 sample jump sequences until

convergence.

Table 2: The test losses from other network architectures vs

the ARNN. The ARNN produces the best overall losses.

Architecture Key Loss Frame Loss Total Loss

ARNN 0.00100 0.00396 0.00496

No Memory Net 0.00018 0.00817 0.00835

Segregated Net 0.00124 0.01609 0.01891

Quantitatively, the ARNN produces the lowest total loss out of

the three architectures (Table 2) and the segregated net produces the

worst loss. The ARNN also produces the best results qualitatively,

while the feed-forward only network produces the least-desirable

results due to motion discontinuities. Figure 15 shows the failure

case when a network has no memory component. Although the

feed-forward only network generates interpolating inbetweens that

are consistent with one another locally within individual motion

segments, globally across multiple keys, the inbetweens are not

coordinated, leading to motion discontinuities. This most evident

in the predictions for the base x AVAR. The segregated net and

the ARNN both have memory, which allows these nets to produce

smoother predictions with global consistency. Ultimately however,

the combined memory and keyframe conditioning structure of

the ARNN produces better results than the segregated net which

separates the predictions.

10 CONCLUSIONS

In this paper, we explored a conditional autoregressive method

for motion-aware keyframe completion. Our method synthesizes

motions adhering to the art-direction of input keyframes while

following the style of samples from the training data, combining

intelligent automation with flexible controllability to support and

accelerate the animation process. In our examples, the training

data comes from physics-based simulations, and the model pro-

duces plausible reconstructions when given physically-plausible

keyframes. For motions that are non-physical, our model is capable

of generalizing to produce smooth motions that adapt to the given

keyframe constraints.

The construction of autoregressive models allows for a single

model to be learned for a large variety of character movements.

Endowed with memory, our network can learn an internal model

of the movement patterns of the character and use this knowledge

to intelligently extrapolate frames when in the absence of from

MIG ’18, November 8–10, 2018, Limassol, Cyprus Xinyi Zhang and Michiel van de Panne

keyframe guidance. The recurrent nature of our model allows it

to operate in a fashion that is more akin to a simulation, i.e., it

is making forward predictions based on a current state. This has

advantages, i.e., simplicity and usability in online situations, and

disadvantages, e.g., lack of consideration of more than one keyframe

in advance, as compared to motion trajectory optimization meth-

ods. As noted in previous work, the construction of predictive

autoregressive models can be challenging, and thus the proposed

conditional model is a further proof of feasibility for this class of

model and its applications.

Trajectory optimization methods are different in nature to our

work, as they require require an explicit model of the physics and

the motion style objectives. In contrast, autoregressive models such

as ours make use of a data-driven implicit model of the dynamics

that encompasses themotion characteristics of the examplemotions.

These differences make a meaningful direct comparison difficult.

The implicit modeling embodied by the data-driven approach offers

convenience and simplicity, although this comes at the expense of

needing a sufficient number (and coverage) of motion examples.

Our work also shares some of the limitations of trajectory-based

optimization methods, such as potential difficulties in dealing with

collisions. However, if a physics-based solution is realizable with

the given keyframe constraints, the iterative nature of a trajectory

optimization method may in practice yield movements with a lower

residual physics error, if any.

The method we present, together with its evaluation, still has

numerous limitations. The method is dependent on the generation

of an appropriate database ofmotions to use for training. This can be

a complex and challenging problem by itself, although we believe

that a vary of retargeting and data augmentation methods can

potentially help here. For example, we wish to further improve the

motion coverage of our example data by collecting physics-based

motions in reduced gravity environments. If target keyframes go

well beyond what was seen in the training set, the motion quality

may suffer. While the current results represents an initial validation

of our approach, we wish to apply our model to more complex

motions and characters; it may or may not scale to these cases. A

last general problem with the type of learning method we employ

is that of reversion to the mean when there are multiple valid

possibilities for reaching a given keyframe. In future work, we wish

to develop methods that can sample from trajectory distributions.

Currently a primary extrapolation artifact is an apparent loss of

motion continuity in the vicinity of the keyframes, which can hap-

pen when the model generates in-betweens that fail to interpolate

the keyframes closely. This artifact could likely be ameliorated with

additional training that further weights the frame prediction loss

after ω has been annealed. This could help the network consolidate

knowledge and produce smoother results. Discontinuities in mo-

tions caused by collision impulses are also not fully resolved in our

method. These are modeled implicitly in the learned model and the

resulting motion quality suffers slightly as a result. An alternative

approach would be to add explicit structure to the learned model

in support of modeling collision events. Lastly, the current model

we have developed does not provide partial keyframe control; the

full set of AVAR values for the character must be specified per

keyframe. This is in part due to the nature of the artificial training

data set we’ve created for this paper, which does not include partial

keyframes. We would like to add support for partial keyframing in

the future and test the applicability of our system for production

use on real animation data sets.

REFERENCES

Yunfei Bai and Erwin Coumans. 2016-2017. a python module for physics simulation in

robotics, games and machine learning. http://pybullet.org/.

Yunfei Bai, Danny M. Kaufman, C. Karen Liu, and Jovan Popović. 2016. Artist-directed

Dynamics for 2D Animation. ACM Trans. Graph. 35, 4, Article 145 (July 2016),

10 pages. https://doi.org/10.1145/2897824.2925884

Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable Object Animation

Using Reduced Optimal Control. In ACM SIGGRAPH 2009 Papers (SIGGRAPH ’09).
ACM, New York, NY, USA, Article 53, 9 pages. https://doi.org/10.1145/1576246.

1531359

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled

Sampling for Sequence Prediction with Recurrent Neural Networks. In Proceedings
of the 28th International Conference on Neural Information Processing Systems -
Volume 1 (NIPS’15). MIT Press, Cambridge, MA, USA, 1171–1179. http://dl.acm.

org/citation.cfm?id=2969239.2969370

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Cur-

riculum Learning. In Proceedings of the 26th Annual International Conference on
Machine Learning (ICML ’09). ACM, New York, NY, USA, 41–48. https://doi.org/10.

1145/1553374.1553380

Nestor Burtnyk and Marceli Wein. 1975. Computer animation of free form images. In

ACM SIGGRAPH Computer Graphics, Vol. 9. ACM, 78–80.

Stephen Chenney and D. A. Forsyth. 2000. Sampling Plausible Solutions to Multi-body

Constraint Problems. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’00). ACM Press/Addison-Wesley

Publishing Co., New York, NY, USA, 219–228. https://doi.org/10.1145/344779.

344882

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014.

On the Properties of Neural Machine Translation: Encoder-Decoder Approaches.

CoRR abs/1409.1259 (2014). arXiv:1409.1259 http://arxiv.org/abs/1409.1259

Luka Crnkovic-Friis and Louise Crnkovic-Friis. 2016. Generative Choreography using

Deep Learning. CoRR abs/1605.06921 (2016). http://arxiv.org/abs/1605.06921

Boris Dalstein, Rémi Ronfard, and Michiel van de Panne. 2015. Vector Graphics

Animation with Time-varying Topology. ACM Trans. Graph. 34, 4, Article 145 (July
2015), 12 pages. https://doi.org/10.1145/2766913

Katerina Fragkiadaki, Sergey Levine, and Jitendra Malik. 2015. Recurrent Network

Models for Kinematic Tracking. CoRR abs/1508.00271 (2015). http://arxiv.org/abs/

1508.00271

Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran Popović. 2004. Style-

based Inverse Kinematics. ACM Trans. Graph. 23, 3 (Aug. 2004), 522–531. https:

//doi.org/10.1145/1015706.1015755

Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. 1998. Neuroanimator:

Fast neural network emulation and control of physics-based models. In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques. ACM,

9–20.

Martin Guay, Rémi Ronfard, Michael Gleicher, and Marie-Paule Cani. 2015. Space-time

sketching of character animation. ACM Transactions on Graphics (TOG) 34, 4 (2015),
118.

Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier.

2012. Interactive Spacetime Control of Deformable Objects. ACM Trans. Graph. 31,
4, Article 71 (July 2012), 8 pages. https://doi.org/10.1145/2185520.2185567

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned Neural Networks

for Character Control. ACM Trans. Graph. 36, 4, Article 42 (July 2017), 13 pages.

https://doi.org/10.1145/3072959.3073663

Daniel Holden, Jun Saito, and Taku Komura. 2016. A Deep Learning Framework for

Character Motion Synthesis and Editing. ACM Trans. Graph. 35, 4, Article 138 (July
2016), 11 pages. https://doi.org/10.1145/2897824.2925975

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.

CoRR abs/1412.6980 (2014). arXiv:1412.6980 http://arxiv.org/abs/1412.6980

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. 2017.

Self-Normalizing Neural Networks. CoRR abs/1706.02515 (2017). arXiv:1706.02515

http://arxiv.org/abs/1706.02515

Alexander Kort. 2002. Computer Aided Inbetweening. In Proceedings of the 2Nd
International Symposium on Non-photorealistic Animation and Rendering (NPAR ’02).
ACM, New York, NY, USA, 125–132. https://doi.org/10.1145/508530.508552

Lucas Kovar and Michael Gleicher. 2004. Automated Extraction and Parameterization

of Motions in Large Data Sets. ACM Trans. Graph. 23, 3 (Aug. 2004), 559–568.

https://doi.org/10.1145/1015706.1015760

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion Graphs. ACM Trans.
Graph. 21, 3 (July 2002), 473–482. https://doi.org/10.1145/566654.566605

Zimo Li, Yi Zhou, Shuangjiu Xiao, Chong He, and Hao Li. 2017. Auto-Conditioned

LSTM Network for Extended Complex Human Motion Synthesis. arXiv preprint
arXiv:1707.05363 (2017).

https://doi.org/10.1145/2897824.2925884
https://doi.org/10.1145/1576246.1531359
https://doi.org/10.1145/1576246.1531359
http://dl.acm.org/citation.cfm?id=2969239.2969370
http://dl.acm.org/citation.cfm?id=2969239.2969370
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/344779.344882
https://doi.org/10.1145/344779.344882
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1605.06921
https://doi.org/10.1145/2766913
http://arxiv.org/abs/1508.00271
http://arxiv.org/abs/1508.00271
https://doi.org/10.1145/1015706.1015755
https://doi.org/10.1145/1015706.1015755
https://doi.org/10.1145/2185520.2185567
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/2897824.2925975
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1706.02515
https://doi.org/10.1145/508530.508552
https://doi.org/10.1145/1015706.1015760
https://doi.org/10.1145/566654.566605

Data-driven Autocompletion for Keyframe Animation MIG ’18, November 8–10, 2018, Limassol, Cyprus

JianyuanMin, Yen-Lin Chen, and Jinxiang Chai. 2009. Interactive Generation of Human

Animation with Deformable Motion Models. ACM Trans. Graph. 29, 1, Article 9
(Dec. 2009), 12 pages. https://doi.org/10.1145/1640443.1640452

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018. Deep-

Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character

Skills. ACM Transactions on Graphics (Proc. SIGGRAPH 2018) 37, 4 (2018).
Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. 2017. DeepLoco:

Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Transactions on Graphics (Proc. SIGGRAPH 2017) 36, 4 (2017).

Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. 1998. Verbs and Adverbs:

Multidimensional Motion Interpolation. IEEE Comput. Graph. Appl. 18, 5 (Sept.

1998), 32–40. https://doi.org/10.1109/38.708559

Alla Safonova, Jessica K Hodgins, and Nancy S Pollard. 2004. Synthesizing physi-

cally realistic human motion in low-dimensional, behavior-specific spaces. ACM
Transactions on Graphics (ToG) 23, 3 (2004), 514–521.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 1929–1958. http://dl.acm.org/

citation.cfm?id=2627435.2670313

Christopher D. Twigg and Doug L. James. 2007. Many-worlds Browsing for Control of

Multibody Dynamics. In ACM SIGGRAPH 2007 Papers (SIGGRAPH ’07). ACM, New

York, NY, USA, Article 14. https://doi.org/10.1145/1275808.1276395

Michiel van de Panne, Ryan Kim, and Eugene Flume. 1994. Virtual Wind-up Toys for

Animation. In Proceedings of Graphics Interface ’94. 208–215.
Xiaolin Wei, Jianyuan Min, and Jinxiang Chai. 2011. Physically valid statistical models

for human motion generation. ACM Transactions on Graphics (TOG) 30, 3 (2011),
19.

B. Whited, G. Noris, M. Simmons, R. Sumner, M. Gross, and J. Rossignac. 2010. Be-

tweenIT: An Interactive Tool for Tight Inbetweening. Comput. Graphics Forum
(Proc. Eurographics) 29, 2 (2010), 605–614.

Andrew Witkin and Michael Kass. 1988. Spacetime Constraints. In Proceedings of the
15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’88). ACM, New York, NY, USA, 159–168. https://doi.org/10.1145/54852.378507

Andrew Witkin and Zoran Popovic. 1995. Motion warping. In Proceedings of the 22nd
annual conference on Computer graphics and interactive techniques. ACM, 105–108.

A APPENDIX A

Recurrent Net

Y ′t−1 Ht−1

Recurrent residualt−1+

HtLinear Map

Recurrent Prediction Ŷt

Motion Pattern Network

FeedForward Net

t−tK
tK+1−tK XK XK+1

FeedForward residualt−1

+

Final Prediction Y ′
t

Interpolation Network

Figure 14: Architecture of the segregated network which

combines a RNN only prediction produced by the Motion

Pattern Network, with a keyframe conditioned "correction"

produced by a feed-forward Interpolation Network.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ba
se

 y
 p

os

0

2

4

6

Ba
se

 x
 p

os

0.5

0.4

0.3

0.2

0.1

0.0

Ba
se

 O
rie

nt
at

io
n

0.4

0.2

0.0

0.2

Le
g

lin
k

an
gl

e

0.50

0.75

1.00

1.25

1.50

1.75

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

(a)

0.00

0.25

0.50

0.75

1.00

1.25

Ba
se

 y
 p

os

0

2

4

6

Ba
se

 x
 p

os

0.5

0.4

0.3

0.2

0.1

0.0

Ba
se

 O
rie

nt
at

io
n

0.4

0.2

0.0

0.2

Le
g

lin
k

an
gl

e

0.50

0.75

1.00

1.25

1.50

1.75

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Ba
se

 y
 p

os

0

2

4

6

Ba
se

 x
 p

os

0.5

0.4

0.3

0.2

0.1

0.0

Ba
se

 O
rie

nt
at

io
n

0.4

0.2

0.0

0.2

0.4

Le
g

lin
k

an
gl

e

0.50

0.75

1.00

1.25

1.50

1.75

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

(c)

Figure 15: Qualitative comparison between the no memory

net (a), segregated net (b), and the ARNN (c). The ARNN and

segregated net produce smoothermotions at key transitions

with the use of memory.

https://doi.org/10.1145/1640443.1640452
https://doi.org/10.1109/38.708559
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
https://doi.org/10.1145/1275808.1276395
https://doi.org/10.1145/54852.378507

	Abstract
	1 Introduction
	2 Related Work
	2.1 Hand-drawn In-Betweening
	2.2 Physics-based Methods for Animation
	2.3 Data-driven Motion Synthesis
	2.4 Deep Learning for Motion Synthesis

	3 Method Overview
	4 The Animation Database
	4.1 Physics-based Method for Generating Animations
	4.2 The Articulated Lamp Model
	4.3 Control Scheme for Jumping
	4.4 Finding Motions with Simulated Annealing

	5 Data Preprocessing
	6 ARNN Network
	7 Training
	7.1 Loss Function
	7.2 Curriculum Learning
	7.3 Training Details

	8 Results
	9 Comparison to Other Architectures
	10 Conclusions
	References
	A Appendix A

