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Task-based Locomotion

Shailen Agrawal Michiel van de Panne∗

University of British Columbia

Figure 1: Task-specific locomotion involving writing on a whiteboard, moving a box, and sitting on a box. The motion exhibits side-stepping,
heel pivots, foot pivots, turns, and steps.

Abstract

High quality locomotion is key to achieving believable character
animation, but is often modeled as a generic stepping motion be-
tween two locations. In practice, locomotion often has task-specific
characteristics and can exhibit a rich vocabulary of step types, in-
cluding side steps, toe pivots, heel pivots, and intentional foot
slides. We develop a model for such types of behaviors, based on
task-specific foot-step plans that act as motion templates. The foot-
step plans are invoked and optimized at interactive rates and then
serve as the basis for producing full body motion. We demonstrate
the production of high-quality motions for three tasks: whiteboard
writing, moving boxes, and sitting behaviors. The model enables
retargeting to characters of varying proportions by yielding motion
plans that are appropriately tailored to these proportions. We also
show how the task effort or duration can be taken into account,
yielding coarticulation behaviors.

Keywords: human locomotion, motion capture

Concepts: •Computing methodologies→ Animation; Physical
simulation;

1 Introduction

Animated human locomotion is an integral component of games,
virtual reality, films, and training simulations. Believable move-
ments accentuate immersion for all these applications. Locomotion
is most often animated with the help of motion capture data and
is usually abstracted as a sequence of alternate left-and-right foot-
steps. Clean footsteps, i.e., ones that are free of sliding and twisting
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motions on the ground during the contact phase, are often easier
to work with, leading to the use of post-processing in order to re-
move footskate. This allows families of motion-captured steps to
be interpolated and blended with each other with relative ease.

In practice, many motions also involve “messy” small-scale step-
ping movements that are used to reposition or reorient the body in
preparation for a given task, or during an ongoing task. These steps
may involve pivots, intentional foot-slides, side-steps, and partial
steps and turns. A primary goal of our work is to be able to gen-
erate these types of nuanced motions for the task-specific contexts
in which they occur. The locomotion steps used to carry a heavy
box to a specific location are often different than the steps used to
arrive at the same location in order to push a button. Our work is a
pragmatic first step towards modeling the rich context-specific de-
tails that exist in many locomotion behaviors. We also aim to model
coarticulation effects, where the planning of the locomotion steps
in support of the current task can be influenced by the subsequent
task. For example, a task requiring a brief action on the right fol-
lowed by a longer duration task to the left may use only a partial
side-step to the right to be within reach for the task, e.g., retrieving
an object, and then proceeding with steps to the left.

Our method develops a footstep plan with the help of context-
specific example footstep templates. The footstep locations and
orientations derived from these templates are then further refined
using online optimization. The simplicity of this approach avoids
the complexities and large data requirements that are commonly
required by statistical modeling approaches. Our task-based loco-
motion prototype is implemented in a modern game engine (Un-
real Engine 4) and is demonstrated on three tasks: writing on a
white board, pickup and placement of boxes, and sitting-down and
standing-up. Figure 1 shows an example sequence of tasks and a
visualization of the footstep plan that is key to our method.

The contributions of this paper are: (1) the identification of features
that limit the realism of many generic locomotion methods, i.e., the
lack of task-specific behavior, sometimes simplified foot-step vo-
cabularies, and a limited ability to model coarticulation effects; (2)
the development of a practical real-time solution with sparse data
requirements that tackles these issues, using task-specific footstep
templates coupled with online optimization.
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2 Related Work

A large body of literature explores the use of kinematic models for
generating realistic human motion, most often with the help of mo-
tion capture data. Here we review only the most relevant work for
our problem and proposed solution.

Motion sequencing: Many kinematic methods resequence exist-
ing motion data to create novel animations. A motion graph can
be used to model the allowable ways in which motion capture clips
can be sequenced while meeting given constraints on the quality
of the transitions between clips. Full bodied character animations
are then created by generating walks on these graphs [Kovar et al.
2002; Lee et al. 2002; Beaudoin et al. 2008; Yamane and Sok 2010;
Min and Chai 2012], searching the interpolated motion graphs [Sa-
fonova and Hodgins 2007], building probabilistic models of transi-
tions and character poses [Chai and Hodgins 2007; Wei et al. 2011],
behavior-based planning algorithms [Lau and Kuffner 2005], or hi-
erarchical controllers [Feng et al. 2012]. A common feature of these
methods is that they discard the task-specific context in which the
motion data has been captured. While it is still often possible to
generate motions that are well matched to their context, this either
happens serendipitously, or it needs to emerge from the use of an
objective function or in response to constraints from the environ-
ment, i.e., side-stepping through a narrow gap. The task-specific
foot-step templates at the heart of our method explicitly capture
the contextual aspects of body positioning strategies, whereas mo-
tion graphs need to find ways to resythesize appropriate movements
from motion clips that have been stripped of their context.

Motion embedding: In contrast to the above work, the context of
a motion can be fully preserved by embedding motions directly in
their environment. Prior work on motion patches [Lee et al. 2006]
accomplished this via a mix of motion tiles. Smooth warping at the
boundary transitions allows for a suitable degree of connectivity
to be achieved between adjacent motion tiles. This model comes
with its own limitations, namely that crossing a motion-patch or
motion-tile boundary results in a discrete change of context. It is
not obvious how to define tile sizes that are appropriate for many
of the small-scale body-repositioning stepping motions whose nu-
ances we seek to reproduce.

Footstep planning: Locomotion is often modeled in terms of the
sequence of footstep locations, their orientations, and their timing.
The foot placements should avoid obstacles, should follow natu-
ral stepping patterns, and make progress towards the desired goal.
Footstep planning has been used as the basis for a variety of loco-
motion synthesis algorithms, e.g., [Van De Panne 1997; Choi et al.
2003; van Basten et al. 2011]. However motion planning that in-
corporates the rich stepping structure arising in a variety of natural
task-specific contexts remains an open problem. Footstep planning
has also been investigated for humanoid robots [Chestnutt et al.
2005; Kuffner et al. 2001; Kuffner et al. 2003]. Human locomo-
tion often exhibits a rich stepping vocabulary, including side-steps,
foot pivots, and intentional foot sliding. We believe that these sub-
steps are a core component of believable character interactions with
the environment.

Pose and motion reconstruction: Computing the skeletal joint pa-
rameters from end effector constraints can be computationally ex-
pensive. Multiple approaches have been proposed to alleviate some
complexity, e.g., [Nakamura and Hanafusa 1986; Tolani et al. 2000;
Aristidou and Lasenby 2011]. Inverse kinematics applied to char-
acters as a whole is often informally called full body IK. When ap-
plied to human-like characters, full body IK can often produce un-
natural solutions because most IK problems are under-constrained.
Data-driven approaches can favor solutions which lie closer to the
poses found in the motion database resulting in natural-looking

poses [Grochow et al. 2004]. Similarly, statistical dynamical mod-
els, e.g., [Wang et al. 2007; Chai and Hodgins 2007] can be used
to develop full motion sequences, including maximum-likelihood
solutions that satisfy given spatio-temporal constraints, e.g., [Chai
and Hodgins 2007]. In our work we use a data-driven prior to warm
start an iterative IK algorithm [Aristidou and Lasenby 2011]. This
produces natural-looking poses while still having the simplicity of
an iterative IK algorithm.

Motion styles: A number of methods attempt to factor motions into
independent attributes that might include motion attributes, e.g.,
walking speed, and style attributes, e.g., relating to the emotional
state or other unique characteristics of a person’s walking gait.
Style generalization has been investigated for locomotion and other
types of choreography, e.g., [Brand and Hertzmann 2000; Wang
et al. 2007; Min et al. 2010]. Our proposed method provides a de-
gree of support for motion styles as is implicit in the set of motion
capture examples that serve as underlying templates.

Interacting with the environment: Realistic movement during in-
teractions with the environment greatly adds to the believability of
synthesized motions. This includes everyday tasks such as mov-
ing objects between shelves and tables, opening doors or closing
doors and walking through them, and cooking in a kitchen. Realis-
tic stepping for such scenarios remains an underexplored area, with
a number of exceptions, e.g., [Yamane et al. 2004; Chai and Hod-
gins 2007; Safonova and Hodgins 2007; Min and Chai 2012]. We
find inspiration in the work of [Yamane et al. 2004] towards syn-
thesizing motions for moving objects between bookshelves, where
one of our aims is to replace their static foot placements with nat-
ural foot stepping patterns. Of particular relevance to the problem
of coarticulation is prior work on planning concurrent manipula-
tions [Bai et al. 2012], which captures how humans exploit differ-
ent properties of body parts and objects for multitasking. Our work
is largely complementary, showing how the body position can be
adapted in an efficient and natural fashion over time to support a
given motion plan.

Reinforcement learning: Methods based on reinforcement learn-
ing (RL) have proved useful in developing highly capable behaviors
for many tasks, including locomotion, e.g., [Lo and Zwicker 2008;
Treuille et al. 2007; Lee and Lee 2006; Levine et al. 2012]. Despite
impressive results, the motions are typically developed from motion
clips that are then resequenced for the efficient generic navigation
tasks, without regard for matching the context in which they were
captured. They usually avoid close contact with the environment,
and the motions are usually displayed on low-fidelity models that
do not support detailed scrutiny, particularly of the feet. In prin-
ciple, it may be possible to develop a suitable objective function
that allows these methods to precisely produce all the nuances of
human foot-stepping behaviors in different contexts. This has not
been demonstrated in practice, in part because of the complexities
of developing such an all-encompassing objective function. How-
ever, recent efforts in this direction have demonstrated good po-
tential for finding objective functions that capture the overall path
and body orientations favored by humans when walking from one
position-and-orientation to another [Mombaur et al. 2010].

3 Overview

Given a sequence of task types and task locations as input, our sys-
tem synthesizes the full-body animation required to move between
the tasks using natural, task-specific locomotion patterns. Figure 2
shows an overview of our system, which we now review in detail.

Our primary goal is to develop high-quality motions for transition-
ing between tasks, where a task is defined as a location and orienta-
tion in the world where the character needs to accomplish some-
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Figure 2: System Overview.

thing. We focus on four types of tasks, including writing on a
board, moving boxes between locations, sitting on a box, and turn-
ing around in a specific location. In Figure 2(bottom), the task lo-
cations are marked using small spheres. A typical locomotion tran-
sition involves a pair of tasks, namely moving from a current-task
location to a next-task location, marked with red and blue spheres,
respectively. In addition to the task type and task location, we shall
also later define and use a task effort attribute. This will allow for
coarticulation effects to be modeled, such as choosing to temporar-
ily step-and-reach towards a task location instead of taking further
steps to place the body directly in front of a task location.

Footstep planning lies at the heart of our locomotion model, with
the plan consisting of footstep locations and orientations that are to
be achieved at the end of each step. As seen in the footstep planning
component of Figure 2, the footstep plan is developed successively
over several motion phases. Specifically, the transition between task
locations is modeled as an exit task phase, a locomotion phase, and
an enter task phase. Transitions between a pair of distant task lo-
cations will use all three of these phases, as shown in Figure 4(a).
Shorter transitions may pass directly from exit task to enter task,
or, if sufficiently close, directly to the enter task phase, as shown in
Figure 4(b) and (c), respectively.

For each successive motion phase, an initial footstep plan is created
by instantiating one of the template plans from a template library,
which is specific to the current task type and the current motion
phase. The template library is developed from the example mo-
tion capture data as an offline pre-processing step. The selection
of the most suitable template is based on the quality of fit for a
given template to the requirements of the current task, as will be
described in the subsequent section. The footstep plan from the
instantiated template is then optimized to satisfy a footstep-based
objective function, which in general terms aims to reach a goal lo-
cation while remaining close to the underlying template example

(a) Writing task entry (b) Box Sitting entry (c) Box Lifting entry

(d) Writing task exit (e) Box Sitting exit (f) Box Lifting exit

Figure 3: Footstep plans for various task entries and exits.

and satisfying smoothness criteria.

Given the optimized foot step plan, we then generate specific foot
and root trajectories. Since each foot step in the template is as-
sociate with a specific segment of motion capture data, we use the
associated feet and root trajectories and apply a smooth spatial warp
in order to exactly achieve the given motion plan. Lastly, we gen-
erate full body motion from the reconstructed foot step and root
trajectories, and the task description. Specifically, we begin with
poses extracted from the motion segment associated with footstep
template and then use full-body inverse kinematics as applied to the
root, hands, and feet in order to reconstruct final poses that satisfy
the desired task constraints.

A more detailed summary of our method is given later in Algo-
rithm 1. We will refer to specific steps in this algorithm by line
number in the remainder of the paper, as needed. We now move on
to providing more details on the core steps of our method.

4 Template-based Footstep Plans

A key aspect of our method is the use of example data to model
the pattern of foot steps to be used during each motion phase. We
will refer to these as foot step strategy (FSS) templates. Each FSS
template further consists of individual steps. In this section we de-
scribe in detail how motion phases and steps are defined, and how
a suitable FSS template is retrieved as the first step of planning the
foot steps for any given motion phase. Importantly, the FSS tem-
plates are task-specific. For example, the templates used for task
entry and exit for writing on a white board are markedly different
from those for sitting on a box, picking up a box, or placing a box
as illustrated in Figure 3 and detailed in Table 1.

4.1 Phases, Steps, and Templates

Motion Phases: Given a task transition, as described by a current
task and a next task, the transition motion is modeled using three
motion phases: task exit, locomotion, and task entry, as illustrated
in Figure 4. Not all phases need to exist in any given synthesized
transition motion. If one of the starting foot locations already lies
within the enter radius for the next task, then only an entry phase
is used, as shown in Figure 4 (c). This typically results in a side-
stepping strategy. Otherwise, an exit phase is first planned, using
an appropriately selected FSS template. If one of the planned steps
resulting from that template passes within the enter radius, the en-
ter phase is deemed to begin at that point in time, as seen in Fig-
ure 4 (b), and commonly results in a partial-turn-and-step strategy.
Most typically, however, an additional locomotion phase is needed
to plan foot steps from the end of the exit phase until one of the
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(a) Turn and walk strategy

(b) Partial turn and step strategy (c) Side step strategy

Figure 4: Motion phases and stepping strategies for several in-
stances of writing-task transitions.

planned locomotion steps lies within the enter task radius. The mo-
tion phases are generated in sequence, i.e., exit, locomotion, and
entry, with an optimization step (§5) being applied after the tem-
plate instantiation step for each of these motion phases.

Step segmentation: The foot-step templates are constructed from
example motion data (§7) which is first segmented into individual
steps. Each step starts when either the swing foot loses firm contact
with the ground or it enters a sliding motion. A step ends when the
swing foot re-establishes firm contact with the ground or it comes
to rest for the case when it is undergoing a sliding motion. We
categorize the observed foot steps as belonging to the following
categories: Heel Pivot, Toe Pivot, Side Step, Turn and Step, Walk,
Forward Step During Task and Backward Step During Task. The
detailed interconnectivity of this rich step vocabulary is illustrated
in Figure 5. The segmentation process is semi-automated: an ini-
tial automated pass is followed by a manual check and cleanup as
necessary.

A step is modeled using a tuple

q = (ns, ne, nsa, nea, tag, phase) (1)

where ns is the start frame of the step, ne is the end frame of the
step, nsa is the start frame of the airborne portion of the step, nea
is the end frame of the airborne portion of the step, tag is the cat-
egory of the footstep (see Figure 5), and phase is task phase (exit,
locomotion, or enter) of the segment. For a sliding motion such as
a toe pivot or a heel pivot, nsa and nea are set to be the same as ns
and ne respectively as no distinction is made between airborne and

Table 1: Foot Step Strategies

FSS (Entries & Ex-
its)

FootStep Categories

Write entry (Fig.
3(a))

Walk (1), Walk(2), TurnAndStep(3),
ToePivot(4)

Sit entry (Fig. 3(b)) Walk (1), Walk(2), Walk(3), TurnAnd-
Step(4), ToePivot(5), ToePivot(6)

Lift entry (Fig. 3(c)) Walk (1), Walk(2), Walk(3), TurnAnd-
Step(4), TurnAndStep(5)

Write Exit (Fig. 3(d)) HeelPivot (1), TurnAndStep(2), Walk(3)
Sit Exit (Fig. 3(e)) HeelPivot (1), TurnAndStep(2), Walk(3)
Lift Exit (Fig. 3(f)) HeelPivot (1), TurnAndStep(2), Walk(3),

Walk(4)

Figure 5: A state diagram showing possible transitions between
various footstep styles. The color coding used here for each footstep
style is used in the results in the rest of the paper and in the video.

sliding motion phases. We denote the set of all steps using

Q = {qi}. (2)

Motion templates: Sequences of steps from the example motions
require assignment to the three motion phases, i.e., exit, locomotion,
and entry. This is accomplished by first identifying the steps be-
longing to the locomotion phase using a simple-but-effective heuris-
tic, namely that the yaw angle of the swing foot relative to the for-
ward axis of the root frame falls below a given threshold. Foot steps
taken before this are tagged as belonging to the exit phase and those
after belong to the entry phase. For examples that never use a
locomotion phase, steps are evenly split between the exit and en-
ter phases if the number of footsteps exceed an empirically defined
threshold (4 footsteps). For foot step patterns less than this thresh-
old, all the foot steps are deemed to belong to the enter phase of the
target task.

An exit template is defined as:

sexit = (qexit1:N ,Γ) (3)

where q1:N is a sequence of steps that begin with an exit phase,
qexit1:N is {qi|qi ∈ q1:N ∧ qi(phase) = exit}, and Γ is the task
transition descriptor which will be described shortly. Similarly, an
entry template is defined as:

sentry = (qentry1:N ,Γ) (4)

where, qentry1:N is {qi|qi ∈ q1:N ∧ qi(phase) = enter}, and Γ is the
task transition descriptor.

A task transition descriptor is modeled as a tuple of the form:

Γ = (c,xcn,x
n
c , αc, αn) (5)

where c is the task category, xc and xn are the respective world-
frame locations of the current and next tasks, xnc is the start location
of the current task in the coordinate frame of the next task, xcn is the
end location of the next task in the coordinate frame of the current
task, αc is the effort required for the current task, and αn is the
effort required for the next task, where the use of this effort attribute
is described in what follows below.

Motion coarticulation: Low effort tasks exhibit a high degree of
coarticulation with any follow-up tasks, meaning that the followup
motion influences how the low effort task is executed. An example
task that exhibits coarticulation for our work is that of a brief tap
at a specified location on a whiteboard followed by a higher effort
writing task, i.e., longer duration, also at a pre-specified location.
When a low effort task is on the way towards performing a high
effort task, the low effort task can be performed “in passing”. On
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(a) Task Exit

(b) Task Entry

Figure 6: Reconstructing task-specific footstep templates. The
most suitable template is selected for the given task phase based
on similarity of the transition.

the other hand, if a low effort task lies in the opposite direction of
a high effort task, then the observed motion consists of leaning to
complete the low-effort task and then moving on to complete the
high effort task. Successfully modeling this kind of coarticulation
increases the realism of task-specific locomotion, and is neglected
in existing methods. Our framework accounts for coarticulation
during template selection. We model the degree of effort required
for a task by classifying a task as a low effort or a high effort task.
We use α to represent effort requirement for a task, taking on a
value of 0 or 1 for low effort and high effort tasks, respectively. We
note that our notion of effort is a qualitative one that captures the
need to dwell in a comfortable position directly in front of a task
position as opposed to the alternative of simply being within reach.

4.2 Template Retrieval

At runtime, suitable templates need to be found for any given task
transition. In the simplest scenario, a suitable exit template is found
by looking for the template that is most similar to the current re-
quired transition, Γ. Here, similarity implies a similar task effort
value and relative location of the next task, as measured in the co-
ordinate frame which has its origin at the current task for a partic-
ular task category. Analogously, a suitable entry template is found
by looking for the example template that best matches the required
task effort and relative current location of the character as measured
in the coordinate frame which has its origin at the next task for a re-
quired task category. Figure 7 illustrates these ideas, which capture
the key elements of the most basic case, where a character is in
double stance during the actual tasks, and is effectively paused at
the desired location to execute the task. In this example, the de-
sired task transition occurs between two writing tasks. Note that
while similarity-of-location of the next task is important for tem-
plate selection, the next category type does not need to match when
choosing the exit template.

Special cases: Beyond the common case just described, there are
a number of scenarios that require the choice for task entry and the
following task exit to be coupled together. For example, certain
tasks such as turn-around (§7) always end in single stance, which
then needs to be matched for the start of the next task. The en-
try template for a low effort task, such as a writing low effort task,
might end with a single stance. We show an entry and exit tem-
plate, in Figure 8(a), while planning for two successive transitions.
In these cases there is an additional requirement for matching the

(a) Exit Template Selection (b) Entry Template Selection

Figure 7: Task-exit and task-entry template selection.

last foot step of the entry template with the first footstep of exit
template. For example, an entry template ending with a left stance
should be followed by a right stance foot step in the exit template
to be compatible, and vice versa. Hence, for such cases it is not
sufficient to just choose an entry or exit template using the most
suitable template according the similarity of the required transition
Γ. Instead, we recover the k most suitable templates for entry and
exit phases for use in template selection (Eqs. (6) and (7)).

γexit(Γexit
q ) = sexit1:k (6)

γentry(Γentry
q ) = sentry1:k (7)

We can then choose a combination of compatible entry and exit
templates. This is done by minimizing the sum of distances for exit
and entry templates with respect to the respective task descriptors
using the distance metric defined in Eqs. 8 and 9. An example is
shown in Figure 8(b) where same colored boxes indicate compati-
ble footstep strategies for entry and exit across a task. Entry strategy
2) and Exit strategy 1) are chosen as the final pair because they give
the least sum of distance metrics for a compatible pair of footstep
strategies. We use k = 5 in all our experiments.

Template distance metric: A distance metric is used to rank the
suitability of templates from the library with respect to the queried
transitions. In order to achieve this we partition the exit and entry
task descriptors for all the entry and exit task templates, respec-
tively, using a kd tree. This allows for efficient retrieval of the foot-
step templates from the database which have task transition similar
to the queried task transition. We use the following distance metric
for recovering the k-most suitable templates:

Dexit(Γ,Γ
′) = wddn + we|αc − αc′| (8)

where dn = ||xcn − xcn
′||, and xcn and xcn

′ define the next task
location as seen in the coordinate frame of the current task, for
the query case and template library instance, respectively. We use
wd = 0.001 and we = 0.999.

Similarly, the entry-template distance metric is defined by:

Dentry(Γ,Γ′) = wddc + we|αn − αn′| (9)

where dc = ||xnc − xnc
′||, and xnc and xnc

′ define the current task
location as seen in the coordinate frame of the next task, for the
query case and template library instance, respectively.

An example of the desired impact of Dexit in template selection
is evident in Figures 4(a) and 4(b), where significantly different
footstep strategies are used for these two cases.

In order to accomodate low effort tasks that exhibit coarticulation
with follow-up tasks, we use a compound template and distance
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(a) Task entry for turn-around ends
with a single stance.

(b) Template Combination Selec-
tion.

Figure 8: Choice of the best pair of templates for entry and exit
from k-most suitable footstep templates.

metric that takes into account the current task transition as well as
the followup task transition, as shown in Figure 6(b). The template
distance metric when planning for coarticulation is defined by:

Dc
entry(Γ,Γ′) = wddc + wfdf + we(|αn − α′n|+ |αf − α′f |)

(10)

where df is ||xnf − xnf
′||, xnf is the location of the followup task as

measured in the coordinate frame of the next task, xnf
′ is the corre-

sponding vector for the followup task in the template library, αf is
the effort required for the followup task, αf ′ is the corresponding
value for effort requirement of the followup task from the template
library, and wf = 0.0005 is the weight for the distance term corre-
sponding to the followup task.

The use of Dc
entry for task entry allows for the generation of mo-

tions that can correctly reconstruct coarticulated motions as seen in
the example data. For example, as seen in Figure 15(a) (§7), recon-
structing motion for low effort tasks can perform a task ‘in passing’
when a low effort task is on the way towards performing a high ef-
fort task. Similarly, for a scenario where a low effort task lies on
the left of the character followed by a high effort task on the right,
the reconstructed motion uses a short side step, while leaning over
to the left, in order to perform the quick low effort task, as shown in
Figure 15(b) before proceeding to the high effort task on the right.

Footstep planning overview: Having detailed the template selec-
tion mechanism, we now describe the full footstep planning pro-
cess. Using the desired task transition (Γ), we select the most suit-
able footstep strategy template for the task exit as per Eqs. (6) and
(7) as described in Lines 7 and 13 of Algorithm 1. Using the current
character configuration and the selected template we then generate
a footstep plan for the exit task phase. Next, the locomotion phase
is planned. The locomotion task phase uses footstep segments that
are tagged with the “Walk” category. The first segment used for
locomotion is selected so as to have a step length that is as similar
as possible to that of the last foot step in the exit task phase, if a
turn and step exists. Otherwise, we use a “preferred” left or right
footstep motion segment for generating a locomotion footstep plan
(Line 8). Planning for the locomotion phase is terminated when the
enter-task criterion is satisfied, i.e., one of the planned locomotion
foot step lies within the enter-task radius of the next task. Finally,
we select the most suitable footstep strategy template using Eq. (4)
and the distance metric define in Eqs. (8), (9) and (10) for the enter
task phase (Lines 9 and 22).

While the footstep plan invoked by the templates provides a good
starting point, further optimization is required for several reasons.
The template-based footstep plan is limited in its ability to produce
“good” footsteps, as shown in Figure 9(a), due to the use of a sparse
template library. Also, transitions between exit, locomotion and
entry phases require special care in order to generate natural foot

(a) Unoptimized footstep plan (b) Optimized footstep plan

Figure 9: Comparison of unoptimized task-specific footstep plan
with an optimized plan. The character is directed to exit from a
writing task on the left represented by the sphere and sit on a box
located on the right.

Figure 10: Optimization phases.

stepping behaviors. Please refer to the supplementary video for an
example of a motion reconstructed from an unoptimized footstep
plan. Hence, we need to further optimize the initial template-based
footstep plan in order to produce a high-quality footstep plan, as
shown in Figure 9(b).

5 Optimization

An online optimization procedure is used to adapt the template-
based footstep plan in order to achieve a desired high-quality
motion that precisely matches the desired heading direction, has
smooth step-length variation, and so forth. The positions and ori-
entations of the footsteps are the free variables in the optimization.
We perform the optimization in several phases, as shown in Fig-
ure 10. The use of the task-aware and phase-specific motion tem-
plates together with the subsequent optimization allows for the de-
sired generalization of footstep plans. We optimize for data prior,
step smoothness, heading orientation, distance from goal and aver-
age local step location objectives, according to the following objec-
tive function:

f = wd ∗ fd + ws ∗ fs + wo ∗ fo + wdg ∗ fdg + wl ∗ fl (11)

We use BFGS as the optimization algorithm and, accordingly, de-
velop the required analytic gradients for this method. We now de-
scribe each of the objective function terms in further detail.

5.1 Data Prior Objective

To produce a footstep plan that satisfies task constraints while re-
maining as close to the data as possible, we use the following term
which penalizes deviation from the data:

fd =

n∑
i=1

((xi−xid)2 +wa ∗ (yi−yid)2 +wθ ∗ (θi−θdi )2) (12)

where, xi and yi are the ground-plane components of the vector
describing the next step in relation to the current step, xid and yid
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are the same components as seen for the template data, wa = 2
is a weight that further penalizes the step length component, and
wθ = 0.4 weights the differences in footstep orientations.

5.2 Smooth Step Objective

It is desirable to have smooth variations in the generated footstep
lengths as humans show a preference for minimizing energy ex-
penditure by minimizing accelerations. The term encouraging slow
changes to step lengths is defined by:

fs =

n∑
i=1

(li − li−1)2 (13)

where, li and li−1 are the step lengths of ith and (i− 1)th footstep
respectively.

5.3 Average Foot Orientation Objective

Locomotion is generally comprised of individual footsteps which
match the overall heading direction. However, for task-specific
templates, the original structure of the template should be pre-
served. This can be achieved by keeping the contribution of a
desired-orientation objective small initially, and making it larger
with each subsequent footstep in the plan. Using this approach,
the optimized template will progressively orient towards the desired
heading direction as the strategy executes, i.e., footsteps at the be-
ginning of the optimized template maintain orientations similar to
those of the original template whereas the later footsteps gradually
show a preference for the desired heading direction. This is encap-
sulated with an objective function term as follows:

fo =

n∑
i=1

(αo
n−i ∗ (θi − θg)2) (14)

where θi is the orientation of the ith footstep, θg is the relative
orientation of the next task relative to the orientation of the first
footstep in the current template. We use an αo = 0.9 in all our
experiments.

5.4 Distance From Goal Objective

In order to create smooth transitions between the locomotion and
enter task phases, we introduce the Enter Preparation phase (see
Figure 10), which we shall describe in further detail below. This
adapts the locations of the last few (n = 3) footsteps before the
enter task phase begins. We want the last locomotion footstep to
be placed at the best location for executing the footstep plan of the
subsequent enter-task phase. This is performed by penalizing the
distance of the footsteps of interest from the optimal footstep lo-
cations as defined by the subsequent enter task footstep strategy
template. The objective term that helps achieve this is defined as
follows:

fdg =

n∑
i=1

(αn−idg ∗ di
2) (15)

where di is the distance between the ith footstep and the footstep
preceding the first footstep of the enter task footstep strategy tem-
plate as recovered from the database, and αdg = 0.9 is a weighting
factor.

5.5 Average Foot Location Objective

During the optimization process we want to minimize deviation
from the straight-line path of the current template, as defined by the

line segment connecting the first footstep of the current template
and the goal location. We penalize the distances (di) of the aver-
age footstep locations for each pair of footsteps in sequence, from
the line segment connecting the first footstep and the goal location
according to following objective:

fl =

n∑
i

d2i (16)

Enter Task Preparation : Transitioning from locomotion to the
enter task phase requires some preparation close to the end of the
locomotion phase. During planning for locomotion, when one of
the planned foot steps satisfy entry criteria for transitioning to en-
ter task phase, we select the most suitable template for the enter
task. Next, the enter task footsteps are planned in the local coor-
dinate frame of the desired next task. In order to optimally plan
the location of the last locomotion footstep with respect to the first
enter task footstep, additional locomotion foot steps may be intro-
duced. For example, if the enter task template begins with a right
swing footstep, and the locomotion phase also terminates with a
right swing foot step, we introduce an additional left swing footstep
in the planned locomotion footsteps. Additionally, if the transition
footstep length between enter task footsteps and the last locomotion
footstep is larger than a threshold, two additional locomotion foot-
steps are introduced to allow for footsteps of reasonable footstep
length.

The last few footsteps (n = 3) before the enter task define an En-
ter Preparation phase (Figure 10). The footsteps belonging to this
phase are re-optimized using the previously defined objective func-
tion, producing a locomotion footstep plan that appropriately pre-
pares for the footstep strategy template associated with upcoming
enter task.

During each motion phase, the various objectives have different rel-
ative importance. Thus, the optimization uses different weights for
each objective function term during different phases of the planning
algorithm. The weights we have used are empirically determined
and are identical for all the results described in this paper. No addi-
tional tuning of these weights is required for use with various task
categories. We tabulate the weights used for each phase in Table 2.

6 Full Body Motion Generation

The optimized footstep plan allows for relatively simple and effi-
cient methods to be used for full body motion reconstruction. The
reconstruction is performed in several phases as shown in Figure 2.
First, foot trajectories are reconstructed using the synthesized foot-
step plan and the motion segments that are associated with each
of these footsteps. Second, root motion trajectories are produced
by warping the associated root motion trajectories. Finally, the
foot and root trajectories, together with the task constraints, are

Table 2: Weights for objective functions.

Objective Func-
tion

Exit
Task

Locomotion Enter
Task
Prep

Enter
Task

Data Prior 0.4 0.4 0.4 0.4
Smooth Step 0.1 0.2 0.1 0.1
Avg. Orientation 0.4 0.2 0.1 0.0
Distance From Goal 0.0 0.0 0.3 0.5
Avg. Location 0.1 0.2 0.1 0.0
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Figure 11: Warping of a foot trajectory. Grey footsteps and curves
represent original swing foot trajectory. Black footsteps and curves
represent warped swing foot trajectory. The corresponding root
motion is also warped using a transformation of the swing foot
warp, along with an additional transformation to match the incom-
ing root trajectory.

Figure 12: The IK system takes feet, root and task related trans-
forms as end effectors. The algorithm is initialized with a pose from
the example motion data.

then used to drive the end-effectors motion and a full-body inverse-
kinematics (IK) procedure creates the final full-bodied motion.

We first describe the reconstruction of foot trajectories from the
footstep plan. Each footstep in the synthesized plan has an asso-
ciated task phase, category (heel pivot, toe pivot, side step, turn
and step, forward/backward step or walking step) and an associ-
ated motion segment from the library of templates. We spatially
warp the swing foot trajectory from the associated motion segment
to the start and end locations, and orientations as specified by the
task-specific footstep plan (Figure 11). A footstep can either be
sliding or have an airborne component. For footsteps that have an
associated air borne phase, we only perform the warping during the
air-borne phase. However, since sliding footsteps do not have an
associated airborne phase, they can be warped for the entire dura-
tion of the footstep. Since the synthesized footstep plan has been
optimized with respect to a number of objectives, such as smooth
step variation and data preservation, natural footstepping motion is
preserved via the aforementioned warping technique. The timing of
the footstep plan is preserved from the original template. We have
experimented with including time warping but did not observe im-
proved motion quality. As fewer templates are used, time warping
would likely begin to yield some benefits.

The warping of foot trajectories to match the footstep plan should
also result in the root motion being adapted in an appropriate fash-
ion. We apply half the swing foot warp to the root motion in or-
der to compensate for the swing foot motion warping. We also
use root motion warping to match incoming root motion trajectory
in order to create smooth transitions between successive segments
of the reconstructed motions. When combined with feet trajectory
warping, this creates believable transitions between the synthesized
footsteps. The warping for the foot and root trajectories is accom-
plished using linear interpolation of the required translational offset
as a function of the fraction of the total distance traveled by the foot
from start-to-end, and analogously for the rotational component of

Input : List of task descriptors (location, category, effort)
Data: Motion capture clips segmented into steps tagged with one

of the labels : Heel Pivot, Toe Pivot, Side Step, Turn and
Step, Walk, Forward Step During Task and Backward Step
During Task

Output: Set of footstep location and orientations, associated
motion segments, full body motion

1 Algorithm TaskSpecificLocomotion()
2 Initialize a library of “Footstep Strategy Templates’’ for task

exits and task entries from the following information for each
example task pair :
• Sequence of motion segments exiting current example task

and entering next example task
• Associated task descriptor for exit and enter task

3 Compute task entry radii for each task category.
4 foreach Task pair Ti−1 and Ti do
5 known : Foot plants from executing task Ti−1.
6 Compute task description vectors for queried exit and

enter task.
7 PlanTaskExitPhase()
8 PlanLocomotionPhase()
9 PlanTaskEntryPhase()

10 Generate warped feet motion and root motion using the
footstep plan and associated motion segments.

11 Generate full body motion using poses from the
associated motion segments and full-body inverse
kinematics as applied to the root, hands and feet.

end
12 Procedure PlanTaskExitPhase()
13 Select exit task footstep strategy template.
14 Optimize()
15 Procedure PlanLocomotionPhase()
16 repeat
17 Generate locomotion step.
18 Optimize()
19 until Until within task radius of Ti
20 Re-optimize last three footsteps to better match enter task

footstep requirements.
21 Procedure PlanTaskEntryPhase()
22 Select enter task footstep strategy template.
23 Optimize()
24 Procedure Optimize()
25 Optimize the newly generated template-based footsteps for the

current phase with respect to the following objectives:
• Data Prior
• Smooth step length variation between consecutive steps
• Orientation towards the task
• Minimize distance from goal as the plan progresses
• Average feet location to lie on the line between start and goal

Algorithm 1: A high level description of the task-specific motion
planning algorithm.

the transformation matrices. The feet and the root transforms along
with task constraints are used as end effectors for an iterative IK
algorithm that has support for joint constraints and arbitrary joint
hierarchies [Aristidou and Lasenby 2011]. The IK algorithm is ini-
tialized with a pose that is sampled from our database of poses as-
sociated with the current footstep and task constraint (Figure 12).

7 Results

We now describe the results obtained using our algorithm. The
quality of the animated results is best seen in the video that ac-
companies this paper. Motion capture data is collected using 8 Vi-
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Table 3: Description of task categories. The motion capture setups
are described in Figure 13.

Task Category Motion Capture Setup Data Size in mins.
Writing a,b,c 3

Move Boxes b,c 1.5
Box Sitting b 0.85

Turn Around b N/A

con MX40 [vic ] cameras at 60 Hz, which is then down-sampled to
30 Hz for use in our system. We use 53 markers for capturing the
actor while performing various tasks along with 4 markers to cap-
ture objects such as the box the actor was required to lift and move.
The weight of the box in our example was 10 kg.

We explore four task categories in our work: writing on a white-
board, moving boxes, sitting on a box, and turning around. The
motion capture data captures the characteristic footstep strategies
exhibited while entering and exiting tasks. We show a represen-
tation of the various motion capture setups used for collecting the
relevant data in Figure 13. The starting point for a task is depicted
by an orange circle, while each of the next task location is shown
by blue circles or circular arrows. The arrows pointing between
task locations represent the transitions between the respective task.
Capturing data for each of the task categories utilizes one or more
of these motion capture setups. We describe the task configurations
for the data collected using the motion capture setups depicted in
Figure 13 for each of the task categories in Table 3. We now de-
scribe each of the task categories in more detail.

Writing : We use writing as a task as it captures footstep strate-
gies that are characteristic of many similar everyday tasks. The
effort is controlled by specifying the duration or the style of writing
to be performed. Data is collected for writing tasks using the se-
tups shown in Figures 13(a) and 13(b), with the goal of being able
to reconstruct exit and entry strategies from any angle for a writing
task. In order to collect data for a high effort form of the writing
task, motion capture was performed for a high effort task where the
actor was asked to draw several circles at pre-specified locations
on the whiteboard using the setup shown in Figure 13(a). This fig-
ure depicts a front view of the task setup. Here the actor starts off
by writing at the location specified by the first circle on the left in
the figure, and then progressively writing in each of the subsequent
columns followed by returning to performing a writing task at the
location of the starting circle. Another set of data was recorded
using the setup shown in Figure 13(b) which shows a top view of
setup used. Here, the circle represents the actual task location, and

(a) Multiple column task (Front
View).

(b) Multiple angles of entries and
exits (Top View).

(c) Sideways task (Top View).

Figure 13: Representative setups for recording various entry and
exit strategies.

(a) Writing task. (b) Box Sitting task.

(c) Box Moving. (d) Turn Around Task.

Figure 14: Task Categories.

the arrows represent turnaround locations. We also recover footstep
strategies associated with turning around from this setup as speci-
fied later in this section.

For capturing the interplay between low and high effort tasks, the
actor was instructed to either tap within a box (low effort), or draw
several circles (high effort) in a pre-specified sequence. The task
setup shown in Figure 13(c) was used for recording this data. The
actor was asked to start performing the task at the first specified
location followed by tasks specified at the subsequent locations.
Hence, the actor was always aware of both the next and the follow-
up tasks while performing the current task. This allowed for the
capture of co-articulation behavior which can arise while perform-
ing low effort tasks. In total, we collect nearly 3 minutes of motion
captured data for the writing task. An example of a result generated
for a writing task is shown in Figure 14(a)

Box Sitting: Sitting on a box requires unique foot step strate-
gies that are markedly different from those observed in a writing
task, both while entering and exiting the task. For example, for a
sitting task, when approaching the target, the actor must first turn
around before entering a sitting position. Hence, these unique foot-
step strategies are modeled as their own task category within our
task-specific framework. All sitting tasks are considered to belong
to a high effort category because they cannot be easily coarticulated
with any other motion goals. We use 50 seconds of motion capture
data for this task. We show an example of reconstructed footstep
plan and generated pose for this task in Figure 14(b)

Moving a Box: Tasks such as lifting and moving boxes also have
unique associated footstep strategies and we categorize this as a
“high effort” task as it is also difficult to coarticulate with other fol-
lowup tasks. Foot slides and foot pivots are rarely present while
performing this task. The knowledge of the context in which these
tasks are captured allows for reconstructing these associated char-
acteristics using our framework. We use 1.5 minutes of motion cap-
ture data for representing various footstep strategies associated with
lifting and moving boxes tasks. The weight of the box the actor was
required to move was 10 Kg. The motion capture setups shown in
Figure 13(b) and Figure 13(c) were used for this task. We show an
example of an optimized footstep plan for this task in Figure 14(c)

Turn Around: A task-specific framework can also be used to
perform a motion task such as turn-around. Footstep strategies for
turn-around motions were collected as a byproduct as the relevant
data can be recovered from the data pertaining to other tasks where
a turning around motion is involved. For example, footstep strate-
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(a) Approach from the left (b) Approach from the right

Figure 15: A demonstration of coarticulation for two different ap-
proaches to an initial low-effort task, with the followup task being
located to the right.

(a) Shorter Character (b) Taller Character

Figure 16: Effect of character anthropometry of synthesized task-
specific foot step plan.

gies for the turn-around task are captured when a setup shown in
Figure 13(b) is used for a writing task or a box sitting task. In
Figure 14(d), the character is shown executing a turn-around task
where the character exits from a writing task on the left of the white-
board and walks towards the turn-around location, represented by a
circular arrow, in order to execute it.

Task effort: Examples of motion coarticulations arising from low-
effort tasks are illustrated in Figure 15. In Figure 15(a), the char-
acter reaches for a target while on the way to another target further
to the right. In Figure 15(b), the character begins by performing a
task to the right of the low-effort next task, and therefore performs a
small left side step while leaning left to execute the low effort task,
followed by turning and walking towards the next task on the right.

Effect of anthropometry: Our system generates footstep plans
which are commensurate with the anthropometry of the character
being used for the motion planning. For example, for the same
task description, a taller character (Figure 16(b)) uses a side step
instead of a partial turn and step as seen for the shorter character
(Figure 16(a)). This difference in footstep plans arises from the
use of character-specific footstep templates, which are generated
by first motion retargeting the input animations for each character.
We use MotionBuilder to perform the motion retargeting.

Ground-truth comparison: As a benchmark to compare against,
we capture a motion sequence involving two writing tasks, a sit
task, and a box-movement task. This is then treated as leave-out
data, i.e., the footstep patterns are not used as templates. We then
synthesize a motion for this sequence of tasks using our system.
The ground-truth and synthesized motions can be seen in the video
associated with this submission. We believe that this type of Tur-
ing test will continue to be useful in the future as motion synthesis
methods continue to improve in their capabilities.

Impact of number of templates and task type: In the video we
illustrate how the synthesized exit and entry motions degrade when
the number of templates is reduced for the turn-around and writing
tasks. We halve the number of templates used for the shown ex-
amples. Figure 17 shows how the task-entry footstep plan differs

(a) Writing task (b) Box-placement task

Figure 17: Effect of the task on the synthesized foot-step plan.

for a writing and a box-placement task that each start and end in
the same location. In particular, the box lifting lacks the heel pivots
and toe pivots that are found in the writing task.

8 Conclusions

In this paper we have proposed a model and algorithms for task-
specific locomotion for arbitrary sequences of these tasks. Tasks
are specified by choosing the desired location, orientation, cate-
gory and effort of task to be performed. The synthesized footstep
patterns and the resulting full-body motion faithfully reconstructs
many of the features and observed strategies in a task-specific fash-
ion. Hence, the proposed system allows for a directable approach
for task-specific motion styles. The use task-specific locomotion
models allows for the synthesis of realistic character motion in or-
der to complement the ever-increasing visual realism of characters.
By using an enhanced footstep vocabulary, the proposed model
aims to preserve naturally occurring footstep features such as foot
pivots, small foot shifts, and foot sliding, in a task-aware fashion
rather than eliminating them, as is often the case for current motion
synthesis techniques. The model also naturally models the the nat-
ural transitions between side-stepping, partial-turn-and-steps, and
full-turn-and-step behaviors that occur in moving between tasks at
varying distances. The synthesis of motion co-articulation effects
serves to further improve realism.

Our work has a number of limitations. The footstep plans are
described principally by their location and orientation. The cur-
rent approach may not scale well to tasks that require higher-
dimensional characterization. The current method has no explicit
model of attention, and this can be noticable. Some aspects of the
current algorithm still involve the use of heuristics. Human motions
are not perfectly repeatable, unlike the output from our method.
The results are therefore still dependent on the specific motion data
used to construct the footstep templates.

We wish to further generalize the approach by creating parameter-
ized task categories. For example, tasks related to object placement
could be parameterized according to their force and precision re-
quirements, or speed-of-task-completion requirements. Such task
abstraction would allow for more general reuse of the footstep tem-
plates. We plan to explore integration with motion planners that im-
plement collision avoidance as well as collaborative motions with
other characters. Nuanced stepping models should also be useful
for generating crowd animations whose motions stand up to close
scrutiny. Person-specific stepping styles could be modeled for spe-
cific tasks, or modeled across multiple tasks.
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