Guided Learning of Control Graphs

for Physics-based Characters

LIBIN LIU and MICHIEL VAN DE PANNE
The University of British Columbia

and

KANGKANG YIN

National University of Singapore

The difficulty of developing control strategies has been a primary bot-
tleneck in the adoption of physics-based simulations of human motion. We
present a method for learning robust feedback strategies around given mo-
tion capture clips as well as the transition paths between clips. The output
is a control graph that supports real-time physics-based simulation of mul-
tiple characters, each capable of a diverse range of robust movement skills,
such as walking, running, sharp turns, cartwheels, spin-kicks, and flips. The
control fragments which comprise the control graph are developed using
guided learning. This leverages the results of open-loop sampling-based re-
construction in order to produce state-action pairs which are then trans-
formed into a linear feedback policy for each control fragment using linear
regression. Our synthesis framework allows for the development of robust
controllers with a minimal amount of prior knowledge.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation

General Terms: Character Animation

Additional Key Words and Phrases: motion control, human simulation, con-
trol graphs, guided policy search

ACM Reference Format:

Liu, L., van de Panne, M., and Yin, K.. YYYY. Guided Learning of Control
Graphs for Physics-based Characters. ACM Trans. Graph. 35, 3, Article 29
(April 2016), 14 pages.

DOI = 10.1145/2893476

http://doi.acm.org/10.1145/2893476

1. INTRODUCTION

Designing controllers to realize complex human movements re-
mains a challenge for physics-based character animation. Difficul-

{libinliu, van} @cs.ubc.ca, kkyin@comp.nus.edu.sg

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions @acm.org.

© 2016 ACM 0730-0301/2016/16-ART29 $10.00

DOI 10.1145/2893476

http://doi.acm.org/10.1145/2893476

ties arise from non-linear dynamics, an under-actuated system, and
the often obscure nature of human control strategies. There is also
a need to design and control effective fransitions between motions
in addition to the individual motions. Since the early work on this
problem over two decades ago, controllers have been developed for
many simulated skills, including walking, running, swimming, nu-
merous aerial maneuvers, and bicycle riding. However, controller
design often relies on specific insights into the particular motion
being controlled, and the methods often do not generalize for wider
classes of motions. It also remains difficult to integrate motion con-
trollers together in order to produce a multi-skilled simulated char-
acter.

In this paper, we develop controllers for a wide variety of re-
alistic, dynamic motions, including walking, running, aggressive
turns, dancing, flips, cartwheels, and getting up after falls, as well
as transitions between many of these motions. Multiple simulated
characters can physically interact in real-time, opening the door to
the possible use of physics in a variety of sports scenarios.

Our method is designed around the use of motion capture clips as
reference motions for the control, which allows for existing motion
capture data to be readily repurposed to our dynamic setting. It also
helps achieve a high degree of realism for the final motion without
needing to experiment with objective functions and solution shap-
ing, as is often required by optimization approaches. The control
itself is broken into a sequence of control fragments, each typically
0.1s in length, and a separate linear feedback control strategy is
learned for each such fragment. An iterative guided learning pro-
cess is used for learning: a sampling-based control method serves
as a control oracle that provides high-quality solutions in the form
of state-action pairs; linear regression on these pairs then provides
an estimated linear control policy for any given control fragment.
Importantly, successive iterations of the learning are coupled to-
gether by using the current estimated linear control policy to in-
form the construction of the solution provided by the control or-
acle; it provides the oracle with an estimated solution, which can
then be refined as needed. This coupling encourages the oracle and
the learned control policy to produce mutually compatible solu-
tions. The final control policies are compact in nature and have low
computational requirements.

Our work makes two principal contributions: (1) A guided-
learning algorithm that combines the use of a sampling-based con-
trol oracle together with full-rank linear regression for iteratively
learning time-varying linear feedback policies that robustly track
input motion capture clips. The pipeline further supports motion re-
targeting. (2) An overall clips-to-controllers framework that learns
robust controllers for a wide range of cyclic and non-cyclic human
motions, including many highly dynamic motions, as well as learn-
ing transitions between the controllers in order to produce flexible
control graphs. Results demonstrate the integrated motion capabili-

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

L. Liu et al.

ties on real-time simulations of multiple characters that are capable
of physics-based interactions with each other. Four different stand-
up strategies, each based on motion capture data, allow characters
to recover from falls voluntarily.

2. SYSTEM OVERVIEW

Figure 1 provides an overview of the system components and how
they interact. As input, the system takes individual motion clips
and the desired connectivity of these clips, as represented by a mo-
tion graph. The output is then a control graph that is constructed
from a large set of control fragments, typically of short duration,
e.g., 0.1s, which afford the connectivity described by the desired
motion graph. Each control fragment is defined by a short target
tracking trajectory, 1, its duration, dt, and a related linear feed-
back policy, 7r, as developed during an offline guided learning pro-
cess. More details of the control fragments and control graphs will
be described in Section 4.

The learning process begins with the application of a SAMpling-
based CONtrol strategy (SAMCON) [Liu et al. 2010]) that pro-
duces an open-loop trajectory for the controls, and therefore each
control fragment, that does well at reproducing a given input mo-
tion clip or motion-clip transition. This serves two purposes. First,
it replaces the input motion, which is often not physically feasible
due to modeling errors and possible retargeting, with a physically-
realizable motion. Second, it provides a nominal open-loop refer-
ence motion and the associated control values, around which we
will then learn linear feedback control strategies to provide robust
control. The reference motion and the control values are stored in
the control fragments that underly any given motion clip.

Next, iterative guided learning, as will be detailed in Section 5,
is used to learn linear feedback policies for each control fragment.
This involves the repeated use of SAMCON in order to produce
multiple new solutions (motions and the control values underlying
them) that each do well at reproducing the reference motion. These
then serve to provide state-and-corresponding-action data for learn-
ing a local linear feedback model for each control fragment, using
linear regression (§5.2). However, the initial linear feedback poli-
cies learned in this fashion do not work well in practice; when ap-
plied in simulation, the resulting motion quickly visits regions of
the state-space that are far-removed from the regions for which the
original state-and-action data was obtained. To remedy this, guided
SAMCON (§5.3) uses the current linear control policy as an ini-
tial guess for computing its solutions, thereby implicitly looking
for control solutions that exhibit a degree of compatibility with the
current linear-feedback control policies. Over multiple iterations of
the guided learning loop, the process converges towards robust lin-
ear feedback control policies for the sequence of control fragments.

In order for the described method to also be able to robustly han-
dle transitions between motion clips, as modeled by the desired
connectivity in the motion graph, the motions for which we use
SAMCON to collect the desired state-and-action data will include
long random walks on the desired motion graph. In this way, a con-
trol fragment that immediately follows incoming transitions from
multiple branches of a motion graph will see state-and-action data
from all of these different arrival paths and will therefore be en-
couraged to produce a control policy that is compatible with the
possibly-diverse set of states that arise from these different arrival
paths.

During online simulation, a motion planner or user input speci-
fies a desired path through the control graph, and thus provides a
desired sequence of control fragments. Linear feedback control is
applied once at the beginning of each control fragment based on

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

Motion Clips

Online Simulation

Control
S M, 5 Fragment C;.
Control
1 1

Fragment

Linear Feedback
Regression Policy 1y, Simulation
State
Iterative
Learning
Process
Simulation Guided
Tuples {r}} SAMCON ---=> 8t, ~0.1s

——> Otsim = 0.005s
Fig. 1: System Overview

the current state at that time. The computed control action specifies
a constant offset from the reference controls that is then applied for
the duration of the control fragment. The linear feedback control
decisions are thus made at the time scale of the control fragments.
Finally, proportional-derivative (PD) controllers are used to con-
vert the control actions, which are target joint angles in our case,
into joint torques. The use of this final low-level control construct
at a fine time scale (milliseconds) allows for the rapid, adaptive
generation of torques upon ground contact or other collisions, and
helps enable the key control decisions to be made at the coarser
time scale of the control fragments.

3. RELATED WORK

Numerous approaches have been proposed for controlling the mo-
tion of physics-based characters, many of which are described in a
recent survey article [Geijtenbeek and Pronost 2012]. In what fol-
lows below, we review various approaches and categorize them ac-
cording to the features of relevance to our proposed method. Suit-
ably crafted phase structures, abstractions of state-and-action fea-
tures, and the use of optimization are important common features
across a majority of approaches.

Implicit dynamics methods:

Many control strategies have been developed that do not require
the controller to have full knowledge of the equations of motion. In-
stead, these are taken into account implicitly during multiple simu-
lations that are used to evaluate the impact of parameter adaptations
that are made to the components of the control system. These meth-
ods are commonly characterized by proportional-derivative joint
control, force generation using the Jacobian transpose, finite state
machines that model motion phases, and phase-specific feedback
laws that govern tasks such as hand and foot placement. Controllers
for many types of motion skills have been synthesized, including
walking, running, bicycling, and other agile motions, e.g., [Hod-
gins et al. 1995; Yin et al. 2007; Wang et al. 2009; Kwon and Hod-
gins 2010; Lee et al. 2010; Ha et al. 2012; Liu et al. 2012; Al Borno
et al. 2013; Tan et al. 2014]. Knowledge and insights about the de-
sired motions can be incorporated into the design of the control
system, an objective function to be used for optimization, or, most

Guided Learning of Control Graphs for Physics-based Characters e 3

commonly, using both of these. Realistic muscle models can also
be integrated into such approaches, i.e., [Wang et al. 2012; Geijten-
beek et al. 2013].

Optimized inverse dynamics methods: Another popular cate-
gory of approach combines knowledge of the equations of motion
with optimization in order to solve directly for the control actions,
typically joint torques. This can be done at various time scales.
Short time-horizon methods optimize for the controls, accelera-
tions, and ground contact forces for the current time step and are
commonly solved using quadratic programming, which allows for
ground contact constraints to be conveniently imposed. Knowledge
about the phase-based nature of the motion can be encoded into
phase-specific objective functions, and anticipatory knowledge can
be incorporated into simplified models that then participate in the
objective function. The approach has been successfully applied to a
wide range of motions, e.g., [Da Silva et al. 2008; Macchietto et al.
2009; de Lasa et al. 2010; Ye and Liu 2010; Zordan et al. 2014;
Al Borno et al. 2014]. Long-horizon methods optimize for the mo-
tion and the underlying controls for a finite-duration horizon into
the future, possibly encompassing the entire motion, e.g., [Popovié
and Witkin 1999; Sulejmanpasi¢ and Popovié¢ 2005; Wampler and
Popovié¢ 2009]. For interactive applications, model-predictive con-
trol is used, whereby only the immediate control actions are em-
ployed and the remainder of the time horizon is treated as a mo-
tion plan that is then extended and reoptimized at the next control
time step, e.g., [Tassa et al. 2012]. Recent work has further shown
that the phase structure can also be learned for a variety of mo-
tions [Mordatch et al. 2012].

Motion tracking: Motion capture data can be used as part
of controller design as a means of producing high-quality mo-
tions without needing to first fully decipher the many factors that
may influence how humans move. Motion capture clips had been
used as reference trajectories for passive simulation [Zordan et al.
2005] and spacetime optimization [Popovi¢ and Witkin 1999; Sule-
jmanpasi¢ and Popovié¢ 2005]. With the help of robust abstract feed-
back policies, it can be used to guide the creation of closed-loop
controllers for realistic walking [Sok et al. 2007; Yin et al. 2007;
Lee et al. 2010] and running [Kwon and Hodgins 2010] motions.
Model-based optimal control provides a general method for devel-
oping robust control about given reference trajectories [Muico et al.
2009; Muico et al. 2011]. In general, however, it remains unclear
how to adapt tracking-based control methods for complex contact
conditions and for a wide range of motions. The sampling-based
control strategy proposed in [Liu et al. 2010] has demonstrated the
ability to robustly track a wide variety of motions, including those
involving complex changing contacts. However, the solutions are
open-loop and require offline computation.

Compact linear feedback: Low-dimensional linear feedback
policies can perform surprisingly well in many circumstances, sug-
gesting that compact and simple solutions do often exist for produc-
ing robust control for locomotion [Raibert and Hodgins 1991; Yin
et al. 2007]. Robust reduced-order linear feedback policies can also
be learned for a variety of motions using optimization in the space
of reduced-order linear policies [Ding et al. 2015]. This method has
further been demonstrated in the synthesis of control for several
parkour-like skills [Liu et al. 2012] and skeleton-driven soft body
characters [Liu et al. 2013]. However, using the same reduced-order
linear policy across all phases of a motion is insufficient for com-
plex motions, and thus the work of Liu et al. [2012] requires man-
ual segmentation into motion phases, followed by the optimization
of separate feedback policies for each motion phase. In this pa-
per, we avoid the need for this manual segmentation by allowing
each short-duration control fragment to have its own linear feed-

back model for its fine-scale (approximately 0.1s) motion phase.
Our regression-based learning can efficiently learn the large num-
ber of linear feedback parameters that result from the parameter-
rich model, while approaches such as [Liu et al. 2012; Ding et al.
2015] may suffer from slow performance and convergence difficul-
ties with large numbers of parameters.

Multiple controller integration: Kinematic approaches offer
easy-to-use graph structures for organizing and composing mo-
tion clips. However, research on sequencing and interpolation of
physics-based controllers remains sparse. Given a set of existing
controllers, oracles can be learned to predict the basins of attrac-
tion for controllers, and therefore to predict when transitions can
safely be made between controllers [Faloutsos et al. 2001]. Track-
ing multiple trajectories simultaneously has been used to enhance
the robustness of locomotion control [Muico et al. 2011]. Transi-
tions between running and obstacle clearing maneuvers are realized
in [Liu et al. 2012] using careful design of the structure and objec-
tives of the transition behaviors. In this paper, we systematically
realize robust transitions between many different skills.

Reinforcement learning: Reinforcement learning (RL) pro-
vides a convenient and well-studied framework for control and
planning. It seeks an optimal policy that maximizes the expected re-
turns given rewards that characterize a desired task. Value-iteration
RL methods have been used on kinematic motion models, e.g., for
boxing[Lee and Lee 2006] and flexible navigation [Lee and Lee
2006; Treuille et al. 2007; Lee et al. 2010], and for physics-based
models, e.g., terrain traversal with constraints [Coros et al. 2009]
and with highly dynamic gaits [Peng et al. 2015]. Policy search
methods are often applied to problems having continuous action
spaces, often searching the parameter space using stochastic opti-
mization algorithms, e.g., [Peters and Schaal 2008], related EM-
based approaches [Peters and Schaal 2007], and approaches with
compact-but-adaptive policy representations [Tan et al. 2014]. De-
spite such progress, policy search often suffers from common is-
sues related to optimization in high-dimensional spaces, such as
being sensitive to the policy representation, requiring large number
of samples, and convergence to local optima. Several recent works
make progress on this problem using forms of guided policy search,
an iterative process where new samples from a control oracle in-
form the construction of an improved policy, which then informs
the collection of new samples, and so forth, e.g., [Ross et al. 2011;
Levine and Koltun 2013; 2014; Mordatch and Todorov 2014].

Our learning pipeline has a similar guided-learning structure but
is unique in its use of: (1) the use of an implicit-dynamics, sample-
based motion reconstruction method as the control oracle; (2) the
use of simple time-indexed linear feedback policies and linear re-
gression to learn these policies; (3) a focus on difficult, dynamic,
and realistic 3D full-body human motion skills; and (4) the ability
to learn transitions between skills to yield integrated multiskilled
characters.

4. STRUCTURE OF CONTROLLERS

We model a virtual character as an under-actuated articulated rigid
body system, whose pose p = (@9, qo,q;),j = 1,...,n is fully
determined by the position (a() and orientation (go) of the root and
the rotations of all n joints. We drive each internal joint degree of
freedom (DoF) with PD-servos:

kp(G —q) — kag ey

where ¢ and ¢ represent the joint rotation and rotational speed re-
spectively, and the tracking target ¢ is given by a target pose p. The
system is simulated with the open-source Open Dynamic Engine

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

L. Liu et al.

Description

pose

target pose for PD-servos

offset on target poses

motion clip, i.e. a sequence of poses in time
reference motion capture clip

control clip / tracking target trajectory
reference motion graph

control graph

control fragment

w2
E
[]
coadIILes|E

6t | duration of a control fragment
7 | feedback policy of a control fragment
M,a | gain matrix and affine term of a feedback policy
32 | variance of policy explorations
s | state vector
a | action vector
Tk | simulation tuple corresponds to Cy,. 7y, = (Sk—1, @k, Sk)
W | random walk on the control graph W = {Cj, }
T | execution episode of the random walk, 7 = {71}
i | sample index for policy search
7 | sample index for guided SAMCON
k | index for control fragments
Table I. : Symbols
D».
C: {m,ét,m}

Fig. 2: A control fragment: when the simulate state s, drifts away from
the reference start state s, the feedback policy 7 is involved to compute
a compensation Ap that offsets the open-loop control clip 72 to 7. By
tracking 77’ with PD-servos, the simulation can end near the reference end
state s in 6t seconds.

Fig. 3: A chain of control fragments

(ODE). For better stability, we follow the idea of Stable-PD con-
trol [Tan et al. 2011] and replace the second term of Equation 1
with implicit damping in the same way as described in [Liu et al.
2013]. This allows us to use a large simulation time step (Sms),
which significantly speeds up the learning process and improves
the online performance.

Control fragments, represented by the symbol C, are the basic
units of the controllers in our framework. A control fragment is a
tuple {§¢t, m, 7} as indicated in Figure 2, where mm = p(t) rep-
resents an open-loop control clip consists of a sequence of target
poses in time, which can be tracked by PD-servos to simulate a
character from a start state sq to the end state s, in ot seconds. In
practice, the simulation state in effect when a control fragment be-

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

gins, s(, will not be exactly at the expected starting state, so, due to
perturbations. The feedback policy, 7, is therefore used to compute
a corrective action, a, which consists of an offset, Ap, that is added
to 7 in order to eliminate the deviation. As illustrated in Figure 2,
this offset remains fixed during the whole control fragment, yield-
ing a resulting control clip ' = Ap @ v that is then tracked
instead of 7 in order to have the state end near the desired end
state, s.. Here the operator & represents a collection of quaternion
multiplications between corresponding joint rotations.

Our framework employs a linear feedback policy for every con-
trol fragment:

a=m(s;M,a)
=Ms+a 2)

where M represents a feedback gain matrix, @ is an affine term,
and s and a are vectors representing the simulation state and
feedback action, respectively. We use a selected subset of state
and action features in order to facilitate a compact control pol-
icy. For all the skills developed in this paper, we use s =
(gp, ho, ¢, ¢,di, d,., L), consisting of the root orientation g, the
root height hy, the centroid position ¢ and velocity ¢, vectors point-
ing from the center of mass to the centers of both feet d;, d,., and
the angular momentum L. All these quantities are measured in a
coordinate frame that has one axis vertically aligned and another
aligned with the character’s facing direction. As the vertical com-
ponent of the root orientation gq is always zero in this reference
frame, g, contains only the two planar components of the corre-
sponding exponential map of go. s thus represents 18 degrees of
freedom (DoF). Similarly, we use an 11-DoF action vector a that
consists of the offset rotations of the waist, hips, and knees, repre-
sented in terms of exponential map. Knee joints have one DoF in
our model. The final compensation offset, Ap, is then computed
from a, where we set the offset rotations of all remaining joints to
Zero.

A controller can be defined as a cascade of control fragments, as
depicted in Figure 3, which can be executed to reproduce a given
motion clip. We also wish to be able to organize the control frag-
ments into a graph as shown in Figure 4(b), whereby multiple pos-
sible outgoing or incoming transitions are allowed at the boundaries
of the control fragments at transition states, such as s1, so, and ss.
We further define the chains of the control fragments between tran-
sition states as controllers and each controller is uniquely colored
in Figure 4(b). In practice, controllers need to produce particular
skills, e.g., running, and to perform dedicated transitions between
skills, e.g. speeding up to a run. In Figure 4(c) we then illustrate the
corresponding connectivity between controllers. Here, an arrow in-
dicates that the controller associated with the tail ends in a state
that is near to the expected starting state of the controller associ-
ated with the head. Based on this graph structure, the sequencing
of skills is simply achieved by walking on this graph while execut-
ing the encountered control fragments.

In our framework, the structure of a control graph is predefined
and fixed during the learning process. Given example motion clips
of desired skills, this is done by first building a reference motion
graph, and then converting it into a control graph. Figure 4(a) shows
a simple motion graph consisting of three motion clips and tran-
sitions between sufficiently similar frames, e.g. s1, 82, 83, which
define the transition states. Any portion of a motion clip that is be-
tween two transition frames is then converted to a chain of control
fragments, or equivalently, a controller, between the corresponding
transition states. In this conversion, the motion clip is segmented
into K identical-duration pieces, with K chosen to yield time inter-

Guided Learning of Control Graphs for Physics-based Characters . 5

S1 S2 ° 1
HHHHHHHHHHH e

S3

(a) a motion graph

(b) a control graph

o
re.... \
ehe, A,
S2 * s sl
rereifg} g - 7
, S3 \ J/
-, A R —
Oennnn. hd %

(c) a compact representation of (b)

Fig. 4: Control graph: a control graph is created by (a) building a reference motion graph from example motion clips, then (b) converting
each clip of the motion graph to a chain of control fragments. (c) shows a compact representation of the control graph (b), where each node

represent a chain of control fragments, or rather, a controller.

vals 0t ~ 0.1s. We construct high-quality open-loop control trajec-
tories from the input motion clips using the improved SAMCON al-
gorithm and noise reduction and time scaling techniques [Liu et al.
2015; Liu et al. 2013], and initialize the control fragments with the
resulting open-loop controls. The feedback policies 7r are initial-
ized to zero, i.e. M = 0,a = 0.

The initial configuration of control fragments as described thus
far cannot produce robust execution of skills because of the lack
of feedback. In the next section, we introduce the details of our
learning pipeline that augments the control graph with a feedback
policy for each control fragment.

5. GUIDED LEARNING OF FEEDBACK POLICIES

We desire a control graph that supports random walks on the
graph for physics-based characters, analogous to the use of a mo-
tion graph for kinematic motion synthesis. For these physics-based
skills to be robust, feedback policies need to be developed for the
control fragments. Formally, given a control graph that consists of
K control fragments, {Cx}, we need to learn feedback policies
for these control fragments that ensure successful random walks
W = {Ck,,Chy,... }, ki € {1,... K} on the graph. To this end,
we first generate a long sequence)V via a random walk on the con-
trol graph, in which each control fragment C; appears at least 200
times. We then formulate the learning process as a policy search
problem to be evaluated on WV, and use an iterative process to de-
velop suitable feedback policies.

Figure 5 provides a toy illustration of the guided learning pro-
cess. Given a random graph-walk, W, consisting of 9 control frag-
ments, a successful execution episode of WV is generated using
Guided SAMCON, as will be discussed in further detail in §5.3.
This provides a sequence, T, of states and corresponding control
actions that does well at reproducing the desired reference motions
corresponding to V. In this toy example, we simply use four dis-
crete states as an abstract representation of a larger continuous state
space, and the actions are simply represented as the arrows that
transition to the state at the start of the next control fragment. Be-
cause each control fragment occurs multiple times in WV, multiple
state-action pairs, (s, a), are collected for each control fragment,
i.e., four for Cy, three for Cy, and so forth. These are then used to
develop a linear (affine in practice) regression model for each con-
trol fragment that predicts a as a linear function of s. This resulting
predictive model then becomes the control policy, 7, for the control
fragment. This control policy is then used to help inform the next
round of motion reconstruction using Guided SAMCON.

In the following section, we describe how the iterative use of the
linear regression model can be understood as being an EM-based

Random Walk (W): {€4,C3,C3,C3,C4,C4,C2,C3,C4}

> Guided SAMCON:

11;

Linear Regression: ¢, 4 {&w & o o}
1 C, a{e> o o}

c; @ {O& &}

Fig. 5: A sketch of the guided learning process for a toy control graph.

(expectation maximization) policy search algorithm. Alternatively,
readers can choose to jump directly to the specific details of the
linear regression for our problem, as described in §5.2.

5.1 Guided Learning as EM-based Policy Search

Starting from a state s, _1, each execution of a control fragment Cy,
results in a simulation tuple 7 = (sj_1, ax, Si). Given a reward
function R(7) that measures the goodness of this execution, policy
search seeks for the optimal policy that maximizes the expected
return

J(6) = / P(r:0)R(r) 3)

with respect to the feedback parameters 6. The probability density
of a simulation tuple is determined by:

P(7;0) = P(sk|sk-1, ar)mr(ak|sk-1;0)P(sk-1) (4)

where P(sj|sk_1,as) is the transition probability density and
7k (ak|sk—1; 0) represents the probability density of the feedback
action given the start state and the feedback parameters. We model
7k (ak|sk—1;0) as Gaussian explorations superimposed onto the
deterministic feedback policy of Equation 2, i.e.:

Ty (ay|sk-1;0) := w(ak|sk—1; My, @, Xy)
NN(MkSk—l + ag, i) ®)

The feedback parameters are then defined as 8 = { M, ay, Xy }.
We use a diagonal covariance matrix 3, with the assumption that
each dimension of the action space is independent.

An EM-style algorithm offers a simple way to find the optimal
policy by iteratively improving the estimated lower-bound of the

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

L. Liu et al.

policy’s expected return. Peters and Schaal [2007] apply an EM al-
gorithm to episodic policy search for a linear policy and shows that
the iterative update procedure is just a weighted linear regression
over the execution episodes of the current policy. Specifically, let
6, be the current estimation of the policy parameters, EM-based
policy search computes a new estimation @ that maximizes:

J(0
log % ~ log / P(r;0)R(r)/J (60) (©)
1 . P(7:6)
> 0 / P(ri00)R(r)log 5 gk ()
m(ay|sk-1;6)
P(7;00)R(7) log 8
/ 7:60) m(ay|s-1;00) ®
=L(6;0,) + C &)

where Equation 7 applies Jensen’s inequality to the concave loga-
rithm function, C' is a constant independent of 8 and

L(6;0,) ::/P(T;BO)R(T) log 7(ag|sk-1;0) (10)

Note that the optimal @ must satisfy J(6) > J(6,) because Equa-
tion 7 is always zero when @ = 6. L(6; 0,) can be further esti-
mated from a number of simulation tuples {7} } sampled according
to the current policy 7y (ay|sk_1,00) as:

L(6;6,) ~ NkZR)logmi(aisi_1;0) (1)

where Ny, is the number of such tuples. By letting L(0; 8,) /00 =
0 we can find the locally optimal estimation of € by solving

0
0= %L(G,OO)

O(ZR

With this maximization step in place (the M step), we then up-
date 8, with this optimal @ and then recompute a new set of sam-
ples (the E step) and repeat the EM iteration until obtaining optimal
policies.

As we are learning the feedback policies against the random walk
W, the sample tuples {7} for all the control fragments {Cy} can
be collected simultaneously by generating a long successful execu-
tion of W, represented by T = {7y, , Tk,, . . . }, and then extracting
simulation tuples for each individual control fragment from it. Fig-
ure 5 provides a simple sketch of this procedure. Furthermore, we
assign a constant reward to all such tuples, which implies a special
reward function in the form of

logﬂ'k(ak\sk 1;0) (12)

1 tuple 7 is good enough in the long run so
that the random walk W can succeed. (13)
0 otherwise.

R(1) =

Solving Equation 12 against this reward function and the Gaus-
sian Explorations of Equation 5 leads to the linear regression that
we describe next.

5.2 Estimation of Linear Feedback Policy

The linear regression problem solved for control fragment k yields
a model to predict a as an affine function of s, as per equation 2,

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

where
My, = [(STS) 7 (STA]" (14)
ap = l_lk M5, (15)
diag(Zs) = V diag [(Ar — Se M) (A — SeME)] (16)

where @y, and 5j_; are the averages of al and si_, respectively,
the IVi-row matrices Sy and Ay represent the centered collections
of all the tuples, i.e.

1 = N s r
Si=[sh =18 — 5] a7

1 N T
Ak:[ak—&k,...7ak’“—dk] (18)

To prevent the regression from being underdetermined, the ran-
dom walk is generated to be long enough so that N, > 200 for all
control fragments. We further regularize the Frobenius norm of the
feedback gain matrix M)}, so that

M, = [(ST S+ AD) (ST AR)]” (19)

is used instead of Equation 14. The regularization coefficient
A = 107% in all our experiments.

We further use the observed prediction variances, as captured by
3%k, to provide a stochastic version of the control policy (cf. §5.1)
that will be used to guide the sampling used by the search algorithm
(SAMCON) that serves as our control oracle:

i (ak|sk-1;0) := N (Mys,_1 + ar, i)

5.3 Guided SAMCON

A key to the success of the guided learning is that it learns
from useful examples, i.e., only those that result from successful
completions of the random walk in every iteration. Levine and
Koltun [2013; 2014] suggest that trajectory optimization can be
used to collect such useful examples for guided policy search. We
draw inspiration from this type of guided learning, to develop a
form of guided learning that relies on sampling-based motion con-
trol (SAMCON) methods, as proposed by [Liu et al. 2010; Liu et al.
2015] to provide successful executions of the target random walk.
SAMCON allows us to work with long sequences of complex mo-
tions, and has proved to be capable of generating the controls for
a wide variety of motion skills. We call this new method Guided
SAMCON.

We first begin by reviewing SAMCON. For this review, the exact
index of the control fragment is unimportant and thus we represent
the random walk according to their sequence index in the random
walk, i.e., W = {C1,Ca,...,Cn}, where N = 325 Ny is the
length of the random walk, and N}, is the number of times a given
control fragment k appears in the random walk. Beginning from
the initial state of the first control fragment, C;, we utilize SAM-
CON to develop a sequence of actions {ay} that results in control
fragment end states, { sy}, that are nearby those of the desired ref-
erence motions. The set of simulation tuples {(sx_1, ax, Sx)} then
describes the samples from the same control fragment & that are
collected together for regression. Note that this represents a slight
abuse of notation in that we use s;_; to refer to the previous state
in the random walk sequence, rather than a true control fragment
index, whose identification numbering can be in an arbitrary order.
However, this significantly simplifies the notation for the remainder
of the paper.

Guided Learning of Control Graphs for Physics-based Characters . 7

Algorithm 1 Guided SAMCON

Algorithm 2 Guided Learning Pipeline

Input:

1: arandom walk on the control graph W = {Ci, },k=1,..., N
2: the start state sq
Output: a successful execution of the sequence T

1: {s}} « initialize the starting set with N replicas of s
2: for k <+ 1to N do

3: for each sample j do

4: generate action @, ~ w(ag|s]_,) ~N(Mys] | +éar,)
5: 87, + execute control fragment Cy, against a,

6: rec}ord a simulation tuple T]i =(s}_,,ai,s})

7: E;] « evaluate end state s,

8: end for)

9: {T]i*} + select ng elit.g samples according to { E; }

10: {s7.} + resample {s7"} to get a new starting set of size N

11: end for

12: 7 = {7} < select the best path from all saved {T,Z‘}

Algorithm 1 outlines the main steps of SAMCON, and Figure 5
provides a simple example. SAMCON can be viewed as a type of
Sequential Monte Carlo algorithm [Doucet and Johansen 2011].
Specifically, for the first control fragment, SAMCON initializes an
initial set of states {s}} with j € 1...N; replicas of the start state
Sp, and samples an action a? for each s}, according to a sample dis-
tribution 7w (a1|so). It then advances the simulation from s while
executing the control fragment with the corresponding compensa-
tion offset Apj computed from af as described in Section 4. The
simulation results in a tuple 77 = (s}, a’, s7) whose end state s/
is evaluated according to its similarity to the reference end state that
corresponds to the control fragment.

We measure this similarity by a cumulative cost function:

E=w,E, +w, B, +w.E. + wy, Ly
+ chc + vav + wLEL + waEa (20)

where the terms for pose control E,,, root control E,., end-effector
control E,., and balanced control E; are identical to the origi-
nal work [Liu et al. 2010]. We additionally regularize the differ-
ences between the simulation and the reference in terms of cen-
troid position E., centroid velocity F,,, and the angular momentum
E,. The last term, E,, simply serves to regularize the Euclidean
norm of the actions. We use (wy,, Wy, We, W, We, Wy, Wp,, We) =
(4.0,4.0,10.0,1.0,3.0,0.1,0.03,0.05) for all our experiments.
Our results are not sensitive to the exact values of these weights
so other values within the same order of magnitude may be used as
well.

After executing all sample actions and obtaining N, simulation
tuples {77}, guided SAMCON selects and saves the n¢ best tuples
{7{"}, as measured by the lowest cumulative costs, and then sys-
tematically resamples the corresponding end states {s]"} according
to their costs to obtain a new starting set {s]} of size N, for the
successive control fragment. This is akin to the resampling proce-
dure used in particle filtering, i.e., better samples produce more suc-
cessors. This sampling procedure is repeated for each stage of the
motion, i.e., once per control fragment, until the end of the random
walk is reached. Finally, the resultant execution episode 7 = {7} }
is chosen to be the best path of all saved tuples {77"}.

Guided SAMCON uses the current policy of every control frag-
ment Cj, as the distribution to sample from, i.e., w(ax|sk-1) =
ﬂk(ak|3k,1; Mk, dk, Ek) ~ N(Mksk,l + dk, Ek) This can
be viewed as an enhancement of the original SAMCON algo-
rithm [Liu et al. 2010] that employed a fixed sampling distribution,

Input: example motion clips of skills
Output: a control graph G

. build a reference motion graph G from input motion clips

: initialize a control graph G = {C}, } according to G

. generate a random walk W = {Cy, , . . . Cry }

: refine the open-loop control clip 1, for every Cy,

: initialize M = 0, a, = 0, X = JSI for every Ci,

. for every EM iteration do > policy search

generate a successful execution 7 of WV with Guided SAMCON

for each control fragment Cj, do
{7}:} + extract sample simulation tuples of Cy, from
update My, @, X by linear regression on {'r,l}

end for
. end for

SoSoeNous Wy

m(ak|sk-1) ~ N(0,3p), and also of the improved SAMCON al-
gorithm [Liu et al. 2015] that evolves the mean and covariance of
the sample distributions iteratively in a state-independent fashion,
ie., w(ag|sk-1) ~ N(ax, Xx). The guided sample selection and
resampling implicitly focuses the exploration on regions of the state
space that are both relevant to the current policy as well as regions
of the action space that are known to yield desired motions.
Voluntarily including noise in optimization has been shown to
be useful to prevent over-fitting and allows the learned policy to
deal with larger uncertainty [Wang et al. 2010; Liu et al. 2012].
We build on this idea by further adding a Gaussian noise vector
e ~ N(0,021) to the action samples. We thus compute the com-
pensation offset Ap] from a;j, + &;. The noise vector is assumed
to be unknown to the feedback policies, and is not recorded or in-
cluded in regression. We find that a uniform setting 0. = 3° is
enough to allow all of our motions to be robustly executed.

5.4 Learning Control Graphs

Algorithm 2 summarizes the whole guided learning framework of
control graphs. Given several example motion clips of the target
skills as input, the pipeline builds a control graph that synthe-
sizes robust dynamic motions from arbitrary random walks over
the graph. This allows for motion planners, which are beyond the
scope of this paper, to work with the graph as a simple high-level
abstraction of the motion capabilities. The whole pipeline consists
of the following sub-procedures:

Building control graphs: A reference motion graph is firstly
built (line 1 of Algorithm 2), and then converted to a control graph
(line 2) as described in Section 4. Building high-quality motion
graphs can be a non-trivial task, even with the help of automated
techniques such as the one proposed by [Kovar et al. 2002]. Manual
tuning is often necessary to achieve natural-looking transitions and
to remove artifacts such as foot-skating. Fortunately, the usage of
simulation naturally offers the ability to produce physically plausi-
ble motions for the control graph. Therefore, the reference motion
graph does not necessarily need to be carefully tuned. In this pa-
per, we manually specify the connectivity of the motion graphs for
our control graphs by selecting visually similar poses as transition
points. We then apply kinematic blending to a few frames of the
motion clips near the transition points. Our learning procedure is
generally robust to kinematic flaws due to such blending or noise,
and is able to generate high-quality simulated motions. Occasion-
ally, selected transitions based on pose similarity alone may result
in poor results, such as those between slow motions and fast mo-
tions where velocities should also be taken into account. In such
cases, we perform a search for the best transition point around the

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

L. Liu et al.

originally selected point, using a 0.05s sampling interval. We can
find successful transitions within ten samples in all such cases.

Refining open-loop control clips: The initial control clips of
every control fragment are directly computed from the individual
motion capture example clips, which are not necessarily physically
plausible for the transitions in the control graph. To facilitate the
graph learning process, we further refine these open-loop controls
as indicated on line 4. Specifically, this is done by performing the
original SAMCON on the motion sequence corresponding to the
random walk W, and then replacing the initial open-loop control
clip ™ and the reference end states with the average of all sim-
ulation instances of the control fragment Cj, in WW. The averaging
not only reduces the noise due to random sampling as suggested
by [Liu et al. 2015], but also maximizes the possibility of finding a
robust feedback policy that can deal with all possible transitions.

Learning Feedback Policies: In line 5, the feedback policies are
initialized, as well as the default exploration covariances. We find
that og = 5° works for all the skills that we have tested. The EM-
based policy search is performed in line 6-12, where the guided
SAMCON trials and the linear regressions are alternated to im-
prove the feedback policies iteratively. Guided SAMCON can oc-
casionally fail when generating a long random walk sequence, es-
pecially in the first iteration when the initial zero policy is applied,
where Guided SAMCON degenerates into the original SAMCON.
To mitigate this problem, we generate more samples ([N, = 1000)
per stage during the first iteration than for the successive iterations
(Ns = 200). If the algorithm fails to complete the designated graph
walk, we roll back the execution of the latest three controllers (25-
50 control fragments) and then restart guided SAMCON from that
point.

Progressive Learning: Learning the controllers for all the mo-
tion skills of a control graph simultaneously can be inefficient, be-
cause different controllers converge in different speed, i.e., some
controllers quickly become robust, while others may cause SAM-
CON to fail and restart constantly. This disparity results in ex-
cessive samples being used for the easy controllers and excessive
restarts for the difficult ones, if the entire control graph were to
be learned all at once. To mitigate this problem, we learn control
graphs progressively. Figure 10 illustrates two prototype control
graphs and the example learning orders we use. Specifically, we
start from learning controllers for a few cyclic skills. Non-cyclic
skills are then gradually incorporated into the latest subgraph by re-
running the whole learning pipeline. This progressive process skips
the learned skills from guided SAMCON by locking the learned
policies instead of generating additional exploratory samples for
further learning. Our experiments show that the learned feedback
policies from the smaller graph are robust enough to deal with new
transitions in the enlarged graph. However, it is possible that the
newly added transitions are not compatible with existing control
policies. We suggest simply unlock the learned controllers con-
nected with the new skill for further adapting their parameters. An-
other scheme we employ to improve learning efficiency is to gen-
erate random walks that visit each skill with approximately equal
probability. Some connections between the learned skills are tem-
porarily neglected to achieve this condition.

6. RESULTS

We have implemented our framework in C++. We augment the
Open Dynamic Engine (ODE) v0.12 with an implicit damping
scheme [Liu et al. 2013] to simulate the character faster and more
stably. On a desktop with an Intel Core i5 @ 2.67 GHz CPU, our
single threaded implementation runs at 10 x real-time using a simu-

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

. PD-Gains | Teycle tiearnin, fimax
Skills Set ©® | miny | o
Catwalk (a) 0.7 40.3 280
StridingRun (a) 0.45 21.1 470
Waltz (a) 5.0 314 240
Kick (b) 1.6 93.8 260
DanceSpin (b) 1.6 102 230
Backflip (b) 2.5 153 80

Table II. : Performance statistics for cyclic motions. Teycle Tepresents the
length of a reference cycle. tieaming is the learning time for each skill on a
20-core computer. fiax represents the maximal recoverable horizontal push
to the character’s trunk.

o Kick DanceSpin
T . ————_———— - - 350
—_— i s
0.014 G O I S qmmmmmmanes L 300 &
& oo X "f‘::»,aé,(%wwgsfiéw ,X,,g:zx,-rf\b,;fx:x, 3
c o A e L2505
© H [
s 0.01 S
i)
L 0.008 Q
- o
2 5006 g
g - 3
2 o004 o1
S oo
o o
0.002 %
=
0

Learning Iterations

Fig. 9: Convergence and controller robustness during guided learning, as
measured according to the magnitude of policy parameter changes (falling
curves, left-hand scale) and the magnitude of maximal recoverable external
pushes (rising curves, right-hand scale).

lation time step of Sms. Except for the retargeting experiments, all
our experiments are performed with a human model that is 1.7m
tall and weights 62kg. It has 45 DoFs in total, including 6 DoFs
for the position and orientation of the root. Two sets of PD-gains
are used in our experiments: (a) for basic locomotion, we simply
set k, = 500, kg = 50 for all joints; (b) for highly dynamic
stunts, a stronger waist (k, = 2000,k; = 100) and leg joints
(kp, = 1000, kg = 50) are necessary.

6.1 Cyclic Skills

The simplest non-trivial control graphs are those built from individ-
ual cyclic skills. A variety of cyclic skills have been tested to fully
evaluate the capability of the proposed learning framework, in-
cluding basic locomotion gaits, dancing elements, flips, and kicks.
The example motion clips for these skills are from various sources
and were captured from different subjects. We simply apply them
onto our human model, and kinematically blend the beginning and
end of the clips to obtain cyclic reference motions. Errors due to
model mismatches and blending are automatically handled by our
physics-based framework. The animation sequences shown in Fig-
ure 6 demonstrate the executions of several learned skills. We en-
courage readers to watch the supplemental video to better evaluate
the motion quality and robustness of the controllers.

The offline learning is performed on computer clusters with tens
of cores. The performance of the learning pipeline is determined
by the number of necessary runs of guided SAMCON, whose com-

Guided Learning of Control Graphs for Physics-based Characters e 9

Fig. 8: Applications of the control graph. Top: random walk with external perturbations. Bottom: steering.

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

10 . L. Liu et al.

putational cost scales linearly with respect to the length of the
clip, the number of samples N, and inversely with the number
of cores available. Table II lists the learning time for several cyclic
skills, measured on a small cluster of 20 cores. We run the learn-
ing pipeline with the same configuration for all motions for ease of
comparison, i.e., 20 iterations of guided learning, with Ny = 1000
in the first iteration and N, = 200 for the remaining iterations. In
practice, the required SAMCON samples can be much lower, e.g.,
to N; = 50 ~ 100, after the first few learning iterations, as the
feedback policies usually converge quickly under the guided learn-
ing.

To measure the convergence of the learned policies, we com-
pute the Euclidean distance between successive EM iterations:
NLHHGZ —0,_4||, where Ny is the dimension of @, and [is the index
of the EM iterations. Figure 9 shows two typical runs of the learning
process for Kick and DanceSpin. The descending curves suggest
that the feedback policies converge quickly in the first twenty iter-
ations. The non-zero asymptotic values may be attributable to sev-
eral causes, including the stochastic exploration of unconstrained
aspects of the motion as well as the use of a finite number of sam-
ples at each iteration.

To investigate the robustness of the learned controllers, we sys-
tematically measure the magnitude of the maximal recoverable ex-
ternal pushes, fiax, as shown in the last column of Table II. More
specifically, at the beginning of each cyclic controller, we push the
character’s trunk for a duration of 0.1s, horizontally along its fac-
ing direction. If the character does not fall for the next 20 cycles,
we increase the perturbation force by 10N and repeat the push test
again. The ascending curves in Figure 9 illustrate how the robust-
ness improves during guided policy search iterations. This is fur-
ther demonstrated in the supplemental video with the dance-spin
controllers, where we horizontally push the character’s trunk with
50N and 150N forces for 0.2s, after various numbers of learn-
ing iterations. At the beginning of the learning process, even the
50N x0.2s push causes the controller to fail. After the tenth iter-
ation, the controller can survive the SO0NN x0.2s push but not the
150N x0.2s push. After twenty iterations, the controller becomes
robust to both pushes. In the supplemental video we also show kick-
ing is robust to 400N x0.2s pushes applied to the trunk during the
flight phase.

Generally speaking, faster motions such as running take fewer
learning iterations to achieve robust cyclic motions, as well as tol-
erating larger perturbations. In contrast, slow motions such as the
balancing phase of the backflip are more sensitive to perturbations.
This may be explained in part by the additional balance opportu-
nities afforded by each new contact phase. We also note that we
run the learning process for a maximum of twenty iterations, given
that this allows robust feedback policies to be found for all motions
tested. However, none of the motion skills can acquire robust feed-
back policies with only one iteration. Figure 9 therefore also serves
as a comparison between Guided SAMCON and linear regression
with the original SAMCON, as the first iteration of Guided SAM-
CON with a zero policy is equivalent to the latter.

All the test skills can be learned with the standard settings as
described in the previous sections, while special treatment is ap-
plied for walking and running in order to achieve symmetric gaits.
Specifically, we pick one stride (half step) from the example clip
and concatenate its mirror stride to generate a symmetric reference
motion. In addition, we only learn the feedback policies for the first
stride, and mirror the states and actions for the second stride so that
the feedback policies are symmetric too. Enforcing symmetry is
not necessary for finding robust control policies. However, the re-

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

sulting asymmetric gaits often make the character turn slightly to
one direction. Another interesting observation of the learned walk-
ing and running controllers is that the character turns when gentle
sideways pushes are applied. This offers a simple way to develop
parameterized turns for these locomotion skills, as we can record
the corresponding actions under external pushes and add them to
the action vectors in order to make the character perform shallow
turns. We use this simple parameterization method to implement
basic steering behaviors in our demonstrations. For rapid turns we
still need to use controllers learned from relevant motion capture
examples.

We further employ contact-aligned phase-resetting for walk-
ing and running controllers, which improves their robustness to
large perturbations. In contrast, we have noted that contact-aligned
phase-resets are neither necessary nor helpful for learning con-
trollers for complex skills such as kicks and backflips. Motions that
involve long airborne phases might be considered sensitive to the
contact events at take-off and landing. However, our pipeline is ca-
pable of finding successful control policies without contact align-
ment at the control fragment level or any other special treatment of
these critical instants. In practice, the learned policies are robust to
the simulated contact events occurring in fragments that immedi-
ately precede or follow the nominal fragment for that event.

The robustness of the learning framework enables additional in-
teresting applications. For example, in the supplemental video we
show that two significantly different backflips can be learned from a
single motion capture example, where one is learned from a shorter
reference cycle than the other. The guided learning process auto-
matically finds a physically feasible movement that fills in the miss-
ing segment of the shorter reference trajectory. Our framework also
supports retargeting controllers onto characters with significantly
different morphology from the motion captured subjects. We sim-
ply re-run the pipeline on the new character, with the open-loop clip
refinement step warm-started from the results obtained for the de-
fault character. Figure 7 shows several examples where we retarget
the cyclic kick and the dance spin to characters with modified body
segment lengths. As before, the retargeted controllers are robust to
external perturbations.

6.2 Control Graphs

Figure 10 shows two prototype control graphs, one consisting of
runs, turns, gymnastic movements, and balancing, and the other
consisting of Bollywood dancing elements, get-up motions, and
balancing. Only major controllers are shown in the graphs for clar-
ity. The two control graphs can be further composed into a larger
one through the standing behavior. We learn the control graphs pro-
gressively in the order illustrated in Figure 10. We always start by
learning cyclic controllers, using the process described in the last
subsection. Non-cyclic skills are then gradually incorporated into
the latest subgraph by rerunning the whole learning pipeline.

We further include a few rising skills in the control graphs that
will be automatically executed when the character falls. These ris-
ing skills have only one-way connections with the graph and we
learn them in a separate procedure. We create learning cycles by
pushing the character on the trunk in suitable directions and then
invoke a ragdoll controller that tracks the starting pose of the target
rising skill. When the difference between the simulated pose and
this starting pose is small enough, the rising skill is activated and
the character gets up and once again transitions to the beginning of
the learning cycle. We currently use a simple fall detection algo-
rithm that monitors the magnitude of the action vector as computed

Guided Learning of Control Graphs for Physics-based Characters . 11

—: Stand H KipUp |
-7 __‘___
. / |
—_— -y I
4:{ Slow Run | 180-Turn 1 I
|
- ol
-
Striding Run 180-Turn 2 I
| 1 !
{I Slow Down | r-s- ;e d-U--\ :
i & Turn e P P
________ Y - - y
(mm————= \ o=t
-I Cartwheel ! | GetUp
| &Backflip 1 ‘---I---
| J
. ~" [S B il WY gl WY gl |
Learning Order: 1112 3141151161171

------- Y
i Action1 !
_______ J ~~
Slow | fpemm—————— N ’___!___
Cartwheel i Action2 | 3 I Prone !
———}--—J | GetUp
_______ [N I-- ---\ I
C| Action3 :h Stan 14
_______ - 1 1
\—_:—_a ——————
an : Supine :
------- 3 i i Setve_J
I Actiond 0 j
------- g | =

) -
Learning Order: 11 102 3
LTy

Fig. 10: Two prototype control graphs are progressively learned in the order as indicated by the different colors. Only major controllers
are shown in the graph for clarity. The rising skills indicated by the dashed arrows are triggered by character falls. Left: Locomotion and
gymnastics graph. Right: Bollywood dancing graph. Actionl—arm hip shake; Action2—chest pump+swag throw; Action3—pick and throw;

Action4-hand circular pump.

Fig. 11: Two simulated characters try to run into each other. Both of them are controlled by the same control graph.

by the feedback policies. Once this exceeds a fixed threshold, we
activate the ragdoll control followed by an appropriate rising skill.

The two control graphs together contain a total of 40 seconds of
reference motion. The aggregate construction time for our motion
graphs, beginning from the reference motions, is approximately
two full days on a 20-core computer cluster, including both user-in-
the-loop work and offline computation. This begins with the com-
putation of the open-loop trajectory from the original reference mo-
tion using SAMCON. The compute time for this depends on the
quality of the reference motion, varying from as few as ten minutes
for many motions, i.e., runs, bollywood dances, get-up, kip-up, to
one hour or more if the sample distribution adaption algorithm is
required [Liu et al. 2015], as was the case for flips and gymnas-
tic motions. The guided learning procedure usually takes up to one
hour to learn a one-second long skill, as suggested by Table II. In
practice, we often stop well before the maximum 20 EM-iterations,
resulting in compute times under one hour for a one-second cyclic
skill. In aggregate, we find that it takes between 1-2 hours per sec-
ond of reference motion, which includes both the required manual
steps and the computational time on a 20-core cluster. In practice,
we can get through all the manual steps in the daytime and run the
learning procedures overnight with batch-mode settings.

‘We show several applications of the prototype control graphs in
the supplemental video. The learned skills in the graph are quite ro-
bust, i.e., a random walk on the graph can always succeed when no
perturbations are applied. With the help of a simple greedy high-

level planner, we can easily achieve interactive navigation in the
scene. The characters can also robustly perform the desired motions
in the presence of moderate external perturbations such as pushes
on the trunk and ball-impacts as shown in Figure 8. The character
will fall in the face of large perturbations, which then results in au-
tomated invocation of the rising controllers that return the character
to performing the motions designated by the high-level planner.

Figure 11 demonstrates two simulated characters, steered by a
high-level planner, to always try to run into each other. They repeat
the overall behaviors of colliding, falling, and getting up. The com-
plex contacts and interactions between the characters would be too
difficult to synthesize via kinematic approaches, while our frame-
work can easily generate these motions in real-time thanks to the
physics-based nature of the simulations and the robustness of the
control graphs. In the video, we further show another example in-
volving four characters, all simultaneously simulated in real-time,
that perform the same overall interaction behaviors.

7. DISCUSSION

We have introduced a general framework that learns and organizes
physics-based motion skills from example motion capture clips.
Key to achieving the results is the use of control graphs composed
of control fragments, the use of random walks on the control graphs
for learning, and the use of guided policy search for developing lin-
ear feedback policies for the control fragments. To the best of our

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

12 o L. Liu et al.

knowledge, this is the first time that a very diverse range of mo-
tions, including locomotion, highly dynamic kicks and gymnastics,
standing, and rising motions, can be synthesized in real time for 3D
physics-based characters and controlled and integrated together in a
uniform framework. We believe the proposed method can be easily
applied to a variety of other skilled motions. This offers a potential
solution to the difficulties in developing general control methods
that still prevent the more widespread adoption of physics-based
methods for character animation.

Compared with robust feedback policies that are specially tai-
lored to locomotion, such as SIMBICON-type controllers [Yin
etal. 2007; Lee et al. 2010], our framework works for a much richer
class of motions including many that have rapid contact changes.
We do note that our learned walking controller is less robust than
the working gait used to measure the robustness in the original
SIMBICON paper [Yin et al. 2007]. This is similar to earlier results
by [Wang et al. 2009], showing that their natural walks are less ro-
bust than the original SIMBICON walking gait. The robustness of
a walking gait is thus related to the particular walking style as well
as the specific feedback system. In comparison to model-based ap-
proaches such as quadratic programming [Macchietto et al. 2009;
de Lasa et al. 2010] and differential dynamic programming [Muico
et al. 2009; Muico et al. 2011], our method does not require exact
knowledge of the dynamics models or carefully-tuned optimization
objectives and constraints. In addition, we incorporate motion tran-
sitions in the same framework, thereby enabling multi-skilled 3D
avatars that are capable of real-time interaction with the environ-
ment and with each other.

A primary finding of our work is that sequences of linear feed-
back policies based on a fixed set of state features and action fea-
tures, as implemented by the control fragments, do well at control-
ling many skills, including not only basic locomotion, but also ris-
ing skills and complex highly-agile movements. These linear poli-
cies can be learned from a suitable data stream using standard lin-
ear regression methods. Two components of the success are: (a)
the ability to generate high-quality open-loop motion reconstruc-
tions using SAMCON; and (b) the use of guided learning which
effectively selects samples in the vicinity of the states and actions
produced by the policy and therefore encourages convergence be-
tween the synthesized SAMCON solutions and the learned linear
policies.

Each run of the learning pipeline for learning a given skill can
result in different policies, which suggests that the feedback poli-
cies may have a low-rank structure that admits multiple solutions,
as has been demonstrated to be the case for basic locomotion [Ding
et al. 2015; Liu et al. 2012]. We leave the development of compact
reduced-order control policies as a topic for future work.

‘We inherit the default control fragment duration, 0.1s, from the
original SAMCON method [Liu et al. 2010]. This represents a com-
promise between an excessively long duration, which eventually
leads to a feedback structure that is insufficiently flexible to provide
robust control, and an excessively short duration, which increases
the compute time and may be prone to overfitting or local minima.
In practice, we find that control fragment durations in the range of
0.055—0.2s also provide robust solutions.

Our current state features and action features were selected with
skills such as locomotion, kicks, and dancing in mind. These are all
skills where the character’s legs are extensively used for balance.
However, these features prove to be suitable for a wider range of
skills, including those where the arms play an important role, e.g.,
cartwheels and rising-up motions. For motions that are dominated
by control applied to the arms, such as a hand-stand or a hand-stand

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

walk, we expect that some new state features and action features
may need to be introduced.

The control policies resulting from our method depend on the
current simulation state as well as the time index in the reference
motions. The use of time-indexing makes the policies easier to
learn, but also makes the learned policies less flexible. In addition,
our method assumes there is no need for multi-modal responses,
such as would arise in the case of a policy that should steer ei-
ther left or right to avoid a collision, but should not steer straight.
As future work, we wish to develop state-indexed feedback poli-
cies by using data obtained from the time-indexed policies to learn
richer state-based policy representations, such as Gaussian mixture
models or neural networks [Levine and Koltun 2013; Mordatch and
Todorov 2014; Tan et al. 2014].

In all our experiments, guided SAMCON always succeeds if the
open-loop controls can be constructed. A failure to reconstruct the
open-loop controls is usually due to the poor quality of the ref-
erence motion or the improper selection of transition points. We
note that the current framework cannot be directly applied to mo-
tion skills that involve non-trivial human-object interactions such
as dribbling a soccer ball or non-trivial interactions between multi-
ple characters such as social dancing or wrestling.

We wish to develop and integrate parameterized versions of the
motions and their feedback controllers, e.g., motions that have con-
trollable speeds and directions. Parameterization is another form of
generalization, and an appropriate learning process can likely be
bootstrapped from the initial unparameterized motions. Our cur-
rent demonstrated ability to steer the character during walking and
running is realized in an ad hoc fashion. Parameterization with con-
tinuous optimization [Yin et al. 2008; Liu et al. 2012] and interpo-
lations between controllers [da Silva et al. 2009; Muico et al. 2011]
are also likely to be helpful in creating richer skill repertoires. It
may also be possible to integrate the use of abstract models, such
as the inverted pendulum model [Coros et al. 2010] or feature-based
control [Mordatch et al. 2010] in support of generalization.

The efficiency of our current learning pipeline can likely be im-
proved, given that many simulation outcomes are discarded without
being fully exploited. For example, guided SAMCON discards all
the simulation tuples except those belong to the best path, and even
the saved simulation tuples are discarded after their use in the lin-
ear regression for the current iteration of the guided learning. These
samples could likely be further utilized to reduce the necessary du-
ration of random walk and to enhance the robustness of the learned
policies, given that they offer extra information about the policy
space. Reusing these samples with importance weights [Hachiya
et al. 2009] or for developing a dynamics model are two possible
paths forward for developing a more efficient learning process.

After the initialization procedures, the current framework is
largely automated, with uniform parameter settings being used to
develop most of the motions. However, manually designing the
reference motion graph is still necessary at the beginning of the
pipeline. The development of good open-loop control clips for dif-
ficult skills or from poor-quality reference motions remains the part
of the learning pipeline that still requires some manual intervention
as described in Section 5.4. For future work, we would like to create
a fully automated pipeline.

ACKNOWLEDGMENTS

This project is partially supported by NSERC Discovery Grants
Program RGPIN-2015-04843 and Singapore Ministry of Education
Academic Research Fund, Tier 2 (MOE2011-T2-2-152).

Guided Learning of Control Graphs for Physics-based Characters . 13

REFERENCES

AL BORNO, M., DE LASA, M., AND HERTZMANN, A. 2013. Tra-
jectory optimization for full-body movements with complex contacts.
TVCG 19, 8, 1405-1414.

AL BORNO, M., FIUME, E., HERTZMANN, A., AND DE LASA, M. 2014.
Feedback control for rotational movements in feature space. Computer
Graphics Forum 33, 2.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2009. Robust
task-based control policies for physics-based characters. ACM Trans.
Graph. 28, 5 (Dec.), 170:1-170:9.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2010. Generalized
biped walking control. ACM Trans. Graph. 29, 4 (July), 130:1-130:9.

DA SILVA, M., ABE, Y., AND POPOVIC, J. 2008. Simulation of human
motion data using short-horizon model-predictive control. In Computer
Graphics Forum. Vol. 27. Wiley Online Library, 371-380.

DA SILVA, M., DURAND, F., AND PoPOVIC, J. 2009. Linear bellman
combination for control of character animation. ACM Trans. Graph. 28, 3
(July), 82:1-82:10.

DE LASA, M., MORDATCH, 1., AND HERTZMANN, A. 2010. Feature-
based locomotion controllers. ACM Trans. Graph. 29, 4 (July), 131:1-
131:10.

DING, K., L1U, L., VAN DE PANNE, M., AND YIN, K. 2015. Learning
reduced-order feedback policies for motion skills. In Proceedings of the
14th ACM SIGGRAPH / Eurographics Symposium on Computer Anima-
tion. SCA ’15. ACM, New York, NY, USA, 83-92.

DOUCET, A. AND JOHANSEN, A. M. 2011. A tutorial on particle filtering
and smoothing: Fifteen years later. In Handbook of Nonlinear Filtering.
Oxford, UK: Oxford University Press.

FAaLouTsoOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D. 2001.
Composable controllers for physics-based character animation. In Pro-
ceedings of SIGGRAPH 2001. 251-260.

GEUTENBEEK, T. AND PRONOST, N. 2012. Interactive character anima-
tion using simulated physics: A state-of-the-art review. In Computer
Graphics Forum. Vol. 31. Wiley Online Library, 2492-2515.

GEUJTENBEEK, T., VAN DE PANNE, M., AND VAN DER STAPPEN, A. F.
2013. Flexible muscle-based locomotion for bipedal creatures. ACM
Transactions on Graphics (TOG) 32, 6, 206.

HA, S., YE, Y., AND L1u, C. K. 2012. Falling and landing motion control
for character animation. ACM Trans. Graph. 31, 6 (Nov.), 155:1-155:9.

HACHIYA, H., PETERS, J., AND SUGIYAMA, M. 2009. Efficient sample
reuse in EM-based policy search. In Machine Learning and Knowledge
Discovery in Databases. Lecture Notes in Computer Science, vol. 5781.
Springer Berlin Heidelberg, 469-484.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND O’BRIEN, J. F.
1995. Animating human athletics. In Proceedings of SSIGGRAPH. ACM,
New York, NY, USA, 71-78.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques. ACM, New York, NY, USA, 473—
482.

KWwoON, T. AND HODGINS, J. 2010. Control systems for human running
using an inverted pendulum model and a reference motion capture se-
quence. In SCA. Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 129-138.

LEE, J. AND LEE, K. H. 2006. Precomputing avatar behavior from human
motion data. Graphical Models 68, 2, 158—174.

LEE, Y., KiM, S., AND LEE, J. 2010. Data-driven biped control. ACM
Trans. Graph. 29, 4 (July), 129:1-129:8.

LEE, Y., WAMPLER, K., BERNSTEIN, G., PorPoVvIC, J., AND POPOVIC,
Z.. 2010. Motion fields for interactive character locomotion. ACM Trans.
Graph. 29, 6 (Dec.), 138:1-138:8.

LEVINE, S. AND KOLTUN, V. 2013. Guided policy search. In ICML ’13:
Proceedings of the 30th International Conference on Machine Learning.

LEVINE, S. AND KOLTUN, V. 2014. Learning complex neural network
policies with trajectory optimization. In ICML ’14: Proceedings of the
31st International Conference on Machine Learning.

Liu, L., YIN, K., AND GUO, B. 2015. Improving Sampling-based Motion
Control. Computer Graphics Forum 34, 2.

Liu, L., YIN, K., VAN DE PANNE, M., AND GUO, B. 2012. Terrain runner:
control, parameterization, composition, and planning for highly dynamic
motions. ACM Trans. Graph. 31, 6, Article 154.

Liu, L., YIN, K., VAN DE PANNE, M., SHAO, T., AND XU, W. 2010.
Sampling-based contact-rich motion control. ACM Trans. Graph. 29, 4,
Article 128.

Liu, L., YIN, K., WANG, B., AND GUO, B. 2013. Simulation and control
of skeleton-driven soft body characters. ACM Trans. Graph. 32, 6, Article
215.

MACCHIETTO, A., ZORDAN, V., AND SHELTON, C. R. 2009. Momentum
control for balance. ACM Trans. Graph. 28, 3.

MORDATCH, 1., DE LASA, M., AND HERTZMANN, A. 2010. Robust
physics-based locomotion using low-dimensional planning. ACM Trans.
Graph. 29, 4 (July), 71:1-71:8.

MORDATCH, I. AND TODOROV, E. 2014. Combining the benefits of
function approximation and trajectory optimization. In Proceedings of
Robotics: Science and Systems. Berkeley, USA.

MORDATCH, 1., TODOROV, E., AND POPOVIC, Z. 2012. Discovery of
complex behaviors through contact-invariant optimization. ACM Trans.
Graph. 31, 4 (July), 43:1-43:8.

Muico, U., LEE, Y., POPoVIC, J., AND PoPOVIC, Z. 2009. Contact-
aware nonlinear control of dynamic characters. ACM Trans. Graph. 28, 3.

Muico, U., POPOVIC, J., AND POPOVIC, Z. 2011. Composite control of
physically simulated characters. ACM Trans. Graph. 30, 3 (May), 16:1-
16:11.

PENG, X. B., BERSETH, G., AND VAN DE PANNE, M. 2015. Dynamic
terrain traversal skills using reinforcement learning. ACM Transactions
on Graphics (to appear).

PETERS, J. AND SCHAAL, S. 2007. Reinforcement learning by reward-
weighted regression for operational space control. In Proceedings of the
24th International Conference on Machine Learning. ICML ’07. ACM,
New York, NY, USA, 745-750.

PETERS, J. AND SCHAAL, S. 2008. Reinforcement learning of motor skills
with policy gradients. NEURAL NETWORKS 21, 4 (MAY), 682-697.
POPOVIC, Z. AND WITKIN, A. 1999. Physically based motion transforma-
tion. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,

11-20.

RAIBERT, M. H. AND HODGINS, J. K. 1991. Animation of dynamic
legged locomotion. In ACM SIGGRAPH Computer Graphics. Vol. 25.
ACM, 349-358.

Ross, S., GORDON, G., AND BAGNELL, J. A. D. 2011. A reduction of
imitation learning and structured prediction to no-regret online learning.
In Proceedings of the 14th International Conference on Artifical Intelli-
gence and Statistics (AISTATS).

Sok, K. W., KiM, M., AND LEE, J. 2007. Simulating biped behaviors
from human motion data. ACM Trans. Graph. 26, 3, Article 107.

SULEIMANPASIC, A. AND PoPOVIC, J. 2005. Adaptation of performed
ballistic motion. ACM Transactions on Graphics (TOG) 24, 1, 165-179.

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

14 o L. Liu et al.

TAN,J.,Gu, Y., L1U, C. K., AND TURK, G. 2014. Learning bicycle stunts.
ACM Trans. Graph. 33, 4 (July), 50:1-50:12.

TAN, J., L1u, C. K., AND TURK, G. 2011. Stable proportional-derivative
controllers. IEEE Comput. Graph. Appl. 31, 4, 34—44.

TASSA, Y., EREZ, T., AND TODOROV, E. 2012. Synthesis and stabilization
of complex behaviors through online trajectory optimization. In Intelli-
gent Robots and Systems (IROS), 2012 IEEE/RSJ International Confer-
ence on. IEEE, 4906-4913.

TREUILLE, A., LEE, Y., AND POPOVIC, Z. 2007. Near-optimal character
animation with continuous control. ACM Trans. Graph. 26, 3 (July).

WAMPLER, K. AND POPOVIC, Z. 2009. Optimal gait and form for animal
locomotion. ACM Trans. Graph. 28, 3, Article 60.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A. 2009. Optimizing
walking controllers. ACM Trans. Graph. 28, 5, Article 168.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A. 2010. Optimizing
walking controllers for uncertain inputs and environments. ACM Trans.
Graph. 29, 4 (July), 73:1-73:8.

WANG, J. M., HAMNER, S. R., DELP, S. L., AND KOLTUN, V. 2012. Op-
timizing locomotion controllers using biologically-based actuators and
objectives. ACM Trans. Graph. 31, 4, 25.

YE, Y. AND Liu, C. K. 2010. Optimal feedback control for character
animation using an abstract model. ACM Trans. Graph. 29, 4 (July),
74:1-74:9.

YIN, K., CORrOS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2008.
Continuation methods for adapting simulated skills. ACM Trans.
Graph. 27, 3, Article 81.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. SIMBICON: Simple
biped locomotion control. ACM Trans. Graph. 26, 3, Article 105.

ZORDAN, V., BROWN, D., MACCHIETTO, A., AND YIN, K. 2014. Control
of rotational dynamics for ground and aerial behavior. Visualization and
Computer Graphics, IEEE Transactions on 20, 10 (Oct), 1356-1366.

ZORDAN, V. B., MAJKOWSKA, A., CHIU, B., AND FAST, M. 2005. Dy-
namic response for motion capture animation. ACM Trans. Graph., 697—
701.

ACM Transactions on Graphics, Vol. 35, No. 3, Article 29, Publication date: April 2016.

