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Figure 1: Pareto-Optimal controllers with respect to jump height and control effort. The first two images on the left represent natural motions
while the two images on the right represent super-natural motions.

Abstract

Optimization is a natural tool for designing natural motion control
strategies. However, optimal motions can be expensive to com-
pute. Furthermore, we are often interested in knowing an entire
family of optimal motions rather than single motion. For a motion
such as a jump, the solution family of interest is described by the
pareto-optimal front that defines the trade-off between effort and
jump height. In this paper we explore algorithms for computing
a set of controllers that span the pareto-optimal front for jumping
motions. Once computed, these controllers can then drive physics-
based simulations in real time. We also develop supernatural jump
controllers through the optimized introduction of external forces.
We show that the pareto-optimal front can naturally span both nat-
ural and supernatural regimes. This allows for controllers that can
naturally transition from physics-based motions to motions assisted
by external forces as the task demands increase.
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1 Introduction

Humans are generally efficient at achieving their motion goals. This
makes optimization a natural tool for the design of physics-based
motions. While the focus of much work in this area has been to
produce individual optimized motion instances, most motions have
goals that are naturally parameterized, such as walking speed or
jump height. In this paper we investigate several possible algo-
rithms for computing a set of solutions that span a pareto-optimal
front. Pareto optimality, for our problem domain, is a state of high
dimensional value assignment to samples such that it is impossible
to make an improvement with respect to any particular dimension
without making at least one of the dimensions in the sample’s value
assignment worse off. In the context of a human jump that trades-
off effort for jump height, the goal of the algorithms is to automati-

cally compute a set of solutions that span the range from low-effort
low-height jumps to large-effort high-height jumps. By aiming to
simultaneously compute a range of solutions, we can expect that
there are significant efficiencies to be gained.

Pareto optimal solutions can also be used in other related ways,
such as exploring the trade-offs between various terms in an ob-
jective function. Many optimization problems for animation prob-
lems have multi-term objective functions with relative weightings
that are defined by hand. These can alternatively be approached
using multi-objective optimization, with each term contributing a
dimension towards a multi-dimensional pareto-optimal front. Our
height-vs-effort optimization can also be thought of in these terms.
In this paper we leave the pursuit of the higher-dimensional (d > 2)
pareto-optimal fronts as future work, although we expect that many
of the core ideas and algorithms will still apply.

In this paper we also explore the idea of motions which are assisted
by external forces on an as needed basis. This force is applied
during the airborne rising phase of a jump and allows for jump
heights that would otherwise be unachievable. Unlike kinematic
approaches for altering motions, the controller-based solution still
allows the motion to evolve in accordance with other interactions
with the environment. We show that the pareto-optimal front can
be computed in a way that spans both the natural and supernatural
regimes of motion.

2 Related Work

Many control strategies have been developed for physics-based
characters over the past two decades, often with a focus on hu-
man locomotion. A recent survey can be found in [Geijtenbeek and
Pronost 2012]. The controllers are often structured around a se-
quence of motion phases, represented as states in a finite state ma-
chines, with further continuous feedback laws added within each
state, such as those that make use of foot placement for balance
[Raibert and Hodgins 1991; Hodgins et al. 1995; Laszlo et al. 1996;
Yin et al. 2007; Tsai et al. 2010]. Other common design elements
for physics-based motion controllers include the use of reference
data from motion capture [Sok et al. 2007; Yin et al. 2007; Muico
et al. 2009; Lee et al. 2010; Kwon and Hodgins 2010; Ye and Liu
2010; Da Silva et al. 2008; Liu et al. 2010; Coros et al. 2011] or,
alternatively, to develop objective functions that are then optimized
online or offline [Liu and Popović 2002; Macchietto et al. 2009;
Wang et al. 2009; de Lasa et al. 2010; Wu and Popović 2010; Borno
et al. 2013].



Covariance matrix adaptation (CMA)[Hansen 2006] has become a
popular generic method for the derivative-free optimization prob-
lems that commonly arise when shooting-style methods are applied
to the synthesis of controllers for physics-based characters.

Notable examples of methods which use offline optimization to de-
velop parameterized control solutions include [Coros et al. 2011;
Wang et al. 2012]. The work of Wang [2012] is particularly rele-
vant to our work as it uses CMA to solve for optimal energy mo-
tions at a discrete set of locomotion speeds. The desired speed is
approximately enforced by establishing a velocity bracket around
the target speed and assigning a penalty for going outside of this
bracket. Taken together, the solutions effectively define a pareto-
optimal front. We include a similar algorithm in our set of pareto-
optimal front algorithms for use as a performance benchmark.

A variety of algorithms have been developed specifically for multi-
objective optimization [Deb et al. 2002; Iorio and Li 2004; Igel
et al. 2007]. MOO (1 + λ) CMA-ES [Igel et al. 2007] is of par-
ticular interest because of its invariance properties. However, in
its default form we found it to be ill suited for our multi-objective
optimization problems. We adapt it in several ways in order to pro-
duce an algorithm that works for the domain of highly constrained
character controllers and which can span the regimes of natural and
supernatural motions.

Kinematic momentum scaling methods have been proposed to di-
rectly synthesize modified trajectories for characters that then rep-
resent extreme physical capabilities [Yamane and Sok 2010]. Our
work takes the alternative approach of integrating external forces
into the controller that can be used when the internal forces are
insufficient to achieve a task. In this way the controllers are de-
signed to span both natural and supernatural motion regimes, and
the character can at all time still interact in a dynamic fashion with
its environment.

3 Controller and Task Representation

In this section we describe the parameterization of the pareto-
optimal control problem. The input consists of a successful con-
troller instance that is used to seed the optimization. This controller
was designed manually but this process can be automated by us-
ing motion capture data and a sampling based approach [Liu et al.
2010] or by using video-based methods [Vondrak et al. 2012]. The
free parameters consist of the joint target angles for the hips, knees,
back, abdominal region, shoulder and elbows for all phases; joint
target angles for the ankles for take off and rising phase; and the ex-
ternal force parameters. Thus we optimize for 34 free parameters.

The simulations are performed using a sagittal plane 2D human
model that is well suited to the standing jump motion that we in-
vestigate. The model has 17 links, weighs 80 kg, and is 160 cm
tall. The motion is simulated using the Vortex [CMLabs ] physics
engine. The controller uses left-right symmetry. All joints are
controlled using PD Controllers with fixed, manually-determined
gains. The PD controller gains were manually tuned to create nat-
ural looking motions arising from some test controllers which per-
formed a jump. The tuning was performed with the aim of creating
a realistic take off where the character has to power the jump by
throwing its arms forward and extending its knees and hips during
take off, have a smooth follow through while creating a compli-
ant landing. Jumps can become unnatural if the ankles are allowed
to be too stiff, which allows a jump to be achieved with a single
powerful push of the ankles. The feet, pelvis and upper torso are
servoed to target angles that are expressed in the world coordinate
frame while all other joints servo using local joint angles.

3.1 Controller phases

A parameterized controller is used in conjunction with a forward
dynamics simulation to produce the motions. The motion is broken
into different phases as shown in the Figure 2.

The jump starts with a standing phase which has a timed transi-
tion into a crouched take-off position. Target angles over time are
modeled using piecewise linear trajectories. A virtual force, imple-
mented using internal torques, is applied to the COM of the char-
acter to maintain balance similar to the virtual force application in
[Coros et al. 2010]. After spending some time in the crouched phase
the controller transitions to a take-off phase during which the char-
acter rapidly extends its arms upwards and straightens out its knees
and ankles to produce a vertical and forward momentum ( if desired
). Once the character breaks contact with the ground the controller
transitions into flight phase. While in air, a simple time prediction
strategy determines the time taken to reach the peak point of the mo-
tion. Once the peak height of the motion gets attained the character
transitions to a falling phase. During this phase, again, a simple pre-
diction strategy determines both the approximate time and location
of touch-down. Inverse kinematics is used to target the feet to their
predicted touch-down location. After coming into contact with the
ground the character transitions into a landing phase where a virtual
force is applied to the COM of the character to bring the horizontal
momentum to zero while the target angles for this phase raise the
character to attain a standing posture. For more details please refer
[Agrawal et al. 2013].

3.2 Task Representation

An in-place jump motion that achieves a given jump height is opti-
mized for minimal control effort with the help of a penalty function
that constrains the landing position as well as the maximum head
height achieved during the jump (eq. (1)). The landing constraint
term, CL, evaluates to zero when satisfied and returns a constant
and large failure penalty when violated (eq. (3)). This is equiva-
lent to rejecting solutions that do not satisfy the landing constraint.
However, we do not explicitly discard these evaluations but rather
rely on the optimization algorithm to perform any required adapta-
tions by providing feedback via the fitness assessment. The height
of the jump of the character can be constrained by constraining
the head position at the peak point of the jump. The head con-
straint function, CH , is modeled using a penalty that evaluates to
zero when the constraint is satisfied to within a desired value, while
rising quadratically when it is violated as seen in eq. (2). The treat-
ment of the jump height as an independent variable allows for a
default algorithm that uses control-effort optimizations for a set of
fixed target-height bins.

fH(q0) = CH + CL (1)

CH =

{
wp × (hp − ho)2 if |hp − ho| > hr

0 if |hp − ho| ≤ hr
(2)

CL =

{
fp if |lp − lo| > lr
0 if |lp − lo| ≤ lr (3)

Figure 2: Motion control phases



In the above, hr and lr define the bracket of values for which con-
straint satisfaction holds true. ho and lo are the constraint target
values, hp and lp are the height and location of landing of the cur-
rent sample. wp is the weight which scales the height constraint.
The results are found to be not sensitive to this weight as long as
a large enough value is used. We used a value of 5000 for wp for
all our experiments. fp was set to a really large value of 100000 to
ensure that it is always greater than any possible fitness value.

We experimented with a simple joint squared torque model for use
as an effective energy metric. However, since the “effort” spent per
joints is different as noted by [Wang et al. 2009], we use a weighted
effort metric which is of the following form :

eJE(q) =
∑
i

wi × ||τi||2 (4)

The weights wi before normalization are described in Table 1.
These values are based on experimentation and correspond to an
intuitive assumption of the effort spent in a particular joint. This
weighting was found to produce a more natural looking result than
an unweighted effort metric for creating jumping motions. As an
example, unweighted effort metric often results in jumps where the
character powers its jumps using unnaturally high contribution from
hips and knees as compared to its ankles. Such insights were used
to come up with the weights we have used in our examples. Weights
are normalized so that

∑
wi = n, where n is the number of joints.

hips knees ankles shoulders elbows
2.5 2 1 1 0.5

wrists head neck back abs
0.25 1 1 2.5 3

Table 1: Weights used for computing the internal joint effort metric

3.3 Natural and Supernatural Motion

We want to generate natural motions when possible and motions
assisted by external forces only on an “as needed” basis. These su-
pernatural motions can be used to animate super-human and imag-
inary characters. Super-natural motions are generated by allowing
for reduced gravity. Gravity is reduced to a specified value at time
of take-off. Right after that the gravity linearly increases to its de-
fault value of −9.8m/s2 as can be seen from Figure 3. After this
point the system maintains this default value for the rest of the jump.
Thus, there are two parameters which define the extent to which an
external assist is provided to the motions: the magnitude of the ini-
tial reduced gravitational force and the time duration before which
gravity returns to normal. Reducing gravity in such a manner is
functionally equivalent to applying an external force to the center
of mass of the character. This model of application of external force
by modifying gravity was used because of convenience in represen-
tation and implementation in the physics engine.

4 Optimization Framework

A parametric family of pareto-optimal controllers spanning a range
of fitness values is desirable since once such a family is pre-
computed, an appropriate controller for the task at hand can be se-
lected from this family in real-time. Samples on the pareto-optimal
front can be selected on the basis of their suitability for a certain
task. We propose an optimization procedure to pre-compute this
pareto-optimal front of controllers. The proposed algorithms are
applied to a working example of simulated in-place standing jumps.
Additionally, we generate supernatural motions with an assistive

(a) COM Velocity Profile (b) Gravity Profile

Figure 3: (a) A plot of COM velocity vs time is shown here. The
red rectangle indicates the region where external forces are active.
(b) The sudden jump in gravity occurs at take-off. The red rectangle
highlights the supernatural region.

external force when a particular jump height is unattainable by the
character. For the controllers generated within this supernatural re-
gion we still want the character to minimize its use of the assistive
force by maximizing the use of internal energy towards achieving
the task. The goal is to produce super-natural jumps that look as
realistic as possible.

In this section we describe our proposed optimization framework
as well as a simple binned single objective optimization (BSOO)
strategy for comparison. We first describe the BSOO scheme which
classifies jumps into bins of varying jump heights and uses a sin-
gle objective optimization for each bin. This type of approach has
been previously used in developing controllers for character loco-
motion, e.g., [Wang et al. 2012]. Instead of generating a single so-
lution from each optimization run our approach instead recovers a
complete pareto-optimal front in a single optimization process. We
also show that the BSOO strategy is inefficient when compared to
the multiobjective algorithm which can avoid sampling redundan-
cies that arise in the BSOO strategy. We adapt an existing multi-
objective optimization technique [Igel et al. 2007] (MOO) to this
effect and apply it to a high-dimensional and constrained physics-
based character animation problem.

4.1 Binned Single Objective Optimization (BSOO)

The simplest way to explore the pareto-optimal front of the con-
trollers representing the trade-offs between two different objectives
is to categorize one of them into bins. A single objective optimiza-
tion for the second objective can then be performed for the task
specified by the first objective bin. For our example we split the
task (jump height) into 16 uniformly spaced bins, each representing
a height constraint. All bins have the same landing constraint.The
objective function fH defined in eq.(1) is combined with an effort
metric for joint energy (eq.(4)) and a supernatural effort metric to
produce the following :

fSO(q0) = fH + log(wJEeJE + wSEeSE) (5)

where,
eSE =

∑
t

||Fext||2 (6)

and wJE and wSE are the respective weights. The square of ex-
ternal forces (Fext) is summed over all time-steps when they are
active.

For effectively computing each point on the pareto-optimal front we
run the single objective optimizations using CMA [Hansen 2006]
with 16 offsprings per generation and an initial σ = 0.015. Starting



Figure 4: Binned single objective optimizations ( BSOO )

with the smallest height bin, the optimization for each bin is stopped
if the improvement of function value is less than ε over a span of 300
generations or the total number of generations produced exceeds
3000. The optimal point for the current bin is used as a starting
point for the optimization of the next bin in sequence. This process
is stopped after all the bins have been optimized.

The optimization process is illustrated in Figure 4. The task
achievement is binned into multiple successive bins of target jump
heights. Beginning from an initial state illustrated in red on the left,
each of the target height bins is optimized for sequentially. The
yellow line provides a schematic illustration of the evolution of so-
lution path over time. Once the optimization has achieved conver-
gence for a particular bin, this sample is then used as a starting point
for the optimization for the next bin. In our working example we
begin with a jump of low height. This jump is then optimized to
achieve the target height of the nearest bin. Once converged, this
then seeds the optimization for the next bin and so on until all the
bins have been optimizer for.

4.2 Multi-Objective Optimization for Discovering the
Pareto-Optimal Front

Multi-objective optimization produces a pareto-optimal set of solu-
tions. Each point in this set represents a particular trade-off between
the incommensurable objectives. The animator, system designer, or
possibly an automated system can choose the most suitable solution
from amongst these trade-offs at run-time. We use a multi-objective
optimization for producing energy optimal jumps with a variety of
jump heights. The competing objectives in our case are the con-
trol effort and the height achieved for the jump. Once computed,
any point on the pareto front can be chosen on-the-fly. We build on
and adapt the (1+1) Covariance Matrix Adaptation Evolution Strat-
egy for Multi-Objective Optimization ((1+1) MOO-CMA-ES)[Igel
et al. 2007] to generate a parameterized family of controllers. We
begin by describing the key elements of the original algorithm.

4.2.1 (1+1) CMA-ES

(1+1) CMA-ES is an elitist selection based CMA. One parent
produces one offspring with a normal multivariate distribution as
x ∼ N (m,σ2C). The multivariate distribution C and the global
step size σ are adapted in each generation of the algorithm. In a sin-
gle objective setting the success of an offspring depends on the fact
that if the offspring has a better fitness value than its parent. This
success based update is different from path length control strategy
of the standard CMA.

4.2.2 Non-Dominated Sorting

Consider an M dimensional multi-objective optimization problem.
Let f(x) be a vector comprising M objective functions.

f(x) = (f1(x), f2(x), ..., fM (x)) (7)

where, x ∈ X is the vector of free parameters. The elements of X
can be partially ordered using the concept of non-dominance.

x ≺ x′ ⇐⇒ ∀i ∈M : fi(x) ≤ fi(x′) ∧ ∃j : fj(x) < fj(x
′)
(8)

We can then define a pareto set as follows:

{x | @x′ ∈ X : x′ ≺ x} (9)

If X is the set of all samples then let ndom1(X) represent the non-
dominated set ofX and define dom0(X) = X . We can then define
the level of dominance in a recursive fashion.

doml(X) = doml−1(X)\ndoml(X), l ∈ {1, 2, ...} (10)

ndoml(X) = ndom(doml−1(X)), l ∈ {1, 2, ...} (11)

An element is given a rank l if it belongs to ndoml(X).

rank(x,X) = l ⇐⇒ x ∈ ndomlX (12)

The time complexity for this sorting for N elements has been noted
to be O(MN 2) in [Deb et al. 2002]

4.2.3 Hypervolume Sorting

Figure 5: Hypervolume sorting. The blue point is a reference
point chosen to be worse off than all possible samples in all objec-
tives. The red regions shows the area ( Lebesque measure in 2D )
of rectangles ( hypercuboids in 2D ) specified by a sample on the
pareto-optimal front and the reference point. The green region de-
notes the area contribution ( hypervolume contribution in 2D ) of
the green non-dominated sample on the pareto-optimal front.

The hypervolume measure was introduced by [Zitzler and Thiele
1998]. According to [Igel et al. 2007] and [Coello and Lamont
2004] this can be defined as the Lebesque measure (∧) of union of
hypercuboids.

Sxref (X) = ∧(∪x∈ndom(X){F}) (13)

F = {(f1(x′), f2(x′), ..., fM (x′))|x ≺ x′ ≺ xref} (14)



where xref is a reference point which is worse than each objective
function value. The hypervolume contribution of x is then defined
as follows:

∆s(x,X) = Sxref (X)− Sxref (X\x) (15)

A pictorial representation of the hypervolume measure for two ob-
jective functions is provided in Figure 5. Boundary elements are
given an infinite value for their hypervolume measure. Boundary el-
ements are identified by the fact that their hypervolume contribution
changes by moving the reference point whereas for non-boundary
elements the hypervolume contribution remains unchanged. [Igel
et al. 2007] then defines the following relation based on this rank-
ing and the non-dominance level :

x ≺s,X x′ ⇐⇒ rank(x,X) < rank(x′, X)

or

[(rank(x,X) = rank(x′, X))

∧
∆s(x, ndomrank(x,X)(X)) > ∆s(x′, ndomrank(x,X)(X))]

(16)

The goal of multi-objective optimization is to find a diverse set of
solutions in order to generate a set of good trade-offs between the
various incommensurate objectives. To apply (1+1) CMA-ES to
multi-objective optimization we maintain a population of size 2µ.
This population in the steady state comprises of µ pairs of parents
and their offsprings. The µ parents are mutated at each genera-
tion to produce an offspring each. The resulting population is then
sorted using the criteria define in eq(16). To perform this sorting
the population is first sorted using the non-dominance criteria and
then the non-dominated subset of the population is sorted using
the hypervolume contribution criteria to maximize dispersion. The
second sorting criteria is required because as the optimization pro-
gresses more samples are in the top-most non-dominated set than
the ones in the next level of non-dominated sets.

4.3 Re-sampled Multi Objective Optimization (RMOO)

We now describe a modified version of the standard (1+1) MOO
CMA-ES algorithm which is used to effectively optimize a diverse
set of solutions automatically spanning natural and supernatural do-
mains on the pareto-optimal front.

4.3.1 Resampling

Jumping in place for an articulated character is a highly constrained
problem. Failure can arise from multiple reasons: the character
can land incorrectly and fall over, or the character can land out-
side the landing region. These cases result in large failure penalties
of fixed magnitude, fp, to be returned during the objective func-
tion evaluation. An offspring producing such behavior is deemed
as being unsuccessful in terms of not producing a better fitness
value than its parent. Since (1+1) CMA-ES uses a success based
path update rule, each such failure contributes to reduction of the
global step size σ over time. This can cause possibly good sam-
ples to be discarded from the pareto-optimal front in favor of sam-
ples which were ‘better’ offsprings in recent generations. In the
long term this can cause premature convergence. Such issues can
be significantly diminished by providing a sampling that is guar-
anteed to have a minimal degree of success. We found allowing
a maximum of 3 bad samples per generation to be the best com-
promise between computational performance and the quality of the

pareto-front obtained. The re-sampling is performed in a multi-
threaded fashion with each unsuccessful sample spawning a set of
new threads which run the simulations in parallel with other such
threads until the given sampling success criterion is met. Figure
6 provides a comparison of strategies with and without the use of
resampling to meet the success criterion. The resampling strategy
produces a significantly better pareto optimal front at a computa-
tional cost. Through our experiments we found that making the suc-
cess criteria tighter significantly increased the computational cost
while the pareto-optimal front generated was quite similar in qual-
ity to that produced using the proposed success criteria. On the
other hand relaxing the success criteria from its current value de-
graded the quality of pareto-optimal from significantly. We believe
that this success criteria would work well for other controller tasks
as well but this has been left for future work.

(a) Re-sampling with a success rate
of 13/16

(b) No re-sampling

Figure 6: Comparison between re-sampling strategies

4.3.2 Scaling of Fitness Value

We want the character to maximize the utilization of its internal en-
ergy for task achievement. If the character relies merely on external
forces for task achievement without utilizing its internal energy to
a maximum possible extent, it would appear that the character just
gets lifted off by an external force while trying to achieve a really
high jump. We want the motion to appear as natural as possible
even in the supernatural domain and hence we require the character
to exert itself as much as possible in the supernatural domain. One
way to achieve this is by scaling external force penalty with an ap-
propriate wSE . If wSE is made large enough then the character fa-
vors usage of its internal joint torques over external forces towards
task achievement. However, since the selection of pareto-optimal
front depends on the hypervolume contribution of each sample
point on the front, this scaling causes most of the samples in the
natural domain to be lost since their hypervolume contribution turns
out to be low. This can be seen in the pareto-optimal front obtained
by using a large wSE in Figure 7. The character used for this sim-
ulation can jump up to nearly 2.3-2.5m high without any help from
external forces. But since the hypervolume contribution of sample
points in this region is low, only 2 points get picked in this region.
The graph has been plotted on a log scale for consistency with the
other plots, however the hypervolume contribution is computed on
a linear scale. Moreover, if the weight ( wSE ) is not extremely
large (there’s a limit to how large the weight can be because any
evaluation must not exceed fp), some points obtained in the possi-
bly natural region still have some supernatural component, albeit a
small one. We would like to have zero external force contribution
for points which correspond to jump heights in the natural region.
We found an objective function of the form log(wJEeJE+wSEeSE)
to perform particularly well. wSE/wJE = 5000 was used for all
experiments. The log form works well firstly because the spread of
fitness values produced is almost uniform across both natural and
super-natural domains. Secondly, since wSE is large, a clear de-



marcation is observed between natural and super-natural samples.

Figure 7: The effect of a large penalty weight wSE but no scaling
on pareto-optimal front distribution. Only two controllers in the
natural regime are produced. The controllers on the pareto-optimal
front for a height > 2.4m use an external force assist.

A high level description of the RMOO algorithm is given in Algo-
rithm 1.

5 Results

We apply the algorithms discussed in Section 4 (BSOO and
RMOO) to build a family of pareto-optimal controllers for a stand-
ing jump motion developed for a physics based character. Figure 8
compares the pareto-optimal front obtained from the BSOO and the
RMOO algorithms. The RMOO strategy is able to discover solu-
tions which could not be found with the BSOO algorithm. This
was possibly due to the BSOO running into local minima. The so-
lution space topology is better explored through a concerted effort
from the multiple (1+1) CMA algorithms running in parallel. Also,
RMOO is faster than the BSOO optimization technique by a fac-
tor of nearly 2. It took nearly 5-6 hours for a multi-threaded code
running on 3.2Ghz 8 core Intel Xeon based machine to generate the
results shown in Figure 8 using RMOO with µ = 16. On the other
hand it took nearly 13 hours to generate the results using BSOO
strategy for 16 samples.

The log scaled effort objective works well in producing a pareto
optimal front that spans the natural and supernatural regimes with
a reasonable spacing between points on the front. The two regions
have different behaviors as can be seen from Figure 8 (a). The usage
of external forces in the supernatural region produces a different re-
sponse of energy fitness with respect to height than that produced in
the natural region with no external forces available. The controllers
lying in the natural region (< 2.5m for this example ) use precisely
0 external forces whereas those in the supernatural region rely on
non-zero external forces to achieve the task. As expected, the re-
liance on external forces increases as the jump height increases.
We color code the characters in the video and the illustrations in
this paper in order to distinguish the two motion regimes. Brown
characters represent natural motions while blue characters represent
supernatural motions.

When optimizing within the bins using a single objective function
strategy, spatial coherence in the objective function space is not ex-
ploited. Naively generating samples using a single objective opti-
mization produces significant redundancy in the sampled set which
could have been effectively used to communicate information (solu-
tion points) to the neighboring binned optimizations. This is likely

Data: Successful input low height jumping controller, µ
Result: µ sample controllers on the Pareto-Optimal Front
begin

Initialize µ parents using the parameters from the input
controller;
Evaluate the input controller for objectives f1 and f2 and
assign these as the current fitness values to all the parents;
while not converged do

Copy the parameters from each of the µ parents to µ
children respectively;
Mutate the parameters of each of the µ children;
Evaluate and set the fitness of the µ children in a
multi-threaded fashion;
while number of bad samples > 3 do

Assign the threads with copies of unsuccessful
parents;
Mutate the parameters of all copies;
Perform multi-threaded evaluation of all the copies;

end
Perform non-dominated sort;
Perform hypervolume sort;
Choose the top µ candidates to be parents for the next
generation;
Update CMA strategy parameters for all parents;
if change of fitness for all samples < ε then

set converged;
end

end
end
Algorithm 1: A high level description of RMOO for a working
example of in-place jumps

one of the principle reasons for the performance gains shown by the
RMOO strategy.

Since, in our framework the character prefers to use internal forces
to help achieve the required jump height, even when in the supernat-
ural regime, the take-offs for the supernatural jumps and the highest
natural jumps remain very similar in style as seen in Figure 9. As
the jump height increases the character exerts more internal energy
for task achievement. The internal energy used for a jump should be
maximized for the highest possible natural jump. In order to per-
form supernatural jumps the character should still exert the same
amount of internal effort but it can also take help from external
forces to achieve an even higher jump. There was no explicit re-
ward term in the optimization to make the take-offs look similar.
We tabulate the values of samples on the pareto-front for the two
optimization techniques in Tables 2 and 3.

6 Conclusion

A multi-objective framework for optimizing physics-based char-
acter animation is an interesting and viable approach for design-
ing controllers. Access to a set of choices on the pareto-optimal
front allows the character to perform different motions for different
task objectives at run-time. Controllers spanning the entire pareto-
optimal front across natural and supernatural regions can be auto-
matically generated from single run of optimization by an appro-
priate design of objective functions. Similar approach could be ap-
plied to other problem domains such as generating energy-optimal
locomotion gaits of varying speeds.

Since the algorithm produces a spread of fitness values for each ob-
jective function dimension, care needs to be taken while designing
the objective function. Hard penalties muse be used for objective



(a) Pareto-optimal front obtained from RMOO. Green circles
connected by lines represents the pareto-optimal front. Black
circles are the samples generated during the optimization pro-
cedure.

(b) Samples of energy optimal jumps of various heights ob-
tained from BSOO are shown as green circles connected by
lines. Black circles are the combined samples generated during
each binned optimization procedure.

(c) Overlaid results of pareto-optimal front obtained from
RMOO (green) and samples generated from BSOO (red)

Figure 8: Plots of samples generated from BSOO and plots of
pareto-optimal fronts obtained from RMOO

function terms whose spread is not desired. Although providing
hard penalties for objective function terms which are not required
in the spread produces problems for the re-sampling process. The
samples producing failures for these objective function terms are

(a) Shortest natural jump

(b) Highest natural jump

(c) Intermediate height supernatural jump

(d) Highest supernatural jump

Figure 9: Natural and supernatural motions. The snapshots of the
motions are created by capturing the pose at the beginning of each
phase. The snapshots for each of the standing in-place jumps are
offset in x for visualization purposes.

given a constant failure penalty. This does not provide enough use-
ful information for making the optimum covariance matrix update
which adds to the computational cost of the algorithm. As future



sample # Internal Joint
Energy Met-
ric

Super-natural
take-off
gravity

Super-natural
force ap-
plication
time

sample 0 10.953 -9.8 0
sample 1 15.776 -9.8 0
sample 2 19.6615 -9.8 0
sample 3 22.674 -9.8 0
sample 4 26.8889 -9.8 0
sample 5 33.0792 -9.8 0
sample 6 46.7629 -9.8 0
sample 7 52.9262 -8.8 0.64
sample 8 47.2799 -8.374 0.652
sample 9 49.2547 -7.8 0.593
sample 10 49.9069 -7.053 0.591
sample 11 48.9008 -6.08 0.585
sample 12 49.4255 -5.121 0.591
sample 13 52.3201 -4.173 0.610
sample 14 55.3722 -2.921 0.605
sample 15 71.4787 -2.022 0.682

Table 2: Results using RMOO

sample # Internal Joint
Energy Met-
ric

Super-natural
take-off
gravity

Super-natural
force ap-
plication
time

sample 0 9.495 -9.8 0
sample 1 5.316 -9.8 0
sample 2 6.715 -9.8 0
sample 3 13.6204 -5.4 0.266
sample 4 12.248 -2.46 0.378
sample 5 16.2731 -2.641 0.474
sample 6 19.5386 -0.442 0.424
sample 7 19.1376 0.2697 0.492
sample 8 21.1071 1.3538 0.513
sample 9 22.8364 1.1774 0.621
sample 10 25.4831 3.2524 0.556
sample 11 26.4307 3.2291 0.566
sample 12 22.0267 2.5725 0.7614
sample 13 27.016 3.55 0.729
sample 14 33.5313 4.2319 0.706
sample 15 40.1909 3.831 0.816

Table 3: Results using BSOO

work, we expect that there remain further improvements that could
be achieved for computing pareto optimal fronts. The generated
motions can be made to look more natural by providing more nat-
ural inputs and/or by developing some data driven effort metrics
which are more consistent with observed motions.
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