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Figure 1: Real-time physics-based character simulation with our framework. (a) A single controller for a planar biped responds to unantic-
ipated changes in terrain. (b) A walk controller reconstructed from motion capture data responds to a 350N,0.2s diagonal push to the torso.

Abstract

Physics-based simulation and control of biped locomotion is diffi-
cult because bipeds are unstable, underactuated, high-dimensional
dynamical systems. We develop a simple control strategy that can
be used to generate a large variety of gaits and styles in real-time,
including walking in all directions (forwards, backwards, sideways,
turning), running, skipping, and hopping. Controllers can be au-
thored using a small number of parameters, or their construction
can be informed by motion capture data. The controllers are applied
to 2D and 3D physically-simulated character models. Their robust-
ness is demonstrated with respect to pushes in all directions, un-
expected steps and slopes, and unexpected variations in kinematic
and dynamic parameters. Direct transitions between controllers are
demonstrated as well as parameterized control of changes in direc-
tion and speed. Feedback-error learning is applied to learn predic-
tive torque models, which allows for the low-gain control that typi-
fies many natural motions as well as producing smoother simulated
motion.

1 Introduction

Locomotion is at the heart of many motions, both real and ani-
mated. Animated motion is most often created directly by anima-
tors using keyframing, or by capturing and then processing human
motion. However, these approaches fail to scale to the very large
set of possible motions that might arise in a realistic environment.
For example, there are an infinite number of ways in which two
characters might bump into each other or in which a character may
move through a constrained, unpredictable environment. Algorith-
mic approaches have the potential to be more general and capable
of generating families of motions rather than individual motions.

A subset of algorithmic approaches take physics into account.
These include trajectory optimization methods, or, alternatively,
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developing controllers to drive forward dynamics simulations.
Controller-based approaches have the advantage that they can syn-
thesize motion at interactive rates and produce motion by using
feedback strategies that continually adapt to the real-world as nec-
essary.

The control of walking and other biped locomotion gaits has been of
long-standing interest to the robotics and computer graphics com-
munities. It is a challenging problem for many reasons. Walking
bipeds are unstable and underactuated and their control involves
high-dimensional states and high-dimensional actions. Locomo-
tion involves joint limit constraints, torque-limit constraints, con-
tact constraints, and contact impacts. Locomotion may have a num-
ber of contradictory goals, including robustness and energy usage.
Lastly, while data-driven approaches have been very successful at
generating kinematic models of locomotion, it is unclear whether
such strategies can be successfully adopted to learn control strate-
gies for dynamic simulations.

There exists a vast literature related to the control of bipedal walk-
ing, much of it in the robotics, control, and biomechanics com-
munities. Common approaches to locomotion control include: (a)
the use of passive walking as a starting point for the design of ac-
tive walkers; (b) the use of “zero moment point” control; (c) us-
ing a fixed control architecture and applying parameter search to
find the parameter settings that yield successful walking gaits; and
(d) developing feedback laws based upon insights into balance and
locomotion. Our proposed framework builds on the last of these
approaches.

1.1 Overview of Approach

We provide a simple framework for biped control1. The starting
point is the use of a simple finite state machine or pose control
graph. Each state consists of a body pose representing target angles
with respect to their parent links for all joints. All individual joints
attempt to drive towards their target angles using proportional-
derivative (PD) controllers. Transitions between states occur after
fixed durations of time, or, for other states, after a new foot contact
has been established. Walking gaits can be modeled using as few
as four states, while running gaits can be modeled using as few as
two states.

The pose control graph as described thus far does not have any no-
tion of balance and thus does not produce robust locomotion. How-
ever, a small set of modifications to this basic design does result
in robust locomotion. First, we require that both the torso and the
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swing-leg femur (i.e., swing hip) have target angles that are ex-
pressed with respect to the world frame, unlike the remaining links
which have target joint angles expressed with respect to their parent
links. In order to make the resulting torques be physically realiz-
able without the use of external torques, the stance-hip torque is
left as a free variable. Second, a feedback term is added to contin-
uously modify the swing hip target angle as a linear function of the
center of mass (COM) position and velocity. This provides a robust
balancing behavior by changing the future point of support.

We can mimic the style of motion capture data by replacing the
individual control states with tracking of a desired motion, using
the same mix of local-and-world coordinate tracking. While such
tracking normally requires high gains and a resulting stiff and re-
active motion, we can apply feedback error learning (FEL) in order
to produce a control solution that relies largely on predictive feed-
forward torques. As a result, the final motion requires only low-
gain feedback and exhibits considerably less unnatural oscillation
because of the anticipatory nature of the predictive torques.

The resulting controllers can be applied to 2D and 3D bipeds of
human proportion and mass distributions to produce many different
styles of locomotion using physics-based forward dynamics simu-
lations. Only physically-valid internal torques are used to produce
the motion, and thus the approach may also extend to humanoid
robots. Individual controllers are robust to large pushes and sig-
nificant terrain variation. Controllers can be interpolated and pa-
rameterized. Direct transitions between many of the controllers are
demonstrated.

1.2 Contributions

Our contributions are as follows. First, we integrate and build on
previous insights to develop a simple new strategy for the control
of balance during locomotion. We show that this can be used to
develop controllers for a wide variety of 2D and 3D biped gaits.
To our knowledge, we are the first to demonstrate a large set
of integrated, physically-simulated bipedal skills, including many
styles of walking, omni-directional push-recovery while walking,
running, stylized running (scissor hop), and skipping. Second,
we develop and demonstrate controller-based imitation of motion-
captured gaits which exhibit robust balancing behavior. Third, we
demonstrate that feedback error learning can be used to produce
anticipatory, low-gain locomotion control. The simple framework
opens the door to developing significantly wider sets of locomo-
tion skills for physically-simulated characters and possibly bipedal
robots.

2 Related Work

The wealth of literature on walking control precludes an exhaustive
review. Our discussion aims to touch on the major categories of
techniques, as well as focussing on the specific work that is closest
to our own.

The seminal work of Raibert, Hodgins, and colleagues[Raibert
1986; Raibert and Hodgins 1991; Hodgins 1991; Hodgins et al.
1995] contains key insights into producing robust hopping and run-
ning gaits. At the heart of this research is a three-way decomposi-
tion of control of hopping height, control of torso pitch, and con-
trol of hopping speed. Swing foot placement provides the basic
mechanism for controlling balance from stride to stride. The algo-
rithms are applied to the control of running for biped robots[Raibert
1986; Raibert and Hodgins 1991; Hodgins 1991], walking for biped
robots[Hodgins 1991], and running for human characters[Hodgins
et al. 1995; Hodgins and Pollard 1997]. We are unaware of demon-
strations of the algorithm being used to control walking for virtual

humans. We note that the control of swing foot placement is also
found in other walking algorithms such as [Miura and Shimoyama
1984; Laszlo et al. 1996; Kuo 1999].

Our control framework integrates a number of the ideas from pre-
vious work, while being identical to none. We differ in several
respects from the Raibert-style hopping control. The balance feed-
back mechanism we propose makes continuous adaptations during
a locomotion cycle, and uses both the position and velocity of the
center of mass. This latter information helps establish the current
phase of an ongoing step, and thus it is more informative than the
velocity alone. [Hodgins 1991; Raibert and Hodgins 1991] use only
the velocity for control of hopping, sampled once per hop, and use a
fixed step length for walking. We note that [Miura and Shimoyama
1984] is an example of an inverted pendulum control strategy that
employs continuous feedback based on the inverted-pendulum body
angular position and angular velocity. The framework we propose
is simpler in many respects and will be demonstrated to be capable
of producing a significantly larger variety of gaits.

A widely-studied class of control algorithm can be developed
by computing trajectories that are known to be physically fea-
sible and therefore satisfy the zero-moment-point (ZMP) con-
straint[Vukobratovic and Juricic 1969]. Small disturbances to the
motion can be accomodated by adjusting the ZMP dynamically dur-
ing the motion. This approach has been shown to work well for
the walking control of real robots [Honda Motor Co. 2006; Kim
et al. 2006; Kaneko et al. 2002]. Target trajectories can be derived
through an optimization process, often informed by motion capture
data [Dasgupta and Nakamura 1999; Popovic and Witkin 1999].
ZMP approaches need to include swing-foot placement if they are
to deal with large disturbances.

Control can also be achieved by defining a parameterized con-
trol policy and then searching for parameter values that yield ap-
propriate control behaviors. Searching directly in the often high-
dimensional parameter space is known as policy search, and this
has been applied with some success[Taga et al. 1991; van de Panne
and Fiume 1993; Auslander et al. 1995; van de Panne et al. 1994;
Tedrake et al. 2004; Sharon and van de Panne 2005]. To date, these
techniques have not been able to demonstrate the scalability and
robustness needed to make it a useful, widely applicable control
technique for animation and robotics.

Reinforcement learning (RL) offers a long-term promise of being
able to learn control strategies in a principled way. It has been ap-
plied in a number of ways to the control of walking[Tedrake et al.
2004; Nakanishi et al. 2003; Morimoto et al. 2004; Smith 1998].
The high-dimensionality of the state spaces involved in the control
of locomotion remains problematic, however, as does the need to
design an appropriate reward function. The solutions do not ex-
hibit the compactness and transparency which would afford con-
trol to animators in shaping the results. Many of the control strate-
gies sample the state only once per step when computing a control
decision. Work in this area is usually demonstrated on simplified
models instead of humanoids, with [Smith 1998] being a notable
exception.

Some strategies forego some of the physical fidelity in order to
achieve desired plausible motions. One choice is to allow the addi-
tion of external forces[Wrotek et al. 2006]; another is to blend kine-
matic and dynamic motions[Zordan et al. 2005]. Other commercial
systems use undocumented strategies[NaturalMotion 2006]. SIM-
BICON produces balanced locomotion behaviors using forward dy-
namics simulation and thus avoids the complications that mixed
kinematic/dynamic solutions use.

The integration of a limited number of carefully crafted control
strategies is demonstrated in [Wooten 1998; Faloutsos et al. 2001].



Figure 2: Finite state machine for walking

The interesting recent work of [Sok et al. 2007] parallels many of
our goals and makes use of an optimization process to produce con-
trollers for planar articulated characters that are capable of imitating
motion capture data.

3 Balance Control Strategy

The control strategy can be described in terms of three elements: a
finite state machine, torso and swing-hip control, and balance feed-
back. Each of these elements is now described in further detail.

3.1 Finite State Machine

Our controllers are based on finite state machines, with each state
having its own target pose for internal joint angles, as shown in
Figure 2. For symmetric gaits, pairs of states will be left-right sym-
metric, e.g., states 0 and 2, 1 and 3. Transitions between states
happen after an elapsed time, e.g., state transition 0→ 1, or after
foot contact, e.g., 1→ 2. If a foot contact has already occurred
before entering a state having an outbound foot-contact transition,
then the controller simply spends no time in that state. In any given
state, the joints apply torques computed by proportional-derivative
control, τ = kp(θd − θ)− kd θ̇ , in order to drive each joint to its
desired local angle. The poses represent a desired set of joint an-
gles and are typically not actually achieved. For example, while in
state 1 in Figure 2, the biped’s pose in practice has its swing leg
extended forwards. However, its target state has the swing leg ex-
tended backwards and thus has a net effect of moving the swing leg
backwards and down, bringing it into contact with the ground.

3.2 Torso and Swing-hip Control

The stance hip and swing hip are handled separately, as illustrated
in Figure 3(a). First, there is a need to control the orientation of the
torso with respect to the world frame. This can be accomplished
using a virtual PD controller that operates in the world frame to
compute a net torso torque τtorso, as shown in the figure. Second,
there is also a need to decouple swing foot positioning from the
current torso pitch angle. This is accomplished through controlling
the swing hip with respect to the world coordinate frame. The swing
hip torque, τB, is thus also computed using a virtual PD controller
that operates in the world frame. Last, there is a requirement that
the virtual torques τtorso and τB be realisable using only internal
torques. We require that the desired value of τtorso is in fact the
net torque seen by the torso, −τA− τB. This is accomplished by
computing the stance hip torque as τA =−τtorso− τB.

(a) (b)

Figure 3: Elements of the balance control strategy: (a) Relation-
ship between torso, stance-hip, and swing-hip torques; (b) Center-
of-mass position and velocity.

3.3 Balance Feedback

The last component of the control strategy is to apply a balance
feedback strategy to the swing foot placement. We employ a feed-
back law of the form

θd = θd0 + cdd + cvv

to the swing hip, where θd is the target angle used for PD control at
any point in time, θd0 is the default fixed target angle as described
in the FSM, d is the horizontal distance from the stance ankle to
the center of mass (COM) as shown in Figure 3(b), and v is the
velocity of the center of mass. The midpoint of the hips can be
used as a simple and effective proxy for estimating the position and
velocity of the center of mass. We use this simplification in both
2D and 3D.

The feedback gain parameter cd is important for providing bal-
ance during low-speed gaits or in-place stepping. Consider a sit-
uation for an in-place (desired zero velocity) walking gait with cur-
rent velocity v = 0, and two possible COM positions da = +10cm,
db = −10cm. In the first case, there is a need to step forward
quickly, while in the second case there is a need to step backwards
quickly in order to recover balance. The combination of (d,v) pro-
vides complete information about the current position in the gait
cycle, i.e., the current phase, whereas v alone only provides infor-
mation with regards to the current velocity error.

In order to extend the control scheme to 3D, the control strategy is
applied in both the sagittal and coronal planes. Balance feedback
in the coronal plane uses an analogous measure of d,v in order to
make alterations to the lateral placement of the swing foot using the
swing hip.

This form of balance feedback can be extended more generally to
multiple joints using the form

θd = θd0 + F
[

d
v

]
(1)

where F is an n×2 matrix with feedback coefficients to the desired
target joints. We use this more general structure to add stance ankle
feedback for quiescent stance poses, for example.

In the two following sections, we describe how controllers can be
manually designed and how controllers can be created using motion
capture data.



4 Manual Controller Design

Given the controller architecture described in the previous section,
we need methods for choosing the number of states and the pa-
rameters of each state. The resulting parameters should satisfy the
requirements of the animator or control-system designer. Unfortu-
nately, it is difficult to precisely pin down such requirements. Cri-
teria for locomotion may include measures of style, robustness to
perturbation, and energetic efficiency, all of which may push the
solution in different directions and with design compromises that
will be unknown in advance. Therefore, before resorting to more
complex schemes, we first investigate manual interactive design of
the required finite state machine.

The control parameters can be grouped into several categories: (a)
number of states and state-transition parameters; (b) the balance
feedback gains, cd and cv; (c) the target poses for each state; (d) the
initial state for using the controller; and (e) the joint limits, torque
limits, and PD-controller gains. In our work, we fix the parameters
belonging to category (e) and document these in the results section.
The remainder of our discussion focuses on the other parameters.

The choice of the number of states reflects the detail with which to
model the various phases of a locomotion gait. We use four states
to model our walking gaits, consisting of two symmetric walking
steps. Each step has two states, the first of which lifts the swing foot
upwards and forwards for a fixed duration of time, and the second
of which drives the swing foot towards the ground until contact is
made. This model is capable of many different walking styles, both
forwards and backwards. The FSM states also serve as a coarse
model of the phase of the motion when switching between con-
trollers. Thus, if a request is made to switch from one walk style to
another, this is done by transitioning from state n of one controller
to state n + 1 of another controller. For this reason, while our run-
ning gaits can be modeled using simple two-state controllers (one
for each running step), we add two zero-duration dummy states in
order to have the same four-state structure as for the walking gaits.
This allows for transitions between walking and running gaits. Our
skipping controller will have 8 states, reflecting its more complex
sequence of actions.

We begin controller designs using the planar biped model, and then
use the resulting parameters as a starting point for the design of cor-
responding 3D controllers. We use a graphical user interface (GUI)
to allow a user to directly explore the parameters settings associated
with each of the controllers states, as shown in Figure 4. Users can
immediately observe the effect of parameter changes reflected in
an ongoing simulation. Three sliders on the left of each state GUI
are used to set the state duration, cd , and cv parameters. The tar-
get pose parameters are set by using the handle points on the stick
figure. The target poses for the torso and the swing femur are in-
terpreted with respect to the world frame. The target pose angle for
the stance femur is ignored by the controller, given that the stance
hip torque is treated as a free parameter whose value is determined
from the torso and swing-hip torques. All the remaining joint an-
gles define target angles with respect to their parent’s coordinate
frame. The interface readily exposes the key-frame like nature of
many of the controller parameters.

The most important parameters for each state are the state duration
∆t and the target angles for the swing hip and swing knee. Because
the resulting motion style is most heavily dependent on only these
three parameters per state, it becomes relatively easy for users to
interactively explore their settings to yield desired motions. The
ankles make a significant contribution to some styles, such as the
skipping gait. The stance knee is usually almost straight. The torso
is usually desired to be vertical. The balance feedback gains are set
in a similar fashion across many of our controllers.

Figure 4: Graphical interface for adjusting controller parameters.
Sliders on the left control ∆t, cd , and cv.

The design of a stepping-in-place gait for 2D locomotion repre-
sents a good starting point that can then be modified for the design
of other motions. The target angles, as shown in Table 1, look very
much like a simple pair of keyframes, one in a standing posture, and
another with the swing leg in the air in a bent pose as one might
expect for stepping-in-place. This leaves very few remaining pa-
rameters to set, principally the duration of the leg lift pose and the
balance feedback gains for the swing hip.

Small changes (±15◦) to the desired torso pitch can be easily ac-
comodated by treating the extra torque produced by gravity as a
disturbance. During locomotion, the torso may exhibit a somewhat
unnatural bobbing motion. This is the result of the torso servo al-
ways reacting to the motion of the hip, rather than anticipating it.
We address this in the section on feedback-error learning.

A reasonable choice of initial state is required in order for a con-
troller to function as designed. In practice, the balance feedback
terms endow the controllers with relatively large basins of attrac-
tion, as demonstrated by their robustness to external pushes and
changes in terrain, and the ability to transition directly between
many of the controllers. We begin our walking controllers from
a double stance state with a moderate forward velocity (1m/s), al-
though we note that our basic forward walking controller can be-
gin just as well from rest. We note that symmetric controllers can
exhibit asymmetric gaits from some initial states while producing
symmetric gaits from other initial states. This difficulty can be over-
come by using initial states closer to the desired limit cycle.

5 Controllers from Motion Capture Data

An alternative to manual design is to use motion capture data as the
basis for developing a controller. This allows a kinematic motion to
be imported into a dynamic setting. Whereas kinematic motion cap-
ture data cannot be made to stumble for an unseen step or respond
to a push, a style-mimicing controller allows for these effects.

We develop style-mimicing controllers as follows. Given 3–7 cy-
cles of motion capture walking data, we apply Fourier analysis to
a representative joint, such as the right hip, in order to extract the
period T of the walking cycle, which is estimated using the pri-
mary frequency ω of the Fourier transformation. We then select
the next several largest Fourier coefficients corresponding to fre-
quencies that are an integer multiple of ω . When the reconstruc-
tion error reaches a preselected accuracy, we discard the remaining
Fourier components. This filters the original motion capture data to
a smooth periodic motion Θ that reflects an averaged walk cycle of
the given style and represents it using a compact set of coefficients.

The extremal points of Θ are detected automatically. The time tm of
the largest right hip flex is assigned a fixed phase φ(tm) = 0.25 in
the walk cycle, where φ ∈ [0,1]. States 1 and 3 are discarded from
the FSM in Figure 2. The remaining two states serve the purpose of



differentiating between the left-stance and the right-stance phases.
The transition between the states occurs on foot contact, which is
expected to occur at approximately φ = 0.5 and φ = 1. The double-
stance phase is considered to be part of the stance phase that has just
begun.

The trajectory Θ serves as a target trajectory in place of the tar-
get poses used in the manually-designed controllers. Within each
state, the joint angles individually track the motion capture trajec-
tories θd0 = Θ(φ(t,T )) using PD-controllers. The phase is reset
to 0 or 0.5 upon transitioning to the next state. As is the case
for the manually-designed controllers, the torso angle and swing-
hip angle do their tracking with respect to the world frame. Simi-
larly, the stance hip does not track its motion-captured counterpart
and, as before, its torque is computed from the known torso and
swing-hip torques. The PD-controller, however, is changed from
τ = kp(θd−θ)−kd θ̇ to τ = kp(θd−θ)−kd(θ̇ − θ̇d). The θ̇d term
helps in tracking the target trajectory with minimal time lag.

Controllers based on motion capture data apply balance feedback
to both the swing hip and, for slow walks, to the stance ankle using
Equation 1. While a fairly broad range in values result in stable
gaits, we currently tune these by hand in order to yield a robust
gait and a strongly-attracting limit cycle which will be required for
the successful application of feedback error learning, as will be dis-
cussed later.

The controller will not perfectly imitate the motion capture refer-
ence motion for a number of reasons. First, the original motion
capture data may contain noise from data capture and data process-
ing and may not be dynamically consistent. Second, the physical
system parameters of the simulated human may not exactly match
that of the motion-capture actor. This includes link dimensions,
joint placement, mass and inertial parameters, and joint gains. Ad-
ditionally, we forego tracking of the stance hip angles in order to
insert the balance-feedback mechanism. The resulting motion is
thus encouraged to imitate the overall style of the reference motion,
but does not precisely match other parameters that could also be
used to characterize gaits, such as step-length or velocity. Lastly, in
order to closely follow the reference motions, the tracking control
requires high-gain PD controllers. These can be lowered using the
feedback-error learning scheme discussed in the following section.

6 Feedback Error Learning

The controllers described thus far produce motions that are quite
robust to disturbances and are able to closely track reference tra-
jectories. However, the high gains used in the feedback loops are
representative of stiff movements. Also, the torso pitch angle oscil-
lates about its desired position because it is always reacting to the
movement of the hip rather than anticipating it.

Human motor control commonly increases the mechanical
impedance of the control as a strategy for producing robust
motions in environments where perturbations are expected, and
uses low-impedance control when the environment is highly pre-
dictable[Takahashi et al. 2001]. The low-impedance control in pre-
dictable environments can be achieved by using anticipatory “feed
forward” torques together with low-gain feedback. The latter is
still necessary to deal with small deviations from the desired tra-
jectory that may always be expected. The feed-forward torques are
also thought to be necessary in order to deal with the slowness of
the human nervous system, as compared to the fast response that
would be required for purely feedback-based control.

Previous work using tracking of upper-body motion capture tra-
jectories[Zordan and Hodgins 2002] requires high-gains in order
to track well. At the instant of an unexpected impact, the gain is

lowered for a short duration in order to mimic the low-impedance
control normally exhibited during skilled motion, before being in-
creased again to resume tracking. The ephemeral low-gain por-
tion of the motion is implausible in that it would not track the de-
fault motion in the absence of the disturbance. In order to address
this, [Yin et al. 2003] use inverse dynamics in order to estimate the
feed-forward torques that would normally be in effect during skilled
motion, although they do not deal with issues of balance. In con-
trast, we apply feedback error learning (FEL) in order to learn feed-
forward torques, which then allow our controllers to operate with
low tracking gains. Because the low-gain motions are less robust
than the high-gain motions, we can optionally increase the gains
for some time after impact after a reaction-time delay (150ms) in
order to simulate a natural perturbation-recovery reaction.

Feedback error learning is a form of adaptive control[Kawato et al.
1987; Nakanishi and Schaal 2004] and allows for the learning of
the inverse dynamics of a system in order to reproduce given mo-
tion trajectories. In its most general form, the feed-forward func-
tion learns τ = f (x, ẋ, ẍ), where x, ẋ is the current system state (po-
sitions and velocities) and ẍ is the vector of commanded acceler-
ations. We move away from this general form and instead learn
the feed-forward torques as a function of the current phase of the
motion: τ = f (φ). We estimate φ using φ = t/T̂ , where t is the
current elapsed time in a given state and T̂ is the current estimate
of the period. For repetitive motions such as a walk cycle, these
simplifications work well. To our knowledge, FEL has not been
successfully applied to a dynamical system as complex as a fully
simulated virtual character capable of a variety of robust locomo-
tion behaviors.

Our implementation of FEL divides the phase φ uniformly into N
bins. We use N = 20− 1000. The current phase bin is given by
n = tN/T̂ . Each bin uses a low-pass filter of the form

v′f f = (1−α)v f f + α(v f f + v f b) (2)

to update the feed-forward torques. Here v f f and v f b represents the
feed-forward and feed-back torques applied for that phase of the
motion corresponding to bin n. We use a learning rate of α = 0.1.
The feed-forward values are initialized to zero. During the learning
process (and afterwards), it is the sum of feed-forward and feedback
torques that is applied, i.e., v f f + v f b. FEL can be applied to one
joint at a time, or to all joints simultaneously.

High learning rates may yield to convergence problems because the
use of feed-forward torques will influence the resulting motions.
While it is difficult to obtain analytic guarantees of convergence
of FEL for complex dynamical systems, we have not experienced
any convergence problems with our chosen learning rate. It is also
useful to limit the magnitude of the feed-forward torques because
some predictable disturbances can never be fully accomodated. An
example of this is the force impulse caused by foot contact, which
instantaneously creates a small change in angular velocity for the
torso and requires an equivalently instantaneous control impulse in
order to fully ensure that the torso never exhibits any pitch.

7 Results and Discussion

We apply the SIMBICON framework to simulated 2D and 3D
bipeds having human-like proportions and mass distributions. Fig-
ure 5 shows the models and their degrees of freedom.

The 7-link planar biped has a 70 kg trunk, 5 kg upper legs, 4 kg
lower legs, and 1 kg feet. The respective largest dimensions are
48 cm, 45 cm, 45 cm, and 20 cm. A combined head-arms-trunk
(HAT) model is used, as is common in the walking simulation liter-
ature. The 2D biped is simulated using an optimized version of the



Figure 5: Degrees of Freedom (DOF) of models. Left: 2D model
with 6 internal DOFs, 9 DOF in total. Right: 3D model with 28
internal DOFs, 34 DOF in total.

Newton-Euler equations of motion. A spring-and-damper penalty-
force ground contact model is applied to points at the front and back
of the feet. PD gain values of kp = 300 Nm/rad,kd = 30 Nms/rad
are used for all joints. Joint limits are enforced on the hips and
knees. Ground stiffness parameters are kp = 100000 N/m,kd =
6000 Ns/m. We use a Coulomb friction model with a friction coef-
ficient of 0.65. A time step of 0.0001 s is used. We use torque limits
of 1000Nm, which can be lowered to 370 Nm for all motions ex-
cept the fast run. The basic walk controller supports a torque limit
of 90 Nm, below which it becomes weak-kneed and falls. With con-
trol, the simulation runs 5 times faster than real-time unoptimized
on a 1.8 Ghz CoreDuo PC.

The parameters for the 3D biped model are the same as used in
[Laszlo et al. 1996]. We scale the limb lengths to match our mo-
tion capture subject. The 3D biped is simulated using Open Dy-
namics Engine[ODE ] version 0.6. Our simulation time step is
0.005 s. Contacts are modeled using constraints and an approxi-
mated Coulomb friction cone, solved as a linear complementarity
problem (LCP). We use a friction coefficient of 0.8, which is typ-
ical for a rubber sole. The coefficient of restitution for collisions
is assumed to be zero. Torque magnitudes are limited to kp The
largest kp value is 1000, used for the waist joints. All other joints
use kp = 300 or less. We use kd = 0.1kp. With control, the unopti-
mized simulation runs 1.2 times faster than real time on a 3.2 Ghz
Pentium 4.

7.1 2D Biped Locomotion

A set of 12 periodic gaits have been authored using the GUI (§ 4).
The parameters for these controllers are given in Table 1. We de-
signed these gaits to achieve a wide variety of motion styles using
a small number of states. They have not been designed to be opti-
mal gaits with respect to any given criterion. We have also authored
acyclic controllers for stopping and remaining balanced on two feet,
stopping and remaining balanced on one foot, and taking a single
large step in the middle of a longer walking sequence. A subset of
the motions are illustrated in Figure 6.

The running controllers do not have a strong preference to run at a
particular speed. As such, they can be ‘pushed’ to run at various
speeds. Parameterized control of speed is likely feasible, although
was not investigated. As compared to [Raibert and Hodgins 1991],
our framework uses no explicitly-computed injection of energy to
maintain a given flight time during running or skipping. The control
laws are identical for all FSM states, modulo the change of legs
fulfilling stance-leg and swing-leg roles, and are governed by the
target angles and feedback gains. This supports a style of running
that, qualitatively speaking, looks less like hopping than previous
work[Hodgins et al. 1995; Hodgins and Pollard 1997].

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 6: A subset of the manually-designed controllers for the pla-
nar biped. (a) walk; (b) high-step walk; (c) bent walk; (d) scissor
hop; (e) crouch walk; (f) backwards walk, right-to-left; (g) fast run;
(h) skipping; (i) big step.

Controller Transitions

Controllers are bound to keystrokes and it is possible to interac-
tively request transitions between the controllers. This is accom-
plished during state transitions, jumping from state n of controller
A to state n + 1 of controller B. An example of the kind of transi-
tions that be successfully executed is as follows: walk→ in-place
walk→ stand→ back-flip → in-place walk→ walk → big-step→
walk → in-place walk→ high-step walk→ in-place walk→ scis-
sor hop → walk → skip → walk → bent walk → walk → crouch
walk→ walk→ in-place walk→ backwards walk→ in-place walk
→ back-and-forth stepping → walk→ run→ fast run. A portion
of this is shown in the video that accompanies this paper.

In the absence of specially-designed transition motions, not all con-
troller transitions are feasible. For two controllers whose motions
are significantly different, the basins of attraction for each may not
overlap as needed for direct transitions. Direct transitions are pos-
sible between many of the walking and running gaits. However,
some gaits are significantly more sensitive to the required initial
state, such as the backwards walk which first requires transitioning
to the in-place walk. The “scissor hop” is particularly sensitive to its



Figure 7: Feedback error learning (FEL) applied to the 2D biped
torso. Illustrated are the feedback torques, before and after FEL,
and the learned feed-forward torque.

initial state. Its basin of attraction does not fully overlap the limit
cycle of the in-place walk, and thus requires being in a particular
phase of its walk cycle in order to ensure a successful entry transi-
tion. The controllers for standing on one foot also has a very limited
basin of attraction due to its need to balance without stepping.

Robustness

The robustness of the walk controller to variations in terrain is
shown in Figure 1(a). The terrain includes unanticipated downward
steps of 20cm and slopes of ±6 degrees. The robustness of the
gaits with respect to unanticipated pushes was tested by applying
10 pushes at 5s intervals, which serves to sample various phases of
the gait while also allowing the biped time to fully recover between
pushes. Any single stumble from which the biped cannot recover is
deemed a failure. The walking controller can withstand 0.1s dura-
tion pushes of up to 600N forwards and 500N backwards at all 10
sampled points in the locomotion cycle. Other gaits are more sen-
sitive to disturbances. For example, the skipping gait can withstand
0.1s duration pushes of up to 40N forwards and 50N backwards.
Larger pushes, as measured by their induced change in momentum,
F∆t, can be sustained by increasing ∆t and decreasing F . Specific
portions of the walk cycle can also withstand larger pushes.

Feedback Error Learning

The application of feedback error learning to the 2D biped torso
decreases its oscillation amplitude from 5◦ to 0.5◦ for a walking
gait and unchanged feedback gains. Figure 7 illustrates the learned
torque and the decreased amplitude of the feedback torques. Foot-
strike events occur at time t = 0 and t = 0.36 on the graph and
cannot be fully anticipated due to their impulsive nature.

7.2 3D Biped Locomotion

Manual Controller Design

Controllers for 3D walking require twice the number of parameters
as for 2D control because of the need for lateral (coronal-plane)
control. Manually-designed controllers have been developed for
two-foot hopping, three styles of forward walking, walking up a
slope of 20 degrees, two styles of forward running, a sideways-
walk Tai Chi movement, and skipping. Direct transitions are possi-
ble between most of the walking and running gaits. Many of our 2D
control strategies work directly when applied to the 3D model and
applying a common set of feedback gains for the lateral hip move-
ment that is responsible for lateral balance. There is some variation
in the style of the 2D and 3D motions, likely because our 2D and
3D models have different masses and proportions. For the few cases

Figure 8: Imitation of motion capture data. Each box compares the
original motion (top) and the controller motion (bottom). The boxes
from top to bottom: high knee walk; wide stance walk; backwards
walk, right-to-left; bent-forwards walk.

where the difference in models is problematic, minor adjustments
to target angles and gains are sufficient to achieve a functional 3D
motion.

Motion Capture Imitation

We have developed seven controllers from motion capture data,
including four different types of in-place walking (normal, wide-
stance, bent-trunk, high-knee), forwards walking, backwards walk-
ing, and sideways walking. Figure 8 shows comparisons of the orig-
inal captured motions and the motion resulting from the controllers.

If necessary, we use a small amount of manual tuning to make the
tracking-based controller functional. Some of the original in-place
stepping gaits exhibit only a small amount of swing-foot clearance
during the step. This can cause a failure in the tracking-based con-
troller to lift the swing foot off the ground. A simple correction is
to add a constant swing-hip offset so that the swing foot lifts off
the ground as desired. Manual tuning of the balance feedback gains
for the swing hip, both sagittal and lateral, is sometimes necessary.
Section 7.3 describes the types of artifacts that are seen when the
gains are misadjusted. The in-place high-stepping walk requires
use of sagittal balance feedback gains for the stance ankle because
of the time spent balanced on the stance foot and the large shift in
the COM caused by the high lift of the swing leg. An unnatural as-
pect of some of our walking results is that they may fail to properly
mimic aspects of the ankle motion and foot toe-off. We speculate
that this may resolved with additional tuning of the ankle PD-gains
and ankle balance feedback gains. We have not yet tried to repli-
cate running motions from motion capture data, although we are
optimistic that this would work.

We speculate that there will be several categories of motions where
our motion-capture-to-controller methodology will fail. Acrobatic



(a)

(b)

Figure 9: Variations in locomotion, illustrated using footprints. (a)
Turning behavior applied to a slow forward walk controller recon-
structed from motion capture data. (b) A wide-stance in-place walk
reconstructed from motion capture data is made to walk diagonally
forward and to the left through the simple addition of offsets to the
swing-hip target angles. It then reacts to a large push diagonally to
the right.

motions have significant flight phases and therefore rely on accu-
rately achieving specific linear and angular momentum upon take-
off. Our balance control feedback does not provide these. Dynamic
motions that do not involve periodic stepping motions are likely to
be problematic. Lastly, dynamic motions that do not involve any
stepping require a ZMP approach or an approach that can exploit
other parts of the body to help maintain balance.

Parameterization

The robust nature of our controllers means that once a controller
has been constructed, either manually or from motion capture data,
additional control strategies can then be layered on top. High-level
controllers can be developed to control walking styles or walking
directions. Much of this kind of control can be added in an intuitive
fashion as displacements to the target poses or target motions. For
example, to add a lateral component to straight line walking, we add
an antisymmetric displacement angle to the lateral target hip angles
for all the poses in the PCG. If instead we add symmetric displace-
ment angles to each lateral hip angle, this produces a straight walk
with altered stance width. The result is shown in Figure 9(b), with
the addition of an external push.

Controllers can cope with unanticipated gentle slopes and small
steps. Steeper slopes or larger steps require adding a displacement
∆θhip = kθs to the target hip angles to insure foot clearance, where
θs is the angle of the slope. For sufficiently steep slopes, the ankle
angles also need to be adapted.

Turning is generated by modulating the desired facing angle. The
desired facing direction in Figure 9(a) is varied according to 0.9 ∗
sin(πt/12) in radians. The stance hip is then used to achieve the
desired facing direction. A light backpack can be worn with an un-
changed, vertical torso target pitch. Heavier backpacks need to be
accomodated by pitching the torso forward accordingly. Interpo-
lation between gaits can be achieved by interpolating between pa-
rameters of the corresponding controller states. Since the balance
controller only uses the lower limbs, the upper body is left free for
different styles or additional tasks. For example, we can choose to
keep the arms straight down or to swing them naturally.

Robustness

A robust balance controller also means that the locomotion can deal
with unexpected environmental disturbances automatically. The
largest recoverable pushes as measured in eight evenly-sampled di-

rections are (0,340), (230,230), (330,0), (220,−220), (0,−270),
(−190,−190), (−240,0), (−190,190), where each pair defines the
(lateral,sagittal) push magnitudes in Newtons. The pushes are ap-
plied at chest height at a phase angle of φ = 0.1 and have a dura-
tion of 0.4s. These numbers are comparable with specially devel-
oped push recovery controllers[Kudoh et al. 2006], which are only
demonstrated in the sagittal plane and are computed offline using
quadratic programming. We also tested the robustness with respect
to kinematic and dynamic model variations. For example, we have
increased the femur length by 10% for the walking gait defined in
Table 1 while maintaining both the style and stability of the gait.
Larger changes can be accomodated, first resulting in a change of
style while still being robust. Some gaits are particularly sensitive
to some parameters. For example, the fast running gaits tend to be
sensitive to the balance feedback gains. Stairs can cause problems
because the controllers cannot “see” an upcoming step, and the re-
sulting toe stub or ill-placed foot can cause a fall.

Feedback Error Learning

Feedback error learning has been successfully applied to the upper-
body joints and the virtual torso torque for all manually-designed
FSM controllers. We limit the maximum feedforward torques to be
|∆θkp|, where kp is the PD spring constant and ∆θ = 0.2 radians.
The feedforward torque will thus be capable of eliminating oscil-
lations of approximately 0.2 radians in magnitude. We experiment
with various resolutions for representing the feedforward torque,
using phase bins that correspond to ∆tφ ∈ [0.5,25] ms. For the 3D
walk controller given in Table 1, we test several different resolu-
tions and computed the energy ratio of the feedback torques to the
feed-forward torques, r =

∫ || f b||∫ || f f || after FEL. For ∆tφ = 0.5ms,r ≈
2.5%; ∆tφ = 5ms,r ≈ 3.5%; ∆tφ = 25ms,r ≈ 14%. Because θd0 is
discontinuous for the lower-body joints for the manually-designed
controllers, we do not apply FEL to these joints. The large discon-
tinuities in the desired joint angles that occurs upon transitioning
to a new FSM state are not suitable for modeling directly using a
feed-forward torque. This can be circumvented by treating the out-
put of a simulation as being the equivalent of motion capture data,
and applying the strategy that we shall describe next.

Feedback error learning can also be applied to controllers that track
motion capture data. FEL can be applied directly to the upper-
body joints and the virtual torso torque. Applying FEL to the lower
limbs requires two adaptations to the basic FEL learning process.
First, for all joints using balance feedback, the joint angle tracking
torques need to be decoupled from the balance-feedback torques.
Therefore it is essential to apply FEL based only on the compo-
nent of the torque that is used to track the joint angle target tra-
jectory, and not the component that is added to achieve balance
control. Second, despite the use of smooth target-angle trajectories,
there remains a discontinuity at the instant of stance-leg/swing-leg
exchange. To accomodate this, we adapt the desired trajectory to-
wards the realized simulation trajectory using a displacement tra-
jectory. The displacement trajectory δθ is initialized to zero and
is modified over time according to δθ ′ = (1−α)δθ + α(θ −θd).
Each of δθ ,θ ,θd are functions of phase and are modeled using
phase bins in the same way as feed-forward torques. It can be seen
that δθ remains unchanged when it correctly predicts the tracking
error θ −θd .

In the accompanying video, we show several comparisons between
walks based on motion capture data, simulated using (a) feedback
control alone, and (b) using combined feedback and feedforward
control. The latter motions exhibit smoother, more stable motion
while having PD constants kp,kd that are the same or lower.



7.3 Setting the Balance Feedback Gain Parameters

cd ,cv are usually within the range of [0,1]. For our basic 3D walk
controller we use cd = 0.5 and cv = 0.2 for the swing hip in all
states, in both the coronal and sagittal planes. We provide a brief
summary of our bifurcation stability analysis because it provides
an indication of the sensitivity of the results with respect to some
of the parameters, and we also note that implmentors may observe
phenomena such as period doubling[Vakakis and Burdick 1990;
Koditschek and Buhler 1991]. Beginning from a fixed initial state,
we change one selected parameter across all four states to find its
viable range, while fixing all other parameters to their nominal val-
ues. The stable range of the parameters are: [−0.71,1.4] for cd and
[0.03,0.59] for cv in the sagittal plane; [−1.29,1.13] for cd and [-
0.06,0.48] for cv in the coronal plane. For most operating points
within these ranges, stable limit cycles can be achieved. For op-
erating points near the upper limits, period doubling and chaotic
behavior develop on occasion. When cv is below the lower limit,
the velocity of the character accumulates until it falls. When cv
is above the upper limit, usually the character will rock back and
forth(or left and right) with increasing amplitudes until the oscilla-
tions destroy the walking.

7.4 Limitations

The pipeline for producing controllers from motion capture data is
not fully automated in that we still manually tune the required feed-
back gain constants, and has only been tested on styles of walking.
The current gaits are not optimized for energy efficiency. We do not
model the reaction-time delays of human motion. As a result, some
of our motions are stable in a way that human motions may not be.

The available suite of mathematical tools for the stability analysis
of high-dimensional, non-linear dynamical systems is limited. Two
practical options for analysis are to work with a simplified version
of the system dynamics, or to rely on simulation-based experiments.
We have chosen the latter option.

8 Conclusions

The control of bipedal locomotion is a challenging problem. The
need in animation to model multiple gaits, stylized motions, reac-
tion to variable terrain, and reactions to external forces exacerbate
this challenge. The framework presented in this paper addresses
many of these challenges. We have further shown how to develop
a variety of walking controllers from motion capture data and how
to implement feedback error learning to achieve motions that are
driven by feed-forward torques and low-gain feedback.

There are a large number of directions that can be pursued. We wish
to develop libraries of ‘downloadable skills’ that can be shared.
This requires file formats for exchanging controllers which describe
both the controller itself and its basin of attraction[Faloutsos et al.
2001]. We wish to apply the control schemes to humanoid robots.
Basic locomotion skills should be integrated with other skills that
let the simulated characters interact with their environment in a rich
variety of ways. Methods are needed for planning motions using
the controllers we have developed.
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state ∆t cd cv tor swh swk swa stk sta

walk
0,2 0.30 0.00 0.20 0.0 0.40 -1.10 0.20 -0.05 0.20
1,3 fc 2.20 0.00 0.0 -0.70 -0.05 0.20 -0.10 0.20

in-place walk
0,2 0.30 0.00 0.40 0.0 0.62 -1.10 0.20 -0.05 0.20
1,3 fc 1.55 0.00 0.0 -0.10 -0.05 0.20 -0.10 0.20

fast walk
0,2 0.27 0.00 0.20 -0.1 0.73 -1.83 0.20 -0.05 0.20
1,3 fc 2.00 0.00 -0.1 -0.70 -0.05 0.20 -0.10 -0.06

highstep walk
0,2 0.30 0.00 0.20 0.0 1.00 -2.40 0.20 -0.05 0.20
1,3 fc 2.00 0.00 0.0 -0.70 -0.05 0.20 -0.10 0.20

half bent walk
0,2 0.23 0.00 0.20 -0.2 0.62 -1.10 0.00 -0.05 0.00
1,3 fc 0.60 0.00 -0.2 -0.10 -0.05 0.00 -0.10 0.00

bent walk
0,2 0.30 0.00 0.20 -0.6 0.80 -1.10 0.00 -0.05 0.00
1,3 fc 0.60 0.00 -0.6 -0.10 -0.05 0.00 -0.10 0.00

crouch walk
0,2 0.30 0.00 0.20 -0.2 1.10 -2.17 0.62 -0.97 0.44
1,3 fc 2.20 0.00 -0.3 -0.70 -0.05 0.20 -0.92 0.44

scissor hop
0,2 0.27 0.00 0.77 -0.2 0.70 -0.58 0.20 -0.05 0.09
1,3 fc 0.11 0.01 -1.0 -0.82 -0.27 0.20 -0.10 0.12

backwards leaning backwards walk
0,2 0.22 0.00 0.28 0.2 0.37 -1.41 0.00 -0.05 0.00
1,3 fc 0.60 0.00 0.3 -0.10 -0.05 0.00 -0.10 0.00

fast run
0,1 0.15 0.00 0.20 -0.2 1.08 -2.18 0.20 -0.05 0.27

run
0,2 0.21 0.00 0.20 0.0 0.80 -1.84 0.20 -0.05 0.27
1,3 0.00 0.00 0.20 -0.2 1.08 -2.18 0.20 -0.05 0.27

skipping gait
0,4 0.19 0.00 0.40 0.0 1.04 -1.75 0.20 -0.19 0.20
1,5 0.12 0.00 0.40 0.0 2.25 -2.18 0.20 -0.05 -1.60
2,6 0.26 0.00 0.04 0.0 2.44 -2.09 0.20 -0.05 0.20
3,7 fc 0.18 0.37 0.0 -0.46 -0.05 0.20 -0.10 0.20

3D walk
0,2 0.3 0.5 0.2 0 0.5 -1.1 0.6 -0.05 0
lat 0.5 0.2 0 0 0 0 0 0
1,3 fc 0.5 0.2 0 -0.1 -0.05 0.15 -0.1 0
lat 0.5 0.2 0 0 0 0 0 0

3D run
0,1 0.3 0.5 0.2 0 0.5 -1.1 0.6 -0.05 0
lat 0.5 0.2 0 0 0 0 0 0

Table 1: 2D and 3D locomotion parameters for the periodic, left-
right symmetric gaits. The columns from left to right represent the
state numbers, state dwell duration, position and velocity balance
feedback coefficients, and the torso, swing-hip, swing-knee, swing-
ankle, stance-knee, and stance-ankle target angles. All angles are
expressed in radians. The 2D and 3D runs have only two states.


