
Université de Montréal (Département d’informatique et de recherche opérationnelle)
Published May 24th 2007

Technical Report 1296
Automatic Construction of Compact Motion Graphs

Philippe Beaudoin1 Michiel van de Panne2 Pierre Poulin1

1Université de Montréal 2University of British Columbia

Abstract

Motion capture data often requires substantial processing before it becomes useful. We propose a technique that
automatically distills a compact motion graph from an arbitrary collection of motion capture data. At its heart,
the process identifies clusters of similar motions which we call “motion bundles”. Motion bundles and their en-
compassing motion graph provide a readily understandable structuring of the motion data. They can serve as a
shared tool in support of common types of motion processing, including motion segmentation, motion compres-
sion, the creation of blend spaces, and the identification of connectivity to support motion resequencing. We use a
novel string-based representation of motions to help find motion bundles. Users can specify a preference for long-
duration bundles or bundles containing many motions. We demonstrate results using data for boxing, walking and
various exercise motions, and we show that meaningful partitions are retained in the face of noise.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation

1. Introduction

Data driven character animation requires first collecting a
sufficiently large set of motion-captured movements and
then processing them to give the required structure for a
given application. Processing motions to induce a useful
structure has been the focus of much animation research over
the past ten years and continues to be an important topic.
Seen in the broadest terms, the goal is that of using analy-
sis in order to extract models that can then be useful in the
synthesis of new motions.

Various types of analysis have been developed in support
of specific uses, including motion segmentation, motion re-
sequencing, motion blending, query-based motion retrieval,
motion compression, and motion annotation. However, the
motion analysis tools for these applications have often been
developed in isolation of one another. For example, basic
motion graphs store the connectivity information required
for motion resequencing, but do not detect similar or re-
peated motions. Similarly, motion compression techniques
do not typically pay heed to global motion connectivity.

In counterpoint to specialized approaches, more general
approaches have also been proposed for extracting structure
from motion corpora. These can be seen as simultaneously
achieving motion compression, modeling the connectivity
for resequencing, and modeling motion blending or gener-
alization. A first category of approaches uses dynamic sta-

tistical models from the machine learning literature, and in-
cludes hidden Markov models (HMMs) and switched linear
dynamical systems (SLDSs). These stochastic models have
achieved success for motion segmentation and categoriza-
tion, but have, with a few exceptions, met with less success
for motion synthesis. A second, more recent approach has
been the development of parametric [HG07] or fat [SO06]
motion graphs. In comparison to statistical models, these
models are significantly more transparent to end users be-
cause they are more consistent with current methodologies
for developing character motion models for games and in-
teractive simulations. Their resequence-and-blend based ap-
proach for generating motions is also well known to produce
high quality results.

The work we present in this paper follows the fat or para-
metric motion graph approach. Motions in a motion corpus
are segmented and clustered into self-similar motion bun-
dles. Importantly, the motion-bundle extraction algorithm
treats segmentation and clustering together in a single, cou-
pled process. The motion bundles are augmented with con-
nectivity information among motion bundles in order to cre-
ate a compact motion graph. Our particular contributions
are two-fold. First, in contrast to previous work, we develop
a fully automated approach to identifying and constructing
good clusters of similar motions. Second, we introduce the
use of a string-based representation of motions and cast mo-
tion clustering as a string clustering problem. The method

Published May 24th 2007

P. Beaudoin & M. van de Panne & P. Poulin / Technical Report 1296

supports user preferences in achieving the desired compro-
mise between producing long-duration bundles or highly pa-
rameterized bundles containing many motions. The motion
bundles can potentially be used for a combination of pur-
poses, including motion compression, motion blending, mo-
tion resequencing, and motion retrieval.

The paper is organized as follows. Section 2 discusses re-
lated work. Section 3 details the motion-bundle creation al-
gorithm. Section 4 shows how the motion bundles can be
used to produce a graph structure. Next, Section 5 presents
and analyzes the experimental results for the automatic ex-
traction of motion bundles as well as for motion-bundle
graph creation and traversal. Finally, Section 6 concludes by
discussing the advantages and limitations of the proposed
techniques.

2. Related Work

The past decade has spawned a growing body of work that
examines the analysis, synthesis, compression, and retrieval
of human motion data. We structure our survey of related
work according to the primary goal of the proposed tech-
niques.

Automatic segmentation of motions into distinctive
smaller fragments has been investigated in support of
a number of applications, including motion compression
[LM06], motion classification [BSP∗04, SB05, FMJ02], and
motion retrieval [LZWM05, SB05]. Approaches used for
segmentation include angular-velocity zero crossing detec-
tion [FMJ02], entropy metrics [SB05], and temporally-local
models based on probabilistic principal component analysis
(PCA) [BSP∗04, LM06].

Motion compression techniques extract spatial or tem-
poral structure from motions in order to achieve compact
representations. Arikan [Ari06] introduces a compression
scheme that breaks the motion into fixed-duration segments
and then builds a compressed representation for these. In
[LZWM05,LM06], poses are assigned to a finite set of linear
subspaces. The linear subspaces are allocated using a recur-
sive division approach [LZWM05] or the subspaces formed
by temporally contiguous frames of the motion. The use of
the subspaces to support blending or resequencing is not ex-
plored.

Motion query techniques extract structure in order to
be able to efficiently identify motions that are similar to a
query motion. This has recently been an active area of re-
search. One common approach is to develop and apply a
segmentation rule and then cluster the resulting fragments
[BSC05, LZWM05]. Motion queries are then performed by
looking for a given cluster transition signature. An alternate
model is to look for patterns in binary-valued relational fea-
tures [MRC05,MR06] or extracted keyframes [SB05], and to
construct efficient searches based on these. Search strategies
can also be informed by user-weighted notions of important

features [FF05] and can be made to efficiently support time
warps [KPZ∗04, SB06]. Another approach builds a precom-
puted ‘match web’ from a pairwise comparison of all frames
in the motion corpus, which can then be used to quickly re-
trieve motions that are similar to query motions also selected
from the corpus [KG04].

Statistical models of motion are intended to be general
and can in theory be used for both analysis and synthesis.
In parametric statistical models, the original motion data is
discarded and thus original motion retrieval is not an option.
Hidden Markov models or variations thereof were first sug-
gested in [BH00,TH00]. Switched linear dynamical systems
are proposed in [PRM00, LWS02]. Several stochastic mod-
els are applied towards the construction of natural-motion
classification oracles in [RPE∗05].

Motion graphs aim to address the motion resequenc-
ing problem by automatically identifying points where mo-
tions are sufficiently similar that they support transitions be-
tween motions, and hence allow resequencing. They have
been introduced in various forms in recent years [TH00,
AF02, KGP02, LCR∗02, LWS02] and resemble the move
trees [Men00] that have long been a staple for game-based
character motion.

Fat or parametric motion graphs [SO06, HG07] sup-
port both motion resequencing and motion blending. This is
achieved by building a motion graph from sets of parameter-
ized motions, where motions within a set can be blended.
Sets of parameterized motions can be constructed manu-
ally [PSKS04] or with the help of a motion query algorithm
that can retrieve similar motions given an example query mo-
tion [KG04, KS05]. The parametric motions in [HG07] are
constructed using the techniques developed in [KG04] to ef-
ficiently find and resample sets of motions that are similar
to a given query motion. A user-specified distance threshold
value determines how large the returned set of similar mo-
tions will be. Where the similar motions are considered to
start and end is implicit in the start and end of the query mo-
tion chosen by the user. As a result, the nature and duration
of each parameterized motion set is in effect user-specified.
The parametric motions in [KS05] are identified with the
help of string matching, where the alphabet denotes the vari-
ous support phases (right leg, left leg, double support, flight)
for walking and running.

Our work is closest in spirit to that of the fat and para-
metric motion graphs described above. However, our goals
are complementary. Whereas the focus in existing work has
been on user-driven graph construction, the details of estab-
lishing a specific parameterization, and the specific details
of graph traversal, our focus is on the automated construc-
tion of such motion graphs. We aim to find natural parti-
tions of the motion data into self-similar motion sequences
which we call motion bundles. The size and duration of mo-
tion bundles are determined in an unsupervised fashion from

Published May 24th 2007

P. Beaudoin & M. van de Panne & P. Poulin / Technical Report 1296

the data, with the help of a single parameter that embodies
user preferences for their shape (duration vs size).

Another unique aspect of our work is the use of strings
to perform motion comparisons and motion bundle extrac-
tion. A common approach to comparing two motion se-
quences involves computing pose distances between all pairs
of frames using a distance matrix and placing thresholds
on the maximum allowable pose distances. We replace the
role of such distance matrices with a simple lookup scheme.
Poses are classified as belonging to a particular precomputed
pose cluster. Distances between pose cluster centers are then
precomputed and a binary matrix is used to record all clus-
ter pairs that are closer than a given threshold distance to
each other. This greatly reduces the cost of pairwise frame-
to-frame comparisons. The string representation further sup-
ports the efficient search for large motion bundles.

We note that the work of [KS05] models motions as
strings, but in a very limited fashion. The motion graph
approach of [LCR∗02] makes use of pose clusters much
like ours, which can be labelled to achieve a string-based
representation like ours (see Figure 4 in [LCR∗02]). How-
ever, their use of cluster path signatures is to build cluster
trees which are used for a different purpose than our motion
strings. We are unaware of other work that uses string-based
motion representations to perform tasks such as efficient se-
quence clustering applied to motion capture data.

3. Motion-Bundle Algorithm

3.1. Overview

We begin our discussion by describing the application of the
motion-bundle extraction algorithm to a toy example. Fig-
ure 1(a–g) shows how motion bundles are extracted for a set
of motions in a simple two dimensional space. The frames
for this toy example are marked in red in (a). The motion
sequences from which they come are the curves traced in
(f) and (g). The goal of the algorithm is to produce motion-
bundle partitions. As shown in (f) and (g), there exists more
than one way to naturally partition the motions into motion
bundles. A parameter ρ controls the preferred type of parti-
tioning; ρ > 1 gives preference to longer motion bundles, at
the possible expense of having fewer motions in any given
bundle.

The first step in the process is to reduce the dimensional-
ity of all poses through the application of PCA This is fol-
lowed by pose clustering, as shown in Figure 1(a), for all
poses. Clusters are modeled as isotropic Gaussians, i.e., us-
ing a mean value and a single variance parameter. Individual
poses are assigned labels, shown as letters, according to their
most-likely cluster. The motions can now be converted into
motion strings using the letters associated with each pose.
Sequential repetitions of letters are removed. All the mo-
tion clips in the motion corpus can be represented as strings

and then further concatenated into a single long string repre-
senting all motions. Figure 1(b) shows a portion of this long
string for the toy example. The collection of motions that
runs horizontally is represented by the substring GOACEN,
and thus multiple occurrences of this substring can be seen.
An additional partitioned flag, p(j), is used to flag points
where adjacent motion clips have been concatenated. Later,
p(j) will also be used to flag subsequences that have already
been incorporated into motion bundles and that are therefore
ineligible for use in new motion bundles.

The construction of motion bundles requires knowing
which letters are ‘nearby’ other letters. This can be captured
using a binary accessibility matrix A, as illustrated in Fig-
ure 1(c). This will be used to help identify non-identical sub-
strings that nevertheless represent similar motions. For ex-
ample, the motions represented by GOACEN and GOACH-
CEN are very similar and should be eligible to be clustered
together.

The clustering algorithm works by choosing a seed point
to build a motion bundle and then constructing the largest
possible motion bundle from that seed point. An instance of
the most frequent letter (among currently unpartitioned let-
ters in the string) is chosen as the seed point. A particular
instance of the letter C is chosen for our example, as shown
in Figure 1(d). This seed point will then spawn a number of
seed substrings in order to search for the largest motion bun-
dle that contains the given seed point. The complete details
of this process will be described shortly. Once the largest
motion bundle is found, all the substrings that it encom-
passes are marked as ‘partitioned’, as shown in Figure 1(e),
and the process is then repeated with a new seed point.

Figure 2: System Overview.

Figure 2 gives a block-diagram overview of the the sys-
tem.

3.2. Pose Preprocessing

In this section, we give a more detailed description of the
pose preprocessing and introduce the notation that is used
when describing subsequent steps of the algorithm. Each
pose in the database is expressed using a vector containing
the joint angles, the root height, the root pitch and roll an-
gles, the root horizontal speed and the root angular speed

Published May 24th 2007

P. Beaudoin & M. van de Panne & P. Poulin / Technical Report 1296

0 1 2 3 4 5 6
0

1

2

3

4

5

A

B

C

D

E

F

G
H

I

J

K

L M

N

O

(a) Clustering poses produces an alphabet.

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

K

K

L

L

M

M

N

N

O

O

(c) Matrix A identifies close-enough letters.

s j
p j
()
()

(b) The database is converted to a string () and the binary partition values () are initialized.s j p j

0 1 2 3 4 5 6

1

2

3

4

5

(f) Choosing = 1 yields 6 motion bundles.�

0 1 2 3 4 5 6

1

2

3

4

5

(g) Choosing = 2 yields 3 motion bundles.�

s j
p j
()
()

(e) The substring that produces the best bundle score is chosen to create a substring bundle.

s j
p j
()
()

(d) One instance of the most frequent letter is chosen.
All unpartitioned substrings containing this letter are used as seeds.

Figure 1: The various steps of the motion-bundle algorithm on a 2D toy example.

with respect to the vertical Y axis. This makes the pose rep-
resentation independent of the facing direction and the loca-
tion on the plane, as is commonly desired. The database can
be expressed as an ordered list of n vectors Θ(i), 1 ≤ i ≤ n.
A submotion Θ(i),Θ(i + 1), ...,Θ(i′) is denoted by a pair of
indices (i, i′).

All test sequences we use to build the databases shared
the same bone hierarchy, leading to a 62-dimensional pose
space. We perform a global PCA where all the Θ(i) are pro-
jected into a subspace of fewer dimensions to yield Θ̂(i). We
perform projections that keep 70% of the total variance, cor-
responding to keeping 7–12 principal components, depend-
ing on the dataset. Global PCA helps speed up the pose clus-
tering process.

Pose clusters are created using a mixture of multidimen-
sional isotropic Gaussian distributions. The parameters of
this model are estimated using a standard Expectation Max-
imization (EM) algorithm. The total number κ of clusters
needs to be specified by the user. We experimented with a
number of other cluster models and parameter estimation
techniques. The best results were obtained with models that
could accommodate many clusters, each having only a few
parameters.

Each cluster can be assigned a letter from a κ-letter alpha-
bet. All motions can therefore be represented as a n-letter
string by associating each pose Θ̂(i) with the cluster that
maximizes its likelihood. This string can be further simpli-
fied by removing consecutive repetitions of the same letter,

Published May 24th 2007

P. Beaudoin & M. van de Panne & P. Poulin / Technical Report 1296

leading to a m-letter string s(j) with 1 ≤ j ≤ m. Moreover,
for each letter s(j) we can store the set of consecutive frames
F(j) that map to this letter. The average of this set is noted
F̄(j). A substring s(j),s(j+1), ...,s(j′) is denoted by a pair
(j, j′).

Cluster-to-cluster distances are important for determining
when two letters are close enough to be considered equal.
Given µa and σaI as the mean and the covariance matrix
of the Gaussian corresponding to the cluster labeled a, we
define the distance between two clusters as:

d(a,b) =
∣∣∣∣ µb−µa

min(σa,σb)

∣∣∣∣ . (1)

This represents the maximum of the mutual Mahalanobis
distances of the cluster centers. We further precompute a bi-
nary accessibility matrix A that has entries of 1 for “close
enough” clusters, defined as

A[a,b] =
{

1 if d(a,b)≤ τ

0 otherwise
(2)

where τ is the user-defined maximum distance between two
clusters if they are to be considered equal.

3.3. Motion-Bundle Creation

The motion-bundle creation process works by first building
bundles from the string-based representation of motions, fol-
lowed by a second step that maps the result back to the orig-
inal motions. We postpone the discussion of this second step
until Section 3.5. Substring-bundle creation works by itera-
tively partitioning the motion string. To track the algorithm
as it progresses, a binary partition value is associated with
each transition between two consecutive letters of the string.
This value is noted p(j) with 1 ≤ j ≤ m− 1 so that p(j)
corresponds to the interval between s(j) and s(j + 1). By
default, all values of p(j) are initialized to 0, indicating that
the whole string is unpartitioned. It is possible to initialize
some values of p(j) to 1 to indicate that two consecutive let-
ters belong to different motion clips. This way, the algorithm
will never include that interval into a substring bundle.

The values of p(j) separate the string into partitioned let-
ters and unpartitioned letters. We say that letter s(j) is parti-
tioned if and only if p(j−1) = p(j) = 1, and that it is other-
wise unpartitioned. In the same way, substring (j, j′) is par-
titioned if and only if p(j) = p(j +1) = ... = p(j′−1) = 1,
and unpartitioned if and only if p(j) = p(j + 1) = ... =
p(j′−1) = 0. It is possible for a substring to be neither par-
titioned nor unpartitioned.

The creation of every motion bundle begins with the iden-
tification of a seed point. This is taken as the most frequently
occurring unpartitioned letter. Intuitively, this corresponds to
a pose cluster that still has many motions passing through it,
but that does not yet belong to a motion bundle. One unpar-
titioned instance of this letter (say at index c of the string) is

then randomly selected; s(c) therefore equals this most fre-
quent letter. This index is the starting point for the creation
of the current substring bundle.

All unpartitioned substrings containing the letter at index
c, up to a maximal user-defined substring length λ, are then
used as seed substrings. For each of these seed substrings,
we look through the full motion string for all similar and
unpartitioned substrings. Identifying good motion bundles
requires a definition of ‘similar’ that is broader than sim-
ply identifying copies of the substring in question. Details
of this process are given in Section 3.4. The end product of
the overall search is a distinct set of matching substrings for
each possible choice of seed substring.

Each of these sets of substrings can be regarded as defin-
ing a different potential motion bundle, and we thus need to
choose which one will give the largest motion bundle. We
define a bundle volume V related to the bundle dimensions
as follows:

V = (Bh−1)(Bw)ρ (3)

where Bh is the bundle height (the number of substrings in
the bundle) and Bw is the bundle width (the average number
of frames in the motions corresponding to the included sub-
strings, see Section 3.4). ρ is a bias parameter that lets the
algorithm favor bundles with more or less frames; its effect
is discussed in Section 3.6.

The substring bundle having the largest volume V is iden-
tified and kept. If all potential bundles contain a single mo-
tion, then the one with the fewest frames is kept. Following
that, the values of p(j) are updated so that all substrings in
the chosen bundle are now marked as being partitioned. The
algorithm then repeats using a newly chosen seed point. Mo-
tion bundles that contain a single submotion are said to be
degenerate. As a final clean-up step, it is possible to merge
together degenerate motion bundles that are temporally ad-
jacent in the motion database.

3.4. Identifying Similar Substrings

The process of identifying substrings similar to a seed
substring is inspired by the search algorithm proposed by
[KG04], although we compare pose clusters rather than
poses. For a given subsequence, we need to identify all other
subsequences with which we can build a cluster-to-cluster
registration curve that satisfies some constraints. We begin
by defining the binary relation M(ss1,ss2) that is true if and
only if substring ss1 matches substring ss2. We will construct
this relation so that it is reflexive and symmetric.

Suppose we have two substrings ss1 and ss2 identified re-
spectively by (j1, j′1) and (j2, j′2). We can build a substring-
to-substring binary accessibility matrix SSA as

SSA[a− j1,b− j2] = A[s(a),s(b)] (4)

with j1 ≤ a ≤ j′1 and j2 ≤ b ≤ j′2. For M(ss1,ss2) to

Published May 24th 2007

P. Beaudoin & M. van de Panne & P. Poulin / Technical Report 1296

be true there must exist, within SSA, a valid path of 1
starting from cell SSA[0,0] and ending at SSA[j′1− j1, j′2− j2].
Suppose we have such a candidate path going through
cells [a1,b1], [a2,b2], ..., [al ,bl], with a1 = b1 = 0,al = j′1−
j1,bl = j′2− j2, and where SSA[ai,bi] = 1 for all i. This path is
valid if and only if ai ≤ ai+1 ≤ ai +1 and bi ≤ bi+1 ≤ bi +1
for 0 ≤ i < l. The reflexivity of M(·, ·) comes from the fact
that all the elements on the diagonal of A are 1. The symme-
try of the relation is straightforward from the symmetry of
the definition.

Provided we have a seed substring ss0, we can build the
set of all substrings for which M(ss0,ssa) holds true. This
is not an equivalence set, however, since the transitivity of
the relation is not guaranteed. Making this an equivalence
set would be an advantage in the context of our greedy algo-
rithm since the same substring bundle would be constructed
regardless of the substring used as a seed.

To turn this into an equivalence set, we simply apply the
transitive closure of the M(·, ·) relation. The set M of the
substrings similar to the seed substring ss0 is therefore de-
fined as

M=
{

ss0,ssi|ss j ∈M and M(ssi,ss j)⇒ ssi ∈M
}

. (5)

In practice, it can sometime happen that some substrings
in M correspond to motions whose length differ signifi-
cantly from others in the set. In this case, we relax the cri-
terion that M be an equivalence set and remove the prob-
lematic substrings. The length of the motion corresponding
to substring (j, j′) can be estimated as F̄(j′)−F̄(j). A mo-
tion is deemed too different if the ratio of its length to the
average motion length is less than a user-defined factor γ or
more than 1/γ.

3.5. Fine-grained Substring to Submotion Mapping

Motion bundles, represented in terms of substrings, need to
be mapped back to particular frame sequences of the original
motions. While this step is largely trivial, there remains a
small-but-non-negligible issue. Multiple successive frames
of a motion sequence will often map to the same letter in a
substring. Arbitrarily choosing one of these frames for the
first or last letter of a substring may lead to motions that are
not as well aligned as they could be. It is thus advantageous
to further optimize, at the frame level, where a given motion
enters and exits a motion bundle.

To do so, we first identify the indices of all letters of the
database appearing at the beginning or the end of a substring.
The set containing these indices is noted J . Mapping back
from substring to submotion is then simply a matter of find-
ing a frame f (j) for each j ∈ J .

Given such a mapping, we can evaluate the quality of the
motion alignment within a bundle. To do so we define the
alignment score for motion bundle B as

|cov{Θ(i)}|+
∣∣cov

{
Θ(i′)

}∣∣+var
{

i′− i
}

(6)

where i and i′ respectively indicate all the starting frames and
all the ending frames of motions in B. The first two terms
measure the discrepancy of the start and end poses of the
bundle, respectively. The last term measures the discrepancy
in motion durations. The total alignment score for a given
assignment of the f (j) is the sum of the alignment scores
over all the motion bundles.

We look for an assignment that minimizes the total align-
ment score. To do so, we rely on the following stochastic
search algorithm. First, we use the initial guess f (j) = F̄(j)
for all j ∈ J . Then an index j′ ∈ J is randomly selected
and a direct search is performed within F(j′) to find the
assignment f (j′) that minimizes the total alignment score.
The algorithm is repeated with a newly selected random in-
dex until the total alignment score cannot be improved or for
a predefined number of iterations. There is no guarantee that
this algorithm converges, although we have always obtained
good results in practice.

3.6. Parameter Selection

In this section, we cover the various user-defined parame-
ters that drive the above algorithm. The user needs to define
κ, the number of pose clusters. This number determines the
precision of the algorithm. Too few clusters could mean that
distant poses will be considered similar. On the other hand,
too many clusters can slow down the algorithm by increas-
ing the size and density of the accessibility matrix A. For-
tunately, the algorithm is not overly sensitive to parameter
κ. For example, in the case of the boxing sequence, we ob-
tained very good results with values of κ between 100 and
250. For values of κ under 100, most of the extracted motion
bundles were still meaningful although the algorithm started
to bundle together different motions like right jabs and left
jabs. An alternative would be to use the Bayesian Informa-
tion Criterion of a mixture model.

Parameter τ dictates the maximum distance between two
clusters that are to be considered equal by the matching al-
gorithm. It is hard to find a good fixed value for this pa-
rameter. We therefore automatically estimate it by analyzing
the distance between adjacent letters in the database string.
All the results presented in this paper were obtained using
τ = median{d(s(j),s(j−1))|2≤ j ≤ m}.

The maximal seed substring length, λ, is not necessarily
intuitive and it is simpler to specify λ

′, the maximal submo-
tion length in frames. To convert from λ

′ to λ we can use the
average size of the clusters by taking

λ = λ
′ m−1
∑

m
j=2 F̄(j)−F̄(j−1)

. (7)

In practice, we used λ
′ = 200 frames.

Parameter ρ lets the user drive the relative importance of
bundle width versus bundle height. This parameter mostly

Published May 24th 2007

P. Beaudoin & M. van de Panne & P. Poulin / Technical Report 1296

affects the nature of the obtained motion bundles. Exam-
ple of the impact of these parameters are given in Section 5.
We usually choose ρ = 1 to favor a balance between bundle
width and height.

Parameter γ dictates the minimum acceptable ratio be-
tween a submotion length and the average length of the
motions within a bundle. In practice, this parameter only
marginally affects quality and reasonable results can be ob-
tained even with γ = 0, i.e., no motions are ever rejected. We
noticed that a choice of γ = 0.8 usually yields a moderate
improvement in the quality of the results.

4. Motion-Bundle Graphs

Motion bundles can be seen as a way of folding the motion
database so that different submotions overlap. This naturally
creates a directed graph structure where each node is a mo-
tion bundle and each edge is a valid transition from one mo-
tion bundle to the another one. For convenience, we call this
a motion-bundle graph.

Parameterized motion graphs [HG07] use a similar graph
structure, namely having parameterized motions as nodes
and transitions as edges. As noted in [HG07], this struc-
ture has advantages over the motions-as-edges, nodes-
as-transitions structure used in traditional motion graphs
[KGP02] and fat graphs [SO06]. Specifically, in a nodes-
as-transitions motion graph, any motion coming into a node
must be able to transition into any motion leaving from
that node. This makes it difficult to create good hub nodes
with rich connections and also necessitates short-duration
blends from incoming onto outgoing motions. In contrast,
the nodes-as-motions model supports both long blend inter-
vals during transitions, as well as rich parameterizations of
motions using multi-way blends [HG07].

The example shown in Figure 3 illustrates the structural
benefits of the nodes-as-motions structure, shown on the left.
Solid edges indicate feasible transitions between motions.
In the nodes-as-transitions representation this same set of
constraints cannot be directly matched. In Figure 3(right),
motions A1 and A2 are represented as edges and both can
transition to B3. This implies that they reach a unique tran-
sition pose. Since we also have transitions A1 → B2 and
A2 → B1, we are forced to add the new transitions A1 → B1
and A2 → B2, as illustrated by the dashed edges in Fig-
ure 3(left), even though such transitions may not be desir-
able.

Building a motion-bundle graph from the motion-bundle
structure is straightforward. First, a node B is created for
each bundle B. Then, an edge B1 → B2 is added if there
exist poses i1, i2, i3 such that the corresponding sequences
(i1, i2) ∈ B1 and (i2, i3) ∈ B2.

It is possible to produce an animation that follows any
valid path through this graph. To do so, we exploit the sim-
ilarity of motions within a bundle and smoothly blend from

Figure 3: Graphs using nodes-as-motions (left) vs nodes-
as-transitions (right).

the entry motion to the exit motion. More precisely, assume
a desired path B1 →B2 →B3. Then B1 →B2 guarantees that
we can find i1, i2, i3 such that (i1, i2) ∈ B1 and (i2, i3) ∈ B2.
Similarly, B2 → B3 guarantees that we can find i′2, i

′
3, i

′
4 such

that (i′2, i
′
3) ∈ B2 and (i′3, i

′
4) ∈ B3. To play the motion corre-

sponding to B2, we simply blend smoothly from submotion
(i2, i3) to submotion (i′2, i

′
3).

Even though the blended animations are similar and well-
aligned at the beginning and at the end, it is possible that
their intermediate poses are not well aligned. Moreover it is
possible that their contact constraints differ. Various strate-
gies could be used to solve these problems, including time
warping, registration curves, and inverse-kinematics-based
corrections. Because these techniques are already well stud-
ied, we do not cover them in this paper. The animations pre-
sented in the accompanying video do not use any of these
strategies, and display the raw output of the motion bun-
dles. While this gives a clear picture of the quality that can
be achieved without extra cleanup, moderate foot skate and
other minor motion artifacts can sometimes be observed.

The basic motion-bundle graph has one node for every
motion bundle. However, degenerate bundles do not add
anything to the graph given that they have exactly one in-
coming and one outgoing edge. In our graphical represen-
tation, we therefore replace any degenerate motion bundle
with a single edge representing a transitional animation. We
merge together multiple edges that would be created be-
tween two motion bundles. Nodes are represented has boxes
with an height proportional to

√
Bh and a width proportional

to Bw.

5. Results

5.1. Extracting Motion Bundles

We tested the motion-bundle algorithm on various collec-
tions of motions, ranging in size up to a 7300 frame se-
quence sampled at 120 Hz for about 1 minute of motion.
The entire set of test sequences amounts to approximately
10 minutes of motion. Some of the collections we used for
testing contain a single activity: an actor shadow boxing,
performing various exercises, or walking around in an er-
ratic fashion. Other collections contained clips representing

Published May 24th 2007

P. Beaudoin & M. van de Panne & P. Poulin / Technical Report 1296

different kinds of motions. All the animations were taken di-
rectly from the CMU Motion Capture Database [Uni] and
use a sample rate of 120 Hz. Some motions contain small
pose errors or pose noise that is typical of uncleaned motion-
capture data. All tests were executed on an Athlon64 3500+
processor with 2 GB of memory.

The most costly step of the motion-bundle extraction al-
gorithm is pose clustering. This process takes 460 seconds
for the 7300 frame database when using 250 clusters. The
motion-bundle extraction then took 76 seconds for this ex-
ample. Motion-bundle extraction for a 1900 frame walking
dataset took 4 seconds. The final motion-bundle structures
need very little space, requiring only pointers to the start-
ing and ending frames for each motion subsequence in a
motion bundle. The total size of the motion bundles for all
the databases use about 100 KB of disk space in an uncom-
pressed text format.

The content of a motion bundle is difficult to illustrate
in printed form, and so we encourage the reader to view
the video associated with this paper. However, Figure 4 vi-
sualizes two of the motion bundles extracted for a boxing
sequence by showing the middle frame for all the motions
contained in the bundles. The original 5400 frame boxing
sequence contains an assortment of punch, dodge, and step-
ping motions. The results were obtained with ρ = 1. The first
bundle contains 20 right punches (36 frames) and the second
contains 7 left punches (32 frames). For each bundle we give
the average number of frames per motion. During the same
run, the algorithm also produced non-degenerate bundles of
various sizes for stepping and idle motions.

Figure 4: Content of two motion bundles. The middle frame
from 20 right punch motions (top) and 7 left punch motions
(bottom).

Manual annotation of the original boxing motion capture
sequence results in the identification of 5 right uppercuts,
22 right punches and 11 left punches. The style of the right
and left punches vary, although most of them are quick jabs
of various strength. Since there are less repetitions of the

other styles, they are less likely to be favored by the greedy
step of the algorithm. For example, the algorithm will oc-
casionally segment out 2 “hammer-style” right punches in a
distinct motion bundle.

The chosen value of ρ affects the shape of the extracted
bundles. For example, ρ = 2 favors longer bundles. In the
boxing sequence, this results in motion bundles containing
punch combinations and longer stylized punches. One bun-
dle contains 6 left-right jab combinations (69 frames), while
others contain 3 right uppercuts (89 frames), 2 “hammer-
style” right punches (51 frames), 4 strong right jabs (42
frames), and 5 weak right jabs and 1 weak left jab which
constitutes a spurious match (23 frames).

In order to test the sensitivity of the extracted bundles
with respect to noise, we ran the algorithm with ρ = 1 on
a noisy version of the boxing animation. We added Gaussian
noise of amplitude 0.1σ to each degree of freedom. The ex-
tracted motion-bundle structure is similar to the one obtained
without noise, although some differences appear. For exam-
ple, the right-punch motion bundle now contains 19 right
punches (41 frames average length) and the left-punch bun-
dle containts 7 motions (30 frames).

The content of all these motion bundles can be seen in the
accompanying video.

5.2. Motion-Bundle Graphs

Producing the motion-bundle graphs from the motion-
bundle information takes less than 15 milliseconds for all
our examples. These graphs embed all the motions from the
source motion capture dataset. Much of this motion is in-
cluded as motion-bundle nodes, while the remainder is con-
tained in the edges.

An important question to ask is “does the algorithm ex-
tract a reasonable graph structure from the unstructured
datasets?”. We present a number of results to help answer
this question. Figure 5 shows the motion-bundle graph for
the walking dataset (1900 frames at 120 Hz), which was
computed using 90 pose clusters. We manually layout and
annotate the resulting graph. Five principal motion bundles
are found, each of which contains highly similar motions.

Figure 5: Motion-bundle graph extracted from the walking
sequence.

Figure 6 shows the resulting graph for the boxing dataset

Published May 24th 2007

P. Beaudoin & M. van de Panne & P. Poulin / Technical Report 1296

(5400 frames) using ρ = 1. The largest motion bundles cor-
respond to right punches (20 motions, 36 frames), idle be-
havior (8 motions, 40 frames), left punches (7 motions, 32
frames), and small steps (5 motions, 34 frames). The graph
exhibits good connectivity. The effect of favoring long mo-
tions (ρ = 2) is shown in Figure 7. This produces more dis-
crimination between the types of right punches, and also re-
sults in the creation of a right-left combo punch. The graph
also readily illustrates gaps in the connectivity. For exam-
ple, there are no motions to support going directly from a
right-left combo to a right uppercut.

Figure 6: Motion-bundle graph extracted from the boxing
sequence (ρ = 1).

Figure 7: Motion-bundle graph for the boxing sequences
while favoring longer sequences (ρ = 2).

Another question we wish to answer is “does the algo-
rithm extract the same structure for a dataset, independent
of another dataset that we might mix in with it?”. To test
this, we combine the walking and boxing datasets into a sin-
gle dataset and observe the resulting extracted structure. As

can be seen from Figure 8, the result consists of two dis-
joint graphs, each of which having structure similar, but not
identical, to what was obtained when the datasets were con-
sidered independantly. 250 pose clusters were used for the
combined dataset, which is the same that was used earlier
for the boxing dataset alone.

Figure 8: Motion-bundle graph extracted from the com-
bined walking and boxing sequences.

We tested the effect of noise on the extracted structure.
Figure 9 shows the result of the boxing dataset with noise
applied to it. The structure remains similar, although does
exhibit differences.

Figure 9: Motion-bundle graph for the boxing sequences
with added noise.

Lastly, we tested the extracted graphs for resequencing by
observing the output for random walks through the graphs.
The results are shown in the accompanying video, including
a walk through a graph extracted from an exercising anima-
tion. Some minor motion artifacts remain because we do not
correct for effects such as foot skate during blending.

Published May 24th 2007

P. Beaudoin & M. van de Panne & P. Poulin / Technical Report 1296

6. Conclusion

We have presented a technique that can distill a highly struc-
tured representation from unstructured motion data. The re-
sulting motion-bundle graph provides an easily interpretable
visualization of the motion data, its repetitive variations, and
its connectivity. The user can specify a preference for the de-
sired shape of the extracted motion bundles. The processed
result is multi-purpose, potentially usable for motion rese-
quencing, the creation of blend spaces, motion compression,
motion segmentation, and motion annotation.

A key insight of the method is to tackle segmentation and
clustering in a coupled fashion. The string-based represen-
tations of motions we use are highly compact while being
sufficient for extracting the inherent structure of motion se-
quences. Motion bundles can be extracted very efficiently
using the string-based representation.

Our work has a number of limitations. We do not currently
compute an optimal registration of motions to each other
within the motion bundles. There is no absolute guarantee
that motion bundles will always be semantically meaning-
ful, nor that they can make the fine distinctions that might
be needed to discriminate between two very similar classes
of motion. We do not yet build user-designed reparameteri-
zations of motions in a motion bundles, along the lines pro-
posed by [SO06, HG07] for building parameterized edges.

A significant number of directions exist for future work.
We wish to investigate the compression of motion-bundle
graphs. We want to explore creating separable motion-
bundles that can simultaeously capture both global redudan-
cies as well as localized redundancies, such as an arm wave
that can be composed with many different full body motions.
With some optimizations, an online version of the algorithm
could be used to support interactive graph construction, as-
sisting a director in creating a targeted corpus of motion cap-
ture data for a given application. Currently, the scalability is
limited by the initial clustering phase. We wish to apply fast
N-body techniques to this in order to further test scalability.

References

[AF02] ARIKAN O., FORSYTH D.: Interactive motion
generation from examples. ACM Trans. Graphics 21, 3
(2002), 483–490.

[Ari06] ARIKAN O.: Compression of motion capture
databases. ACM Trans. Graphics 25, 3 (2006), 890–897.

[BH00] BRAND M., HERTZMANN A.: Style machines. In
Proc. SIGGRAPH ’00 (2000), pp. 183–192.

[BSC05] BASU S., SHANBHAG S., CHANDRAN S.:
Search and transitioning for motion captured sequences.
In VRST ’05: Proc. Symp. Virtual Reality Software and
Technology (2005), pp. 220–223.

[BSP∗04] BARBIČ J., SAFONOVA A., PAN J.-Y.,

FALOUTSOS C., HODGINS J., POLLARD N.: Segment-
ing Motion Capture Data into Distinct Behaviors. In Proc.
Graphics Interface (July 2004), pp. 185–194.

[FF05] FORBES K., FIUME E.: An efficient search algo-
rithm for motion data using weighted pca. In SCA ’05:
Proc. Symp. Computer Animation (2005), pp. 67–76.

[FMJ02] FOD A., MATARIC M., JENKINS O.: Automated
derivation of primitives for movement classification. Au-
tonomous Robot 12, 1 (2002), 39–54.

[HG07] HECK R., GLEICHER M.: Parametric motion
graphs. In Proc. Symp. Interactive 3D Graphics and
Games (2007).

[KG04] KOVAR L., GLEICHER M.: Automated extraction
and parameterization of motions in large data sets. ACM
Trans. Graphics 23, 3 (2004), 559–568.

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion
graphs. ACM Trans. Graphics 21, 3 (2002), 473–482.

[KPZ∗04] KEOGH E., PALPANAS T., ZORDAN V.,
GUNOPULOS D., CARDLE M.: Indexing large human-
motion databases. In Proc. VLDB Conf. (2004), pp. 780–
791.

[KS05] KWON T., SHIN S.: Motion modeling for on-line
locomotion synthesis. In SCA ’05: Proc. Symp. Computer
Animation (2005), pp. 29–38.

[LCR∗02] LEE J., CHAI J., REITSMA P., HODGINS J.,
POLLARD N.: Interactive control of avatars animated
with human motion data. ACM Trans. Graphics 21, 3
(2002), 491–500.

[LM06] LIU G., MCMILLAN L.: Segment-based human
motion compression. In SCA ’06: Proc. Symp. on Com-
puter Animation (2006), pp. 127–135.

[LWS02] LI Y., WANG T., SHUM H.-Y.: Motion texture:
a two-level statistical model for character motion syn-
thesis. ACM Trans. Graphics (Proc. SIGGRAPH) 21, 3
(2002), 465–472.

[LZWM05] LIU G., ZHANG J., WANG W., MCMILLAN

L.: A system for analyzing and indexing human-motion
databases. In SIGMOD ’05: Proc. ACM SIGMOD Intl.
Conf. on Management of Data (2005), pp. 924–926.

[Men00] MENACHE A.: Understanding Motion Capture
for Computer Animation and Video Games. Academic
Press, 2000.

[MR06] MÜLLER M., RÖDER T.: Motion templates for
automatic classification and retrieval of motion capture
data. In SCA ’06: Proc. Symp. Computer Animation
(2006), pp. 137–146.

[MRC05] MÜLLER M., RÖDER T., CLAUSEN M.: Effi-
cient content-based retrieval of motion capture data. ACM
Trans. Graphics 24, 3 (2005), 677–685.

[PRM00] PAVLOVIC V., REHG J., MACCORMICK J.:
Learning switching linear models of human motion. In

Published May 24th 2007

P. Beaudoin & M. van de Panne & P. Poulin / Technical Report 1296

NIPS ’00: Proc. Neural Information Processing Systems
(2000), pp. 981–987.

[PSKS04] PARK S., SHIN H., KIM T., SHIN S.: On-
line motion blending for real-time locomotion generation.
Comput. Animat. Virtual Worlds 15, 3-4 (2004), 125–138.

[RPE∗05] REN L., PATRICK A., EFROS A., HODGINS J.,
REHG J.: A data-driven approach to quantifying natural
human motion. ACM Trans. Graphics 24, 3 (2005), 1090–
1097.

[SB05] SO C., BACIU G.: Entropy-based motion extrac-
tion for motion capture animation. Comput. Animat. Vir-
tual Worlds 16, 3-4 (2005), 225–235.

[SB06] SO C., BACIU G.: Hypercube sweeping algo-
rithm for subsequence motion matching in large motion
databases. In VRCIA ’06: Proc. ACM Intl. Conf. Virtual
Reality Continuum and its Applications (2006), pp. 221–
228.

[SO06] SHIN H., OH H.: Fat graphs: constructing an in-
teractive character with continuous controls. In SCA ’06:
Proc. Symp. Computer Animation (2006), pp. 291–298.

[TH00] TANCO L., HILTON A.: Realistic synthesis of
novel human movements from a database of motion cap-
ture examples. In HUMO ’00: Proc. Workshop on Human
Motion (2000), pp. 137–142.

[Uni] UNIVERSITY C. M.: Cmu graphics lab motion cap-
ture database.

Published May 24th 2007

