Dynamic Animation Synthesis
with Free-Form Deformations

Petros Faloutsos
Michiel van de Panne
Demetri Terzopoulos

Abstract

Free-form deformations (FFDs) have long been a popular tool in modeling and key-
frame animation. This paper extends the use of FFDs to a dynamic setting. A goal
of this work is to enable normally rigid objects, such as teapots and tables, to come
alive and learn to move about. Objects are assigned mass distributions and deformation
properties, which allow them to translate, rotate, and deform according to internal and
external forces. The primary contributions are threefold. First, a dynamic formulation
of FFDs is presented. It is based on deformation modes which are tailored by the user
and are expressed in terms of FFDs. Second, the formulation allows for a hierarchy of
dynamic FFDs which can be used to model local as well as global deformations. Third,

the deformation modes can be active and used as a basis for locomotion.

Category: Regular paper



1 Introduction

Deformations play an important role in computer graphics, allowing otherwise uninter-
esting objects to take useful and interesting shapes. Commercial animated films are full
of inanimate characters that come to life and need a way to move as living creatures
do. The dinner scene in the film “The Beauty and the Beast” produced by Disney is
a prime example. The cutlery, pots and all types of household objects are seen to be
dancing, singing, and performing like real actors. Their motions are a result of smooth
deformations of their original shape. Computer graphics can provide helpful tools for
both modeling and animating such characters. Free-form deformations (FFDs) are a
popular tool for modeling and animating deformable objects. Such animations can be
tedious to create, however, because of the large number of control points which need to
be specified at keyframes.

This paper proposes a means of bringing FFDs into a dynamic environment. In its
simplest form, this implies assigning mass and inertial properties to a solid deformed
object and being able to simulate its passive motion. The formulation to be presented
here makes the deformations themselves dynamic, which we subsequently refer to as dy-
namic FFDs. The deformations can also be active, meaning that a normally rigid, static
object can locomote or jump under its own internal forces. This offers an opportunity
to help apply physics to generating cartoon-style, expressive animations[1]. Lastly, the
dynamic FFDs can be hierarchical, allowing for proper interactions between local and
global deformations.

Our representation of dynamic FFDs makes use of deformation modes. Deformation

modes restrict the shape of an object to those expressible by a set of modal amplitudes.



There are two fundamental reasons for wanting to use such modes in a dynamic FFD
formulation. First, an animator can tailor the deformation modes, thereby having control
over the desired shapes which can occur during simulation. Second, using deformation
modes allows for an efficient dynamics simulation, as each deformation mode effectively
acts as a single degree of freedom.

A first example of how one can use dynamic FFDs to make static objects come alive
is shown in Fig. 1. The apple in this figure is equipped with a global lattice as well as
a local lattice around the leaf. The teapot in Fig. 1 is also equipped with both global
and local deformation modes. Snapshots from a dynamic animation produced for this
character are shown in Fig. 15, which shows the motion resulting from a force being
applied directly to the center of the lid. The force ceases to exist at the 13th frame.

The second example, seen in Fig. 2, shows a cartoon car driving on a bumpy road.
In this case, the car has a global deformation mode assigned to it as well as a local
deformation mode for each wheel. The car is rolling on the terrain as a result of a
constant, horizontal, driving force.

The last example illustrates how a table can come to life using active FFD deform-
ation modes. Fig. 3 shows a periodic motion which has been automatically synthesized
for the table, given a set of user-supplied deformation modes. The deformation space
was searched to optimize for the distance traveled.

The remainder of the paper is organized as follows. Section 2 presents the details
of the dynamics formulation in addition to previous related work. Section 3 presents
an animation system based on the dynamics formulation and explores its capabilities.
Section 4 looks at how active deformations can be used to achieve cartoon-style anima-

tions, such as walking tables or hopping teapots. An optimization algorithm is used to



Apple and lattices

Undeformed and deformed
teapot

Figure 1: Local and global deformations using dynamic FFDs



~50 |
o 5o
55

stel

| O2) 50| 59
5O

B,

50 | B
L C0 | O | T T | TGO |

Figure 2: A cartoon car simulation using dynamic FFDs

171 > 17

Figure 3: A table performing a bounding motion



automate the search for suitable control strategies. Lastly, section 5 presents conclusions
and future work. Note that in figures which illustrate animations,the order in which to

read the images is indicated using an arrowhead.

2 Dynamic Simulation of Deformable Models

The physical simulation of rigid and flexible objects involves four major problems: mod-
eling the object, formulating the equations of motion, detecting collisions, and resolving
collisions. In our work we are most concerned with the first two of these problems.
Of particular interest to us are approaches that integrate cleanly with well-known ex-
isting tools. For this reason, we seek a dynamics formulation based upon free-form

deformations.

2.1 Prior Work

The geometry and dynamics of deformable objects can be modeled using one of several
different methods. In general, all methods are numerical approximations of some sort,
although some are better than others. Several basic requirements are called for, however.
First, the model must have a means of defining a mass density associated with the
geometry. Second, it must have a restricted number of degrees of freedom to allow for
efficient simulation. Third, the models must have a mechanism to take into account
both internal and external forces. In general, we can distinguish between two main

approaches towards the modeling of deformable objects, implicit' and parametric.

Implicit deformations are often referred to as global deformations in the literature. We use the term
tmplicit because in our formulation we distinguish between local and global implicit deformations.



Implicit deformations work by embedding an object in a lattice which is subsequently
warped, thus deforming the embedded object with it. The deformation is defined by a
function that maps a point of the undeformed space onto the deformed one. Free-form
deformations (FFDs) [2] are a primary example of implicit deformations. Animating the
control points which define an FFD lattice will animate the deformation imposed on the
object. The animator is typically responsible for designing the necessary deformations.
The technique described in [3] provides useful generalizations on creating keyframed
FFD animations.

Parametric or explicit formulations define deformations directly on flexible models.
Models are discretized with respect to material coordinates by using finite differences
or finite elements. The most straightforward model consists of a network of springs and
point masses. The use of elastic models is first presented in the context of graphics
in [4]. The models have been generalized to include visco-elastic properties and inelastic
behavior such as fracture [5]. In [6], a model based on superquadrics is used that
incorporates the global shape parameters of a conventional superquadric with the local
degrees of freedom of a spline. In [7] deformable objects are animated using spring-mass
models and wind fields.

Several techniques using implicit models have been proposed as a means to model
dynamic deformations. In [8], polynomial global deformations are used in a physics-
based model. The set of allowed deformations are all those expressible as a linear
transformation of the state parameters. Our work makes use of a somewhat similar idea
as a point of departure. The control method used in [8] is based on following motion
paths. In [9] global implicit deformations are used in conjunction with physics based-

simulation for the animation of polygonal and parametric objects. This formulation is



similar to the one presented in [8], uses deformations that are linear with respect to the
state of the object, and is restricted to passive objects.

In [10], deformable surfaces are modeled using NURBS which are given dynamic
properties. The same work also implements a dynamic deformation technique using
FFDs, although the formulation and application is different from the one we propose.
In [11], implicit deformations are used to model the muscle deformation of articulated
characters. The main goal of the deformation aspect of this work is to model the deform-
ation of the muscle as the relative position of the associated bones change. FFD lattices
are attached appropriately on the skeleton whose dynamic motion deforms the lattices.
The dynamics are applied directly to the lattice and not to the muscle model itself.

Simultaneously with our work, [12] shows a method of automatically synthesizing
controllers for simple creatures using global implicit deformations and stochastic search.
Objects are modeled using spring-mass lattices that can undergo a set of canonical
global implicit deformations. Thus, different objects may use different lattices whose
shape is restricted by the shape of the object they model. Thus, deformations should be
defined separately for each lattice. Lastly, the work in [13] is an innovative application of
principal deformation modes to deformable animated objects. An advantage of implicit
models is that they can deform a simple object and a complex object with equal ease.

Our work involves only implicit deformations and, in particular, dynamic FFDs.
Several features of the proposed dynamic FFDs are unique with respect to previous
work on implicit methods. Our approach provides the user with an intuitive method
to design deformation modes which can then be imposed on different objects and used
to produce a compact, limited set of allowable deformations. Our formulation allows

for a hierarchy of deformations which are applied on objects in a non-linear fashion



with respect to the state parameters. As a result, the system matrix is not constant, in
contrast with [8, 9]. In addition, we make the deformation modes active and implement

a complete motion control and motion synthesis system for flexible characters.

2.2 Our Dynamic Model

Existing dynamic models are capable of representing many types of animated objects.
However, they are mostly oriented towards articulated figures [11, 14, 15], realistic
creatures [16] or objects not capable of autonomous motion [9, 6, 13, 4, 10, 8]. Most
are not suitable for cartoon-style character animation, such as a teapot that comes to
life. In this paper we introduce an approach particularly well suited for characters of
this type.

The approach begins with the user designing the allowable deformation modes. Fig. 4
shows an example of two deformation modes created for a table and how they interact.
When the dynamic motion of this table is simulated, the shape of the table is restricted
to those expressible with the two modal amplitudes. Deformation modes provide a way
of adding actuation to characters which otherwise have no moving parts. Deformation
modes also provide a way for an animator to directly specify the range of allowable

shapes of a character, which simplifies both the simulation and control.

2.3 Deformation Modes

A deformation mode is defined using a single instance of an FFD deformation, specified
using a user-supplied matrix d = [d, d, d.] which defines the maximum displacement

of the lattice points along each dimension. As shown in Fig. 4, multiple deformations are



0.2 |

Deformation mode shear : y1
Deformation mode bend : 2

Figure 4: FFD deformation modes designed for a table.

combined in a linear fashion by adding the relative displacements of the control points.
The amount of deformation for each mode is controlled by an amplitude parameter
vi € [—1, 1] that operates as a scalar multiplier or weight for the deformation matrix d.
Our implementation uses a 4 X 4 X 4 control point lattice for the FF'D and uses Bernstein
polynomials as the basis functions. The 2D examples in Fig. 4 show deformation modes,
bend and shear, and their linear combinations.

In addition to being able to deform, the object is free to translate and rotate in
3D-space. Translation and rotation are effected on a global coordinate system with re-
spect to which global deformations are considered, as shown in Fig. 5. We assume the
following order in the application of the motions of the object: (1) local deformations,
(2) global deformations, (3) rotation, (4) translation. Assuming D¢ global deformation
modes, D; deformation modes associated with the [-th local lattice and assuming L local

lattices, the degrees of freedom for the object are given by the vector:



global motion deformation amplitudes

translational rotational global lattice lattice 1 lattice L
—_———
q=| to ty t. 0, 0, 0. Yo ... Yaps Y11 --- NiDy --- Y01 --- YLD, | (1)

where #; are the translation parameters, §; are Euler angles and +;; are the deformation
amplitudes.

Euler angles as a means to parameterize rotation have two disadvantages. First, the
order in which they are applied can change the resulting rotation and second, certain
series of rotations may lead to singularities such as the Gimbal lock [17]. For this reason
interpolation between Euler angles is generally avoided and, instead, interpolation of
quaternions [18] is used. In our formulation, the order in which Euler angles are applied is
well-defined and dictated by the equations of motion. During simulation, the Euler angles
are only updated as part of the numerical integration of the equations of motion. The
simulation and the numerical integration steps do not involve interpolation. In addition,
the change in value for each of the Euler angles is much less than 90 degrees between
subsequent timesteps. This eliminates singularities like the Gimbal lock, although we
could have used equally well quaternions in our formulation. We have chosen to use the
Euler angles for their simplicity. However, in the keyframing component of our system
rotations are interpolated using quaternions. The parameters specified by q are a set of
generalized degrees of freedom which serve to fully describe the position of all points on
a deformed object. The following expression describes the world coordinates of a point,

given its local lattice coordinates (s, ¢, u;) and the generalized coordinates q:

10



Object CS

Y

0

World CS (--) Rest Shape

Figure 5: The table moving in space using a bend deformation mode.

mn
dGijk,sG
3 3 Deg

3
P:t+RZZZ Z%? d?}’quk,tg +

1=0 j=0k=0 | n=1

n .
| "Gijkug |

i)
sa dlz‘jk,sl

3 3 3 D, l
tG :""ZZZ Z%l dﬁ'jk,tl

1=0 7=0 k=0 | n=1

el
UG i AL ik

SG
L

tg
Liix

(el
i L&

S1
Lk
t
+ Lyjix

u
| Liigr |

B(sa,1)B(ta, 7)B(ug, k),

Bl(s1,1)B(t1, 7)B(u, k),

(2)

(3)

where P is an object point in world coordinates, index < indicates quantities associated

with the global lattice, similarly index [ with respect to the [-th local lattice, t is the vector

of translation parameters, R is the compound rotation matrix, 7, is the amplitude of the

n-th deformation mode, d;; are constants which define the n-th deformation mode of the

i, j, k-control point of a lattice, B(s, ) is the Bernstein polynomial (3)(1 — s)>7%s’, L;js.

are the undeformed lattice coordinates, D is the number of deformation modes defined

for a lattice by the animator, and a is a constant matrix that transforms the local lattice

11



coordinates (s, 1, u;) to global lattice coordinates (sg,tq, ug). Equation (3) calculates
the new parameter space coordinates (s, tq, ug) with respect to the global lattice for
those points that are affected by local deformations. This is explained furhter in the
following section. Equations (2) and (3) are the starting point for the simulation of the

dynamics of an object.

2.4 Hierarchical Deformations

To implement hierarchical, deformations we allow local FFD lattices to be imposed on
parts of an object. The points affected by a local lattice are also affected by the global
lattice, as shown in Fig. 1. We apply local deformations before the global deformations
using Equation (3). The dynamics formulation itself will ensure that a force which
produces a local deformation can also affect the global deformations.

Currently, it is the user’s responsibility to ensure that local deformations do not des-
troy the continuity of the object’s surface. This can be done by using local deformations
which do not affect appropriate points on the boundary of the local lattices. In the
example shown in Fig. 1 this is done by ensuring that the deformation modes designed
for the local lattice do not affect the bottom two rows of control points.

We have implemented only two levels of deformations for demonstration purposes.
However, the mechanics of the formulation presented above can be easily generalized to
an arbitrarily nested hierarchy of local lattices by expressing (s;,t;, w;) as a function of

another level of lattices in a fashion similar to Equation (3).

12



mass points

Figure 6: Mass distribution for a 2D-table
2.5 Equations of Motion

To incorporate dynamics into our flexible models we use a Lagrangian formulation [19].
A mass distribution is associated with the object by discretizing the object in material
coordinates using mass points. For example, a 2D-table could be assigned a discrete
mass distribution as shown in Fig. 6. In practice, approximating an object’s distribution
using 4 — 10 mass-points is sufficient to yield convincing motions. These mass-points
are embedded in the same space as the object geometry and are thus also affected by
local and global deformations. The equations of motion can be derived by applying
the Lagrangian formulation of the equations of motion with respect to the generalized

coordinates ¢q. The Lagrangian formulation is based on the following equation:

- Qu=0, (4)

where L is the Lagrangian, g is the k-th generalized coordinate (k = 1,..., D), Q is
the total generalized force acting on the object along the g; generalized coordinate, and
the dot indicates a time derivative. We define the Lagrangian £ to be the kinetic energy
and include potential energies as generalized forces, Q. Appendix A contains the algebra

that leads from Equation (4) to the equations of motion.

13



Assuming that Q includes internal and external forces, the equations of motion have

the following general form, as shown in Appendix A:

Mi=Q+ 34" 05a- (T )4 5
The above equations form a system of the form Mx = b, of dim(q) coupled equations
with dim(q) unknowns. The system is of second order with respect to q and needs to
be numerically integrated forward through time, which is done as follows. At each time
step of the simulation, the linear system (5) is solved for g using Choleski factorization.
Once solved, we obtain the new values for q, q by integrating twice. There is a number of
methods we can use to do the integration. For demonstration purposes we have chosen

to use using Euler integration and finite differences as follows:

n At 3
(-:-1 _ Y — 2qn—l +dn-2
" At? '

2.6 External Forces

Ground contact and gravity are treated as independent external forces in the dynamics
formulation. All external forces must be transformed from their Cartesian representation
to the generalized one. After transformation, the external forces appear in the equations
of motion as a set of generalized forces, Q. This is done as follows: Qr = JTF where
J is the Jacobian matrix presented in Appendix A .

Ground contact is modeled using a penalty method which simulates the ground force

14



Ground

Vertical Friction Force
Ground
Force

Damper Spring 9 Total Force

(a) (b)

Figure 7: Ground force model

using a spring and damper unit as shown in Fig. 7 (a). When a point on the object
passes below the ground, a spring and damper unit is attached between the point of
entry and the object point. The absolute value of the ratio between the friction force
and the vertical force is not allowed to exceed tan(#), thus implementing a Coulomb
friction model. The constants defining the stiffness of the unit have been chosen such
that the interpenetrations caused by collisions are sufficiently small.

Collision detection and resolution are not a research issue in this work. We have
implemented existing simple methods just for demonstration purposes. In particular,
the system automatically samples the object at a set of sample points on the surface
such that the relative distances between these collision points are sufficiently small. At
each timestep all the collision points are checked against the ground. For each collision
point penetrating the ground, a penalty force is activated as described above. There is
no need to associate mass with the collision points because of the implicit deformations
we use and the Lagrangian dynamics. Each ground force is transformed to a generalized
force using the Jacobian as described above. For the teapot that appears in Fig. 13 we

used have 300 collision points.

15



2.7 Internal Deformations

As an object deforms, it builds up internal strain energy that resists deformation. These
energies are defined by the user and are a function of the deformation amplitudes ~;.
Typically, we associate deformations with a potential energy of the form V; = K(y; —
%-0)2, where K is a constant and the resting state v, can be varied over time to allow for
active control over a deformation, effectively forming an object’s “muscles”. Assuming
that the potential energy V corresponds to a conservative field, the associated force is

F=-VV.

3 A Dynamic Animation System

We have implemented an interactive animation system using the dynamic FFD formula-
tion. Fig. 8 illustrates the conceptual components of our system. Generally, our system
can automatically turn any geometric model into a dynamic one by automatically com-
puting mass distributions, attaching FFD-lattices, and giving meaningful default values
to all the dynamic parameters such that the object can support its own weight. Cur-
rently, only a global lattice is attached automatically since the system cannot identify
suitable parts on the object. The system automatically computes a discrete representa-
tion of the object’s mass distribution using a set of point masses, unless the user prefers
to supply his or her own. The algorithm we used ensures that all the FFD lattices
contain a number of mass points and that the actual geometric center of the object is
near to the center of mass of the computed mass distribution. Note that in this context
an object is not associated with a stiffness matrix. Instead the dynamic behaviour of

the object is determined by the deformation modes, each of which has its own stiffness

16



Desired Motion
Specification

Deformation Library
Modes

// \\\
/" Mass N
/

', Distribution /«‘
Control Physics-Based
Synthesis Simulator
Internal Global state
Actuator Deformation state

Forces

|:| Function Block of package Italics Information forwar ded

User Input
©7 "\ Given by user or E Database
AN automatically defined

Figure 8: Overview of the system

and damping properties. The parameters defining the deformation modes, namely the
lattice displacements matrices, the stiffness parameters, and the damping parameters,
can be loaded and set interactively. With the deformation modes loaded, the animator
can produce either key-framed or physics-based motion, or alternate between them ac-
cording to the properties of the desired motion. Fig. 9 illustrates an animation using
four deformation modes and a mix of keyframing and dynamic simulation. The system
allows the user to change the deformation modes at any point during a key-framed or

physics-based animation in order to change the functionality of the object.

3.1 Key-Framing

Once an object and a set of deformation modes is loaded, the user can specify a deform-

ation mode and the desired amplitude to interactively deform the object. To prevent

17



Key-framed Simulation (Passive)

g

[\
T

GROUND ﬁ
T =T T1T

Figure 9: Table jumping off a cliff

e . Mass points

Figure 10: A 3D teapot and an associated mass distribution

the object from losing contact with the ground when deforming during key-framing,
the system allows a point of the object to be constrained to a fixed position. As in a
typical key-framing system, the user can set key-frames and the system automatically
interpolates between them to produce a complete sequence. In Fig. 9 the first part of

the motion is key-framed.

3.2 Physics-Based Simulation

The physics-based simulator of our system implements a numerical integrator for the
Lagrangian equations of motion as given by Equation (5). The user can interactively
modify a number of parameters, such as the ground stiffness, flags that turn on/off
effects such as gravity, and parameters that control the stiffness and the damping of the

deformation modes, in order to provide the object with the desired elasticity and the

18



Table 1: Running times

H # Global Def. modes ‘ # Local Def. modes ‘ Times (sec) H

1 0 0.154324192
2 0 0.157693698
4 0 0.167255900
8 0 0.199321312
10 0 0.228473064
1 1 0.160967480
1 2 0.166869388
1 4 0.179693202
1 8 0.209430214
| 8 8 | 0.400348746 |

appropriate environment.

The simulation runs at interactive speeds for a variety of 2D and 3D objects. Table 1
shows the CPU time that each simulation iteration takes for different numbers of deform-
ation modes. All experiments were performed on a Silicon Graphics R4000 /ndigo? run-
ning at 100 MHz and involved objects such as the teapot of Fig. 10, apples, and glasses,
each discretized with 6 mass points and equipped with between 300—500 collision points.
The motions produced were appealing and sufficiently convincing. The complexity of
the simulation is linear with respect to the number of point masses and the number of
lattice points. The number of total deformation modes D; determines the dimension
of the linear system that is solved in each simulation iteration, thus the complexity of
the simulation process is O(D?). To further improve the efficiency of the simulation,
we allow the user to turn on a mechanism which deactivates (eliminates) deformation
degrees of freedom if the magnitudes of the associated amplitude and velocity are below
a threshold. This allows for the use of many local lattices, which are only incorporated

into the equations of motion in an on-demand basis. The deactivated degrees of freedom

19



are reactivated as soon as external forces appear. To test the effectiveness of this feature
we have performed two experiments. For the first one, the cartoon car shown in Fig. 2
rolls down a bumpy steep hill. It was equipped with one global deformation and one
local deformation on each of the wheels. With the above efficiency feature deactivated
the simulation consumed 133 seconds of CPU time, while with the feature activated it
consumed 121 seconds. For the second experiment, the teapot shown in Fig. 1 performed
a free-fall equipped with one global deformation and six local deformations: three on the
handle and three on the spout. The simulation time without the efficiency mechanism
was 12 seconds and with the mechanism was 7 seconds.

Stability is an important issue for a simulation based on numerical methods. The
main factors affecting the stability of our system are the time step, the stiffness intro-
duced by the collision penalty method, the mass distribution, and the chosen set of
deformations. The mass distribution of an object must have a natural connection with
the associated deformation modes. For example, a squash deformation defined along the
x-axis for a one-dimensional rod aligned with the y-axis has no meaning for this object.
In such a case, the system is unstable. The generalized coordinates of an object should
be independent from each other as required by the Lagrangian dynamics formulation.
Thus, if the same deformation mode is defined twice the system will be ill-conditioned.

The more similar two deformation modes are, the less numerically stable the system will

be.

20



4 Motion Synthesis for Active Deformations

The dynamic models described in a previous section incorporate physics into a geomet-
ric model, and encompass both passive and active characters. For active characters, it is
desirable to simulate them realistically, incorporating in the model the ability to use and
control actuators in order to produce autonomous motion. For realistic movements, the
motion should arise from control actions. There are many different methods that deal
with the control of simulated objects [20, 21, 22, 14, 23, 16]. A simple-but-effective tech-
nique based on cyclic pose control graphs and suited for articulated figures is presented
in [24]. The work in [15] extends this technique to acyclic graphs in order to achieve
non-periodic motions.

The control problem is often formulated as an optimization problem. The object is
required to perform a task while minimizing a cost or maximizing an objective func-
tion. It has been shown that optimized control can be used to automatically synthesize
controllers capable of making active simulated creatures locomote [23, 25, 26, 14]. Mo-
tion and controller synthesis are often addressed using probabilistic methods because
they are easy to implement, are suitable for searching large spaces, and can avoid local
optima. Controllers are repeatedly generated and subsequently evaluated using forward
simulation. The motion synthesis problem is thus tackled by searching the space of
possible controllers for ones which produce suitable motions. Common search methods
for the stochastic motion synthesis problem are genetic algorithms [25, 26] and simulated
annealing [14, 23].

To our knowledge, previous work on controlling active deformable models have always

used spring-mass models [22, 16, 23].

21



L"é;”i ””””” o e e t’é'o"w}

generalized forces

Figure 11: The control structure
4.1 Our Dynamic Control Model

The control of our characters is based on pose controllers which determine the high level
control, as shown in Fig. 11. The pose control structure operates as a finite state machine.
Each state defines a pose and specifies the desired shape of a character. “Shape” here
refers to a character’s internal degrees of freedom. Thus, a pose q is defined in terms
of the amplitudes of the deformation modes, q = (y1,...,7p), where D is the total
number of global and local deformation modes. Because we use open-loop control?, the
rigid body parameters are not used in the control process. Each state (pose) has an
associated transition time. The latter specifies the time period for which the associated
pose remains active. The controller cycles continuously through the pose graph. The
active pose drives low-level PD-controllers which make the object deform into the desired

shape. Note that the desired shape is not necessarily achieved because of the presence of

2The controller has no external feedback, i.e., it does not have an indication of how well it operates.

22



external forces. The deformation of the object into the desired pose can be done either
by using potential energy terms in the Lagrangian or by directly adding deformation
forces to the vector of generalized forces. We have chosen to use the latter method.
A PD-controller is associated with each deformation mode and produces a generalized

control force along the associated generalized coordinate. Control forces are defined as

Q. = —(C(q - qo) + Dq),

where Q, are the generalized control forces, C is a diagonal stiffness matrix, D is a
diagonal damping matrix and qq are the desired pose parameters.

An animator can interactively specify a deformation mode to be active or passive.
Active deformations modes are subject to control forces and they contribute to active
motions, while passive modes appear only as a result of external forces. In general,
the active deformation modes should be stiffer and more damped than the passive ones.
Active deformations should not produce oscillations because most familiar muscle-based
motions are typically non-oscillatory. Passive deformations should typically produce
oscillations because they represent the effect of elastic strain energy being dissipated
over time. However, the animator has complete control over the deformation parameters
and can change them interactively at any point according to the desired result. In the
current version of our system, we have implemented only cyclic pose graphs which result

in periodic motions.

4.2 Motion Synthesis

Given an object and a set of deformation modes, it is convenient (and for complex

23



. Specify an initial configuration P
. Specify an initial temperature T' > 0
. Pick a freezing rate 0 < r < 1

. Do forward simulation for time ¢ and calculate the

cost Cost(P)
. While T" > T,02en
(a) Pick a random neighbor P’ of P

(b) Do forward simulation for time ¢y and calcu-

late the cost Cost(P")
(c) Let A= Cost(P") — Cost(P)
(d) fA<0set P=PF
(e) Tf A > 0 set P = P’ with probability e=2/T
(f) Set T=rxT

€

. Return P

Figure 12: Using simulated annealing to find suitable active control

characters necessary) to have a procedure that automatically produces controllers capable
of making the object perform interesting modes of locomotion. Previous work in this
area addresses only the case of articulated figures with the exception of [12, 23]. In
our system we use simulated annealing [27] because it can avoid local optima and it has
proven to be suitable for our purposes. All our experiments converged to a solution in
less that 100 annealing iterations. The process begins with am initial pose controller
supplied by the user. Using forward simulation, the controller is evaluated according
to a cost function. A new controller is then produced by stochastically changing the
initial one. The new controller is evaluated in the same way and the two controllers are
compared. The best controller is kept and the procedure is repeated until a stopping

criterion is met. Sometimes the process keeps a new controller which performs worse than

24



the previous one as a means to avoid local optima. The algorithm used is summarized
in Fig. 12. The value of r controls the number of iterations that the algorithm performs.
A fixed number of iterations can also be used.

In the controller synthesis procedure, the poses are snapshots of the character’s de-
formations during a motion that the animator would like the character to perform. The
choice of an initial pose controller is important because it can significantly affect the
produced motion. The most important choice in defining an optimization process is the
choice of the cost or optimization function. This function is minimized or maximized
by the annealing process. The optimization function characterizes the desirability of
motions. There are many parameters which serve to define such a function, such as
the speed, acceleration, work, and orientation of the object during the motion and the
desired trajectory that the object must follow. Realistic motions should also consume a
reasonable amount of control energy. The difficulty of designing the optimization func-
tion depends on the complexity of the character and the desired motion. For simple
motions such as walking, hopping, and shuffling, typical optimization functions do exist.
Our system provides the user with a number of typical functions such as those given in
Table 2. For more complex motions, if none of the functions provided by the system
yield good results the user may need to resort to his or her own intuition.

We formulate our experiments as minimization problems. The optimization function
that we used in all cases depended linearly on the control energy consumed, in order to
prevent the synthesis of unrealistic high-energy motions. Specific functions are presented

in the next section, where we discuss the results of the motion synthesis experiments.

25



4.3 Results

The optimization can be performed with respect to different subsets of the control para-
meters. Some experiments with the table optimize the transition times between different
poses, some optimize the poses, and some optimize both poses and transition times.
The more parameters used in the optimization process, the larger the space of admiss-
ible control functions and consequently the likelier it is to arrive at an efficient solution.
Naturally, the larger the control space is, the slower the optimization processs finds an
optimal solution.

One of our experiments involved the synthesis of a controller that would make a 2D
table perform a bounding motion. The table is equipped with a set of four deformations
modes: vertical shear, horizontal bend, vertical squash and horizontal squash. The first
two are active deformation modes and the remaining two allow for additional passive
motion. Our most successful experiment performed optimization on all the parameters
defining the pose graph. After 60 simulation trials the table was able to perform a stable
periodic mode of locomotion, shown in Fig. 3. The cost function used rewards the
distance traveled and penalizes the energy used. Table 2 presents the cost functions
and the associated result; E. = Y1 abs(q[i] x Qk[i]) where Qk are the control forces,
is a simplified expression of the energy consumed, ¢, is the distance traveled along the
z-direction, and £, is the velocity along the z-direction. If t4f, < 0, the cost is set to a
high value.

A second example is that of a 3D teapot which learns to locomote using two active
deformation modes. Fig. 13 shows the teapot shuffling. The same motion has been

applied to the glass that appears in Fig. 14. In this example, the teapot is performing

26



Table 2: Cost functions

H Cost function ‘ Comments H
1/t, Hopping motion with unrealistic jumps
E. [t Hopping motion, normal jumps

E./(1.0 x 107\/txix) Bounding motion

E./(5.0 x 107\/txix) Faster bounding motion (Fig. 3)
E./(5.0 x 10°y/t;;) | Shuffling-like motion (Fig. 13)

Figure 13: 3D Teapot performing a bounding motion

27



Figure 14: A cartoon race

an automatically synthesized hopping motion using two deformation modes, the glass is
making use of the shuffling motion produced for the teapot, and the apple is key-framed
to fly above them using a local shear deformation on the leaf.

A more evident example of global and local deformation is presented in Fig. 15. The
lattices are attached to the teapot as shown in Fig. 1. A spring is attached to the lid
and lifts the teapot. The spring is removed at the 13th frame. Both the global and
the local lattice are associated with the same stretch deformation. However, the global

deformation is stiffer than the local one.

5 Conclusions

We have proposed and implemented a framework for the animation of deformable char-
acters. Our approach takes traditional free-form deformations and extends them to a
dynamic setting. The formulation provides for both local and global dynamic FFDs and
ensures for their proper interaction. User-tailored deformations provide predictability of
results and yield efficient dynamic simulations. The dynamic deformations can be made

active, making the technique particularly suitable to transforming inanimate objects,

28



Figure 15: A teapot is lifted from the lid

29



such as teapots, into animate characters. And how should a squash-and-stretch teapot
move? Existing motion-synthesis techniques can be applied to the active deformations
to automate the process of answering such questions.

Free-form deformations are a tool one would likely use to make solid objects come
alive in a key-framed animation. The approach proposed here can take the FFD lattices
defined for keyframing and make them active and dynamic. Because squash-and-stretch
deformations are so typical to cartoon-style animation, libraries of deformation modes
and standardized motions could be provided to animators. Different characters can make
use of existing sets of deformation modes, deformations can be loaded or changed, and
key-framed and physics-based motion can be exchanged as needed.

Our work can be extended in various ways. With respect to modeling, we could
combine deformations in non-linear ways. Dynamic constraints could be implemented in
order to allow the construction of compound objects. This could be applied to articulated
figures having deformable parts. We would also like to experiment with FFD blocks
based B-spline basis function and hierarchical structures with shared control points.
Lastly, to improve upon the dynamics, a complete and efficient method for detecting and

resolving collisions can be implemented.

A Derivation of the Equations of Motion

This appendix derives the terms of Equation (4) and shows how to calculate the equations
of motion (5). Starting from the Lagrangian and considering only the kinetic energy F
we obtain £ = F. The object is discretized in material coordinates using point masses.

The kinetic energy of the k-th point mass is £ = %mkkzkk, where my is the point

30



mass and xy, is the position of the point in world coordinates. Using Equations (2) and

(3) we can write Ej with respect to the generalized coordinates. To do that we first

note that z; = 3~ g;’ g;. Defining the Jacobian matrix J as J;; = dz;/0dq;, we can write
x = Jq. Assume an object with Dg global deformation modes L local lattices each one
equipped with D; deformation modes. The vector of generalized coordinates as defined

in Equation (1) is:

a=|tT 0, 6, 6. a1 --- Yap M1 .- NDy .- VI .- vip, |- (6)

Denoting global quantities with index G and local quantities with index [ the expression

for the Jacobian matrix evaluated at point P is

J:[I3ABCI ... Cp | (7)
where
= IR IR IR
A P GRP GRP |
3 3 3
B = = |RY > > de;;B(sa,1)Blta,j)Blug, k)|, n=1...Dg,
=0 7=0 k=0
3 3 3 Dg 9
Ci = [cim] RZZZ(Zd&i]'+LG,ijk)a—(B(3G7i)B(thj)B(uGHk)) ,
1=0 =0 k=0 n=1 Tim
m =

Recall that the global lattice coordinates (s,,%g, ug) are a function of the local ones as

shown in Equation (3). The kinetic energy with respect to the generalized coordinates

31



18

1 LT 1 ; ; 1 ; ;
Ey = imkxka = §mk(JkQ)Tqu = §mquJ£JkQ-

The total kinetic energy of the object is K = ), Fi and thus the Lagrangian is £ =
Y Er =20 %mquJngq = %qTMq where M = 3", m;J1J,, is a symmetric gen-
eralized mass matrix. Having an expression for the Lagrangian, we can calculate the

required derivatives for Equation (4) as follows

N | —
DN | —

oL - . . . .
90 = (E Oni M;jq; + 5 %’Myijékj) = (E My;q; + 5 %Mm) =
J 2 7 2

N | —

(Z My + 3 dj Mjk) ,
J J

where d; is the Kronecker é-function. Since M is symmetric, My; = M;;, thus My;q; =

G;M;, and

d oL

= ZMkj‘jj = P ZMk‘]qj
i &

o
G

ZM’*J%—'—Z (ZI: é\;[fy )
(8)

The second term that involves the Lagrangian in Equation (4), is calculated as follows:
oL 1.0M .

Y . 9
oq 2% 0 )

The derivatives of M required in Equations (8), (9) can be calculated as follows:

90 = 94 ka.] Jk_ka{(J 8%) J,Ca—q]}. (10)

32



Determining the partial derivatives of J with respect to the generalized coordinates
q, as required by Equation (10), is a somewhat lengthy, but mechanical process. We
present them below for purposes of completeness. To follow the notation the reader is
referred to the definition of the vector of generalized coordinates shown in Equation (1).
In addition, we denote O, an n X m zero matrix, 0 is a zero column vector, J; the
Jacobian matrix defined in Equation (7) evaluated with R being the identity matrix,
J1[qx] the column of J; that corresponds to the ¢ -th component of vector q, and we
define BBB = B(sq,1)B(tq, j')B(ug, k'). The primes are used to distinguish between
the 7, j’s that appear in Equations (11) - (14). Overbraces are used to compress a number

of similar columns in one. The partial derivatives of the Jacobian are

0J ,
5 = Qadim), 1=1,y,2 (11)
aJ B /l-:(L‘7y7Z i:l...DG 1=1...D, i:l...DL
/_A—'\
00 O —P —1 i =Jd K I —C— | ;
J i 3 9600, a9; lvail 96, {14l 79, 1[vril
[ =20y, i=1...D,
o0J 3 3 3 i=1...D¢g 3 3 3
= oR ~~ OBBB
06; s 00; Z Z Z dya, BBB 0 RZ Z Z d’VGjT
L v §1=0 ;=0 k'=0 =0 j'=0 k'=0 Y14
Z—l...DL
3 3 3
CORE S S |
= / =0 k'=0 K3
i=x,y,z i=1...Dg
0J 'G—RA_\ 9 BBEB i=1...D; i=1..D;_,
- ~= =
0715 (O Jv;] R Z Z Z T 0 0
=0 j/=0 k'= Vi
i=1...0;
3 3 8 BBB 2-:L“Dl-}-l i=1...Dp, (14)
—~~ —~~ )
/=0 7'=0k'= 0 n=1 ] 871]8712

Lastly, we have to calculate the derivatives of BBB that appear in the equations

above. To distinguish between the three polynomials we denote By B; By = BBB.

33



Since the chain rule applies

0BBB 0B, OB 0By
= “ BBy + By —-Bp + By B ———, 15
0 v " + oy " TR O (15)
0’BBB 0%B; 0B; 0B 0By 0By 0B; 0B
= Bj’Bk’ =+ J k! —+ i k J Bk" —|-(16)
0015 0015 Oy 01 Ovi * Ovi;  Ovi; Ovu
2., B, 9B, 0By 0B B 0By
BZ-,L d By-}-Bila i 9By | OB j,a b Z-,_a i 9By )
0015 Ovi Oy Oy ° Ovis Oy 0
0* By
BB, ————. 18
T 0710715 (18)

Showing the partial derivatives of one of the polynomials B/, B;/, By is sufficient to

complete the presentation of the mathematics involving the Jacobian matrix. Note that

in relation with Equation (7) By = B(sg,1).

0By 0By Osg 0% By B 0°B;1 0sq 0sg
Ovii  Osq Oy’ Oviyy;  0sE Ovi; Ovi
with
aSG 3 3 3 )
e = az Z Z d;i’j’k”slB(shi/)B(tlaj/)B(ulyk,)
i '=037'=0k'=0
Psa  _
01071
References

(20)

(21)

[1] J. Lasseter, “Principles of traditional animation applied to 3-d computer anima-

tion,” Proceedings of ACM SIGGRAPH: Computer Graphics, vol. 21, no. 4, pp.

35—44, 1987.

[2] T. W. Sederberg and

S. R. Parry,

34

“Free-form deformations of solid geometric



models,” Proceedings of ACM SIGGRAPH: Computer Graphics, vol. 20, no. 4, pp.

151-160, August 1986.

S. Coquillart and P. Jancéne, “Animated free-form deformation: An interactive
animation technique,” Proceedings of ACM SIGGRAPH: Computer Graphics, vol.

25, no. 4, pp. 23-26, July 1991.

D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically deformable mod-
els,” Proceedings of ACM SIGGRAPH: Computer Graphics, vol. 21, no. 4, pp.

205-214, July 1987.

K. Fleischer D. Terzopoulos, “Modeling inelastic deformation: Viscoelasticity, plas-
ticity, fracture,” Proceedings of ACM SIGGRAPH: Computer Graphics, vol. 22,

no. 4, pp. 269-278, August 1988.

D. Metaxas and D. Terzopoulos, “Dynamic deformation of solid primitives with
constraints,” Proceedings of ACM SIGGRAPH: Computer Graphics, vol. 26, pp.

309-312, July 1992.

D. R. Haumann, J. Wejchert, K. Arya, and B. Bacon, “An application of mo-
tion design and control in physically-based animation,” Proceedings of Graphics

Interface ’91, pp. 279-286, 1991.

A. Witkin and W. Welch, “Fast animation and control of nonrigid structures,”
Proceedings of ACM SIGGRAPH: Computer Graphics, vol. 24, no. 4, pp. 243-252,

August 1990.

D. Baraff and A. Witkin, “Dynamic simulation of non-penetrating flexible bodies,”
Proceedings of ACM SIGGRAPH: Computer Graphics, vol. 26, no. 2, pp. 303-308,

July 1992.

35



[10]

[11]

[12]

[14]

D. Terzopoulos and H. Qin, “Dynamic NURBS with geometric constraints for
interactive sculpting,” ACM Transactions on Graphics, vol. 13, no. 2, pp. 103-136,

April 1994.

J. E. Chadwick, D. R. Haumann, and R. E. Parent, “Layered construction of
deformable animated characters,” Proceedings of ACM SIGGRAPH: Computer

Graphics, vol. 23, no. 3, pp. 243-252, July 1989.

J. Christensen, J. Marks, and J. T. Ngo, “Automatic motion synthesis for 3D
mass-spring models,” Tech. Rep., MERL TR95-01, 1995, To appear in the Visual

Computer.

A. Pentland and J. Williams, “Good vibrations: Modal dynamics for graphics and
animation,” Proceedings of ACM SIGGRAPH: Computer Graphics, vol. 23, no. 3,

pp- 215-222, July 1989.

M. van de Panne and E. Fiume, “Sensor-actuator networks,” Proceedings of ACM

SIGGRAPH: Computer Graphics, pp. 335-342, August 1993.

M. van de Panne, R. Kim, and E. Fiume, “Synthesizing parameterized motions,”
Fifth Eurographics Workshop on Animation and Simulation, at Oslo, September

1994.

X. Tu and D. Terzopoulos, “Artificial fishes: Physics, locomotion, perception and
behavior,” Proceedings of ACM SIGGRAPH: Computer Graphics, pp. 43-50, July

1994.

A. Watt and M. Watt, Advanced Animation and Rendering Techniques, Addison-

Wesley, 1992.

36



[18]

[21]

[24]

[25]

P. E. Nikravesh, “Spatial kinematic and dynamic analysis with euler parameters,”
in Computer Aided Analysis and Optimization of Mechanical System Dynamics,
Edward J. Haug, Ed., vol. 9 of NATO ASI, F, pp. 261-281. Springer-Verlang,

1984.

J. B. Marion and S. T. Thornton, Classical Dynamics of Particles and Systems,
Harcourt Brace Jovanovich, Publishers, third edition, 1988.

D. Zeltzer, “Motor control techniques for figure animation,” [KEE Computer

Graphics and Applications, pp. 53-59, November 1992.

J. K. Hodgins and M. H. Raibert, “Biped gymnastics,” International Journal of
Robotics Research, vol. 9, no. 2, pp. 115-132, April 1990.

G. S. P. Miller, “The motion dynamics of snakes and worms,” Proceedings of

SIGGRAPH 788, vol. 22, no. 4, pp. 169-178, August 1988.

R. Grzeszczuk, “Automated learning of muscle-based locomotion through control
abstraction,” Proceedings of ACM SIGGRAPH: Computer Graphics, pp. 63-70,

August 1995.

M. van de Panne, R. Kim, and E. Fiume, “Virtual wind-up toys for animation,”

Graphics Interface, pp. 208-315, 1994.

J. T. Ngo and J. Marks, “Spacetime constraints revisited,” Proceedings of ACM

SIGGRAPH: Computer Graphics, pp. 343-350, August 1993.

K. Sims, “Evolving virtual creatures,” Proceedings of Siggraph ’94, ACM Computer

Graphics, pp. 15-22, 1994.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, pp. 671-680, May 1983.

37



Petros Faloutsos is a PhD candidate in the Department of Computer Science at
the University of Toronto, where he is currently working on computer animation, control
and dynamic modeling. He received his BSc in electrical engineering from the National
Technical University of Athens-Greece in 1993, and his MSc in computer science from
the University of Toronto in 1995.

Michiel van de Panne is an assistant professor in the Department of Computer
Science at the University of Toronto, where he is an active member of the Dynamic
Graphics Project. His interests include computer animation, control and simulation
techniques, robotics, and selected topics in modeling and rendering. He received his
BSc in electrical engineering from the University of Calgary in 1987, and his MASc and
PhD in electrical and computer engineering from the University of Toronto in 1989 and
1994.

Demetri Terzopoulos (S’78, M’85) was born in Greece. He received the B.Eng. de-
gree with distinction in Honours Electrical Engineering and the M.Eng. degree in Elec-
trical Engineering from McGill University, Montreal, Canada, in 1978, and 1980, re-
spectively, and the Ph.D. degree in Artificial Intelligence from the Massachusetts Insti-
tute of Technology, Cambridge, MA, in 1984.

He is Professor of Computer Science and Electrical and Computer Engineering at
the University of Toronto, where he leads the Visual Modeling Group, and is a Fellow
of the Canadian Institute for Advanced Research. From 1985-92 he was affiliated with
Schlumberger, Inc., serving as Program Leader at research labs in Palo Alto, CA, and
Austin, TX. During 1984-85 he was a research scientist at the MIT Artificial Intelligence
Lab, Cambridge, MA. He has been a consultant to Digital, Hughes, NEC, Ontario Hydro,

and Schlumberger.

38



His published works include more than 150 scientific articles, primarily in computer
vision and graphics, and also in computer-aided design, medical imaging, artificial in-
telligence, and artificial life, including the recent edited volumes “Real-Time Computer
Vision” (Cambridge Univ. Press '94) and “Animation and Simulation” (Springer-Verlag
'95). His contributions have been recognized with several awards. In 1996 the Natural
Sciences and Engineering Research Council of Canada awarded him the E.W.R. Steacie
Memorial Fellowship. His other awards include three university Excellence Awards, an
award from the American Association for Artificial Intelligence in 1987 for his work
on deformable models in vision, an award from the IEEE in 1987 for pioneering active
contours or “snakes”, and awards from the Canadian Academy of Multimedia Arts and
Sciences in 1994 and from Ars Electronica in 1995 citing his work on artificial anim-
als. He currently serves on the editorial boards of the journals Medical Image Analysis,
Graphical Models and Image Processing, and the Journal of Visualization and Computer
Animation. He has served on ARPA and NIH advisory committees and is a member of

the New York Academy of Sciences and Sigma Xi.

39



