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Turning plays an important role in activities such as skiing and
bicycling. The act of turning requires steering, which performs
two functions: changing the direction of motion and ensuring that
balance is maintained. We analyze and control turning motions
for a simple physical model. The physically based motion of the
simple model is then used as a basis for the motion of more complex
display models. A phase-diagram description of periodic turning
motions (as in slalom skiing) is presented. The phase diagram is
used to construct a control algorithm parameterized in terms of
the frequency, sharpness, and heading of the turns. A second
method of control allows an animator to draw an arbitrary path
for the turning figure to follow while avoiding obstacles. A finite-
time optimization is used to find the best physically feasible motion
that closely follows the desired path. Examples of alpine skiing,
snowboarding, bicycling, and telemark skiing are given. c 193
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1. INTRODUCTION

The turning motion of a bicycle is a graceful manoeuver
that is somewhat more complicated than it looks. A turn
involves controlling both direction and balance. Similar
motions exist in sports such as skiing or surfing. The goal
of our work is to provide a suitable physically based model
for this class of motions, and more importantly, to come
up with general control techniques for turning motions.
These control techniques should be easy and intuitive for
an animator to apply.

Physically based animation is becoming a popular tech-
nique for creating realistic motion. It involves performing
simulations based upon the laws of physics. There is a
distinction, however, between simulations of passive and
active systems. Motion in the former is determined only
by the initial conditions, whereas motion in the latter is
determined by the initial conditions and the control that
is subsequently applied. The work presented here falls in
the latter category.

Given that a motion can be influenced by some control
variable, we must tackle the interesting (but difficult)
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problem of how an animator can manipuliate the control
variable to produce a desired motion. Furthermore, con-
trol variables are not always easily comprehended by ani-
mators. A large portion of this paper addresses the design
of controllers that accept parameters intuitive to the ani-
mator and produce the control necessary to achieve the
desired motion.

The next section briefly discusses the relevant previous
work. The physical model we use and its equations of
motion are given in Section 3. We present a phase diagram
useful for analyzing and synthesizing periodic turning mo-
tions in Section 4. A parameterized controller for the
model is given in Section 5. A path-following controller
is described in Section 6. Examples of how to map display
models onto the physical model and a discussion close
the paper.

2. BACKGROUND

The difficulty of creating a suitable controller increases
greatly with the complexity of an object. As a result, it
is often useful to work with a simplified physical model.
This is evident in the work of Raibert and Hodgins [1],
who model and control the locomotion of various types
of running figures. Their work involves assuming the role
of various body parts. This reduces the number of control
variables and makes them largely independent of each
other, thereby greatly simplifying the control problem.
The controllers generated are hand-tuned for each crea-
ture, but they are parameterized at a high level.

Bruderlin and Calvert [2] use a mix of dynamic and
kinematic methods for the animation of walking. The
stance leg and upper body are treated together as an in-
verted double pendulum. The dynamics obtained from the
simplified physical model produces a natural locomotion
pattern which is visually upgraded by adding kinematic
“‘cosmetics.”” The appropriate kinematic motions are de-
termined from experimentally-derived principles for
walking, such as the determinants of gait. This work is
similar to ours in that we shall also make use of a simplified
physical model and amplify its motion to control a more
complex display model.
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McKenna and Zeltzer [3] also simplify the control prob-
lem by making use of modular and hierarchical decompo-
sition of the control system where possible. The simulated
six-legged insect is controlled by low-level parameters
such as the stepping speed, the time between stepping of
adjacent legs on the same side of the body, and the oscilla-
tor frequency.

Optimization techniques have been used with some suc-
cess [4-6]. These typically minimize the control energy
spent to get from the current state to the desired state.
Calculating optimal solutions is generally a time-consum-
ing proposition. A shortfall of these techniques is that
they do not present an intuitive interface to an animator.

Miller produced convincing snake and worm anima-
tions [7]. The creatures move in a realistic way and can
be controlled by specifying the desired speed and direc-
tion. The control is achieved by passing periodic oscilla-
tions of the appropriate magnitude and phase down the
body of the snake or worm. This method of control is
specific to the tubular structure of snakes and worms.

A large variety of work has been performed in the field
of biomechanics. Work in this field usually involves analy-
sis rather than synthesis, however. Sodeyama et al. 8]
present an experimental study on the displacement of a
skier’s center of gravity during a ski turn. Little work has
been done on a mechanical analysis of turning motions.
Some qualitative analysis of turns can be found in popular
ski magazines. Lee and Kunii [9] use filmed skiing motions
to recreate animated skiing motions.

3. A PHYSICAL MODEL FOR TURNING

In order to understand our choice of simplified physical
model, it will be helpful to begin with some simple intu-
ition on how turning works for bicyclists, skateboarders,
and other turning figures. It is clear that it is necessary
to ‘‘lean into’’ a turn in order to remain properly balanced
throughout the turn. What is not so clear is whether the
turning occurs as a result of leaning, or if leaning occurs
as a result of turning. We shall argue for the latter.

We shall use the cyclist in Fig. 1 to illustrate that the
lean angle of a cyclist can not be controlled directly, and
therefore that leaning occurs as a result of turning. In
order for the cyclist in Fig. 1 to attain a leaning position,
we require a torque acting around the z-axis. No mecha-
nism for applying such a torque exists. It is possible to
effect small changes in the lean angle using body motion
alone, as demonstrated by skilled cyclists who can remain
balanced while stationary. It becomes much easier to re-
tain one’'s balance when moving forward on a bicycle,
even if only moving slowly. At low speeds, the effect of
gyroscopic forces are minimal, and we can conclude that
it is the ability to turn that allows for easy balancing and
control of the lean angle. A lean is thus obtained by mov-
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FIG. 1. A cyclist and a simplified model.

ing the support out from underneath the body, which is
easily done by making the supporting ‘‘foot’ follow a
curved path while the body is moving forward.

As an aside, it is worthwhile to explain how one can
ride a bicycle without having hands on the handlebars,
in which case we have no direct control over the steering.
One can exert indirect control over the steering by bend-
ing sideways at the hips, shown as point ¢ on the simplified
model in Fig. 1. Bending in this fashion will not directly
change the lean angle of the mass with respect to the
support, but it will tilt the bicycle, which forms the lower
part of the supporting ‘“‘leg’”. Bicycles are constructed
such that when they are tilted the front wheel turns, even
when stationary. This mechanism allows for indirect con-
trol of steering by bending sideways at the hips.

All the figures we shall deal with have the ability to
control the curvature of the supporting ‘‘foot.”’ Bicyclists
can turn their front wheels. Skiers place their skis on edge,
which causes them to bend into an arc shape because of
the sidecut. Snowboards work in a similar way. Skate-
boards turn because of the trucks that cause the wheels
to twist when the board is tilted. Telemark skiers, loosely
equivalent to going downhill on cross-country skis, sepa-
rate their skis and place the front ski at an angle to the
rear ski in order to turn. Photo 1 illustrates these configu-
rations.

In order to make the control algorithm as simple and
as general as possible, our physical model of the turning
figure is the inverted pendulum shown in Fig. 2. The body
has a known mass m and moment of inertia about the z-
axis, 1,. The body moves forward along its z-axis with a
velocity V., over a planar surface. The center of mass is
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FIG. 2. The physical model used for turn synthesis.

located at a height { above the foot. The origin of the
coordinate systemis fixed to the *‘foot’” of our model, with
the y-axis perpendicular to the ground and the negative z-
axis aligned with the direction of motion.

The moment of inertia about the x-axis is ignored be-
cause we assume the leg to be always vertical in the yz-
plane. This is sufficient for the turning figures we shall
consider; it is a simple matter for bicyclists and skiers to
avoid falling forward or backward when moving across
smooth terrain. The moment of inertia about the y-axis
is ignored because rotation about the y-axis is caused by
the nonholonomic constraint placed on the motion by the
curvature of the foot, and not some direct torque about
the y-axis. A constant velocity assumption is not crucial
in our development of the equations of motion. It is,
however, necessary to being able to obtain our parametric
controller in an analytic form in Section 5. The model
freely rotates about the z-axis of its foot. The model allows
the curvature of its foot in the xz-plane, given by C;, to
be controlled. That is, the model can be steered. C; is
defined as 1/r;, where r; is the instantaneous radius of
curvature.

Because of the simplicity of the physical model, a map-
ping relation is necessary to relate the state of the physical
model to the more complex display model. The mapping
relation allows for the kinematic coordination of various
body parts with that of the physical model, even though
they are not explicitly included in the physical model. In
this way subtle motions such as appropriate twists of the
upper body can be generated. These motions would be
difficult and prohibitively expensive to synthesize in a
fully dynamic solution to the same motion. For exampie,
optimal control techniques such as dynamic programming
have an exponential complexity with respect to the size
of the state vector.

The problem of using a more complex model is one of
calculating the control to generate the appropriate motion.

If one were to use an optimization technique to generate
the necessary control, not only is the optimization itself
difficult to perform for complex systems, but it is not clear
what the optimization function should be. Our approach
makes use of a physical model to generate the dominant
part of the motion. Kinematic relationships are used to
generate the motion of parts whose movements are less
dependent on constraints imposed by physics and can
also be used to capture more aesthetic or irregular aspects
of the motion. A simple physical model also allows for a
more general control solution because, as is the case here,
a group of diverse sports can make use of the same simpli-
fied physical model, and hence the same controller.

Example mappings of several display models onto the
physical model are shown in Photo 1. The mapping proce-
dure itself is discussed in greater detail in Section 7.

The equations of motion of the turning body are derived
in Appendix A. We are interested in the relationship be-
tween the curvature of the foot, Cy, and the angular accel-
eration about the z-axis, «,. Because C; is controllable,
we shall define the forward dynamics as &, = f{Cp and the
inverse dynamics as C; = f~ (). The inverse dynamics is
governed by the quadratic equation

0 = aC; + bC; + k, (1)

where C; is the curvature of the foot, and

I

Psin? @,k + 1V2_sin @, cos 6,

—2lsin@k — V2 cos@,

i

b

k= gsin@, - (I, + Pm).
ml

In the expressions for a and b, & is a quantity useful in
simplifying the equation. The negative root of the qua-
dratic is used when solving for C, as seen in Appendix
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Photos

A. We can use Eq. (1) to calculate the curvature of the
foot needed to achieve a given angular acceleration of the
body, a,.

Because it is unrealistic for the curvature of a ski or
the steering angle of a bicycle to be unlimited in value,
it is necessary to place upper and lower bounds on Cj.
As we shall see later, we shall be calculating a desired

value of a,, then using Eq. (1) to solve for the correspond-
ing C;, bounding the value of C; to a reasonable one if
necessary, and lastly recalculating the a, corresponding
to the new, bounded C;. This process is analogous to
kinematically planning a motion, using inverse dynamics
to calculate the forces required to produce the motion,
limiting the forces to being reasonable ones, and then
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Photos 3-6

recalculating the resulting motion. An expression that cal-
culates the forward dynamics can be obta
ing Eq. (1),

where &, the same quantity as in Eq. (1), is calculated as
ined by rearrang-
_ CGiVi cosé,

1 - Clsing,
_Im(gsing, — k)

° , 2 . .
v I, + I'm @) Once «, and C;are known, all that remains for a simula-



512

tion of the motion of the system is a numeric integration
method to obtain new values for w,, 6,, 84, (the direction
of travel), and (x;, y;) (the position of the foot). Euler
integration is used. x; and y, are integrated using the cur-
rent speed and direction. 6, and w, are integrated using the
known value of a,. The current direction, 8 is integrated
knowing the current curvature and speed.

4. PHASE DIAGRAMS FOR PERIODIC TURNS

It is readily observable that slalom-type turns result in
an oscillation of the body about the vertical. This means
that 8, in our model should vary sinusoidally. We shall use
this as one basis for generating physically based turning
motions. By controlling the turns of the foot of our model
so as to generate body oscillations about the vertical axis,
we generate realistic slalom turns as a desirable side-
effect. It is thus easier to analyze and synthesize turns in
terms of the oscillation of the body about the vertical axis
rather than in terms of the path of the foot. In this section
we analyze how this oscillation can be described using a
phase diagram and how to use the phase diagram for
analysis and synthesis of turns. In the following section we
shall describe how to use the phase diagram for generating
conveniently parameterized turn-controllers.

We shall begin by assuming that 8, varies sinusoidally
over time, as shown in Eq. (3). 6,,,, defines the amplitude
of the oscillation, and thus represents the maximum angle
of lean. Let o, be the frequency of oscillation, or alterna-
tively, the turning frequency. Then

8, = 6., sin(w,?). (3)

We can take the derivative with respect to time of the
expression in Eq. (3) to obtain expressions for the angular
velocity and angular acceleration about the foot, as given
by

@, = WyBna, COS(wyt), 4)

@, = — by Sin(wyl). )]
We now have an expression for calculating «,, which
we can use as a controlling function using the inverse
dynamics equation. Thus, we can control the curvature
of the foot so as to create a desired sinusoidal body oscilla-
tion of a given amplitude and frequency. Note that al-
though the body is made to oscillate sinusoidally, the path
taken by the foot to achieve this is determined by the
inverse dynamics and is thus not a perfect sinusoid, al-
though it is naturally smooth and periodic.

The portion of the state of the system represented by
6, and w, moves clockwise along an elliptical trajectory
as shown in Fig. 3. We shall call this the phase diagram
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FIG. 3. The phases of a turn.

of a turn. The ellipse is defined by the constants 6., the
maximum lean angie, and w,, the turning frequency.

The current phase of the body is given by ¢ = wyt. It
can also be calculated directly as follows: ¢ = wyt =
arctan(y/x) where y = 6,/8,, and x = o, /wl,,,. The
phase is dependent on both the state of the body as well
as 6,,,,, and w,, which define its planned motion. The phase
contains useful information for the mapping of display
models onto the physical model.

The simulation and open-loop control cycle using Eq.
(5)is described by the pseudocode in Fig. 4. F\, represents
the compressive force experienced by the leg and is useful
in the display mapping process, as is the phase, ¢.

The correspondence of various points in a turn to the
phase diagram is illustrated in Fig. 3. The shape of the
path taken by the foot is not necessarily sinusoidal in
shape, as will be further explained in the next section.
The general direction of the turning figure is given by its
#,, which defines its heading with respect to a fixed axis.

Figure 5 illustrates how the various parameters of the
model vary over a complete period for a typical turn. The
amplitudes have been scaled as necessary for this figure.

choose{wn, 0,14z )

while (TRUE) {
Ay = =wilmaz sin(wot)
C; = f(a,) (as per equation 1)
numerical integration of ry, ys. 0y4ir. 0y, wy

F(eg = ‘/F£+ F,}
¢ = f(euku|9mar»u0)

display(i‘j'ijgdirvovv“-)m ij F’leyv 0)
=14 At

FIG. 4. Pseudocode for open-ioop control of turn.
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FIG. 5. A typical turn.

This figure also gives an insight as to why turning sports
can seem effortless. The angle of body lean, 6,, and the
curvature of the foot, C;, must be in phase to cause the
appropriate turning motion. This happens naturally in
turning sports because of the construction of skis, surf-
boards, and skateboards. Tilting any of these devices
causes a curved motion proportional to the angle of tilt.
Because 8, and C;are always in phase, the motion requires
little effort to sustain, although it may in practice be diffi-
cult to initially achieve. This means that on a skateboard
or snowboard, one need use very little ankle motion to
tilt the board because the tilt angle between one’s body
and the ground is very close to giving the board the desired
tilt angle already.

Figure 6 shows several tracks left by the “‘foot’’ of the
physical model for various values of w, and 0_,,. Phase
ellipse 1 has w, = 27/2.0, 0,,,, = 23°; phase ellipse 2 has
wy = 2m/3.0, 6,,,, = 23°; and phase ellipse 3 has o, =
27/2.0, 0, = 7°.

To summarize, the control variable C; is calculated by
determining the curvature necessary over time to oscillate
the body in a sinusoidal fashion.

5. PARAMETERIZED CONTROL

In this section we look at how to move from one phase
ellipse to another and how to control the general direction
of motion for slalom-type turns. The controller that we
will generate has three parameters: wy, .. and 8,. The
first two define the phase ellipse, and the last defines
the general direction of motion. Using the parameterized
controller requires specifying the values of these three
parameters over time.

5.1. Control of Turn Frequency and Sharpness

We shall first present a method of taking the system
from any current state onto a desired phase ellipse. The

e ———
3
Y 4 ‘\/2\—/__\
{meters)
\/l—\/\/\

(meters)

FIG. 6. Turning examples.

control has the purpose of allowing the turning body to
move from one phase ellipse to another, as well as closed-
loop control once on a phase ellipse. A simple solution
can be obtained if we look at the sets of phase ellipses
that share the same major and minor axes, as shown in
Fig. 7. These ellipses can be used to take the system onto
target phase ellipses, shown in bold.

The ellipses in Fig. 7a can be used for states in quadrants
1 and 3 to bring the turning figure onto the target ellipse
defined by w, and §,,,. Similarly, the ellipses in Fig. 7b
can be used for states in quadrants 2 and 4. We thus
need to calculate the values of w; and 4, defining the
controlling phase ellipse that will bring the state of the
turning figure onto the desired ellipse.

For quadrants 1 and 3, §,,, = 0,.,. and o) = ©,/6,,
cos ¢. For quadrants 2 and 4, w; = oy/B and 4., = BB
where the value of B8 can be calculated from Eq. (3) as
B = 0,/0,,, sin &.

Once the controlling ellipse is known, Eq. (5) is used
with these newly calculated values to determine «,, and
hence the desired control value Cy, as before. The control-
ling ellipse is recalculated at every time step because 6,,,,
and w, are changing functions of time specified by the
animator.

Although Fig. 7 implies that the desired ellipse can
always be reached within 90° of phase, bounds placed on
acceptable values of C; and also dC,/dr usually lengthen
the time required to reach the desired phase ellipse. These
bounds reflect the physical bounds on the curvature and
rate of change of curvature of skis and wheels.

The preceding solution does not work equally well in
all regions of the w8, plane. States having |6,| > 4,,., or
|@y| > @B« dO not lie on any of the sets of ellipses shown
in Fig. 7. For these regions one can directly assign values
of «, that drive the system towards the desired ellipse:
@, = a, for quadrants 2 and 3, and ¢, = —a, for
quadrants 1 and 4, "

The origin, representing a perfectly balanced vertical
state, is a singularity where there are also no proper con-
trolling phase ellipses. A fixed arbitrary value is assigned
to e, for a small region around the origin.
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5.2. Directional Control

The last useful parameter is the direction. Figure 8
shows an example of a change in direction of Ag,. We
shall use 6, to represent the desired direction that the
animator specifies as a function of time. It indicates the
direction with respect to some fixed axis.

In Fig. 8 we see that a change in direction to the left
i1s performed using the short right-hand turn found at
x = 26m. Similarly, a small change in direction to the
right can be effected by making a sharper, longer right-
hand turn or alternatively, making a shallow, shorter left-
hand turn. This method is consistent with our experience,
and we shall use it to perform our directional control.

Let the instantaneous direction be given by the function
8, {wet ), which is modulated by foot turning, as specified
by C;. In our control scheme thus far, we use the turning
of the foot to control the body lean (e.g., 8, and w,), and
not to purposely change direction. The maximum change
in direction over a left turn is given by

Aby, = 64, (180°) — 84,(0°). (6)

In order to effect a change of heading of A6, in a single
turn, as shown in Fig. 8, we require

A@'dir = A(Jdir + Agh. (7)

The modified turn should be continuous with respect
to the turns performed before and those that must be

s T
i} 10 20 30 10 50

FIG. 8. An example of direction control.
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Sets of phase ellipses sharing axes with a desired phase ellipse.

resumed afterward. We shall assume here that the turns
before and after the change in direction are the same, and
are specified by w, and 8,,,. Figure 9 shows the phase
diagram of a modified turn. As with the ellipses of Fig.
7b, the modified turn is defined by a number 8. g8 > 1
results in a sharper, longer turn than the original. Simi-
larly, 8 < 1 results in a shallower, shorter turn than the
original.

Ad,, is a function of w, and 8,,,,. Rewriting Eq. (7) to
reflect this gives

AGdir (Bomax’ (1)()/[3) = Aedixf (Gmax’ 0)0) + Aek (8)

The only unknown variable in this equation is 8, which
specifies how to modify the turn such that the appropriate
change in direction is made.

Obtaining the function Ay (6,,.., wg) In an analytical
form is difficult. Using first-order approximations for sin
and cos, a simplified expression for the curvature can be
obtained from Eq (1). It can be verified in Fig. 5 that the
curvature does indeed approximate a sine function, as
indicated by Eq. (9). Ci(#) can be integrated to obtain
04;,(1), as shown in Eq. (10). The velocity of the foot of
the model, V;, is assumed to be constant in order to be
able to evaluate this integral:

i

wy = wo/3
g, = nga:

4
/ﬂ gma,
N

v

FIG. 9. Phase diagram of a modified turn to change direction.
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Cf — Q_THQ_%M (g + liu;n(-l(lv + [2"7)> (9)
B4 (1) = fo Cy(nydr (10)

Equation (8) can now be solved directly for 8, giving the
analytic expression that we seek:

[ A8V e
B = 1+#. (1)

By inspection, we can see that to change direction to the
left during a left-hand turn (A9, > 0), a value of 8 > 1 is
required. This is the intuitive result expected, namely that
a longer (wg = wy/B) and sharper (6, = BOn.x) turn is
required. To change direction during a right-hand turn, 8
should be calculated using

A6,V,
B = /1——2—5-—’39. (12)

During sharp turns (w, > 27/2.0 and 8,,, > 10°), the
approximations made during the above derivation cease
to hold, and it is necessary to build a two-dimensional
table storing A6, for various values of &g and 6,,,,. Equa-
tion (8) can then be solved using Newton-Raphson itera-
tion for the value of 8.

In applying the directional control, a modified turn is
calculated every time the state of the turning figure passes
through the 0° or 180° points. The phase-ellipse control
then uses the phase ellipse of the modified turn as being
the target phase ellipse. Because of our assumption that
the phase ellipses before and after the modified turn are
the same, large instantaneous changes to the o, and 6,
parameters should be avoided.

Some examples of results obtained using the parameter-
ized control are shown in Figure 10. Track 1 shows a set
of figure-8 tracks created by two figures turning out of
phase and is similar to those seen in skiing. Track 2 shows
turns of gradually decreasing frequency. Track 3 shows
turns of increasing sharpness. Lastly, track 4 shows the
direction being controlled. It should be noted that the
directional control is important for tracks 2 and 3 as well,
because the process of moving onto a new phase ellipse
would normally result in an unwanted change of direction.
Photo 2 shows an animation sequence with a snowboarder
mapped onto the physical model. A videotape of our ani-
mation results is also available [10].

The parameterized controller is computationally inex-
pensive and can be used in real time. The bounds placed
on C;, the foot curvature of the turning figure will depend
largely on the activity being simulated. A bicycle front

T T T T

—
0 20 40 60 30 100 120

FIG. 10. Tracks for turning using parameterized control.

wheel can be made to change direction very quickly and
turn sharply as well. A ski or a surfboard, however, can
neither change direction as quickly, nor turn as sharply.

6. PATH-FOLLOWING CONTROL

An alternative method of control is to have the animator
draw a path for the turning body to follow. It is impossible,
however, for a turning body to exactly follow an arbi-
trarily path. If the foot is made to exactly follow a drawn
path, this fixes the curvature, which leaves no freedom
to control the body balance.

Our solution is to treat the motion synthesis as a con-
strained finite-time optimization problem. The optimiza-
tion function to be minimized is the sum of the distances
from points on the track of the turning body to the closest
point on the desired path. The optimization problem is
solved using a branch-and-bound search. During the
search, any solutions resulting in collisions with obstacles
are also eliminated.

The problem is specified by the animator in a graphical
fashion, as shown in Fig. 11. The desired path and any
obstacles are drawn using an interactive editor. We
choose to use a piecewise cubic Hermite spline to draw
the desired path, but a series of connected straight-line
segments could be used equally well. The bold vectors
in the figure represent the tangent vectors at the endpoints
of each spline segment, assuming continuity of the curve
and its tangents at the endpoints. A minimum tolerance

FIG. 11.

User specification of path to follow.
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dy

desired path
Sk

FIG. 12. Evaluation of the optimization function.

can be specified for avoiding obstacles. The speed can be
made to vary as a function of the terrain if desired. The
desired path exerts its effect only through the optimization
function, which is simple to calculate, as we shall now
see.

Before describing the optimization algorithm in detail,
we shall describe how the optimization function is evalu-
ated. Let d; be the shortest distance from the position of
the foot at time step i to the spline path. Instead of explic-
itly solving for the shortest distance, we approximate it
by sampling spline segments at regular intervals and tak-
ing the minimum distance to one of the samples. Thus we
have d; = min; |P; — S ,. P, is the position of the foot at
time step i and S, is point sample j of the spline segments.

The value of the optimization function is determined
by sampling the position of the track of the turning body
and summing over all » such samples, namely f,, =
3., d,. Figure 12 illustrates the points and distances in-
volved. Typically 12 sample points per spline segment
and a time-step of 0.1 s for sampling the track has pro-
duced good results.

6.1.

For the parametric controller, we calculate a, and use
Eq. (1) to calculate C;. Here, however, we shall be de-
termining C; directly. The algorithm uses a branch-and-
bound search to explore how C; should be controlled by
planning ahead for a fixed interval of time. This fixed
interval of time (typically 3 s) is divided into N discrete
stages, where the control variable is maintained constant
during each stage. We shall use dC/dt as our control
variable because we wish to have C; be C° continuous.

The branch-and-bound technique determines the opti-
mal values of C;to be used during the next N stages. Only
the value for the first stage is actually used, however.
When the end of the first stage is reached, the branch-
and-bound process is repeated. In this way each control
decision is based upon a plan looking N stages into the
future.

The branch-and-bound search works as follows. In the
first stage, the effects of several values of dCy/dt are simu-
lated for t,,,. seconds, beginning at the current state. In

The Optimization Algorithm
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nminseg spline segment to begin search for shortest-distance points
X.¥ coordinates of the oot

Bair direction

0y Wy state of lean

fopt value of optimization function

stage number of stage

Cy foot curvature

dC;/dt value of dCy/dt taken at stage 1

FIG. 13. Node information.

the second stage, the same process is repeated for each
of the states produced by the first stage. This process
repeats until the desired maximum number of stages have
been evaluated. Let N be the maximum number of stages.
Without bounding, the branching process will result in gV
possible ending states, where g is the number of values
of dC/dt tried at each stage. Fortunately, we shall see
that many branches can be clipped or bounded at an early
stage.

Let the starting state and ending states of stages be
called nodes. Each node contains the information shown
in Fig. 13. The pseudocode for the branch-and-bound
algorithm as it pertains to the path-following problem is
shown in Fig. 14. The algorithm is used once every ¢,
seconds to calculate the required control for the next
stage. The nodes are kept in an evaluation queue sorted
by their f,, values. The algorithm always expands the
node having the minimum value of f,, first. Its children
are placed in the node queue if they are not clipped. Nodes
are clipped if their f,, value exceeds that of the current
upper bound, found by keeping the current best (lowest)
fopt value of all completed paths.

Nodes can also be clipped as a result of a collision with
an obstacle or the body falling over (a bound is placed
on @, for this purpose). Obstacle avoidance is thus ob-
tained by checking the track segments for collisions as
they are produced. A collision is said to have taken place
if a produced track segment intersects any obstacles.

enqueue(current state)
while (nodes in queue)
dequeue{naode)
calculate inputs to be applied
for each mput
end.node = simulate{node,input.tsiq,e):
if (hit obstacle) continue
if (fell over) continue
if (exceeded bound) continue
if (at last stage)
update bound if necessary
continue
enquene(end_node)
return( dCy/dt taken at stage 1 of best path )

FIG. 14. Pseudocode for branch-and-bound algorithm.



MODELING AND CONTROL OF TURNING

Typical values used for the algorithm are as follows:
lyage = 0.3, N = 10 to 12 stages. 6, bound = 30°, and
q = 5to7 values of dCy/dt. The clipping is generally quite
effective in restricting the number of nodes that need to
be searched.

The algorithm uses various values of dCy/dt to expand
the nodes in the tree and thus produces an optimal value
of dC,/dt to use. Using the derivative of the curvature as
a control variable allows for C® continuity of the curvature
and will thus produce smooth motions. In generating val-
ues of dCy/dt to apply, bounds are placed on dC;/dt and
C; to ensure realism.

6.2.

The current phase, ¢, of a motion is very useful in
creating proper motions for the display model. Because
the process of determining the phase requires information
about the future motion of the turning figure, we produce
the phase in a post-processing pass after the optimal path
has been determined. Using an estimate of w, and 0,,,, as
defined for the parametric controller, we can calculate
the phase as before.

Estimates of w, and 6, can be obtained by noting the
points at which the state of the turning body enters and
exits the current phase quadrant. This is illustrated in Fig.
15. The magnitude of the intercept along the 8, -axis serves
as an estimate of 6,,. Similarly, the magnitude of the
intercept along the w,-axis serves as an estimate of 6,,,,, @,
which thus allows us to estimate .

Calculating the Phase

6.3.

Various examples of the use of the path-following algo-
rithm are shown in Figs. 16-18. Figure 16 shows the
results of an automatically synthesized tree-skiing path.
The solid line is the spline path to be followed. The dotted
path is calculated using N = 10 stages. The dashed line
shows the result for N = 12 stages. In this case planning
ahead an extra two stages considerably changes the mo-
tion by choosing a different route through the trees.

The example in Fig. 17 shows how the path-following

Results
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FIG. 15. Estimating 6,, and «, from a phase diagram.
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FIG. 16. Tree skiing.

algorithm can be used to solve for a path through a slalom
course. The poles are drawn as lines in order to restrict
passage to along one side only. Some additional obstacles
are added to speed up the solution. The solid line is given
as the path to follow, and the dotted line is the calculated
solution. The solid line is given as the path to follow, and
the dotted line is the calculated solution. Photo 3 shows
an animation sequence of a skier mapped onto a path-
following solution for a slalom course. Photo 4 shows a
telemark skier passing through a portion of the same sla-
lom course and making use of the same solution.

An example of a bicyclist going around a corner is
shown in Fig. 18. The edges of the road are drawn as
obstacles. Additional obstacles are drawn blocking the
bottom and left exits from the intersection in order to aid
in restricting the size of the search tree. Photo 5 shows

FIG. 17. The slalom race.
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FIG. 18. Bicycling around a corner.

a bicyclist weaving through a series of potholes on a road.
Photo 6 shows an animation sequence from the high-speed
bicycle turn shown in Fig. 18.

7. MAPPING A DISPLAY MODEL ONTO THE
PHYSICAL MODEL

Many body parts are not directly represented in the
physical model. The realistic motion of many of these
parts would be difficult to synthesize using a physical
model because of the lack of obvious criteria for their
synthesis. The motion of these parts is nevertheless coor-
dinated with the main motion of the body. We shall make
use of variables associated with the simplified physical
model to drive these motions. This represents a type of
motion amplification by defining the relationships that
coordinate the motion of all the body parts with that of
the simplified physical model. The most useful variable
in this regard is ¢, the current phase of the turn. The
force exerted on the leg of the physical model and several
other variables are also used in the mapping.

Figure 19 shows at what point the mapping process
takes place. The input to the mapping process consists
of the variables shown in Fig. 20. The creation of a suitable
mapping procedure typically involves some experimenta-
tion, especially if biomechanical data from real motions
is not readily available. We shall now briefly describe
how the mapping was performed for several figures.

Alpine skiers clearly have an up-and-down motion
during turns. This is achieved in the display model by
making the legs act as a spring. The force on the leg
of our simplified model varies approximately +30% from
the static force during typical turns. Figure 5 shows
how the force on the leg varies during a typical turn.
A suitable spring constant &, can be chosen based upon
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FIG. 19. Control, simulation, mapping. and display.

how much up-and-down motion is desired. Given the
force at any instant and k,, the leg length is determined
and inverse kinematics is used to calculate the bend of
the knees. The bend at the waist is directly correlated
to the bend at the knees, resulting in a coordinated
motion. A linear relationship is assumed between the
curvature of the ski and the angle at which the ski
is tilted. The constant to use is easily estimated from
a plot like the one in Fig. 5. The tilt of the outside,
weight-bearing ski is made to be slightly larger than
that of the inside ski. When the tilt angle of the body,
6., and that of the ski do not correspond, we need a
way of tilting the ski on edge with respect to the body.
This is accomplished by twisting the leg to the inside
or outside. The pole planting motions of the arms are
coordinated with the phase so that the pole plant occurs
before the actual turn, at ¢ = 30° and 210°. A twisting
motion of the upper body is made to be in phase with
C:.

The snowboarder is similar in many respects to the
skier. The bend at the knees and waist are calculated
based upon the leg force, as with the skier. The upper
body is made to twist in phase with C;. Tilting the snow-
board with respect to the body is easily accomplished by
bending at the ankles. The arms are moved to lead the
twisting motion of the upper body slightly.

The bicyclist requires only a simple calculation to deter-
mine how the front wheel should be turned to achieve the
given curvature C;. Inverse kinematics is used to keep the
hands on the handlebars. The pedals move as a function of
the distance travelled. Inverse kinematics is used to keep
the feet on the pedals.

Turning for a telemark skier is achieved by separating
the skis and placing them at an angle with respect to
each other. Inverse kinematics defines the position of
the legs. The remaining motions are similar to that of
the skier.

s yp  foot position

Bir current direction
a, lean-angle of hody
Yy foot curvature

I3 force exerted on leg
o) phase angle

FIG. 20. Input parameters for the mapping relation.
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8. DISCUSSION

The path-following algorithm provides a method of
specifying the motion in terms of the desired path of the
foot. This provides a complementary solution to the pa-
rameterized solution, in which motion was specified using
parameters related to the body motion. The two methods
of control, namely a parameterized controller and an opti-
mization-based controller, each have their uses. The
tradeoffs between these two methods of control seen as
used here are probably typical of their use in general.

The motion amplification method of using a simple dy-
namic model to drive a more complex display model repre-
sents a type of hierarchical control. One could further
use the final kinematic positions produced by the display
mapping as the set-points for controllers in a detailed and
complete physical model. We have not yet expertmented
with such a scheme, but we believe it is feasible. It is not
entirely clear what additional gains in the quality of the
motion would be attained in return for the additional com-
plexity. One of the general limitations of the kinematic
display model mapping is that the motion can seem 100
perfect. This would be especially evident with more fre-
quent and spurious interaction with other objects or phe-
nomena in the environment.

Many subtle effects that occur in various turning sports
are not included in our model. We have described the
basic physics that these sports have in common and a
common method of control. Further detailed analysis of
turning motions is possible, but the results then become
specific to the given sport. This is also another source of
difficulty when considering the possibility of proceeding
to a more detailed and complete physical model. Simulat-
ing the transmission of forces from the snow to a skier
through a flexing, twisting ski is a difficult simulation
problem. A full dynamic simulation of a bicyclist is proba-
bly easier to perform, but will not yield as many benefits
over the kinematic display mapping. More complete dy-
namic simulation would likely yield benefits for turning
figures moving quickly over bumpy and variable terrain.
Such terrain would likely require controllers with some
additional complexity over the ones presented here,
however.

Modeling and control of turning motions across nonpla-
nar terrain is a formidable challenge. Skiing and snow-
boarding can make good use of changes in terrain to facili-
tate turning. The problem here is one similar to the path-
following problem in that any decision must be based not
only upon the current state of the figure, but also the state
of the environment. Experienced practitioners of these
sports can rapidly make generalizations about how terrain
will affect a planned motion. It is difficult as of yet, how-
ever, to efficiently synthesize and store these generaliza-
tions.
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The branch-and-bound method used to perform the op-
timization might be useful in general as a control-synthesis
technique. 1t is especially useful for systems with a small
number of controllable inputs and a large number of de-
grees of freedom. In these cases it is more convenient to
explore possible motions in the *‘input space’” of the sys-
tem rather than its state space.

In the future, it will useful to develop ways of automat-
ing the generation of parameterized controllers. Turning
is such a common and reasonably-simple motion that it
is worthwhile to analytically determine a parameterized
controller, as we have done here. In general, however,
the synthesis of such a controller is still a laborious task
that is preferably automated.

APPENDIX A

The following is a brief summary of the equations of
motion of the turning model.

A free-body diagram of the forces and moments acting
on the body is shown in Fig. 21. The equations of motion
of the body are given below. F, and F, refer to the hori-
zontal and vertical components of the force exerted on
the foot by the ground. 7, is the moment of inertia of the
body about its centre of mass. «, is the angular accelera-
tion of the body and leg about the z-axis. a, and a,,
are the horizontal and vertical components, respectively:
of the linear acceleration of the body. These terms are
related as follows:

T=Flcosb, + Flsinb, = [« (13)
Fo = mag, (14)
F, = mag + mg. (15)

Equation (13) equates the sum of the angular moments
in the xy-plane to the change in angular momentum, and
Eq. (14) and (15) equate the sum of the forces to the
change in linear momentum.

The acceleration of the center of mass can be expressed

po
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FIG. 21. Free body diagram.
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relative to the acceleration of the foot, «;, as in Eq. (16)
below. Here, g, is the acceleration of the center of mass
with respect to the foot, and a_ is the coriolis force, which
is zero in our case. The orthogonal decomposition of Eq.
(16) is given in Eq. (17) and (18). w, is the angular velocity
in the xy-plane. V; is the forward velocity of the foot. #;
1s the radius of curvature of the foot in the xz-plane, and
represents our control variable. The last term in Eq. (17)
is due to rotation of the body in the xz-plane:

Ao = Ap + doip + 4 (16)
2

Uem, = ap, — [cos o, + [sin 0,02 + sin 0"7?( (17)
2

A = ay — [$in 6, a, — {cOs 6,5 (18)

Substituting Eq. (17) and (18) into Eq. (14) and (15),
and then using the results in Eq. (13), gives

2

1%
Lo, = mll{a; + [~ —
X rf

lo, + lwl) +

ml(a; — Lo, — Lo? + g), (19)

where [, = [ cos 6, and [, = [sin 8,.

Assuming that the foot is travelling on a planar surface,
we can write a; = —vi/r; and 4 = = (. Substituting these
into Eq. (19) and combining terms gives the following
result:

‘ Vi . Vi .
La, = ——Lcos g, + lsin @, cos 6V~Tr —la, + gsin@,.
ml ry ry

(20)

Finally, because we assume that the forward velocity,
V.m» is known, we can relate the forward velocity of the
foot to that of the center of mass as follows:

ry

Ve Ve " Tgina.

2N

cm

Using the result of Eq. (21) and (20), we can arrange
the terms to form a quadratic equation in terms of the
curvature of the foot, Cy, where C; = 1/r.. This result is
Eq. (1).

0 = aC} + bC; + ¢, (22)

where

a=PFsin*8k + IV, sinf, cosb,

—2lsin@,k — V7, cosé,

VAN DE PANNE, FIUME, AND VRANESIC

c=k

k= gsin8, —2X(I, + Em).
ml

In the expressions for a, b, and ¢, k is a constant useful
in simplifying the equation. The negative root of Eq. (1)
is used, as it can be shown that this leads to the correct
result of zero curvature necessary to obtain zero angular
acceleration when the body is already vertical. The equa-
tion allows us to calculate C; give «, and vice versa.

APPENDIX B: LIST OF SYMBOLS

8, Angle of model with respect to vertical

o, Time derivative of 9,

a, Time derivative of w,

g Gravity

re Radius of turn for the foot

C; Curvature of turn for the foot, 1/r,

l Height of center of mass

I, Moment of inertia about z axis

m Mass of body

w, Frequency of oscillation

O nax Amplitude of oscillation

é Phase angle of turn

Xp, ¥ Foot location in world

B Turn modifier

6y, Desired direction

0 gir Instantaneous direction

dem Accleration of center of mass

T Sum of moments about center of mass

Vi Velocity of foot

Vem Velocity of center of mass
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