Sim-to-real

Will policies trained in simulated worlds
perform well in the real world?

If not, how can this be fixed?



Deep learning is data hungry...

Machine
ImageNet : DeepRL
9 Translation P
Google
Translate
1.2M labeled images 36M sentence pairs (WMT En->Fr) 38M timesteps

“Several orders of magnitude
more” (production data)

[Josh Tobin]]



... But robotic data is expensive

Robot cost Safety Labeling

Experts say video of Uber's self-driving car killing a p
Los Angeles Times - 4 hours ago

On Monday, the San Francisco Chronicle quoted Tempe Polic
saying: "It's very clear it would have been difficult to avoid this
mode [autonomous or human-driven] based on how she cam
right into the roadway.... | suspect preliminarily it appears ...
Police release footage from Uber's fatal self-driving car crasl
The INQUIRER - 13 hours ago

Uber Video Shows the Kind of Crash Self-Driving Cars Are Made to ...

Featured - WIRED - Mar 21, 2018

A pedestrian has been killed by a self-driving car

Opinion - The Economist - 9 hours ago

Uber Operator of Self-Driving Car in Fatal Crash Had Criminal Record

In-Depth - Wall Street Journal - 7 hours ago

Uber’s Fatal Crash Is About More Than Just a Car and a Pedestrian

Featured - Popular Mechanics - Mar 21,2018

The INQUIRER Wall Street Jo.. The Guardian MarketWatch Reuters

[Josh Tobin]]



SCALE-UP
ROBOTIC DATA COLLECTION?



Large-scale robotic data collection
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3,000 hours

Learning Hand-Eye Coordination
with Deep Learning and Large Scale
Data Collection [Levine, Pastor,
Krizhevsky, Quillen, 2016]

Predict Poke

400 hours

Learning to Poke by Poking:
Experiential Learning of Intuitive

Physics [Agarwal, Nair, Abbeel, Malik,

Levine, 2016]

700 hours

Supervising Self-Supervison:
Learning to Grasp from 50K Tries
[Pinto, Gupta, ICRA 2016]



MORE DATA-EFFICIENT LEARNING?



Efficient reinforcement learning

(automatically
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[Borrelli, Bemporad, Morari, 2017]
End-to-End Training of Deep
Visuomotor Policies

[Levine*, Finn*, Darrell, Abbeel, 2016]
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Meta-learning

Model-Agnostic Meta-Learning for Fast Adaptation of
Deep Networks

[Finn, Abbeel, Levine, 2017]

RL2: Fast Reinforcement Learning Via Slow
Reinforcement Learning

[Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel, 2016]

Learning from Demonstrations

Deep Object-Centric Representations for
Generalizable Robot Learning [Devin, Abbeel, Darrell,
Levine, 2017]

Deep Imitation Learning for Complex Manipulation
Tasks from Virtual Reality Teleoperation [Zhang,
McCarthy, Jow, Lee, Chen, Goldberg, Abbeel, 2017]
One-Shot Imitation from Observing Humans via
Domain-Adaptive Meta-Learning [Yu*, Finn*, Xie,
Dasari, Zhang, Abbeel, Levine, 2018]



Unsupervised robotic learning

Augment with self- Learn a feature space Learn a model
supervised tasks

BEEEE eeEe
BEBBE R

gV T
eﬁﬁﬂﬂﬂ RRERR

et ‘ \
Hindsight Experience Replay Deep Spatial Autoencoders for Unsupervised Learning for Physical
[Andrychowicz, Wolski, Ray, Schneider, Visuomotor Learning [Finn, Tan, Interaction through Video Prediction
Fong, Welinder, McGrew, Tobin, Abbeel, Duan, Darrell, Levine, Abbeel 2016] [Finn, Goodfellow, Levine, 2016]

Zaremba, 2017]

Loss is its own Reward: Self-
Supervision for Reinforcement
Learning [Shelhamer, Mahmoudich,
Argus, Darrell, 2017]



CURRENTLY: TRAIN IN SIMULATION



Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio
Richard Moore Alex Kipman Andrew Blake
Microsoft Research Cambridge & Xbox Incubation
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Figure 2. Synthetic and real data. Pairs of depth image and ground truth body parts. Note wide variety in pose, shape, clothing, and crop.



SELF-DRIVING CARS rrobucts ~  SOLUTIONS PARTNERS  FOR DEVELOPERS

Careers

Products

NVIDIA DRIVE

Autopilot Simulation, Rendering Engineer

CONSTELLATION:

Virtual Reality Autonomous Vehicle Simulator =

Job Category Engineering & Information Technology

Location Palo Alto, California
Req. ID 50002
Job Type Full-time

EST AND VALIDATE BILLIONS OF MILES IN
DA ITE

A —,f N
\JTACENTER
Imagine being able to test an autonomous vehicle in a near-infinite variety of
conditions and scenarios—before it even reaches the road. NVIDIA is making it

happen, enabling the industry to safely drive billions of qualified m|Les in virtual
reality with the powerful new NVIDIA DRIVE™ Constellg[™

Play and Learn: Using Video Games to
Train Computer Vision Models

Alireza Shafaei Department of Computer Science
http://cs.ubc.ca/~shafaei University of British Columbia
James J. Little Vancouver, Canada
http://cs.ubc.ca/~little

Mark Schmidt

http://cs.ubc.ca/~schmidtm




DARPA Virtual Robotics Challenge results




Learning Dexterous In-Hand Manipulation

OpenAlIFMarcin Andrychowicz, Bowen Baker, Maciek Chociej,
Rafat J6zefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron,
Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor,
Josh Tobin, Peter Welinder, Lilian Weng, Wojciech Zaremba

Initial Goal

configuration




SIMULATIONS: THE GOQOD

 can collect massive experience data

* no safety concerns

* labeled

- faster than real-time (simulation speed, parallelism)
* easy to reset to initial state



Simulation for testing autonomous vehicles

1M miiles
on the road

= . e 1B miles
SN - in simulation

https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/

Josh Tobin Randomization and the Reality Gap 11/19/2019



CASSIE BIPEDAL ROBOT

key issues for successful sim-to-real:

* good model (SysID)

* good policy architecture

* train using state estimator
* train with latency

* train for a robust policy




ANYMAL

SCIENCE ROBOTICS | RESEARCH ARTICLE

ARTIFICIAL INTELLIGENCE

Learning agile and dynamic motor skills for
legged robots

Jemin Hwangbo'#, Joonho Lee’, Alexey Dosovitskiy? Dario Bellicoso’, Vassilios Tsounis’,
Vladlen Koltun3, Marco Hutter'




The inertial properties of the
links were estimated from the CAD
model. We expected up to about 20%
error in the estimation due to un-
modeled cabling and electronics. To
account for such modeling inaccu-
racies, we robustified the policy by
training with 30 different ANYmal
models with stochastically sampled
inertial properties. The center of
mass positions, the masses of links,
and joint positions were random-
ized by adding a noise sampled
from U(-2, 2) cm, U(-15, 15)%,
and U(-2, 2) cm, respectively.

Stochastic
rigid body modeling

Train actuator net
with real data

Reinforcement
learning in simulation

Deploy on the
real system



REWARDS

variable speed locomotion
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SIMULATIONS: THE BAD

« dynamics is hard
* modeling mismatch: kinematic & dynamic parameters
« unmodeled aspects: contact & friction, bending, non-stationary

« sensor modeling is hard
» images, tactile sensing, LIDAR

e reward estimation
* latency



Neural nets overfit to tiny differences in data distribution

Virtual KITTI Dataset
Multi-object tracking accuracy:
Sim: 63.7%

Real: 78.1%

Virtual Worlds as Proxy for Multi-Object Tracking Analysis
[Gaidon*, Wang*, Cabon, Vig, 2016]

Josh Tobin Randomization and the Reality Gap 11/19/2019




Errors compound

What we hope happens What actually happens

Uncorrelated errors Compounding errors

Josh Tobin Randomization and the Reality Gap 11/19/2019



SYSTEM IDENTIFICATION

* invest effort in building a good model
e given a motion, can we estimate the dynamics parameters?

* the choice of motion matters!
 active interventions vs passive observations

* non-stationary dynamics

* sysID - simulation model
* online sysID



DOMAIN RANDOMIZATION



Train a single policy that is robust to moderate parameter variations.

Ensemble-CIO: Full-Body Dynamic Motion Planning that Transfers to
Physical Humanoids

Igor Mordatch, Kendall Lowrey, Emanuel Todorov
Department of Computer Science & Engineering, University of Washington

$$11

Ensemble

Video




Preparing for the Unknown: Learning a Universal
Policy with Online System Identification

Wenhao Yu!, Jie Tan?, C. Karen Liu!, and Greg Turk'

wenhaoyu @ gatech.edu, jietan@google.com, karenliu@cc.gatech.edu, turk@cc.gatech.edu
Interactive Computing, Georgia Institute of Technology, USA
2Google Brain, Google, USA

z(lt—i b (@yopot, Wi hit—1) > Note: training requires experlen.ces tha-t
- , include the “parameter expectation” mismatches.
: _ OSI
: _‘u
Xt—h
ui_p m:(x,p) = u
L—
X4 > uP u > fﬂ (iL’, U)
Xt+1 Video

Fig. 1. Overview of UP-OSI. The online system identification model (OSI)
takes as input the recent history of the motion and identify the model
parameters . The universal control policy (UP) then takes the predicted
model parameters along with the current state x to compute the optimal
control u.



POLICY TRANSFER WITH STRATEGY OPTIMIZATION

Wenhao Yu & C. Karen Liu & Greg Turk

School of Interactive Computing

Georgia Institute of Technology, GA

wyu68@gatech.edu, {karenliu,turk}@cc.gatech.edu

To do adaptation, just learn the Universal Policy, and then
directly search in the parmeter space, using your favourite method (CMA, Bayesian optimization)

p* = argmax J e ()
"

st ) B o oy )

() (b) (c) (d) (e)
Figure 1: The environments used in our experiments. Environments in the top row are source
environments and environments in the bottom row are the target environments we want to transfer
the policy to. (a) Hopper from DART to MuJoCo. (b) Walker2d from DART to MuJoCo with
latency. (c) HalfCheetah from DART to MuJoCo with latency. (d) Minitaur robot from inaccurate
motor modeling to accurate motor modeling. (¢) Hopper from rigid to soft foot.
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Figure 2: Transfer performance vs Sample number in target environment for the Hopper example.
Policies are trained to transfer from DART to MuJoCo.
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Figure 3: Transfer performance for the Hopper example. Policies are traiend to transfer from DART
to MuJoCo with different ankle joint limits (horizontal axis). All trials run with total sample number
of 30, 000 in the target environment.



Sim-to-Real Transfer for Biped Locomotion

Wenhao Yu!, Visak CV Kumar!, Greg Turk!, C. Karen Liu!

generic data
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Domain Randomization

A

o 1
ed

If the model sees enough simulated variation, the real world
may look like just the next simulator

Josh Tobin Randomization and the Reality Gap 11/19/2019



Domain randomization for vision: pose estimation

. Each scene has a unique set of
randomizations, including:

. Texture & material properties of all
objects, table, background, robot

. Position of cameras (within a small
range)

. Lighting position, orientation, color,
and specular properties

. Distractor objects in the scene

Domain randomization for transferring deep neural networks from simulation to the real world.
[Josh Tobin et al, 2017]

Josh Tobin Randomization and the Reality Gap 11/19/2019



Grasping using a sim2real-trained pose estimator

2x speed

Domain randomization for transferring deep neural networks from simulation to the real world.
[Josh Tobin et al, 2017]

Josh Tobin Randomization and the Reality Gap 11/19/2019




e Standard RL: train a feedforward neural
network policy in a single best

environment

¢ |nstead: train a recurrent network

Fig. 3. LSTM policy deployed on the Fetch arm. Bottom: The contact
dynamics of the puck was modified by attaching a packet of chips to the

bottom.
. [ Parameter
* For each rollout, sample a different set of [Tawes [0.25 A default mass of sach Tk
. Joint Damping [0.2,20] % default damping of each joint

physics parameters [ Puck Mass O.L0.4lkg
Puck Friction [0.1, 5]
Puck Damping [0.01,0.2]Ns/m
Table Height 10.73.0.77/m
Controller Gains [0.5, 2] x default gains
Action Timestep A [125,1000]s

Sim-to-real transfer of robotic control with dynamics randomization
[Peng et al, 2018]
Josh Tobin Randomization and the Reality Gap 11/19/2019




2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

Sim-to-Real Transfer of Robotic Control with Dynamics Randomization

Xue Bin Peng!2, Marcin Andrychowicz!, Wojciech Zaremba!, and Pieter Abbeell:?

B. State and Action Parameter Range
. . L. . Link Mass [0.25, 4] x default mass of each link
The state is represented using the joint positions and Joint Damping [0.2, 20]x default damping of each joint

velocities of the arm, the position of the gripper, as well as Puck Mass [0.1,0.4]kg
the puck’s position, orientation, linear and angular velocities. :dl: FDn°u9n 0 01[%- 12,]?\]7 :

. . . ck Damping .01, 0. s/m
The combmesi feature§ result in a -52D state space. Act.lc-)ns Table Height [0.73,0.77]m
from the policy specify target joint angles for a position Controller Gains [0.5, 2]x default gains
controller. Target angles are specified as relative offsets from Action Timestep A [125,1000]s !
the current joint rotations. This yields a 7D action space. TABLE 1

DYNAMICS PARAMETERS AND THEIR RESPECTIVE RANGES.
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Layer # 1 2 3 4 5

Fig. 4.  Schematic illustrations of the policy network (top), and value
network (bottom). Features that are relevant for inferring the dynamics of
the environment are processed by the recurrent branch, while the other inputs
are processed by the feedforward branch.



In-hand manipulation

GOAL 3 $

Learning dextrous in-hand manipulation
[OpenAl Robotics, 2018]

Josh Tobin Randomization and the Reality Gap 11/19/2019



How does it work?

Train in Simulation

A Distributed workers collect B We train a control policy using reinforcement learning.
experience on randomized It chooses the next action based on fingertip positions
environments at large scale. and the object pose.

(0] ved
Robot States Actions

C We train a convolutional neural network to predict the
object pose given three simulated camera images.

Object Pose

Learning dextrous in-hand manipulation
[OpenAl Robotics, 2018]

Trained
using
PPO

Josh Tobin Randomization and the Reality Gap
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Transfer to the Real World

D We combine the pose estimation network
and the control policy to transfer to the real world.

%

{x
~
Fingertip

Locations

Actions

Object Pose

Learning dextrous in-hand manipulation
[OpenAl Robotics, 2018]

Josh Tobin Randomization and the Reality Gap 11/19/2019



Table 1: Ranges of physics parameter randomizations.

Parameter Scaling factor range Additive term range
object dimensions uniform([0.95, 1.05])

object and robot link masses uniform([0.5, 1.5])

surface friction coefficients uniform([0.7, 1.3])

robot joint damping coefficients  loguniform([0.3, 3.0])

actuator force gains (P term) loguniform([0.75, 1.5])

joint limits N(0,0.15) rad

gravity vector (each coordinate)

N(0,0.4) m/s?

Table 9: Vision randomizations.

Randomization type Range
number of cameras 3
camera position + 1.5 mm

camera rotation
camera field of view

0-3° around a random axis
+1°

robot material colors
robot material metallic level
robot material glossiness level

RGB
5%-25%""
0%-100%""

object material hue
object material saturation
object material value

calibrated hue + 1%
calibrated saturation & 15%
calibrated value + 15%

object metallic level 5%—15%""

object glossiness level 5%-15%""

number of lights 4-6

light position uniform over upper half-sphere

light relative intensity

1-5

total light intensity 0-15"
image contrast adjustment 50%-150%
additive per-pixel Gaussian noise =+ 10%




HOW DOES DOMAIN RANDOMIZATION
WORK IN PRACTICE?

[Josh Tobin]
ewfl Build a simulated world

414 Calibrate it to the environment

m@ Design randomizations to “cover” real-world variability

£ Train a model and evaluate in real

Q Examine failure modes and add randomization

» Building simulations is manual and time consuming
Issues * Deciding what parameters to randomize requires judgment

* Randomizing parameters as much as possible may not be optimal



Randomized-to-Canonical Adaptation Networks

Randomized Canonical
Simulation » Simulation ti
\.&". ‘_\\\?‘, 3 o3 aC |0n
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£ Agent
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I Agent
i !
S . action
Real World Canonical
Simulation

Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via Randomized-to-Canonical Adaptation Networks
[Stephen James et al, 2019]

Josh Tobin Randomization and the Reality Gap 11/19/2019




Training

RL }——P¢> (£)—

: I ——  sim distribution

SimOpt

©Smopt -y

Reality

Algorithm 1 SimOpt framework

1: pg, < Initial simulation parameter distribution
2: € < KL-divergence step for updating py
3: for iteration ¢ € {0,...,N} do

4:

10:

R A

env < Simulation(py, )
7%, ~ RealRollout(g,p, )

real

¢ ~ Sample(py,)
7¢% ~ SimRollout(r,,,. , €)
c(§) ¢ D(rg", i

real

P, < UpdateDistribution(pg,, &, c¢(£), €)

Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience

Josh Tobin

[Yevgen Cehbotar et al, 2019]

Randomization and the Reality Gap

11/19/2019



Meta-Sim

Random Scenes After Meta-Sim

A = — & L

» Generating realistic
randomization distributions
is hard

* You end up with scenes like
the left

e Goal: use some real data to
make the scenes realistic

Meta-Sim: Learning to Generate Structured Datasets
[Amlan Kar et al, 2019]

Josh Tobin Randomization and the Reality Gap 11/19/2019



Automatic Domain Randomization (ADR)

Intuition

* More randomization = better transfer, given the same performance in
sim

» But wide randomization ranges lead to poor performance

« ADR: automatically create a curriculum of expanding randomization
ranges

* How? Widen the distribution if performance is good near the boundary of
the range

Solving Rubik’s Cube with a Robot Hand
[OpenAl et al, 2019]

Josh Tobin Randomization and the Reality Gap 11/19/2019



The dream: real-sim-real

Collect data about
the world

Automatically design and
randomize a sim

Josh Tobin

Optimize a policy in that
simulation

Figures from: Learning Dextrous In-Hand Manipulation
[OpenAl et al, 2018]

Randomization and the Reality Gap
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QUESTIONS & DISCUSSION






