CPSC 533V: Learning to Move

Reinforcement Learning Lectures

Michiel van de Panne

Department of Computer Science
The University of British Columbia

C
W
9

£ CAIDA

This lecture is based in part on, or inspired by,
slides/blogs/demos from:

* Rich Sutton, U Alberta [Sutton] http://incompleteideas.net/book/the-book-2nd.html

* Emma Brunskill, Stanford [Brunskill] https://web.stanford.edu/class/cs234/index.html
David Silver, UCL [Silver] http://wwwO0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
Pieter Abbeel, UC Berkeley [Abbeel]

Sergey Levine, Chelsea Finn, John Schulman, UC Berkeley [UC Berkeley]
Mark Schmidt, UBC [Schmidt]

* Andrej Karpathy [Karpathy] https://karpathy.github.io/2016/05/31/rl/

* Lillian Weng [Weng] https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

Goals for this morning

* what is RL?
— what can it solve? how does it differ from other ML problems?

 why Deep RL, and some caveats

e RL basics

* RL algorithms
— Q-learning, DDPG, gradient-free methods, policy-gradient methods

* current perspectives

What is RL?

-

[DeepMind] [Mobileye] [Anybotics]

Learn to make good sequences of decisions (Brunskill]

* Drive a car

* Defeat the world champion at Go

 Manage an investment portfolio

» Sequence a series of medical tests and interventions

* Control a power station or a chemical process to maximize revenue
* Make a humanoid robot walk

* Direct attention for a computer vision task

* Understand the role of dopamine in the brain

Defining good decisions: rewards

m Fly stunt manoeuvres in a helicopter

m +ve reward for following desired trajectory
m —ve reward for crashing

m Defeat the world champion at Backgammon
m +/—ve reward for winning/losing a game
m Manage an investment portfolio
m +ve reward for each $ in bank
m Control a power station

m +ve reward for producing power
m —ve reward for exceeding safety thresholds

m Make a humanoid robot walk

m +ve reward for forward motion
m —ve reward for falling over

m Play many different Atari games better than humans
m +/—ve reward for increasing/decreasing score [Abbeel]

R L L
< £ 1 0 L

RL involves:

* optimization
- find an optimal way to make sequential decisions

* delayed consequences
— decisions now can impact things much later, e.g., climate change

— challenge: temporal credit assignment is hard
(what caused later high or low rewards?)

— challenge: need to reason about long-term ramifications

* exploration
— explore vs exploit tradeoff: try a new restaurant or go to one you already like?

— current policy impacts future data collection: potential instabilities

e generalization
— impossible to visit all states during learning, e.g. image input to a policy

~[Brunskill]

Reinforcement Learning

/”3
state policy action _ t
environmen

S T a

©.@)

. _ _ k
maximize sum of rewards: Gy = 111 + Yrigo + ... = Z YTt k41
k=0

0<~<1

Discrete vs Continuous

* discrete states, discrete actions
- e.g., Go, Chess, tic-tac-toe
— “tabular” policies for small problems

e continuous states, discrete actions
— e.g., Atari games, DOTA, cart-and-pole

* continuous states, continuous actions
— robotics, process control, autonomous driving

The Many Faces of Reinforcement Learning

Computer Science

Engineering Neuroscience

Mathematics Psychology

[Silver]

11

Branches of Machine Learning

latent structure,
labeled data
e.g., autoencoders

Supervised Unsupervised
Learning Learning

Machine
Learning

Reinforcement
Learning

[Silver]

scalar rewards over time

T

Simple Example: Backing up a Truck

- R> 5 R

al

input: 4 distances + cab-angle
output: steering angle

backing up a double trailer

[“Learning to Steer on Winding Tracks Using Semi-Parametric Control Policies”, ICRA 2005]

9 sensors x 3 values x 2 timesteps

move in 5 directions

l state:
Simple Example state:
O
O og
O O
% ©@ 099
o) O
@ 8 a
OOO O
O O

[https://cs.stanford.edu/people/karpathy/convnetjs/demo/ridemo.html]

14

OpenAl Gym [gym.openai.com]

|
B Episode 7 - Episode 1

CartPole-v1 MountainCar-vO

Berzerk-v0 Bowling-ram-v0

Ant-v2 HalfCheetah-v2 Hopper-v2

15

Why Deep RL?

AlphaZero (DeepMind)

[DeepMind: Nature 2017]

17

Aggressive autonomous driving (Georgia Tech)

of a scale vehicle
[Georgia Tech: CoRL 2017]

World Frame Cost Map Camera Image

Darker blue is Jower cost
’ "\

Directly
Use for

~. <
S

T Top Down

Sy sy & o
M e Sosthan

0 Train

18

Rubik’s cube manipulation (OpenAl)

19

Anymal: Quadrupedal locomotion + getup
(ETH Zurich)

Science Robotics, Special Issue on Learning-Beyond Immitation

Learning Agile and Dynamic Motor Skills
for Legged Robots

Jemin Hwangbo', Joonho Lee', Alexey Dosovitskiy?,
Dario Bellicoso', Vassilios Tsounis!, Vladlen Koltun?, Marco Hutter'
2018/08/16

1 Robotic Systems Lab, ETH Zurich, Switzerland

2 Intelligent Systems Lab, Intel

ETHzirich X5L (inte)

www.rsl.ethz.ch Intelligent Systems Lab

[Science Robotics, 2018]

20

[DeeplLoco: SIGGRAPH 2017]

Walking on Conveyor Belts

Y

S
Y
N

| ol , o.“..“

N
...““.“.
(0
\

e

i

|)

\ X
.“...”.?...
OO0

.“.“.“.“.“.“.“.

W

y
)

O
o

VAR

)

Retargeting

and retarget to different environments.

simulated lion

23

Physics-based Lion (UC Berkeley, UBC, Ziva Dynamics)

[“DeepMimic”, SIGGRAPH 2018]

24

Cassie:Bipedal Locomotion (UBC, U Oregon, Agility Robotics)

25

Why Deep RL? (continued)

End-to-end learning: performance benefits

Traditional approach

Lane Marking Path Control Steering

Image Detection Planning Logic Angle

End to end learning

— &
.. Angle
Self-optimized

[Chen and Huang, IV 2017]

“pixels to torques”

26

Good control from rich sensory streams
is often the limiting factor

[https://robotik.dfki-bremen.de/en/research/robot-systems/exoskelett-aktiv-ca.html]

27

How do humans and animals learn?

28

Follow the money

* Alphabet invests ~ $S2B in DeepMind
* Microsoft invests S1B in OpenAl
* autonomous driving: Mobileye, Wayve, Waymo, Tesla, ...

Some Caveats

RL has a long history (by many names)

Computer Science

Engineering Neuroscience

Mathematics Psychology

[Silver]

31

Generic Algorithm?
Best results often still have domain knowledge

* domain knowledge
— defining: state, action, reward
— hyperparameters
— example expert data

but:
* no-free lunch: inductive bias needed for efficient learning

* progress is being made towards generalizable methods |
— AlphaZero (Go, Chess), DQN (Atari games), OpenAl five (DOTA game)

RL learning often has poor “sample efficiency”

 often far too slow to learn directly in the real world
- e.g., thousands of years in simulation (OpenAl hand)

* learning requires good simulation models, so not truly “model free”

* many newborn animals can walk within minutes or hours;
giraffe, horse foal, piglets, camels, zebra and more

but:
e compute is cheap

* nature: has done much learning on an evolutionary time scale; is similar
“transfer learning” possible for RL?

33

RL has very limited data to learn from

Y. LeCun

How Much Information is the Machine Given during Learning?

P> “Pure” Reinforcement Learning (cherry)

P The machine predicts a scalar reward given once in a
while.

» A few bits for some samples

P> Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

P Predicting human-supplied data
» 10—10,000 bits per sample

P> Self-Supervised Learning (cake génoise)

» The machine predicts any part of its input for any
observed part.

P Predicts future frames in videos
» Millions of bits per sample

© 2019 IEEE International Solid-State Circuits Conference 1.1: Deep Learning Hardware: Past, Present, & Future 59

35

RL can be difficult to apply in practice

Reinforcement Learning for Real Life

ICML 2019 Workshop

June 14, 2019, Long Beach, CA, USA
Production systems
Autonomous driving
Business management
Chemistry

Computer Systems
Energy

Healthcare

Robotics/manufacture

O 00N UL WN -

“Challenges of Real-World
Reinforcement Learning”
[Dulac-Arnold et al.]

“...the research advances in RL are often hard to leverage
in real-world systems due to a series of assumptions that
are rarely satisfied in practice”

. Training off-line from the fixed logs of an external behavior policy.

. Learning on the real system from limited samples.

. High-dimensional continuous state and action spaces.

. Safety constraints that should never or at least rarely be violated.

. Tasks that may be partially observable ...

. Reward functions that are unspecified, multi-objective, or risk-sensitive.

. System operators who desire explainable policies and actions.

. Inference that must happen in real-time at the control frequency of the system.
. Large and/or unknown delays in the system actuators, sensors, or rewards.

Reprodicibility and Brittle Results

Deep Reinforcement Learning that Matters

Peter Henderson'*, Riashat Islam"*, Philip Bachman?
Joelle Pineau', Doina Precup!, David Meger!

' McGill University, Montreal, Canada “Unfortunately, reproducing results for
2 Mi ft Maluuba, M 1, Canad .
ferosolt Maluwba, Montrea’, Canada state-of-the-art deep RL methods is
In recent years, significant progress has been made in solving se I d om strai ght‘f orwar d .n

challenging problems across various domains using deep re-
inforcement learning (RL). Reproducing existing work and
accurately judging the improvements offered by novel meth-
ods is vital to sustaining this progress. Unfortunately, repro-
ducing results for state-of-the-art deep RL methods is seldom
straightforward. In particular, non-determinism in standard
benchmark environments, combined with variance intrinsic
to the methods, can make reported results tough to interpret.
Without significance metrics and tighter standardization of
experimental reporting, it is difficult to determine whether im-
provements over the prior state-of-the-art are meaningful. In
this paper, we investigate challenges posed by reproducibility,
proper experimental techniques, and reporting procedures. We
illustrate the variability in reported metrics and results when
comparing against common baselines and suggest guidelines
to make future results in deep RL more reproducible. We aim
to spur discussion about how to ensure continued progress in
the field by minimizing wasted effort stemming from results
that are non-reproducible and easily misinterpreted.

RL Basics

Reinforcement Learning — basics

r
state policy action environment
Vi
S s a
maximize Gt = Tt+1 + YTt4-2 + ... = Z’}/krt+k+1
k=0

“return”, cumulative discounted rewards

A Simple Solution to Learning a Policy:
Copy an expert “Imitation Learning”

Observe what an expert does, and try to copy it:

{(si,ai)}
[l

, a=m(s)
requires an expert
learned policy is unaware of the actual task (!)
suffers from compounding errors over time
* can be mitigated by collecting data during perturbations
transfer between two Deep-NN policies:

“policy distillation” “policy cloning”

Deep RL: key building blocks

policy methods actor critic methods value fn methods
(policy is implicit)
olicy
: S P a
p%_“CV a o S value fn V
S value fn |V4
a
: a e value fn @,
S policy

S value fn Q

Common Assumptions

* episodic tasks
— repeated interactions with the world e.g., games, trials
— begins from a standard starting state (or distribution of states)
— ends when reaching terminal state, or a fixed time T

e discounting: 7Y
— avoid infinite rewards when T=00
— summarize uncertainty abou the future
« stochastic policies: action probabilities 7(a|s) vs a = m(s)
- “smoothes”the learning, e.g., probability of playing a card, steering left, etc

— provides exploratory actions (for some algorithms)
— usually switch to deterministic policy once learning is complete

Common Assumptions

* Markov Property
— the future only depends on the current state, not the history

P[St+1 |St] — P[St+l |Sb ceey St]

 Markov Decision Process (MDP) vs

* Partially Observable Markov Decision Process (POMDP)
— state needs to be estimated; ‘belief state’

Laying the Foundations:
A Simple Deterministic Example

)

\ 4

)\ 4

44

Returns for a given sequence of decisions

e
N ;
6

\ 4

Start

S S
& &

NI N

o
Gt =rip1 +9Tt42 + o0 = Z’Yk?“t+k+1 Above we have 7 =1
k=0

D
o))
H
\ 4
o U
\ 4

45

Returns for a given sequence of decisions

16 el
Start 2 3
2

18 £ 3
0
G =18 4 5
6

O
k
Gy =11 +Y7rea9 + ... = E Y Tt k+1
k=0

v =0.9: G(start) =2+ (0.9)7 + (0.9)4 + (0.9)°1 + (0.9)*4 ..

0

5
3 2
6

4 3
1 4
1
) 4

Above we have 7 =1

End

Returns for a given policy 7T

Assume that we begin in a random state, for this example, “exploring start”
and therefore we care about the returns from all states.

LN TN L
LRy
(e e A

0

oo v=1
G =Tes1 + V2 + o= YV rers
k=0

47

Returns for a given policy 7T

Given the known returns, now improve the policy

LR TR

7(s) < arg max Z[fr(s, a) +~vV(s")] v =1

Final improved policy

o
4

s

1 S
3 End

v¢

conceptual view

Terminology

» Generalized Policy Iteration

Vsey Ty

E: policy evaluation
78 V.

|: policy improvement optimal policy,

optimal value fn
V>l< 9 7T>l<

evaluation improve evaluation improve evaluation improve evaluation
)y ——> V,[O > T > Vm —_— D > oo > Ty ———> Ve

53

Terminology

* state value function V(s): VT('(S) = E, [Gt ’St = S]

— expected returns for a given state, under a given policy “how good is a state?”

— for our deterministic example, ‘/7T (8) — GW (S)
* value iteration, with bootstrapping:

Gt = Tregp1 +yrigo + 727“t+3 + 737“75+4 + ...
Gy =111+ Y(reg2 + Vg3 + 7 Te4a + -
Gy =141 +7Gr41

similarly for the value functions

for each iteration k
for each state s

Vk_|_1(8) =1r 4 ’}/Vk(sl) 6 2 4

— iterative value estimates depend on previous value estimates (!)

* prioritized sweeping: order updates based on size of expected change inV

Terminology

e discount factor 0 S Y S 1

— allows for continuing episodes, i.e., infinite length,
which would otherwise produce a potentially infinite return

— probability of episode continuing at any given time

— preference for current rewards over future rewards,
given that there may be more uncertainty about the future rewards

* experience tuples S /

a
(s,a,r,s) - >

— from state s, we took action a, and received reward r and ended in state s’

StOChaSﬁC Envi ronments dynamics function: p(s’,r|s1,a)

“state transition model”

r=1
a 0.2 O 52 when in state S and taking action aq
0.5 r=0,-1 what is the probability of ending up
S1 Q 0.3 Q S3 in state s’ and receiving reward T
as
O 84 /
. p(s 77“|817a1) next state reward
0.2 S9 1
() S5 0.4 53 0
VW(S) = E [Gt|St = S] 0.1 S3 -1
0.3 S -2
Vi et (5 Zp s',rls, a)[r + Vo r(s')] :

The value function provides the expected returns >

Common “backup diagram”

S ao

possible actions
T
a

distribution of state transitions,
r due to stochastic dynamics,
p with unique rewards
OO OO O Of

[Sutton, p81]

02 ") 82

0.5 r:o’-]_
0.3 O S3
r=-2

57

Model-based Model-free

CL1 ° 0.5 r=0 0/1 ° 27
51 0.3 () 83 51

a9 r=-2 a2

Ve kt1(s Zp s rls,a)[r +YVi k(8] VW(S) —]EW[Gt‘St = S]

model-based: aII state-transitions and rewards are known in advance, follow some known distribution
model-free: state-transitions and rewards are not known [therefore need to discover these thru experience!]
most basic RL: model-free); = More advanced: model-based methods learn an approximate modeI551;or p()

Determining the best returns for every state

(“Dynamic Programming” because the model is known)

59

“Bellman Backups”

(max(5+2,7+3)

R

\ 4
N

Final best returns for all states

61

Optimal Policy (implicit in optimal value fn)
value fn update: Vk_|_1(8) = max(r + ’ka(S/))

related implicit policy: 7Tt 1 (8) — arg max(r + ”VVk (3/))
a

Optimal Policy

AN o N
LN O (@\]
< (o)
4
N~ O

More Definitions

* Bellman backup: a local iterative improvement of the value function
- deterministic case: 1/ ; (5) — maX(r + nyk(S/))
a

— stochastic case: Vk+1(8) = maX(Z p(S/, T|S, CL) [7“(3, CL) =+ ’YVk(SI)]

Policy Objective Functions
(what is the overall thing that we wish to optimize?)

* episodic environments: use the start value

J1(0) = V™(s1) = Eny [vi]
e continuing environments, e.g., learning how to walk

— average value

Jawv(0) = Zd” (s)V™(s)

— average reward per time- step (largely equivalent; we’ll typically use this)

Jar(0) =) d™(s) > m(s,a)R2

) a

for a stochastic policy
~[Silver]

65

Value Iteration: iterative Bellman backups until convergence
(note: requires a modell)

Value Iteration, for estimating 7 =~ 7,

Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V(s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop:

| A+0

| Loop for each s € 8:

| v+ V(s)

| V(s) < max,) . p(s',7]s,a) [+ 4V (s)]
| A +— max(A, v —V(s)|)

until A < 6

Output a deterministic policy, m ~ m,, such that
m(s) = argmax, >, . p(s',7|s,a) (7 + 4V (s)]

[Sutton, p83] 66

Remarks

* in general, need repeated sweeps through all states (our case: one sweep)
* dynamic programming: all states, actions are visited; dynamics known
— discrete states and actions: planning on a graph; Viterbi algorithm

— continuous states and actions
o linear system, quadratic cost function: Linear Quadratic Regulator (known optimal solution)

o more arbitrary dynamics and costs: Hamilton-Jacobi solvers (for low-D systems)

 constructing the policy requires knowing the dynamics model, p():

But in general “model free” RL, we don’t know the model,

Solve an n-dimensional PDE that

Hamilton-Jacobi-Bellman Equation defines the value function in the

state space.

—Vi(t, x) = min (c(t, x,u) + Vi (t,z) f(t,x,u))

u

Boundary Condition: V(ts, z(ts)) = ¢(x(ty))

Numerically solve backwards in time for all (t,x) to obtain the closed-
loop optimal control policy:

u*(t,z) = argmin (c(, z, u) + Ve (¢, z) f(¢, z, u))

[https://www.slideshare.net/HarukiNishimura/stochastic-control-and-information-theoretic-dualities-complete-version]

68

Hamilton-Jacobi-Bellman equations

e continuous-state, continuous-action problems

* a non-linear PDE (partial differential equation) in the value function,
whose solution is the value function itself

* Eikonal equation (optics!) is a particular case of HIB equations

* numerical solutions, often using level-set methods
— solution evolves backwards in time
— compute level sets in the value function

* feasible in low-D spaces, e.g., <= 7D
e see lan Mitchell’s work

RL algorithm attributes

state space: discrete vs continuous

action space: discrete vs continuous

* environment: stochastic vs deterministic
task: episodic vs continuing

e policy: stochastic vs deterministic

* learning: model-free vs model-based

* learning: with-critic vs without-critic

* learning: on-policy vs off-policy

* learning: tabularasa vs with demonstrations
* learning: simulation vs real-world

70

Learning with State-Action Values: Q(s,a)

(store cost-to-go on the edges)

Qr1(s,a) = 1 +ymax(Qx(s', a')) .

State-Action Value function: Q(s,a)
(equivalently called “Action Value” function)

 caches the expected results of each possible action
Qr(s,a) =E |G:|S; = s,a; = a

e think of having N value functions, one for the outcome of each action
* policy then becomes trivial:

n(s) = argmax(Q(s, a))

* Bellman backup
— deterministic case:

Qrt1(s;a) =+ ymax(Qx(s', a'))

Deep RL: key building blocks

policy methods actor critic methods value fn methods
(policy is implicit)
olicy
: S P a
p%_“CV a o S value fn V
S value fn |V4
a
: a e value fn @,
S policy

S value fn Q

value fn methods
(policy is implicit)

Q_learnlng S value fn V
(off-policy TD version)

wnQ

value fn Q

Temporal Difference Learning

* TD methods learn directly from episodes of experience
* TD is model-free: no knowledge of MDP transitions / rewards

* TD learns from incomplete episodes, by bootstrapping
* TD updates a guess towards a guess

[Silver]

Temporal-difference estimation: TD(0)

* Given a policy, estimate its value function from episodic data

V(Se) < V(St) + a(rirr + vV (Ser1) — V(S))

target
) temporal
difference
: V=4++3
Start 4 End
2
10 3 10 3 4 1 3 0

1
if model is known: V(S) — Z p(S/, r’g) a) [r(s) a) + ’)/V(S/)] 76

n-step Temporal Differences

V=4+~4+~%

4

Start End

10 10 3 4 1 0

n-step Temporal Differences,
all the way to Monte Carlo estimation

Let’s label the estimated return following n steps as Gg”), n=1,..., 00, then:

n G; Notes
n=1 Ggl) = Ri1 +yV(Si+1) TD learning
n=2 ng) = Rit1 + YRe2 + 72 V(Siv2)

n=n ng) = Rip1 + YRy + -+ + }’n_lRt+n + 7" V(Stn)

n =00 Ggoo) = Rit1 + YRz + - + ¥y 'R + yT7'V(Sy) MC estimation

The generalized n-step TD learning still has the same form for updating the value function:

V(S:) < V(S) + (G — V(S)))
[lillianweng]

78

TD()\) Which value of n is best?

—> can use a weighted mix

relative
weight Attime step t, TD())

1 O—e—O1-2

actual weights, normalized tosumto 1

A OO -

N OO0 -
OO0 (OO0 -—-e—0Ou-)*!
total

79

Monte Carlo estimation of state-values

First-visit MC prediction, for estimating V =~ v, A N
oo oOMP O

Input: a policy 7 to be evaluated A |
Q O Q C

® —

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1,51, A1, Ra,...,ST—1,Ar_1, RT
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G+ G+ R4
Unless S; appears in Sp, S1,...,St—1:
Append G to Returns(St)
V(S:) < average(Returns(St))

80

bootstrapping, i.e., value-functions

width
Temporal- of update /O\ Dynamic
difference /'\ programming
most methods learning & 3545

we’ll care about

model-free (,‘;?,‘;‘t',‘,)

of update

\
Exhaustive
Monte /' search
Carlo ? N

°
e
»

no-value fns

.4—. see

model-based
(tabular setting)

[Sutton, p190]

Another view of the corners of the design space

Monte-Carlo Temporal-Difference Dynamic Programming
V(S:) ¢ V(S) + (G - V(Sy)) V(S « V(S + a(Reea +9V(Ses1) = V(S1)) V(St) ¢ Ex [Resa +7V(Sea1))

[Silver/Wang]

82

Temporal-difference for estimating Q(s,a)

Q(st,a) «+ Q(s,a) + ariyr + 7 max Q(st41,a) — Q(s¢, ay)]

target 5 temporal
difference

Q Learning

Q-learning (off-policy TD control) for estimating 7 ~ ,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 81, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + oz[R + ymax, Q(S,a) — Q(S, A)]
S+ 5

until S is terminal

[Sutton, p131] &«

More on Q-learning

» provably converges in the tabular setting (discrete states & actions)
as long as all state-action pairs continue to be updated

 the default policy will be non-optimal because of the exploration.
We need to reduce € gradually to zero in order to converge to
optimal policy.

iatian Bi | |
Maximization Bias Q(S, A) + Q(S, A) + a[R + ymax, Q(S",a) — Q(S, A)]

100%

N(-0.1,1)
A 0 O 0
75% left right D
% left
actions 50% Q-learning
from A
Double
259 Q-learning
5% f-——————"—"———— - - - - == optimal
oL . . .
1 100 200 300

Episodes

Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action,
and always takes it significantly more often than the 5% minimum probability enforced by
e-greedy action selection with € = 0.1. In contrast, Double Q-learning is essentially unaffected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in e-greedy action selection were broken randomly. [Sutton p13 4] 86

A fix: Double Q Learning

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q1(s,a) and Q2(s,a), for all s € 8T, a € A(s), such that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q2
Take action A, observe R, S’
With 0.5 probabilility:
Q1(S, 4) — Qu(S, 4) + o (R +7Qs(S', argmax, Q1 (', 0)) — Q1 (S, 4))
else:
Q(S, 4) Qa(S, 4) + o (R +7Q1 (S, argmax,, Q(S', 0)) — Qs (S, 4))
S« S

until S is terminal

Additional understanding of experience-based
updates of V(s) or Q(s,a) Oa/l
V(s) = Elr(s, a) +7V/(s') e

V(s) =Y p(s',rls,a)[r(s,a) + 7V (s')] if modelis known

V(S;) « V(S:) + a(rizr + 4V (Sie1) — V(Sy)) fixed fraction adjustment
target

V(Sy) « V(S)) 4+ a(V(S,) — V(st))(S

V(S + (1 —a)V(S;) +aV (S,

88

Bandits

3
2
’
Reward

distribution
-1
2
-3

g«(3)

4+(10)

[Sutton, p28]

89

Q-functions for bandits

1
Qn+1 = ﬁ;Ri Q . Ri+Ro+---+ Ry
1 n—1 "o n—1
= — (Rn + ZRz)
i=1
1 1 n—1
= - (Rn+(n—1)n_1 ;R,)
— l (Rn + (’I’L - 1)Qn>
1
- ﬁ (Rn + nQn - Qn)
1 A
= Qn-i-E[Rn—Qn], V(St) <— V(St) +O&(V(St) — V(St))
decreasing “step size” over time constant “step size”

90

[Sutton, p31]

Updating using a constant step size

This gives more weight to recent rewards,
which is useful when tracking a non-stationary problem.

Qn—i—l —

aR, 1+ (1 —0a)?’Qn_1
aRn_1+ (1 —0a)?aR,_o +
o+ (1—a)" taRi 4+ (1 - a)"Q:

= (1-0a)"Q:1+ Z a(l —a)" 'R;. [Sutton, p32]

i=1 91

Loss-function view of a tabular value update

n%/i_n f(V) — (V — V)2 error squared
of ~
4 — 9V —
oV V=)
0
V «V — %a—‘i take a step size of 0.5 alpha, downhill

VeVJroz(V—V)

Off-policy vs On-policy learning

* On-policy: Use the deterministic outcomes or samples from the
target policy to train the algorithm.

e Off-policy: Training on a distribution of transitions or episodes
produced by a different behavior policy rather than that produced by
the target policy. For example, the actions could come from another
agent.

* Q-learning allows for off-policy learning

€ -Greedy Exploration (for discrete actions)

» Simplest idea for ensuring continual exploration
* All m actions are tried with non-zero probability
* With probability 1 - € choose the greedy action

* With probability € choose an action at random

ac A

e/m+1—¢€ if a* =argmax Q(s,a)
m(als) = _
e/m otherwise

[Silver]

Basic Model-based RL

value/policy

acting

planning direct
RL

model experience

\

model
learning

[Sutton, p162]

95

Basic Model-based RL

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S ¢ current (nonterminal) state
(b) A« e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) «+ Q(S A) —|—a[R+’ymaxaQ(S' a) — Q(S, A)]
(e) Model(S,A) + R, S’ (assuming deterministic environment)
(f) Loop repeat n times:
S < random previously observed state
A < random action previously taken in S
R,S’ < Model(S, A)
Q(S,A) + Q(S, A) + a|R + ymax, Q(S’,a) — Q(S, A)]

[Sutton, p164] .,

Scalability

* simple problems
— discrete states, discrete actions: store Q(s,a) in tabular form

* more interesting problems

— Backgammon: 10720 states
— Go: 107170 states

* continuous states and continuous actions ?
—“curse of dimensionality”

* therefore need to approximate:
—value functions and/or policy

Deep Q-Networks (DQN)

Q-learning for discrete actions, off policy

Playing Atari with Deep Reinforcement Learning [NeurlPS 2013]

Human-level control through deep reinforcement [Nature 2015]
learning

game image(s)

Convolution
v

Convolution
v

Fully cgnnected Fully cgnnected

z
k-]

o

o o 0 0 0 0 0 0 o ® o 0o 0 0 0 o

2N IRj€e Vv IN]
+l+1+0+0+-0+-0+0+
DOOOOOOOO

[awjuliani]

¢

(s) for each action

99

Initialize replay memory D to capacity N DQN Algorithm
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s, = {x, } and preprocessed sequence ¢, =¢(s,)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax, Q(¢(s:),a; 0)
Execute action g, in emulator and observe reward r, and image x, , , sample tuples from an
Set s¢ 1 =s;,a¢,X¢+1 and preprocess ¢, , ; =¢(s¢ 1) “ . ”
Store transition (¢,,a,r:,9,,,) in D / experience replay” buffer

Sample random minibatch of transitions <¢-,a]~,rj,¢j , 1) from D

1 if episode terminates at step j+1 maintain old and new

Sety; = { ri+7 maxy Q(¢j+1,a’; 9—) otherwise Q networks; then
Perform a gradient descent step on (yj — Q(553 0) : ith respect to the periodically swap these
network parameters 0
Every C steps reset 0=0

End For

End For [Mnih et al., 2015] 100

11.3 The Deadly Triad [Sutton, p264]

Our discussion so far can be summarized by saying that the danger of instability and
divergence arises whenever we combine all of the following three elements, making up

what we call the deadly triad:

Function approximation A powerful, scalable way of generalizing from a state space
much larger than the memory and computational resources (e.g., linear function

approximation or ANNSs).

Bootstrapping Update targets that include existing estimates (as in dynamic pro-
gramming or TD methods) rather than relying exclusively on actual rewards and

complete returns (as in MC methods).

Off-policy training Training on a distribution of transitions other than that produced
by the target policy. Sweeping through the state space and updating all states
uniformly, as in dynamic programming, does not respect the target policy and is
an example of off-policy training. [Allows learning of multiple policies

from a single stream of data] 101

Experience Replay Buffer

 supervised learning for DNN assumes i.i.d. samples
— independent and identically distributed samples

* a DNN learning update uses a mini-batch to compute the SGD update
(SGD = stochastic gradient descent)

* mini-batch of the n most recent experience tuples is not iid

* solution
— store all tuples in an experience replay buffer, then sample from that

e prioritized experience replay

— train more on the data that is surprising,
i.e., where the loss function is high

Dueling DQN

A" (s,a) = Q7 (s,a) — V7 (s) Eonn(s) [A7(s,a)] = 0.
Q(s,a;0,a,8) =V (s;0,8) + A(s, a;0,)

Q(s,a;0,0,8) = V(s;0,5) +

%ﬂ?—& (A(s a:6,0) — max A(s,a's6 a))

or
I- Q(S, a;gaaa B) = (80 ,3)
%# >_I (A(saﬁa _WEASG 904)

[Wang et al. 2015] .,

455

/ N
.
g
/
g .
g
/
’
/
s
/
g

Distributional RL Pz

(@)

Q(z,a) = ER(z,a) + 7yEQ(X', A')
l R+~yP"Z

—_—

(©

Z(z,a) 2 R(z,a) +7Z(X', A")

Figure 1. A distributional Bellman operator with a deterministic
reward function: (a) Next state distribution under policy , (b)
Discounting shrinks the distribution towards 0, (c) The reward
shifts it, and (d) Projection step (Section 4).

o
wn

Probability
o <
o

l

|

Return Return

[p<Iiniiarc ©u ai, L\)17] 105

Deep RL: key building blocks

policy methods actor critic methods value fn methods
(policy is implicit)
olicy
: S P a
p%_“CV a o S value fn
S value fn |V4
: g value fn
- policy a
T v DQN

S value fn Q

DDPG: Deep Deterministic Policy Gradients
(off policy algorithm)

In continuous action spaces, greedy policy improvement
becomes problematic, requiring a global maximisation at
every step. Instead, a simple and computationally attrac-
tive alternative is to move the policy in the direction of the
gradient of (), rather than globally maximising ().

policy a
7T 0t =1t +YQY (141, po(se+1)) — Q% (s¢, ar)
Wit1 = Wi + 00t Vo QY (8¢, at)
value fn @ Or+1 =0t + aoVope(st) VaQ" (Stat)|4e iy (s)

[DPG paper, Silver, ICML 2014] ..

DDPG

Q-learning for continuous actions, off-policy

. key to updating the policy — chain rule:
pollcy a y P g policy

S T M @_Q B aQ a
o0r da OO#

S value fn e Q

The DPG algorithm maintains a parameterized actor function y(s|6*) which specifies the current
policy by deterministically mapping states to a specific action. The critic (s, a) is learned using
the Bellman equation as in Q-learning. The actor 1s updated by following the applying the chain rule
to the expected return from the start distribution J with respect to the actor parameters:

Voud =~]EsthB [VQMQ(S, a’|0Q)|s:st,a:u(st|0“)}
= EStNPB [VGQ(SaG‘HQ)’s=8t,a=u(3t)v9wu(s|9“)|S=St]

Ornstein-Uhlenbeck Process is used to add noise to the action output.
Be aware that there are other important details to get right. [Lillicrap et al. 2016]”

(6)

